EP4261300A1 - Ternäre titanlegierung, verfahren zu ihrer herstellung und verwendung - Google Patents
Ternäre titanlegierung, verfahren zu ihrer herstellung und verwendung Download PDFInfo
- Publication number
- EP4261300A1 EP4261300A1 EP22214082.4A EP22214082A EP4261300A1 EP 4261300 A1 EP4261300 A1 EP 4261300A1 EP 22214082 A EP22214082 A EP 22214082A EP 4261300 A1 EP4261300 A1 EP 4261300A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- alloy
- temperature
- cooling
- annealing
- rhenium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 9
- 229910001069 Ti alloy Inorganic materials 0.000 title claims description 11
- 239000010936 titanium Substances 0.000 claims abstract description 29
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 claims abstract description 21
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 20
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 18
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 17
- 239000010703 silicon Substances 0.000 claims abstract description 17
- 229910002058 ternary alloy Inorganic materials 0.000 claims abstract description 7
- 229910045601 alloy Inorganic materials 0.000 claims description 47
- 239000000956 alloy Substances 0.000 claims description 47
- 238000000034 method Methods 0.000 claims description 27
- 239000000463 material Substances 0.000 claims description 26
- 239000000203 mixture Substances 0.000 claims description 23
- 229910052702 rhenium Inorganic materials 0.000 claims description 21
- 238000000137 annealing Methods 0.000 claims description 20
- 238000001816 cooling Methods 0.000 claims description 18
- 229910052710 silicon Inorganic materials 0.000 claims description 14
- 238000001953 recrystallisation Methods 0.000 claims description 13
- 238000002844 melting Methods 0.000 claims description 12
- 230000008018 melting Effects 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 9
- 230000008569 process Effects 0.000 claims description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 8
- 238000000265 homogenisation Methods 0.000 claims description 8
- 229910052799 carbon Inorganic materials 0.000 claims description 7
- 238000005097 cold rolling Methods 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 6
- 230000007704 transition Effects 0.000 claims description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 5
- 238000009835 boiling Methods 0.000 claims description 5
- 239000007789 gas Substances 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 238000005266 casting Methods 0.000 claims description 3
- 238000010276 construction Methods 0.000 claims description 3
- 230000009467 reduction Effects 0.000 claims description 3
- 238000005242 forging Methods 0.000 claims description 2
- 229910000691 Re alloy Inorganic materials 0.000 abstract description 12
- 229910000676 Si alloy Inorganic materials 0.000 abstract description 4
- 238000011282 treatment Methods 0.000 description 14
- 239000002244 precipitate Substances 0.000 description 8
- 239000000654 additive Substances 0.000 description 6
- 238000005275 alloying Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- 229910004339 Ti-Si Inorganic materials 0.000 description 3
- 229910010978 Ti—Si Inorganic materials 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 229910000734 martensite Inorganic materials 0.000 description 3
- 238000010583 slow cooling Methods 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 229910052726 zirconium Inorganic materials 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000002490 spark plasma sintering Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000004627 transmission electron microscopy Methods 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910000796 S alloy Inorganic materials 0.000 description 1
- 229910010380 TiNi Inorganic materials 0.000 description 1
- 229910008484 TiSi Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000012612 commercial material Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001887 electron backscatter diffraction Methods 0.000 description 1
- 238000002003 electron diffraction Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000007847 structural defect Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C14/00—Alloys based on titanium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/002—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/16—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
- C22F1/18—High-melting or refractory metals or alloys based thereon
- C22F1/183—High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
Definitions
- the invention relates to a ternary alloy of titanium, silicon, and rhenium, and a method for producing a ternary alloy of titanium, silicon, and rhenium, which allows for providing high strength or plasticity, and to its applications.
- phase structure a phase -a uniform part of a metal or an alloy with a specific and periodic atomic structure
- shape the mechanical and physicochemical properties of a material; they include [1-3]:
- Ti alloys include pseudo-alpha alloys, which are basically two-phase alloys, but the share of the alpha phase is predominant - the remaining elements of the structure usually account for several percent by volume [1-3].
- Pseudo-alpha alloys have been designed to work at high temperatures, and they are characterised by a complex chemical composition, e.g.
- Ti-6-2-4-2-S alloy with the following composition: Ti-6Al-2Sn-4Zr-2Mo-0.1Si, TIMETAL 1100: Ti-6Al-2.7Sn-4Zr-0.4Mo-0.4Si, TIMTETAL 685: Ti-6Al-5Zr-0.5Mo-0.25Si, TIMETAL 834 Ti-5.8Al-4Sn-3.5Zr-0.5Mo-0.7Nb-0.35Si-0.06C [2,5]. Alloying elements with the highest share are Al, Sn, and Zr, serving the function of stabilisers of the alpha phase, while the remaining elements are responsible for the precipitation of additional phases - the beta phase and intermetallic precipitates.
- pseudo-alpha alloys are their very complex chemical composition, hindering their further improvement, and low ductility, usually not exceeding 12% of the breaking strain, due to which these alloys cannot be freely shaped at low temperatures.
- the document FR2213986B1 presents a titanium alloy with the following additives: 0.05-0.1% Re, 6-7.5% Al, 0.2-2% Zr, 0.5-2% Sn, 1.5-2.7% Mo, 0.2-1.2% W, 0.1-0.35% Si, and 0.2-0.5% Cr.
- This alloy is characterised by high strength and thermal stability at a temperature of 500°C, a high fatigue limit and resistance to creep. If is found useful, e.g. in the blades of gas and steam turbines.
- This alloy has a very complex chemical composition - it contains numerous alloying additives.
- the document EP2687615B1 describes a titanium alloy with good resistance to oxidation, characterised by high strength at elevated temperatures.
- the alloy can contain between 4.5 and 7.5% of Al, between 2 and 8% of TiN, between 1.5 and 6.5% of Nb, between 0.1 and 2.5% of Mo, between 0.1 and 0.6% of Si, up to 0.2% of O, and up to 0.10% of C.
- This alloy does not contain rhenium; moreover, the alloy contains numerous alloying additives.
- the document US10183331B2 discloses a method for producing a titanium alloy using the SPS method, meaning spark plasma sintering from titanium powders.
- the alloy contains 42% to 49% of aluminium, between 0.05% and 1.5% of boron, at least 0.2% of at least one element selected from a group consisting of tungsten, rhenium, and zirconium, possibly 0% to 5% of at least one element selected from a group consisting of chromium, niobium, molybdenum, silicon, and carbon, with the remaining part being titanium.
- the document CN106119603A presents an alloy resistant to corrosion, containing the following elements: 6-7 parts by weight of copper, 6-7 parts by weight of tantalum, 5-6 parts by weight of chromium, 6-7 parts by weight of tungsten, 1.5-2 parts by mass of rhenium, 0-1.5 parts by weight of silicon, 7-8 parts by mass of cobalt, and 26-38 parts by mass of titanium.
- the ternary titanium alloy according to the invention contains titanium, between 0.4 and 0.6% by weight of silicon, between 0.2 and 1% by weight of rhenium, and possible impurities in the form of oxygen, nitrogen, carbon, and iron, preferably in a total amount below 1.05 wt%.
- the silicon content is 0.45 wt%.
- the rhenium content is between 0.5 and 1 wt%, preferably 1 wt%.
- the method for producing a ternary titanium alloy according to the invention comprises the following steps:
- the recasting temperature is higher than the melting point of Re and lower than the boiling point of Ti.
- Recasting of the mixture in step (ii) can be performed using the arc melting method.
- recasting of the mixture in step (ii) is performed five times.
- homogenisation annealing in step (iv) is performed at a temperature of at least 882°C, preferably at least 900°C.
- homogenisation annealing in step (iv) is performed for a time of at least 30 minutes.
- cooling in step (v) is performed in water, preferably at room temperature.
- step (vi) forming processes can be performed by cold rolling of the cooled alloy.
- cold rolling in step (vi) is performed until reaching a reduction of at least 50% of the thickness of the material, preferably 50-80% of the thickness of the material.
- recrystallisation annealing in step (vii) is performed at a temperature between 810 and 830°C, preferably 820°C, and cooling is performed in accordance with step (viii) with a furnace, preferably at a rate of at least 1°C/min, or in the air, preferably at room temperature.
- recrystallisation annealing in step (vii) is performed at a temperature higher than 882°C, preferably approximately 950°C, and cooling is performed in accordance with step (viii) in water.
- recrystallisation annealing in step (vii) is performed for a time of at least 10 minutes, preferably for a time of 10 minutes.
- step (vi) forming processes can be performed by hot forging above the ⁇ -> ⁇ transition temperature.
- the ternary alloys according to the invention are applicable to the production of bearing elements of lightweight constructions and/or critical elements operating at high temperatures, preferably valves, connecting rods, shafts and/or structural elements, preferably bodies, exhaust gas discharge collectors and/or engine sheathing elements and/or drives and/or blades and/or controls of gas turbines.
- the ⁇ transition temperature of the alloy is 882°C
- the melting point of rhenium is 3185°C
- the boiling point of titanium is approximately 3287°C.
- Fig. 1 presents the microstructure of a Ti-Si-1Re alloy in a state of equilibrium, i.e. after slow cooling from 820°C (treatment A) with visible intercrystalline precipitates - type I, and located inside the grains - type II (transmission electron microscopy);
- Fig. 2 presents the microstructure of a Ti-Si-Re alloy after fast cooling from 950°C (treatment B) with indicated martensite plates and precipitates of Ti-Si phases (transmission electron microscopy and electron diffraction);
- Fig. 1 presents the microstructure of a Ti-Si-1Re alloy in a state of equilibrium, i.e. after slow cooling from 820°C (treatment A) with visible intercrystalline precipitates - type I, and located inside the grains - type II (transmission electron microscopy);
- Fig. 2 presents the microstructure of a Ti-Si-Re alloy after fast cooling from 950°C (treatment B) with indicated martensite plates and precipitates of Ti-Si phases (transmission electron
- Fig. 3 presents the mechanical properties of pure titanium, Ti-Re and Ti-Si alloys (the commercial Timetal XT alloy indicated as TiXT), and Ti-Si-Re alloys, materials in a normalised condition after type A heat treatment, i.e. slow cooling from 820°C (the static tension test)
- Fig. 4 presents the structure (a) and mechanical properties (b) of pure titanium, Ti-Re and Ti-Si alloys (the commercial Timetal XT alloy indicated as TiXT), and Ti-Si-Re alloys - materials in a metastable condition after supersaturation from a temperature of 950°C, i.e. after treatment B (EBSD images of the microstructures of selected systems, and the static tension test).
- Ternary Ti-Si-Re alloys were prepared using the commercial Timetal XT alloy, containing 0.45 wt% of silicon. This material was recast with a rhenium additive, using the following procedure:
- Homogenisation annealing was performed at a temperature above the ⁇ -> ⁇ transition temperature of the alloy, i.e. above 882°C. In an embodiment, annealing was performed at a temperature of 900°C and over a time of 30 minutes. This step was supposed to homogenise the microstructure (elimination of unpreferable morphology comprising zones of frozen grains, columnar grains, and dendrites of variable size) and chemical composition.
- Treatment A Recrystallisation annealing at a temperature of 820°C, minimum time of 10 minutes, cooling in the air or with a furnace. This step of the treatment was performed at a temperature close to the end of stability of the ⁇ -Ti phase, resulting in full recrystallisation of the material and obtaining a homogeneous, equiaxial microstructure (the reference condition for commercial materials).
- Treatment B Recrystallisation annealing at a temperature of 950°C, minimum time of 10 minutes, cooling in water. This version of treatment was performed at the temperature of stability of the ⁇ phase. Fast cooling in water resulted in a metastable ⁇ -Ti structure, supersaturated with rhenium, with a minimal amount of precipitates.
- binary Ti-Re alloys were also prepared.
- the input materials Ti with purity of 99.98 wt% and Re with purity of 99.9 wt% (according to the received technical specification) were cut and cleaned chemically and ultrasonically.
- Four compositions/mixtures of substrates were prepared, with the following Re concentrations: 0 (pure Ti), 0.2 wt%, 0.5 wt%, and 1 wt%, which constituted an input for the production of solid materials.
- the binary alloys were prepared using the same method as for the ternary alloys, but using only treatment A in step (vii).
- Heat treatment A resulted in achieving a homogeneous, equiaxial structure of the material, consisting of a hexagonal phase saturated with rhenium and silicon, and two types of precipitates of a submicrometric size, present inside the grains and on their boundaries, as presented in Figure 1 .
- Heat treatment B resulted in shaping a dispersed martensitic structure (a supersaturated hexagonal solution of Ti), with thickness of martensite plates in the order of 200 nm, with larger alpha grains and TiSi precipitates - Figs. 2 and 4 .
- the different morphology of the Ti-Si-Re alloy achieved by means of two heat treatments resulted in significantly different properties of the material, which are presented in Figures 3 and 4 .
- Type A treatment allowed for achieving high strength and very high plasticity - the yield point higher by approximately 100 MPa, and the breaking strain higher by 11% compared to the commercial Timetal XT alloy with a composition of Ti-0.5Si (0.5 wt% ofSi).
- the increase in the yield point and the breaking strain was 20% and 40%, respectively.
- the yield point increased by 225%, and the Ti-Si-Re alloy retained over 80% of plasticity of pure Ti, which was unheard- of in the previous solutions.
- the use of the B-type treatment increased the strength of the Ti-Si-Re alloy to a level of 950 MPa - the tensile strength, decreasing the plasticity of the alloy to a level of 17% of the breaking strain.
- increases in strength of 40% and 147% were achieved for the Timetal XT alloy (Ti-05Si) and pure titanium, respectively.
Landscapes
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Silicon Compounds (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Powder Metallurgy (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL440911A PL440911A1 (pl) | 2022-04-11 | 2022-04-11 | Trójskładnikowy stop tytanu, sposób jego wytwarzania i zastosowanie |
Publications (3)
Publication Number | Publication Date |
---|---|
EP4261300A1 true EP4261300A1 (de) | 2023-10-18 |
EP4261300B1 EP4261300B1 (de) | 2024-07-24 |
EP4261300C0 EP4261300C0 (de) | 2024-07-24 |
Family
ID=87984604
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP22214082.4A Active EP4261300B1 (de) | 2022-04-11 | 2022-12-16 | Ternäre titanlegierung, verfahren zu ihrer herstellung und verwendung |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP4261300B1 (de) |
PL (1) | PL440911A1 (de) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2213986A1 (en) * | 1973-01-16 | 1974-08-09 | Glazunov Sergei | Titanium alloy for gas and steam turbine blades - contg. rhenium, aluminium, zirconium, tin, molybdenum, tungsten, silicon and chromium |
JPH08246192A (ja) * | 1995-03-03 | 1996-09-24 | Kobe Steel Ltd | 光触媒活性を有する酸化処理チタン又はチタン基合金材及びその製法 |
US20040094241A1 (en) * | 2002-06-21 | 2004-05-20 | Yoji Kosaka | Titanium alloy and automotive exhaust systems thereof |
EP2687615A2 (de) * | 2012-07-19 | 2014-01-22 | RTI International Metals, Inc. | Titanlegierung mit hoher Oxidationsbeständigkeit und hoher Festigkeit bei hohen Temperaturen |
CN106119603A (zh) | 2016-08-15 | 2016-11-16 | 谢光玉 | 一种耐腐蚀合金材料 |
US10183331B2 (en) | 2013-06-11 | 2019-01-22 | Centre National de la Recherche Scientifique—CNRS— | Method for manufacturing a titanium-aluminum alloy part |
-
2022
- 2022-04-11 PL PL440911A patent/PL440911A1/pl unknown
- 2022-12-16 EP EP22214082.4A patent/EP4261300B1/de active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2213986A1 (en) * | 1973-01-16 | 1974-08-09 | Glazunov Sergei | Titanium alloy for gas and steam turbine blades - contg. rhenium, aluminium, zirconium, tin, molybdenum, tungsten, silicon and chromium |
FR2213986B1 (de) | 1973-01-16 | 1976-05-14 | Glazunov Sergei | |
JPH08246192A (ja) * | 1995-03-03 | 1996-09-24 | Kobe Steel Ltd | 光触媒活性を有する酸化処理チタン又はチタン基合金材及びその製法 |
US20040094241A1 (en) * | 2002-06-21 | 2004-05-20 | Yoji Kosaka | Titanium alloy and automotive exhaust systems thereof |
EP2687615A2 (de) * | 2012-07-19 | 2014-01-22 | RTI International Metals, Inc. | Titanlegierung mit hoher Oxidationsbeständigkeit und hoher Festigkeit bei hohen Temperaturen |
EP2687615B1 (de) | 2012-07-19 | 2017-05-10 | RTI International Metals, Inc. | Titanlegierung mit hoher Oxidationsbeständigkeit und hoher Festigkeit bei hohen Temperaturen |
US10183331B2 (en) | 2013-06-11 | 2019-01-22 | Centre National de la Recherche Scientifique—CNRS— | Method for manufacturing a titanium-aluminum alloy part |
CN106119603A (zh) | 2016-08-15 | 2016-11-16 | 谢光玉 | 一种耐腐蚀合金材料 |
Non-Patent Citations (5)
Title |
---|
C. LEYENSM. PETERS: "Titanium and Titanium Alloys. Fundamentals and Applications", 2003, WILEY-VCH VERLAG GMBH & CO. KGAA |
D. BANERJEEJ.C. WILLIAMS: "Perspectives on Titanium Science and Technology", ACTA MATERIALIA, vol. 61, 2013, pages 844 |
G. LUTHERINGJ.C. WILLIAMS: "Titanium", 2007, SPRINGER |
R. BOYERG. WELSCHE.W. COLLINGS: "Materials Properties Handbook : Titanium Alloys", 1994, ASM INTERNATIONAL |
STOPY TIMETAL 685, TIMETAL 834, TIMETAL 1100, Retrieved from the Internet <URL:https://www.timet.com/literature/datasheets.html> |
Also Published As
Publication number | Publication date |
---|---|
EP4261300B1 (de) | 2024-07-24 |
EP4261300C0 (de) | 2024-07-24 |
PL440911A1 (pl) | 2023-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3395443B2 (ja) | 高クリープ強度チタン合金とその製造方法 | |
CN110050080B (zh) | Ni基锻造合金材料以及使用其的涡轮高温部件 | |
KR20190017664A (ko) | Ni기 합금 부재의 제조 방법 | |
WO2020110326A1 (ja) | Ni基合金軟化粉末および該軟化粉末の製造方法 | |
EP3115472B1 (de) | Verfahren zur herstellung von zweiphasigen ni-cr-mo-legierungen | |
AU2022224763B2 (en) | Creep resistant titanium alloys | |
QIU et al. | Tuning mechanical properties for β (B2)-containing TiAl intermetallics | |
KR20160046770A (ko) | 단조용 Ni기 합금, 그 제조 방법 및 터빈 부품 | |
Xu et al. | Effect of stress and temperature on creep behavior of a (TiB+ TiC+ Y2O3)/α-Ti composite | |
CN111440967A (zh) | 一种高热稳定性高强度无Re镍基单晶高温合金及其制备工艺 | |
EP0593824A1 (de) | Monokristalline Nickelaluminid-Basis-Legierungen und Verfahren | |
KR20230022317A (ko) | In situ 계층구조를 갖는 고엔트로피 합금 및 그 제조방법 | |
EP4261300B1 (de) | Ternäre titanlegierung, verfahren zu ihrer herstellung und verwendung | |
JP2021031717A (ja) | チタン合金、その製造方法およびそれを用いたエンジン部品 | |
Ioroi et al. | Effect of transition metal addition on microstructure and hardening behavior of two-phase Ni3Al-Ni3V intermetallic alloys | |
KR101842922B1 (ko) | 미시메탈이 첨가된 티타늄-알루미늄계 합금 | |
JPH08283890A (ja) | 耐クリープ特性に優れたTiAl基金属間化合物とその製造方法 | |
CN111394636B (zh) | 具有马氏体相变的高强度大塑性高熵合金及其制备方法 | |
EP2971214B1 (de) | Verfahren zum erzeugen einer gleichförmigen korngrösse in einer warmverformten spinodalen legierung | |
CN114959361B (zh) | 一种可析出大量有序ω相的TiAl合金及其制备方法 | |
CN115109965B (zh) | 一种高塑性多晶TiAl合金及其制备方法 | |
RU2772153C1 (ru) | Стойкие к ползучести титановые сплавы | |
CN117778816A (zh) | 抗中温脆性钴基金属间化合物及其制备方法和应用 | |
JP2022045612A (ja) | チタン合金、その製造方法およびそれを用いたエンジン部品 | |
CN117802376A (zh) | 一种共晶碳化物强化型钽合金及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: KGHM POLSKA MIEDZ SPOLKA AKCYJNA |
|
17P | Request for examination filed |
Effective date: 20231011 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20231124 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602022004827 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
U01 | Request for unitary effect filed |
Effective date: 20240814 |
|
U07 | Unitary effect registered |
Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI Effective date: 20240828 |