EP4259916A1 - Turbomachine pour un aéronef - Google Patents

Turbomachine pour un aéronef

Info

Publication number
EP4259916A1
EP4259916A1 EP21848164.6A EP21848164A EP4259916A1 EP 4259916 A1 EP4259916 A1 EP 4259916A1 EP 21848164 A EP21848164 A EP 21848164A EP 4259916 A1 EP4259916 A1 EP 4259916A1
Authority
EP
European Patent Office
Prior art keywords
arm
flow
turbomachine
primary
stream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21848164.6A
Other languages
German (de)
English (en)
Inventor
Vincent Marie Jacques Rémi De Carné-Carnavalet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
Safran Aircraft Engines SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aircraft Engines SAS filed Critical Safran Aircraft Engines SAS
Publication of EP4259916A1 publication Critical patent/EP4259916A1/fr
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/06Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output providing compressed gas
    • F02C6/08Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output providing compressed gas the gas being bled from the gas-turbine compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/16Control of working fluid flow
    • F02C9/18Control of working fluid flow by bleeding, bypassing or acting on variable working fluid interconnections between turbines or compressors or their stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the invention relates to a turbomachine, such as for example a turbojet or an aircraft turboprop, in particular an airplane.
  • a turbomachine conventionally comprises a flow path for a primary flow, or primary path, comprising a compressor, a combustion chamber and a turbine, a flow zone for a secondary flow, surrounding the primary path, and a fan or a helix located upstream of the primary vein and the secondary flow flow zone.
  • the secondary flow flow zone can be delimited radially on the outside by a shroud, so as to delimit a circulation vein of a secondary flow, or secondary vein.
  • the secondary stream flow area may also be unstreamlined.
  • the turbomachine further comprises a fan or a propeller, located upstream of the primary stream and the flow zone of a secondary flow.
  • An element of the turbomachine surrounds the primary stream and is located downstream of the fan and makes it possible to separate the primary flow from the secondary flow. This element is for example formed by part of an intermediate casing.
  • Profiled arms generally extend radially through the primary vein, so as to allow the passage of transmission or service elements through the arms.
  • turbomachine architecture has elements such as power transmission boxes or reduction gears, whose gears have significant lubrication requirements.
  • some systems also have fan blade timing change systems which further add to the lubrication demand. These increased needs are obviously in addition to the conventional lubrication needs of the turbomachine.
  • the new architectures thus require a substantial oil requirement and, at the same time, a higher cooling requirement for this oil than conventional architectures.
  • the reduction gear and the timing change mechanisms are generally located in the radially internal part of the turbomachine and are supplied with lubricating oil by pipelines. These then pass conventionally through the primary flow, inside the aforementioned arms, in order to ensure the connection between these oil-consuming systems and the systems ensuring the circulation as well as the cooling of the oil.
  • the invention aims to meet this need, in a simple, reliable and inexpensive manner.
  • the invention relates to a turbomachine extending along an axis, comprising a flow path for a primary flow comprising a compressor, a combustion chamber and a turbine, a flow zone for a secondary flow , surrounding the primary vein, a blower or a propeller located upstream of the primary vein and of the flow zone of the secondary flow, at least one arm extending radially through the primary vein, at least one circulation pipe of fluid extending inside the arm, characterized in that the arm comprises an air inlet coming from the primary stream so as to cool the fluid circulating in the said pipe.
  • axial, radial and circumferential are defined with respect to the axis of the turbomachine.
  • upstream and downstream are defined with respect to the direction of circulation of the gases within the turbomachine.
  • the invention proposes to take advantage of the passage of the pipe through the arm in order to carry out all or part of the heat exchanges necessary for cooling the fluid. For this, part of the air passing through the primary vein is taken through the air inlet of the arm.
  • the pipe thus forms a heat exchanger, in its part passing through the arm.
  • the pipe can then, in this part at least, have any suitable shape in order to ensure the heat exchange function.
  • the air inlet is positioned in such a way as to capture the dynamic pressure coming from the fan or the propeller and entering the primary vein.
  • the fluid can be oil or another heat transfer fluid.
  • the arm can be located upstream of the compressor.
  • the turbomachine may include a low pressure compressor and a high pressure compressor. The arm can then be located before the low pressure compressor.
  • the air entering the arm has a relatively low temperature, which makes it possible to maximize the cooling of the fluid circulating in the pipe.
  • the arm may comprise two lateral surfaces defining upstream at least one leading edge and downstream at least one trailing edge, the air inlet being located at the level of the leading edge and/or at the at least one of the side surfaces of the arm.
  • the air inlet can be formed by an opening.
  • the air inlet can be located at the leading edge of the arm.
  • the air inlet can then be called a front scoop.
  • the air inlet may extend circumferentially from the corresponding side surface of the arm.
  • the air inlet can be located at the level of at least one of the side surfaces of the arm.
  • Such an air inlet can also be called a side scoop.
  • the air inlet can be a simple opening or extend circumferentially from the corresponding side surface of the arm, for example in the form of a cap, so as to allow the flow rate to be increased. captured by the air inlet (so-called dynamic scoop).
  • the air inlet can be formed by a simple opening extending into the area bounded by the arm.
  • the pipe can be equipped with a heat exchanger housed in the arm.
  • Said exchanger may comprise fins making it possible to increase the exchange surfaces with the air flowing in the arm.
  • the heat exchange between the air and the fluid circulating in the pipe can be carried out only through the wall, for example cylindrical, of the said pipe.
  • the arm may include an air outlet.
  • the air outlet can be located at the radially outer end of the arm and can open out into an element of the turbomachine located radially between the primary stream and the secondary flow flow zone.
  • This element may be part of an intermediate casing of a turbomachine, in particular in the case where the turbomachine is a turbofan engine.
  • Said element may comprise at least one air flow circulation duct connecting said outlet of the arm to an opening of said element opening out into the secondary flow flow zone.
  • Said opening can be equipped with an ejection grid.
  • Said ejection grille may comprise fins for redirecting the flow of air crossing it, so as to align the flow of air issued the grid with the direction of the secondary flow. Such a grid then makes it possible not to penalize too strongly the flow of the secondary flow.
  • Said element may comprise a first duct connecting the outlet of the arm to a second duct connecting the primary vein to the secondary flow flow zone.
  • the second conduit can connect a shutter or a controlled valve located at the level of a radially outer wall of the primary stream to the flow zone of the secondary flow.
  • a valve also called Variable Bleed Vane or V.B.V.
  • Such a valve can also have the function of extracting debris or foreign bodies introduced into the primary stream, so as to protect the elements located downstream.
  • Such foreign bodies can be hail, rain or dust for example. It should be noted that, in the case of hail extraction in particular, the risk of accumulation of ice at the level of the outlet of the second duct is limited by the contribution of calories from the hot air coming from the arm.
  • the air outlet can be formed in the arm and can open into the primary vein.
  • the air outlet can then be located in a downstream zone of the arm, for example at the trailing edge.
  • the arm may include means for adjusting the section of the air inlet and/or the air outlet.
  • These adjustment means may comprise at least one movable member, the position of which can be controlled and makes it possible to adjust the section of the air inlet, possibly dynamically by means of a regulation.
  • the turbomachine may comprise a stator comprising blades located axially, in part or in whole, facing the arm.
  • the blades can be located on either side of the arm.
  • the blades can be interposed circumferentially between two arms.
  • the turbomachine may include a stator comprising blades located axially upstream of the arm. One of the stator blades may be located circumferentially opposite the arm.
  • each stator blade may be less than the axial dimension of the arm.
  • the circumferential dimension of each stator blade may be less than the circumferential dimension of the arm.
  • the downstream end of each blade can be located upstream from the downstream end of the arm.
  • the arm can be located upstream of a low pressure compressor.
  • Such a characteristic is in particular applicable to the case where the turbine engine comprises a reduction gear between the rotor of the fan and a shaft connecting the low pressure turbine and the low pressure compressor.
  • a reducer has a large mass and is generally located axially upstream of the low pressure compressor.
  • the aforementioned arm is moreover generally connected to a fixed part of the aircraft, so as to provide an anchorage or a fastening of the turbine engine on the aircraft. The fact of placing the arm upstream of the low pressure compressor thus makes it possible to limit the lever arm in the anchoring zone and the mass formed by the reducer.
  • FIG. 1 is a half-view in schematic axial section of a turbomachine according to the invention
  • FIG. 2 is a schematic axial sectional view of part of the turbomachine
  • FIG. 3 is a schematic view along a section plane perpendicular to the radial direction of extension of the arm, illustrating a first embodiment of the invention
  • FIG. 4 is a view corresponding to FIG. 3, illustrating a second embodiment of the invention
  • FIG. 5 is a view corresponding to FIG. 3, illustrating a third embodiment of the invention
  • FIG. 6 is a view corresponding to FIG. 2, illustrating a fourth embodiment of the invention.
  • FIG. 7 is a view corresponding to FIG. 2, illustrating a fifth embodiment of the invention.
  • FIG. 8 is a view corresponding to FIG. 2, schematically illustrating a sixth embodiment of the invention.
  • FIG. 9 is a detail view of part of the arm, illustrating a seventh embodiment of the invention.
  • FIG. 10 is a view corresponding to Figure 3, illustrating the positioning of the blades of a stator, said blades being located circumferentially on either side of the arm, in accordance with an eighth embodiment of the invention,
  • FIG. 11 is a view corresponding to FIG. 10, illustrating another embodiment in which the arm is located downstream of the blades of the reducer,
  • FIG. 12 is a perspective view of a turbine engine with an unducted fan of the propeller type.
  • FIGS 1 and 2 schematically illustrate a turbomachine 1, in particular a turbofan aircraft engine, according to one embodiment of the invention.
  • the turbomachine 1 extends along an axis X.
  • the turbomachine 1 comprises a stream 2 for the flow of a primary stream, or primary stream 2, comprising a compressor, a combustion chamber and a turbine, and a stream 3 for the flow of a secondary stream, or secondary stream 3 , surrounding the primary vein 2.
  • the upstream part of the primary stream 2 is separated from the secondary stream 3 by a part 4 of a so-called intermediate casing, delimiting in particular a splitter nozzle 5.
  • the turbomachine 1 further comprises a fan 6 located upstream of the primary stream 2 and of the secondary stream 3 being, like the latter, streamlined by a 3N nacelle.
  • the airflow passing through the fan 6 is split into two, namely a primary flow F1 entering the primary stream 2 and a secondary flow F2 entering the secondary stream 3.
  • Profiled arms 7 extend radially through the primary stream 2, in particular upstream of the compressor, so as to allow transmission or service elements to pass through the arms 7. These arms are in the example represented in the entry zone of the primary stream, axially close to the splitter nozzle 5. Each arm 7 comprises two lateral surfaces 8 connected upstream by a leading edge 9 and connected downstream by a trailing edge 10.
  • the turbomachine 1 may further comprise a power transmission box or a lubricated reducer 11.
  • the turbomachine 1 may further comprise a device 12 for changing the timing of the fan blades 6, also lubricated.
  • the power transmission box or the reducer 11, and the timing change mechanisms 12 are located in the radially internal part of the turbomachine 1 and are supplied with lubricating oil by pipes 13. These pipes 13 cross the primary stream 2 at the through at least one of the arms 7, in order to ensure the connection between these oil-consuming systems 11, 12 and the systems ensuring the circulation as well as the cooling of the oil, located radially outside the primary vein 2.
  • FIG. 3 illustrates the section of an arm 7 along a plane perpendicular to the radial axis of extension of the arm 7.
  • the arm 7 comprises an air inlet 14 formed by a slot extending over at least part of the leading edge 9 of arm 7.
  • Arm 7 further comprises an air outlet 15 formed by a slot extending over at least part of trailing edge 10 of arm 7.
  • FIG. 4 illustrates another embodiment in which the arm 7 comprises an air inlet 14 formed by an opening at the level of one of the side surfaces 8.
  • the air outlet 15 of the arm 7 is located at the level of the radially outer end of the arm 7 so that, in operation, air enters the internal volume 16 through the inlet 14, circulates in the internal volume 16 of the arm 7 so as to cool the pipes 13 and escapes into the internal volume 17 of part 4 of the intermediate casing, as illustrated in FIG. 6.
  • the pipes 13 can be equipped with one or more heat exchangers 18, for example provided with fins allowing to favor the heat exchange surfaces.
  • Figure 5 illustrates another embodiment in which the arm 7 comprises two air inlets 14, formed by openings located respectively at the level of each of the side surfaces 8 of the arm 7.
  • Each opening 14 can extend circumferentially from the corresponding lateral surface 18 of the arm 7, for example in the form of a cap, so as to allow the flow captured by the opening 14 to be increased.
  • Such an opening 14 forms a so-called dynamic scoop.
  • the air outlet 15 of the arm 7 is located at the radially outer end of the arm 7 so that, in operation, air enters the internal volume 16 through the inlet 14, circulates in the internal volume 16 of the arm 7 so as to cool the pipes 13 and escapes into the volume 17 of the part 4 of the intermediate casing.
  • Figure 7 illustrates another embodiment, in which the outer wall 19 of part 4 of the intermediate casing includes an ejection grille 20 communicating with the secondary stream 3.
  • the ejection grille 20 may include fins 21 for redirecting the airflow passing through it, so as to align the airflow from the grille 20 with the direction of the secondary flow F2. Such a grid 20 then makes it possible not to penalize too strongly the flow of the secondary flow F2.
  • the air from the arm 7 emerges in the internal volume 17 of the part 4 of the intermediate casing then is discharged into the secondary stream 3, through the ejection grille 20.
  • a duct can connect the outlet of the arm 7, at the radially inner end of the arm 7, and the opening 23 of the wall 19 presenting the ejection grille 20.
  • FIG. 8 schematically illustrates another embodiment, in which said part 4 comprises a first duct 24 and a second duct 25.
  • the first duct 24 connects the outlet 15 of the arm 7 and a middle zone of the second duct 25.
  • the second duct 25 connects a flap or a controlled valve 26 located at the level of a radially outer wall 27 of the primary stream 2, one hand, and the opening 23 equipped with the grid 20, on the other hand.
  • Such a valve 26 can in particular make it possible to adjust the flow of air circulating through the primary stream 2, for example so as to adjust the idle speed.
  • Such a valve 26 can also have the function of extracting debris or foreign bodies introduced into the primary stream 2, so as to protect the elements of the turbomachine 1 located downstream, in particular the high pressure compressor (not shown) knowing that a low pressure compressor (not shown) is axially downstream of the arms and upstream of the valve.
  • FIG. 9 illustrates another embodiment in which the arm 7 comprises means for adjusting the section of the air inlet 14.
  • These adjustment means comprise at least one movable member 28 whose position can be controlled and makes it possible to adjust the section of the air inlet 14, optionally dynamically by means of a regulation.
  • two opposite moving parts 28 are used, the air inlet 14 being delimited between the opposite ends of the moving parts 28.
  • the turbine engine 1 may comprise a rectifier comprising blades 29 extending radially and located axially, in part or in whole, opposite the arm 7 and located circumferentially on either side of the arms 7.
  • FIG. 11 illustrates an embodiment in which the arm is located downstream of the blades of the stator, the arm being moreover located circumferentially facing one of the blades of the stator.
  • each stator blade 29 is less than the axial dimension of arm 7.
  • the circumferential dimension of each stator blade 29 is less than the circumferential dimension of arm 7.
  • each blade 29 is located upstream of the trailing edge 10 of the arm 7.
  • the invention is also applicable to a turbomachine 1 with an unducted fan 6 of the propeller type, comprising a open secondary flux zone in which is located a rectifier 7 belonging to a stator.
  • a turbomachine 1 is also known by the acronym “USF” (for Unducted Single Fan).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

L'invention concerne une turbomachine (1) s'étendant selon un axe (X), comportant une veine (2) d'écoulement d'un flux primaire (F1) comportant un compresseur, une chambre de combustion et une turbine, une zone (3) d'écoulement d'un flux secondaire (F2), entourant la veine primaire (2), une soufflante (6) ou une hélice située en amont de la veine primaire (2) et de la zone (3) d'écoulement du flux secondaire (F2), au moins un bras (7) s'étendant radialement au travers de la veine primaire (2), au moins une canalisation de circulation de fluide s'étendant à l'intérieur du bras (7), caractérisée en ce que le bras (7) comporte une entrée d'air issu de la veine primaire de façon à refroidir le fluide circulant dans ladite canalisation.

Description

DESCRIPTION
TITRE : Turbomachine pour un aéronef
Domaine technique de l’invention
L’invention concerne une turbomachine, telle par exemple qu’un turboréacteur ou un turbopropulseur d’aéronef, en particulier d’avion.
Etat de la technique antérieure
Une turbomachine comporte classiquement une veine d’écoulement d’un flux primaire, ou veine primaire, comportant un compresseur, une chambre de combustion et une turbine, une zone d’écoulement d’un flux secondaire, entourant la veine primaire, et une soufflante ou une hélice située en amont de la veine primaire et de la zone d’écoulement du flux secondaire.
La zone d’écoulement du flux secondaire peut être délimitée radialement à l’extérieur par un carénage, de manière à délimiter une veine de circulation d’un flux secondaire, ou veine secondaire. En variante, la zone d’écoulement du flux secondaire peut également ne pas être carénée.
La turbomachine comporte en outre une soufflante ou une hélice, située en amont de la veine primaire et de la zone d’écoulement d’un flux secondaire. Un élément de la turbomachine entoure la veine primaire et est située en aval de la soufflante et permet de séparer le flux primaire de l’écoulement secondaire. Cet élément est par exemple formé par une partie d’un carter intermédiaire.
Des bras profilés s’étendent généralement radialement au travers de la veine primaire, de façon à permettre le passage d’éléments de transmission ou de servitude au travers des bras.
Les nouveaux types d’architecture de turbomachine possèdent des éléments comme des boîtiers de transmission de puissance ou encore des réducteurs, dont les engrenages possèdent des besoins importants en lubrification. De plus, certains systèmes possèdent également des systèmes de changement de calage des aubes de soufflante qui ajoutent encore à la demande de lubrification. Ces besoins accrus sont bien évidemment en surplus des besoins classiques de lubrification de la turbomachine. Les nouvelles architectures requièrent ainsi un besoin en huile conséquent et, par la même occasion, un besoin en refroidissement de cette huile supérieur aux architectures classiques.
Le réducteur et les mécanismes de changement de calage sont généralement situés en partie radialement interne de la turbomachine et sont alimentés en huile de lubrification par des canalisations. Celles-ci transitent alors classiquement au travers du flux primaire, à l’intérieur des bras précités, afin d’assurer la connexion entre ces systèmes consommateurs d’huile et les systèmes assurant la circulation ainsi que le refroidissement de l’huile.
Il existe aujourd’hui un besoin d’améliorer le refroidissement de l’huile circulant au travers de ces canalisations.
En effet, les besoins largement supérieurs en lubrification des nouvelles architectures de turbomachine impliquent une forte croissance du besoin d’échange thermique afin de refroidir le lubrifiant. Les systèmes d’échange thermique utilisés dans les architectures classiques de turbomachine ne sont pas suffisants ou mènent à des pertes de performance rédhibitoires dans le fonctionnement de la turbomachine.
Présentation de l’invention
L’invention vise à répondre à ce besoin, de manière simple, fiable et peu onéreuse.
A cet effet, l’invention concerne une turbomachine s’étendant selon un axe, comportant une veine d’écoulement d’un flux primaire comportant un compresseur, une chambre de combustion et une turbine, une zone d’écoulement d’un flux secondaire, entourant la veine primaire, une soufflante ou une hélice située en amont de la veine primaire et de la zone d’écoulement du flux secondaire, au moins un bras s’étendant radialement au travers de la veine primaire, au moins une canalisation de circulation de fluide s’étendant à l’intérieur du bras, caractérisée en ce que le bras comporte une entrée d’air issu de la veine primaire de façon à refroidir le fluide circulant dans ladite canalisation.
Les termes axial, radial et circonférentiel sont définis par rapport à l’axe de la turbomachine. Par ailleurs, les termes amont et aval sont définis par rapport au sens de circulation des gaz au sein de la turbomachine.
L’invention propose de tirer profit du passage de la canalisation au travers du bras afin de réaliser tout ou partie des échanges thermiques nécessaires au refroidissement du fluide. Pour cela, une partie de l’air transitant dans la veine primaire est prélevée au moyen de l’entrée d’air du bras.
La canalisation forme ainsi un échangeur thermique, dans sa partie traversant le bras. La canalisation peut alors, dans cette partie au moins, présenter toute forme adaptée afin d’assurer la fonction d’échange thermique.
L’entrée d’air est positionnée de façon à capter la pression dynamique issue la soufflante ou de l’hélice et entrant dans la veine primaire.
Le fluide peut être de l’huile ou un autre fluide caloporteur. Le bras peut être situé en amont du compresseur. La turbomachine peut comporter un compresseur basse pression et un compresseur haute pression. Le bras peut alors être situé avant le compresseur basse pression.
De cette manière, l’air pénétrant dans le bras a une température relativement faible, ce qui permet de maximiser le refroidissement du fluide circulant dans la canalisation.
Le bras peut comporter deux surfaces latérales définissant à l’amont au moins un bord d’attaque et à l’aval au moins un bord de fuite, l’entrée d’air étant située au niveau du bord d’attaque et/ou au niveau d’au moins une des surfaces latérales du bras.
L’entrée d’air peut être formée par une ouverture.
L’entrée d’air peut être située au niveau du bord d’attaque du bras. L’entrée d’air peut alors être appelée écope frontale.
L’entrée d’air peut s’étendre circonférentiellement depuis la surface latérale correspondante du bras.
Ainsi, l’entrée d’air peut être située au niveau de l’une au moins des surfaces latérales du bras. Une telle entrée d’air peut également être appelée écope latérale. Dans ce cas, l’entrée d’air peut être une ouverture simple ou s’étendre circonférentiellement depuis la surface latérale correspondante du bras, en se présentant par exemple sous la forme d’une casquette, de façon à permettre d’augmenter le débit capté par l’entrée d’air (écope dite dynamique).
Différemment, l’entrée d’air peut être formée par une simple ouverture s’étendant dans la surface délimitée par le bras.
La conduite peut être équipée d’un échangeur de chaleur logé dans le bras. Ledit échangeur peut comporter des ailettes permettant d’augmenter les surfaces d’échange avec l’air s’écoulant dans le bras.
En variante, l’échange de chaleur entre l’air et le fluide circulant dans la canalisation peut être réalisé uniquement au travers de la paroi, par exemple cylindrique, de ladite conduite. Le bras peut comporter une sortie d’air.
La sortie d’air peut être située à l’extrémité radialement externe du bras et peut déboucher dans un élément de la turbomachine situé radialement entre la veine primaire et la zone d’écoulement du flux secondaire.
Cet élément peut être une partie d’un carter intermédiaire d’une turbomachine, notamment dans le cas où la turbomachine est un turboréacteur à double flux.
Ledit élément peut comporter au moins un conduit de circulation du flux d’air reliant ladite sortie du bras à une ouverture dudit élément débouchant dans la zone d’écoulement du flux secondaire.
Ladite ouverture peut être équipée d’une grille d’éjection. Ladite grille d’éjection peut comporter des ailettes de redirection du flux d’air la traversant, de façon à aligner le flux d’air issu la grille avec la direction du flux secondaire. Une telle grille permet alors de ne pas pénaliser trop fortement l’écoulement du flux secondaire.
Ledit élément peut comporter un premier conduit reliant la sortie du bras à un second conduit reliant la veine primaire à la zone d’écoulement du flux secondaire.
Le second conduit peut relier un volet ou une vanne commandée située au niveau d’une paroi radialement externe de la veine primaire à la zone d’écoulement du flux secondaire. Une telle vanne (également appelée Variable Bleed Vane ou V.B.V.) permet d’ajuster le débit d’air circulant au travers de la veine primaire, par exemple de façon à ajuster le régime de ralenti. Une telle vanne peut également avoir pour fonction d’extraire des débris ou corps étrangers introduits dans la veine primaire, de façon à protéger les éléments situés en aval. De tels corps étrangers peuvent être de la grêle, de la pluie ou de la poussière par exemple. On notera que, dans le cas de l’extraction de grêle notamment, le risque d’accumulation de glace au niveau du débouché du second conduit est limité par l’apport de calories provenant de l’air chaud issu du bras.
La sortie d’air peut être formée dans le bras et peut déboucher dans la veine primaire.
La sortie d’air peut alors être située dans une zone aval du bras, par exemple au niveau du bord de fuite.
Le bras peut comporter des moyens d’ajustement de la section de l’entrée d’air et/ou de la sortie d’air. Ces moyens d’ajustement peuvent comporter au moins un organe mobile dont la position peut être commandée et permet d’ajuster la section de l’entrée d’air, éventuellement de façon dynamique par l’intermédiaire d’une régulation.
La turbomachine peut comporter un redresseur comportant des pales situées axialement, en partie ou en totalité, en regard du bras. Les pales peuvent être situées de part et d’autre du bras. Les pales peuvent être intercalées circonférentiellement entre deux bras.
La turbomachine peut comporter un redresseur comportant des pales situées axialement en amont du bras. L’une des pales du redresseur peut être située circonférentiellement en regard du bras.
La dimension axiale de chaque pale de redresseur peut être inférieure à la dimension axiale du bras. La dimension circonférentielle de chaque pale de redresseur peut être inférieure à la dimension circonférentielle du bras. L’extrémité aval de chaque pale peut être située en amont de l’extrémité aval du bras.
Le bras peut être situé en amont d’un compresseur basse pression.
Une telle caractéristique est notamment applicable au cas où la turbomachine comporte un réducteur entre le rotor de la soufflante et un arbre reliant la turbine basse pression et le compresseur basse pression. En effet, un tel réducteur a une masse importante et est généralement situé axialement en amont du compresseur base pression. Le bras précité est par ailleurs généralement relié à une partie fixe de l’aéronef, de façon à réaliser un ancrage ou une fixation de la turbomachine sur l’aéronef. Le fait de placer le bras en amont du compresseur basse pression, permet ainsi de limiter le bras de levier en la zone d’ancrage et la masse formée par le réducteur.
Brève description des figures
[Fig. 1] est une demie-vue en coupe axiale schématique d’une turbomachine selon l’invention,
[Fig. 2] est une vue en coupe axiale schématique d’une partie de la turbomachine,
[Fig. 3] est une vue schématique selon un plan de coupe perpendiculaire à la direction radiale d’extension du bras, illustrant une première forme de réalisation de l’invention, [Fig. 4] est une vue correspondant à la figure 3, illustrant une deuxième forme de réalisation de l’invention,
[Fig. 5] est une vue correspondant à la figure 3, illustrant une troisième forme de réalisation de l’invention,
[Fig. 6] est une vue correspondant à la figure 2, illustrant une quatrième forme de réalisation de l’invention,
[Fig. 7] est une vue correspondant à la figure 2, illustrant une cinquième forme de réalisation de l’invention,
[Fig. 8] est une vue correspondant à la figure 2, illustrant schématiquement une sixième forme de réalisation de l’invention,
[Fig. 9] est une vue de détail d’une partie du bras, illustrant une septième forme de réalisation de l’invention,
[Fig. 10] est une vue correspondant à la figure 3, illustrant le positionnement de pales d’un redresseur, lesdites pales étant situées circonférentiellement de part et d’autre du bras, conformément à une huitième forme de réalisation de l’invention,
[Fig. 11 ] est une vue correspondant à la figure 10, illustrant une autre forme de réalisation dans laquelle le bras est situé en aval des pales du réducteur,
[Fig. 12] est une vue en perspective d’une turbomachine à soufflante non carénée de type hélice.
Description détaillée de l’invention
Les figures 1 et 2 illustrent schématiquement une turbomachine 1 , en particulier un turboréacteur d’avion à double flux, selon une forme de réalisation de l’invention. La turbomachine 1 s’étend selon un axe X. La turbomachine 1 comporte une veine 2 d’écoulement d’un flux primaire, ou veine primaire 2, comportant un compresseur, une chambre de combustion et une turbine, et une veine 3 d’écoulement d’un flux secondaire, ou veine secondaire 3, entourant la veine primaire 2.
La partie amont de la veine primaire 2 est séparée de la veine secondaire 3 par une partie 4 d’un carter dit intermédiaire, délimitant notamment un bec séparateur 5.
La turbomachine 1 comporte en outre une soufflante 6 située en amont de la veine primaire 2 et de la veine secondaire 3 en étant comme cette dernière carénée par une nacelle 3N.
Le flux d’air traversant la soufflante 6 est séparé en deux, à savoir un flux primaire F1 pénétrant dans la veine primaire 2 et un flux secondaire F2 pénétrant dans la veine secondaire 3.
Des bras profilés 7 s’étendent radialement au travers de la veine primaire 2, en particulier en amont du compresseur, de façon à permettre le passage d’éléments de transmission ou de servitude au travers des bras 7. Ces bras sont dans l’exemple représenté en zone d’entrée de la veine primaire, axialement à proximité du bec séparateur 5. Chaque bras 7 comporte deux surfaces latérales 8 reliées à l’amont par un bord d’attaque 9 et reliées à l’aval par un bord de fuite 10.
La turbomachine 1 peut comporter en outre un boîtier de transmission de puissance ou un réducteur 11 lubrifié.
La turbomachine 1 peut comporter de plus un dispositif 12 de changement de calage des aubes de soufflante 6, également lubrifié.
Le boîtier de transmission de puissance ou le réducteur 11 , et les mécanismes de changement de calage 12 sont situés en partie radialement interne de la turbomachine 1 et sont alimentés en huile de lubrification par des canalisations 13. Ces canalisations 13 traversent la veine primaire 2 au travers de l’un au moins des bras 7, afin d’assurer la connexion entre ces systèmes consommateurs d’huile 11 , 12 et des systèmes assurant la circulation ainsi que le refroidissement de l’huile, situés radialement à l’extérieur de la veine primaire 2.
La figure 3 illustre la section d’un bras 7 selon un plan perpendiculaire à l’axe radial d’extension du bras 7. Le bras 7 comporte une entrée d’air 14 formée par une fente s’étendent sur au moins une partie du bord d’attaque 9 du bras 7. Le bras 7 comporte en outre une sortie d’air 15 formée par une fente s’étendent sur au moins une partie du bord de fuite 10 du bras 7.
En fonctionnement, de l’air froid issu de l’extrémité amont de la veine primaire 2 entre dans le volume interne 16 du bras 7, dans lequel sont logées les canalisations 13, par l’entrée 14, traverse ledit volume interne 16 en venant refroidir les canalisations 13, et est extrait dudit volume interne 16 par la sortie 15 pour déboucher à nouveau dans la veine primaire 2. La figure 4 illustre une autre forme de réalisation dans laquelle le bras 7 comporte une entrée d’air 14 formée par une ouverture au niveau de l’une des surfaces latérales 8. La sortie d’air 15 du bras 7 est située au niveau de l’extrémité radialement externe du bras 7 de sorte que, en fonctionnement, de l’air pénètre dans le volume interne 16 par l’entrée 14, circule dans le volume interne 16 du bras 7 de façon à refroidir les canalisations 13 et s’échappe dans le volume interne 17 de la partie 4 du carter intermédiaire, comme illustré à la figure 6. Sur cette figure également, les canalisations 13 peuvent être équipées d’un ou de plusieurs échangeurs de chaleur 18, par exemple munis d’ailettes permettant de favoriser les surfaces d’échange thermique.
La figure 5 illustre une autre forme de réalisation dans laquelle le bras 7 comporte deux entrées d’air 14, formées par des ouvertures situées respectivement au niveau de chacune des surfaces latérales 8 du bras 7.
Chaque ouverture 14 peut s’étendre circonférentiellement depuis la surface latérale 18 correspondante du bras 7, en se présentant par exemple sous la forme d’une casquette, de façon à permettre d’augmenter le débit capté par l’ouverture 14. Une telle ouverture 14 forme une écope dite dynamique. Comme précédemment, la sortie d’air 15 du bras 7 est située au niveau de l’extrémité radialement externe du bras 7 de sorte que, en fonctionnement, de l’air pénètre dans le volume interne 16 par l’entrée 14, circule dans le volume interne 16 du bras 7 de façon à refroidir les canalisations 13 et s’échappe dans le volume 17 de la partie 4 du carter intermédiaire.
La figure 7 illustre une autre forme de réalisation, dans laquelle la paroi externe 19 de la partie 4 du carter intermédiaire comporte une grille d’éjection 20 communiquant avec la veine secondaire 3.
La grille d’éjection 20 peut comporter des ailettes 21 de redirection du flux d’air la traversant, de façon à aligner le flux d’air issu la grille 20 avec la direction du flux secondaire F2. Une telle grille 20 permet alors de ne pas pénaliser trop fortement l’écoulement du flux secondaire F2.
En fonctionnement, de l’air issu du bras 7 débouche dans le volume interne 17 de la partie 4 du carter intermédiaire puis est rejeté dans la veine secondaire 3, au travers de la grille d’éjection 20.
Selon une forme de réalisation non représenté, un conduit peut relier la sortie du bras 7, au niveau de l’extrémité radialement interne du bras 7, et l’ouverture 23 de la paroi 19 présentant la grille d’éjection 20.
La figure 8 illustre de manière schématique une autre forme de réalisation, dans laquelle ladite partie 4 comporte un premier conduit 24 et un second conduit 25. Pour rendre cette figure plus lisible, les propositions des conduits par rapport à leur environnement ne sont pas respectées par rapport aux proportions si ces conduits seraient effectivement mis en oeuvre dans une turbomachine réelle. Le premier conduit 24 relie la sortie 15 du bras 7 et une zone médiane du second conduit 25. Le second conduit 25 relie un volet ou une vanne 26 commandée située au niveau d’une paroi radialement externe 27 de la veine primaire 2, d’une part, et l’ouverture 23 équipée de la grille 20, d’autre part.
Une telle vanne 26 (également appelée Variable Bleed Vane ou V.B.V.) peut notamment permettre d’ajuster le débit d’air circulant au travers de la veine primaire 2, par exemple de façon à ajuster le régime de ralenti. Une telle vanne 26 peut également avoir pour fonction d’extraire des débris ou corps étrangers introduits dans la veine primaire 2, de façon à protéger les éléments de la turbomachine 1 situés en aval, en particulier le compresseur haute pression (non représenté) en sachant qu’un compresseur basse pression (non représenté) est axialement en aval des bras et en amont de la vanne.
La figure 9 illustre une autre forme de réalisation dans laquelle le bras 7 comporte des moyens d’ajustement de la section de l’entrée d’air 14. Ces moyens d’ajustement comportent au moins un organe mobile 28 dont la position peut être commandée et permet d’ajuster la section de l’entrée d’air 14, éventuellement de façon dynamique par l’intermédiaire d’une régulation. Ici deux organes mobiles 28 opposés sont utilisés, l’entrée d’air 14 étant délimitée entre les extrémités opposées des organes mobiles 28.
Par ailleurs, comme illustré à la figure 10, la turbomachine 1 peut comporter un redresseur comportant des pales 29 s’étendant radialement et situées axialement, en partie ou en totalité, en regard du bras 7 et situées circonférentiellement de part et d’autre du bras 7.
La figure 11 illustre une forme de réalisation dans laquelle le bras est situé en aval des pales du redresseur, le bras étant par ailleurs situé circonférentiellement en regard de l’une des pales du redresseur.
La dimension axiale de chaque pale 29 de redresseur est inférieure à la dimension axiale du bras 7. La dimension circonférentielle de chaque pale 29 de redresseur est inférieure à la dimension circonférentielle du bras 7.
L’extrémité aval 30 de chaque pale 29 est située en amont du bord de fuite 10 du bras 7. Comme illustré à la figure 12, l’invention est également applicable à une turbomachine 1 à soufflante 6 non carénée de type hélice, comportant une zone ouverte de flux secondaire dans laquelle est situé un redresseur 7 appartenant à un stator. Une telle structure est similaire au cas de la figure 1 , la turbomachine 1 ne comportant dans ce cas pas de nacelle 3N. Une telle turbomachine 1 est également connue sous l’acronyme anglais « USF » (pour Unducted Single Fan).

Claims

REVENDICATIONS
1 . Turbomachine (1 ) s’étendant selon un axe (X), comportant une veine (2) d’écoulement d’un flux primaire (F1 ) comportant un compresseur, une chambre de combustion et une turbine, une zone (3) d’écoulement d’un flux secondaire (F2), entourant la veine primaire (2), une soufflante (6) ou une hélice située en amont de la veine primaire (2) et de la zone (3) d’écoulement du flux secondaire (F2), au moins un bras (7) s’étendant radialement au travers de la veine primaire (2), au moins une canalisation (13) de circulation de fluide s’étendant à l’intérieur du bras (7), caractérisée en ce que le bras (7) comporte une entrée d’air issu de la veine primaire de façon à refroidir le fluide circulant dans ladite canalisation, le bras (7) comportant une sortie d’air (15), la sortie d’air (15) étant située à l’extrémité radialement externe du bras (7) et débouchant dans un élément (4) de la turbomachine (1 ) situé radialement entre la veine primaire (2) et la zone (3) d’écoulement secondaire, ledit élément (4) comportant un premier conduit (24) reliant la sortie du bras (7) à un second conduit (25) reliant la veine primaire (2) à la zone (3) d’écoulement du flux secondaire (F2).
2. Turbomachine (1 ) selon la revendication précédente, caractérisée en ce que le bras (7) comporte deux surfaces latérales (8) définissant à l’amont au moins un bord d’attaque (9) et à l’aval au moins un bord de fuite (10), l’entrée d’air (14) étant située au niveau du bord d’attaque (9) et/ou au niveau d’au moins une des surfaces latérales (8) du bras (7).
3. Turbomachine (1 ) selon la revendication précédente, caractérisée en ce que l’entrée d’air (14) s’étend circonférentiellement depuis la surface latérale (8) correspondante du bras (7).
4. Turbomachine (1 ) selon l’une des revendications précédentes, caractérisée en ce que ledit élément (4) comporte au moins un conduit (24, 25) de circulation du flux d’air reliant ladite sortie du bras (7) à une ouverture (23) dudit élément (4) débouchant dans la zone (3) d’écoulement du flux secondaire (F2).
5. Turbomachine (1 ) selon l’une des revendications précédentes, caractérisée en ce que le bras (7) comporte des moyens (28) d’ajustement de la section de l’entrée d’air (14) et/ou de la sortie d’air (15).
6. Turbomachine (1 ) selon l’une des revendications précédentes, caractérisée en ce que le bras (7) est situé en amont d’un compresseur basse pression.
9
EP21848164.6A 2020-12-08 2021-12-02 Turbomachine pour un aéronef Pending EP4259916A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2012877A FR3117172B1 (fr) 2020-12-08 2020-12-08 Turbomachine pour un aéronef
PCT/FR2021/052188 WO2022123151A1 (fr) 2020-12-08 2021-12-02 Turbomachine pour un aéronef

Publications (1)

Publication Number Publication Date
EP4259916A1 true EP4259916A1 (fr) 2023-10-18

Family

ID=74206089

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21848164.6A Pending EP4259916A1 (fr) 2020-12-08 2021-12-02 Turbomachine pour un aéronef

Country Status (5)

Country Link
US (1) US20240018905A1 (fr)
EP (1) EP4259916A1 (fr)
CN (1) CN116635617A (fr)
FR (1) FR3117172B1 (fr)
WO (1) WO2022123151A1 (fr)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3018548B1 (fr) * 2014-03-17 2016-03-04 Snecma Turboreacteur a conduit de decharge
FR3014080A1 (fr) * 2014-04-22 2015-06-05 Aircelle Sa Ensemble propulsif pour aeronef
DE102015110615A1 (de) * 2015-07-01 2017-01-19 Rolls-Royce Deutschland Ltd & Co Kg Leitschaufel eines Gasturbinentriebwerks, insbesondere eines Flugtriebwerks
US10774788B2 (en) * 2016-06-28 2020-09-15 Raytheon Technologies Corporation Particle extraction system for a gas turbine engine
US20180080476A1 (en) * 2016-09-19 2018-03-22 United Technologies Corporation Geared turbofan front center body thermal management
GB2589125B (en) * 2019-11-21 2022-10-19 Gkn Aerospace Sweden Ab Heat exchanger integration
GB2591298B (en) * 2020-01-27 2022-06-08 Gkn Aerospace Sweden Ab Outlet guide vane cooler

Also Published As

Publication number Publication date
FR3117172A1 (fr) 2022-06-10
US20240018905A1 (en) 2024-01-18
WO2022123151A1 (fr) 2022-06-16
FR3117172B1 (fr) 2023-09-08
CN116635617A (zh) 2023-08-22

Similar Documents

Publication Publication Date Title
BE1026919B1 (fr) Échangeur de chaleur air-huile
EP2336525B1 (fr) Intégration d'un échangeur de chaleur air-liquide sur moteur
BE1027057B1 (fr) Échangeur de chaleur air-huile
EP1967716B1 (fr) Moteur d'aéronef équipé de moyens d'échange thermiques
FR2734320A1 (fr) Dispositif pour prelever et refroidir de l'air chaud au niveau d'un moteur d'aeronef
EP3735518B1 (fr) Turbomachine comportant un échangeur de chaleur dans la veine secondaire
BE1024081B1 (fr) Refroidissement de turbomachine par evaporation
FR3016956A1 (fr) Echangeur de chaleur d'une turbomachine
FR3096444A1 (fr) Systeme d’echange de chaleur optimise
EP3973237A2 (fr) Systeme d'echange de chaleur optimise de turbomachine
FR3065490B1 (fr) Ensemble propulsif pour aeronef comportant des echangeurs de chaleur air-liquide
FR3051219A1 (fr) Aube de turbomachine, telle par exemple qu'un turboreacteur ou un turbopropulseur d'avion
CA2620782C (fr) Dispositif de decharge pour un turboreacteur, et turboreacteur le comportant
EP3673154B1 (fr) Conduit de décharge d'un moyeu de carter intermédiaire pour turboréacteur d'aéronef comportant des canaux de refroidissement
EP3638886B1 (fr) Dispositif de refroidissement d'un carter annulaire externe de turbine
EP4259916A1 (fr) Turbomachine pour un aéronef
FR3030627A1 (fr) Systeme de passage de servitudes pour turbomachine
FR3082237A1 (fr) Dispositif d'echange de chaleur a faibles pertes de charge
FR3095005A1 (fr) Turbomachine pour un aeronef
FR3068732A1 (fr) Dispositif de refroidissement
BE1030018B1 (fr) Turbomachine axiale triple-flux avec échangeur de chaleur divergeant dans le troisième flux
WO2022189739A1 (fr) Échangeur de chaleur surfacique avec sorties additionelles
WO2021198581A1 (fr) Échangeur de chaleur air-huile rétractable pour ensemble propulsif d'aéronef
WO2020030874A1 (fr) Système et procédé de refroidissement d'un fluide d'un circuit de lubrification ou de refrodissement d'un organe moteur d'un aéronef et moteur propulsif d'aéronef équipé d'un tel système de refroidissement

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230620

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)