EP4256680A1 - An integrated drivetrain assembly for an electrified vehicle and an electrified vehicle - Google Patents

An integrated drivetrain assembly for an electrified vehicle and an electrified vehicle

Info

Publication number
EP4256680A1
EP4256680A1 EP21838972.4A EP21838972A EP4256680A1 EP 4256680 A1 EP4256680 A1 EP 4256680A1 EP 21838972 A EP21838972 A EP 21838972A EP 4256680 A1 EP4256680 A1 EP 4256680A1
Authority
EP
European Patent Office
Prior art keywords
oil
cooling
drivetrain assembly
integrated
distribution passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21838972.4A
Other languages
German (de)
French (fr)
Inventor
Yejin JIN
Kai Chen
Guoqiang Sun
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Powertrain Nanjing Co Ltd
Original Assignee
Valeo Powertrain Nanjing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Powertrain Nanjing Co Ltd filed Critical Valeo Powertrain Nanjing Co Ltd
Publication of EP4256680A1 publication Critical patent/EP4256680A1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • H02K9/193Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil with provision for replenishing the cooling medium; with means for preventing leakage of the cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/029Gearboxes; Mounting gearing therein characterised by means for sealing the gearboxes, e.g. to improve airtightness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0434Features relating to lubrication or cooling or heating relating to lubrication supply, e.g. pumps ; Pressure control
    • F16H57/0436Pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/10Casings or enclosures characterised by the shape, form or construction thereof with arrangements for protection from ingress, e.g. water or fingers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/18Casings or enclosures characterised by the shape, form or construction thereof with ribs or fins for improving heat transfer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20927Liquid coolant without phase change
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • Embodiments of the present disclosure relate generally to an integrated drivetrain assembly for an electrified vehicle and an electrified vehicle comprising the integrated drivetrain assembly.
  • Electrified vehicles such as BEV ( “Battery Electric Vehicle” ) , HEV ( “Hybrid Electric Vehicle” ) , PHEV ( “Plug-in Hybrid Electric Vehicle” ) , Range extended EV, FCEV ( “Fuel Cell Electric Vehicle” ) etc., electrified vehicles that combine a relatively efficient combustion engine with an electric drive motor.
  • Electrified vehicles can include components, particularly the drivetrain system, that generate heat. Excessive heat build-up can cause performance degradation or damage to the components.
  • cooling solutions for high power electrified vehicles e.g., for BEV whose power is larger than 200kW
  • contain at least two cooling circuit in the drivetrain system e.g., one oil cooling circuit for motor/reducer and one water cooling circuit for inverter, which will require at least two hydraulic circuits with at least two pumps, however, the arrangement of each cooling circuit with different coolant for cooling different component in the drivetrain system would be more complex and the cost would be high.
  • this oil cooled motor and reducer guarantees the higher performance and efficiency.
  • an integrated drivetrain assembly for an electrified vehicle comprises an electric motor comprising a rotor and a stator; a power inverter electrically connected to the electric motor and configured for supplying the stator with electric energy; a reducer coupled to the electric motor and configured for receiving torque provided by the rotor.
  • the drivetrain assembly further comprises one cooling circuit with a single inlet and a single outlet.
  • the cooling circuit is configured for distributing oil to flow throughout the integrated drivetrain assembly for lubricating and cooling down all the components in it, the cooling circuit comprises an oil distribution passage arranged inside a cooling plate configured for cooling at least one power switching device provided by the power inverter, at least one baffle for guiding the oil flowing through the distribution passage is provided within the distribution passage, a cover corresponding to the cooling plate is provided to enclose the oil distribution passage and contact with the at least one baffle in a sealing manner.
  • sealing material is provided between an inner surface of the cover and one end of each of the at least one of the baffle.
  • sealing material is disposed on the inner surface of the cover.
  • a plurality of cooling spikes are provided within the oil distribution passage, the cooling spikes are arranged full of the oil distribution passage with a high density.
  • the cooling spikes are provided onto the cooling plate and the cover.
  • the at least one power switching device is arranged between two cooling plates so that the power switching device could be cooled from dual sides.
  • the oil distributed by the cooling circuit is ultra-low viscosity oil.
  • the drivetrain assembly further comprises an oil pump configured for being in communication with the inlet for controlling a flow of oil through the cooling circuit.
  • the oil pump is provided by the electrified vehicle side and is connected to the inlet when the integrated drivetrain assembly is installed into the electrified vehicle, or the oil pump is integrated with the drivetrain assembly.
  • the oil pump is a volumetric pump.
  • the drivetrain assembly further comprises a heat dissipater configured for being in communication with between the outlet and the oil pump for cooling the oil discharged from the drivetrain assembly and transferring the cooled down oil into the drivetrain assembly.
  • the heat dissipater is integrated with the drivetrain assembly or provided by the electrified vehicle side.
  • an electrified vehicle comprising the integrated drivetrain assembly according to the above described is provided.
  • FIG. 1 is a schematic view of an integrated drivetrain assembly for an electrified vehicle in accordance with an exemplary aspect of the present disclosure
  • FIG. 2 is an exemplary view of the cooing plate and the oil distribution schematic arranged within the cooling plate;
  • FIG. 3 is a schematic view of a part of the power inverter in accordance with an exemplary aspect of the present disclosure, showing one exemplary cooling plate and its cover;
  • FIG. 4A is a schematic view of one exemplary arrangement for the power switching device and cooling plate of the power inverter.
  • FIG. 4B is a schematic view of another exemplary arrangement for the power switching device and cooling plate of the power inverter.
  • FIG. 1 shows a drivetrain assembly 1 in accordance with one embodiment of the present disclosure.
  • the drivetrain assembly 1 is generally integrated with a power inverter (not shown) , an electric motor 12 and a reducer 13.
  • the drivetrain assembly 1 as shown is therefore a single unit.
  • the electric motor 12 can be a synchronous motor or an asynchronous motor. When it is a synchronous motor, it may include a wound rotor or a permanent magnet rotor.
  • the peak power supplied by the electric motor can be between 10KW and 80KW, for example, of the order of 40KW, for a nominal supply voltage of 48V to 400V, or up to 800V for higher power. In the case of an electric motor adapted to a high voltage supply, the nominal power supplied by this electric motor may be 25KW.
  • the electric motor 12 is a synchronous motor with permanent magnets, providing a peak power between 10KW and 80KW.
  • the electric motor 12 can include a stator with a three-phase winding, or a combination of two three-phase windings or five-phase windings.
  • the reducer 13 is coupled to the electric motor 12.
  • the reducer 13 can transform the electric motor’s high speed, low torque to low speed, high torque.
  • the reducer 13 may comprise two or more gears, with one of the gears driven by the electric motor 12 for instance, for torque increase via speed reduction.
  • the reducer may further comprise a transmission shaft, i.e., an intermediate shaft, linking a driving gear driven by one transmission shaft of the electric motor (not shown) and another gear of larger diameter coupled to a driven mechanical load (not shown, e.g., vehicle wheel shafts) .
  • the electric motor 12 and the reducer 13 are designed with high thermal capacity.
  • the power inverter is attached by the electrical wires to the electric motor 12 and mechanically to a wall of the electric motor 12 or to a wall of the reducer 13 or to both walls of the electric motor 12 and the reducer 13.
  • the power inverter 11 converts the direct current ( “DC” ) supplied by an electrical energy storage unit (not shown) providing with the electric energy of a nominal voltage to the alternating current ( “AC” ) used to the electric motor 2.
  • the power inverter can comprise at least one power switching device 17 (as shown in FIG. 4A and FIG.
  • the power switching device can be MOSFET transistors.
  • the power switching device 17 can be IGBTs.
  • the electric motor 12 is contained in one housing (not shown)
  • the reducer 13 is contained in another housing (not shown) .
  • the two housings can be one-piece.
  • the two housings can be rigidly fixed together, for example by means of screws.
  • a sealing wall is here provided between the two housings.
  • cooling fins may be provided for the heat dissipation towards the outside of the drivetrain assembly 1.
  • the cooling fins may be carried by the outer surface of the housings. These cooling fins are for example made in one piece with the housings. These cooling fins allow to increase the outer surface of the housings, and thus promote the heat dissipation to the outside of the drivetrain assembly via the housings.
  • the entire outer surface of the housings may carry cooling fins.
  • the cooling fins may be arranged in rows, and a pitch, constant or not, may exist between two adjacent rows. These rows may or may not all have the same orientation. Where appropriate, the same fins may extend firstly to one housing and secondly to the other housing.
  • a cooling circuit 3 being flowed through with coolant is provided for distributing the coolant throughout the drivetrain assembly 1.
  • the coolant flowing in the cooling circuit 3 can be the oil with ultra-low viscosity.
  • the kinetic viscosity value of this kind of ultra-low viscosity oil at 40°C will be less than 40 and the kinetic viscosity value at 100°C will be less than 10.
  • the cooling circuit 3 comprises a single inlet 31 and a singlet outlet 32 which are provided onto the drivetrain assembly 1.
  • the inlet 31 can be connected with an oil pump 4 for controlling a flow of the ultra-low viscosity oil to be provided to the cooling circuit 3 at a required flow rate, while the outlet 32 can be connected with a heat dissipater 5 for cooling down the heated oil discharged from the cooling circuit 3. Meanwhile, the heat dissipater 5 can be connected with the oil pump 4 so as to transfer the cooled down oil into the drivetrain assembly 1 via the oil pump 4.
  • the oil pump 4 and the heat dissipater 5 are positioned in the electrified vehicle side 2.
  • the inlet 31 and outlet 32 will be fluidly in communication with the oil pump 4 and the heat dissipater 5, respectively, via several hoses 6 in the electrified vehicle side 2, such that the ultra-low viscosity oil can autonomously flow throughout the drivetrain assembly 1 for cooling and lubrication during operating.
  • the heat dissipater 5 can be integrated with the drivetrain assembly 1 for receiving heated oil from the drivetrain assembly 1 and transferring the cooled oil back to drivetrain assembly.
  • the oil pump 4 can be an electrical pump or a mechanical pump, and can be integrated with the drivetrain assembly 1, particularly mechanically integrated on the reducer 13.
  • the oil pump 4 can be a volumetric pump to provide with a required flow rate, particularly, an accelerated flow rate.
  • the volumetric pump is used instead of a centrifugal pump, in order to be able to apply high oil pressure for the cooling, which will increase the thermal dissipation capabilities through the heat sink withdrawing the heat from the switching device.
  • the cooling circuit 3 can comprise an oil reservoir (not shown) provided within the reducer 13, the oil reservoir is used for keeping necessary ultra-low viscosity oil therein, which can ensure a minimum flow of the oil for cooling and lubricating inside the drivetrain assembly 1.
  • the power switching device 17 such as an IGBT
  • the power switching device 17 can be single-side cooled by the oil flowing within an oil distribution passage arranged inside one cooling plate 18 of the power inverter.
  • the power switching device 17 can be dual side cooled by the oil flowing within two cooling plates 18, i.e., the power switching device and the cooling plates form as a sandwich structure.
  • the power switching device 17 is in direct contact with the oil so that the heat dissipation thermal resistance can be improved, since the thermal grease and additional aluminum heat sink are removed in the direct cooling power switching device 17, i.e., IGBT module.
  • the adoption of the direct contact cooling will increase in a limited way the cost, but can easily be compensated by the use of the downsized oil cooled motor for example, which makes the use of the oil cooling relevant for the inverter.
  • the power switching device 17 is controlled in a mode of full wave or of DVPWM starting from a given RPM so that the power loss from the IGBT could be reduced, which will allow to use the oil cooling.
  • the electric motor 12 is cooled down by the oil, improving in a significant way the efficiency at high torque.
  • the oil cooled motor can be 5%more efficient in the heated condition than the water cooled motor.
  • the current flowing through the IGBT can be significantly reduced limiting the heat to be dissipated by the cooling plate and oil.
  • an oil distribution passage is arranged inside the power inverter.
  • the oil distribution passage is positioned within a cooling plate 18 disposed in the power inverter, and is formed along a periphery and an inner surface 181 of the cooling plate 18.
  • the periphery of the cooling plate 18 provides groove 21 for the sealing connection with a cover 19 as shown in FIG. 3.
  • Auxiliary heat transferring elements are provided within the oil distribution passage so as to provide with additional heat dissipation.
  • the auxiliary heat transferring elements can be several metallic spikes 16 provided by the cooling plate 18, particularly by the inner surface 181 of the cooling plate 18, the spikes 16 extend from the inner surface towards a cover 19 (as shown in FIG.
  • the metallic spikes 16 can be full of oil distribution passage with a high density. High density spikes is an important burden for a conventional centrifugal water pump circuit due to higher pressure drop, whereas the volumetric oil pump is almost not sensitive to the higher pressure drop.
  • the metallic spikes 16 can have a transverse cross section of circular shape and/or of square shape (not shown) , or other shape which is of assistance with the improvement of oil flow F speed. With the supply of the oil pump, oil flows through the distribution passage from one side of the cooling plate 18 to the opposite side. The oil pump provides with an accelerated flow rate for increasing the oil flow F speed so as to increase the heat dissipation.
  • baffles 15 are provided within the oil distribution passage so as to guide the oil flow F flowing throughout the oil distribution passage.
  • two baffles 15 are extending from two opposite edges of the cooling plate 18 so that the channel for oil flow F could be formed as a “S” shape.
  • the baffles 15 can be arranged of other configuration or direction depending on different shape of the cooling plate 18 so as to well improve the rate of oil flow F.
  • the cover 19 can be a flat plate while the spikes 16 are provided onto the cooling plate 18.
  • the cover 19 and the cooling plate 18 can both provide with the spikes 16, the spikes provided by the cover 19 axially extend towards the cooling plate 18 while the spikes provided by the cooling plate axially extend towards the cover 19 so that the spikes from the cooling plate 18 and the cover 19 are spaced so that the flow passage gap between the spikes 16 can be narrowed which will increase the flow velocity around the spikes 16, increasing further the cooling performance of the cooling plate 18. Even if the original water cooling circuit was with high number of the spikes, this double sided spike distribution will allow reaching similar level of cooling as water using oil.
  • the baffles 15 contact with the cover 19 in a sealing manner so as to enclose the oil distribution passage when the cover 19 is corresponding to the cooling plate 18, particularly, a sealing material 20 is provided between an inner surface 191 of the cover 19 and one free end 151 of each baffles 15.
  • the sealing material 20 is also applied in the groove 21 provided by the periphery of the cooling plate 18.
  • sealing material on the cover allows to increase the number of the spikes on the cooling plate, essential factor to dissipate efficiently the heat, whereas if the sealing material had to be put on the heat sink directly, like on the periphery of the cooling in a classical way, the grooves will take large section decreasing the number of spikes.

Abstract

The present disclosure relates to a drivetrain assembly for an electrified vehicle. The drivetrain system comprises an electric motor, a power inverter, a reducer and one cooling circuit with a single inlet and a single outlet. The cooling circuit is configured for distributing oil to flow throughout the integrated drivetrain assembly for lubricating and cooling down all the components in it, the cooling circuit comprises an oil distribution passage arranged inside a cooling plate configured for cooling at least one power switching device provided by the power inverter, at least one baffle for guiding the oil flowing through the distribution passage is provided within the distribution passage, a cover corresponding to the cooling plate is provided to enclose the oil distribution passage and contact with the at least one baffle in a sealing manner. The present disclosure also relates to an electrified vehicle comprising the integrated drivetrain assembly according to the above described is provided.

Description

    AN INTEGRATED DRIVETRAIN ASSEMBLY FOR AN ELECTRIFIED VEHICLE AND AN ELECTRIFIED VEHICLE FIELD OF THE INVENTION
  • Embodiments of the present disclosure relate generally to an integrated drivetrain assembly for an electrified vehicle and an electrified vehicle comprising the integrated drivetrain assembly.
  • BACKGROUND OF THE INVENTION
  • The trend towards designing and building fuel efficient, low emission vehicles has increased dramatically, this trend driven by concerns over the environment as well as increasing fuel costs. At the forefront of this trend has been the development of electrified vehicles, such as BEV ( “Battery Electric Vehicle” ) , HEV ( “Hybrid Electric Vehicle” ) , PHEV ( “Plug-in Hybrid Electric Vehicle” ) , Range extended EV, FCEV ( “Fuel Cell Electric Vehicle” ) etc., electrified vehicles that combine a relatively efficient combustion engine with an electric drive motor. Electrified vehicles can include components, particularly the drivetrain system, that generate heat. Excessive heat build-up can cause performance degradation or damage to the components. Specially, cooling solutions for high power electrified vehicles, e.g., for BEV whose power is larger than 200kW, contain at least two cooling circuit in the drivetrain system, e.g., one oil cooling circuit for motor/reducer and one water cooling circuit for inverter, which will require at least two hydraulic circuits with at least two pumps, however, the arrangement of each cooling circuit with different coolant for cooling different component in the drivetrain system would be more complex and the cost would be high. However, this oil cooled motor and reducer guarantees the higher performance and efficiency.
  • For lower power less than 100kW, it becomes hard to justify the use of both oil and water-cooling in one system due to high cost, even if the benefits are clear with the additional possibilities of downsizing the motor. Therefore, using only oil cooling for the full system may be an appealing solution if the inverter can be efficiently cooled by the oil as well which constitutes the major difficulties with a conventional design of inverter cooling.
  • Therefore, it would be desirable if any improvements on oil cooling design for the drivetrain system for electrified vehicles could be provided at least with simple configuration, high efficiency and low cost.
  • SUMMARY OF THE INVENTION
  • Aspects and advantages of the invention will be set forth in part in the following description, or may be obvious from the description, or may be learned through practice of the invention.
  • In accordance with one aspect disclosed herein, an integrated drivetrain assembly for an electrified vehicle is provided. The drivetrain assembly comprises an electric motor comprising a rotor and a stator; a power inverter electrically connected to the electric motor and configured for supplying the stator with electric energy; a reducer coupled to the electric motor and configured for receiving torque provided by the rotor. The drivetrain assembly further comprises one cooling circuit with a single inlet and a single outlet. The cooling circuit is configured for distributing oil to flow throughout the integrated drivetrain assembly for lubricating and cooling down all the components in it, the cooling circuit comprises an oil distribution passage arranged inside a cooling plate configured for cooling at least one power switching device provided by the power inverter, at least one baffle for guiding the oil flowing through the distribution passage is provided within the distribution passage, a cover corresponding to the cooling plate is provided to enclose the oil distribution passage and contact with the at least one baffle in a sealing manner.
  • In one embodiment, sealing material is provided between an inner surface of the cover and one end of each of the at least one of the baffle.
  • In one embodiment, sealing material is disposed on the inner surface of the cover.
  • In one embodiment, a plurality of cooling spikes are provided within the oil distribution passage, the cooling spikes are arranged full of the oil distribution passage with a high density.
  • In one embodiment, the cooling spikes are provided onto the cooling plate and the cover.
  • In one embodiment, the at least one power switching device is arranged between two cooling plates so that the power switching device could be cooled from dual sides.
  • In one embodiment, the oil distributed by the cooling circuit is ultra-low viscosity oil.
  • In one embodiment, the drivetrain assembly further comprises an oil pump configured for being in communication with the inlet for controlling a flow of oil through the cooling circuit.
  • In one embodiment, the oil pump is provided by the electrified vehicle side and is connected to the inlet when the integrated drivetrain assembly is installed into the electrified vehicle, or the oil pump is integrated with the drivetrain assembly.
  • In one embodiment, the oil pump is a volumetric pump.
  • In one embodiment, the drivetrain assembly further comprises a heat dissipater configured for being in communication with between the outlet and the oil pump for cooling the oil discharged from the drivetrain assembly and transferring the cooled down oil into the drivetrain assembly.
  • In one embodiment, the heat dissipater is integrated with the drivetrain assembly or provided by the electrified vehicle side.
  • In accordance with another aspect disclosed herein, an electrified vehicle comprising the integrated drivetrain assembly according to the above described is provided.
  • These and other features, aspects, and advantages of the present disclosure will become better understood with reference to the following detailed description. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures, in which:
  • FIG. 1 is a schematic view of an integrated drivetrain assembly for an electrified vehicle in accordance with an exemplary aspect of the present disclosure;
  • FIG. 2 is an exemplary view of the cooing plate and the oil distribution schematic arranged within the cooling plate;
  • FIG. 3 is a schematic view of a part of the power inverter in accordance with an exemplary aspect of the present disclosure, showing one exemplary cooling plate and its cover;
  • FIG. 4A is a schematic view of one exemplary arrangement for the power switching device and cooling plate of the power inverter; and
  • FIG. 4B is a schematic view of another exemplary arrangement for the power switching device and cooling plate of the power inverter.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Reference will now be made to in detail to present embodiments of the invention, one or more examples of which are illustrated in the accompanying drawings. The detailed description uses numerical and letter designations to refer to features in the drawings. Like or similar designations in the drawings and description have been used to refer to like or similar parts of the invention. As used herein, the terms “a” , “an” and “the” are intended to mean that there are one or more of the elements unless the context clearly dictates otherwise. The terms “comprising” , “including” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements. The terms “first” and “second” may be used interchangeably to distinguish one component from another and are not intended to signify location or importance of individual components.
  • Referring now to the drawings, wherein identical numerals indicate the same elements throughout the figures, FIG. 1 shows a drivetrain assembly 1 in accordance with one embodiment of the present disclosure. The drivetrain assembly 1 is generally integrated with a power inverter (not shown) , an electric motor 12 and a reducer 13. The drivetrain assembly 1 as shown is therefore a single unit.
  • The electric motor 12 can be a synchronous motor or an asynchronous motor. When it is a synchronous motor, it may include a wound rotor or a permanent magnet rotor. The peak power supplied by the electric motor can be between 10KW and 80KW, for example, of the order of 40KW, for a nominal supply voltage of 48V to 400V, or up to 800V for higher power. In the case of an electric motor adapted to a high voltage supply, the nominal power supplied by this electric motor may be 25KW. In the illustrated embodiment, the electric motor 12 is a synchronous motor with permanent magnets, providing a peak power between 10KW and 80KW. The electric motor 12 can include a stator with a three-phase winding, or a combination of two three-phase windings or five-phase windings.
  • The reducer 13 is coupled to the electric motor 12. The reducer 13 can transform the electric motor’s high speed, low torque to low speed, high torque. The reducer 13 may comprise two or more gears, with one of the gears driven by the electric motor 12 for instance, for torque  increase via speed reduction. The reducer may further comprise a transmission shaft, i.e., an intermediate shaft, linking a driving gear driven by one transmission shaft of the electric motor (not shown) and another gear of larger diameter coupled to a driven mechanical load (not shown, e.g., vehicle wheel shafts) .
  • In the illustrated embodiments, the electric motor 12 and the reducer 13 are designed with high thermal capacity. The power inverter is attached by the electrical wires to the electric motor 12 and mechanically to a wall of the electric motor 12 or to a wall of the reducer 13 or to both walls of the electric motor 12 and the reducer 13. The power inverter 11 converts the direct current ( “DC” ) supplied by an electrical energy storage unit (not shown) providing with the electric energy of a nominal voltage to the alternating current ( “AC” ) used to the electric motor 2. The power inverter can comprise at least one power switching device 17 (as shown in FIG. 4A and FIG. 4B) , such as, field effect transistors ( “FETs” ) , metal oxide semiconductor field effect transistors ( “MOSFETs” ) or insulated gate bipolar transistors ( “IGBTs” ) . In the case of a nominal supply voltage of 48V, the power switching device can be MOSFET transistors. In the case of a supply voltage corresponding to a high voltage, the power switching device 17 can be IGBTs.
  • Referring to FIG. 1, the electric motor 12 is contained in one housing (not shown) , and the reducer 13 is contained in another housing (not shown) . The two housings can be one-piece. The two housings can be rigidly fixed together, for example by means of screws. A sealing wall is here provided between the two housings.
  • In some embodiments, cooling fins (not shown) may be provided for the heat dissipation towards the outside of the drivetrain assembly 1. The cooling fins may be carried by the outer surface of the housings. These cooling fins are for example made in one piece with the housings. These cooling fins allow to increase the outer surface of the housings, and thus promote the heat dissipation to the outside of the drivetrain assembly via the housings. The entire outer surface of the housings may carry cooling fins. The cooling fins may be arranged in rows, and a pitch, constant or not, may exist between two adjacent rows. These rows may or may not all have the same orientation. Where appropriate, the same fins may extend firstly to one housing and secondly to the other housing.
  • For the embodiment depicted, a cooling circuit 3 being flowed through with coolant is provided for distributing the coolant throughout the drivetrain assembly 1. The coolant flowing  in the cooling circuit 3 can be the oil with ultra-low viscosity. The kinetic viscosity value of this kind of ultra-low viscosity oil at 40℃ will be less than 40 and the kinetic viscosity value at 100℃ will be less than 10. By using this kind of ultra-low viscosity oil flowing throughout the drivetrain assembly via the cooling circuit 3, all components contained in the drivetrain assembly could be both lubricated and cooled down more efficiently with lower pressure drop.
  • The cooling circuit 3 comprises a single inlet 31 and a singlet outlet 32 which are provided onto the drivetrain assembly 1. The inlet 31 can be connected with an oil pump 4 for controlling a flow of the ultra-low viscosity oil to be provided to the cooling circuit 3 at a required flow rate, while the outlet 32 can be connected with a heat dissipater 5 for cooling down the heated oil discharged from the cooling circuit 3. Meanwhile, the heat dissipater 5 can be connected with the oil pump 4 so as to transfer the cooled down oil into the drivetrain assembly 1 via the oil pump 4. In the illustrated embodiment, the oil pump 4 and the heat dissipater 5 are positioned in the electrified vehicle side 2. When the drivetrain assembly 1 is installed into an electrified vehicle, the inlet 31 and outlet 32 will be fluidly in communication with the oil pump 4 and the heat dissipater 5, respectively, via several hoses 6 in the electrified vehicle side 2, such that the ultra-low viscosity oil can autonomously flow throughout the drivetrain assembly 1 for cooling and lubrication during operating.
  • In one embodiment, the heat dissipater 5 can be integrated with the drivetrain assembly 1 for receiving heated oil from the drivetrain assembly 1 and transferring the cooled oil back to drivetrain assembly.
  • In one embodiment, the oil pump 4 can be an electrical pump or a mechanical pump, and can be integrated with the drivetrain assembly 1, particularly mechanically integrated on the reducer 13. The oil pump 4 can be a volumetric pump to provide with a required flow rate, particularly, an accelerated flow rate. The volumetric pump is used instead of a centrifugal pump, in order to be able to apply high oil pressure for the cooling, which will increase the thermal dissipation capabilities through the heat sink withdrawing the heat from the switching device.
  • In one embodiment, the cooling circuit 3 can comprise an oil reservoir (not shown) provided within the reducer 13, the oil reservoir is used for keeping necessary ultra-low viscosity oil therein, which can ensure a minimum flow of the oil for cooling and lubricating inside the drivetrain assembly 1.
  • Referring now to FIGs 4A and 4B, the power switching device 17, such as an IGBT, can be single-side cooled by the oil flowing within an oil distribution passage arranged inside one cooling plate 18 of the power inverter. The power switching device 17 can be dual side cooled by the oil flowing within two cooling plates 18, i.e., the power switching device and the cooling plates form as a sandwich structure.
  • In one embodiment, the power switching device 17 is in direct contact with the oil so that the heat dissipation thermal resistance can be improved, since the thermal grease and additional aluminum heat sink are removed in the direct cooling power switching device 17, i.e., IGBT module. The adoption of the direct contact cooling will increase in a limited way the cost, but can easily be compensated by the use of the downsized oil cooled motor for example, which makes the use of the oil cooling relevant for the inverter.
  • In one embodiment, the power switching device 17 is controlled in a mode of full wave or of DVPWM starting from a given RPM so that the power loss from the IGBT could be reduced, which will allow to use the oil cooling.
  • With such configuration, the electric motor 12 is cooled down by the oil, improving in a significant way the efficiency at high torque. The oil cooled motor can be 5%more efficient in the heated condition than the water cooled motor. The current flowing through the IGBT can be significantly reduced limiting the heat to be dissipated by the cooling plate and oil.
  • Referring now to FIG. 2, an oil distribution passage is arranged inside the power inverter. Specially, the oil distribution passage is positioned within a cooling plate 18 disposed in the power inverter, and is formed along a periphery and an inner surface 181 of the cooling plate 18. The periphery of the cooling plate 18 provides groove 21 for the sealing connection with a cover 19 as shown in FIG. 3. Auxiliary heat transferring elements are provided within the oil distribution passage so as to provide with additional heat dissipation. As illustrated in the embodiment, the auxiliary heat transferring elements can be several metallic spikes 16 provided by the cooling plate 18, particularly by the inner surface 181 of the cooling plate 18, the spikes 16 extend from the inner surface towards a cover 19 (as shown in FIG. 3) using for enclosing the oil distribution passage therein. The auxiliary heat transferring elements are made of thermal material, for example aluminum. In one embodiment, the metallic spikes 16 can be full of oil distribution passage with a high density. High density spikes is an important burden for a conventional centrifugal water pump circuit due to higher pressure drop, whereas the volumetric  oil pump is almost not sensitive to the higher pressure drop. The metallic spikes 16 can have a transverse cross section of circular shape and/or of square shape (not shown) , or other shape which is of assistance with the improvement of oil flow F speed. With the supply of the oil pump, oil flows through the distribution passage from one side of the cooling plate 18 to the opposite side. The oil pump provides with an accelerated flow rate for increasing the oil flow F speed so as to increase the heat dissipation.
  • Still referring to FIG. 2, at least one baffles 15 are provided within the oil distribution passage so as to guide the oil flow F flowing throughout the oil distribution passage. In the illustrated embodiment, two baffles 15 are extending from two opposite edges of the cooling plate 18 so that the channel for oil flow F could be formed as a “S” shape. It should be appreciated, however, that the configuration of baffles 15 and spikes 16 as described herein in by way of example only. In other exemplary embodiments, the baffles 15 can be arranged of other configuration or direction depending on different shape of the cooling plate 18 so as to well improve the rate of oil flow F.
  • Referring now to FIG. 3, showing an exemplary configuration of the cooling plate 18 and a corresponding cover 19. In a conventional design concerning the cover, the cover 19 can be a flat plate while the spikes 16 are provided onto the cooling plate 18. In the present design concerning the cover, the cover 19 and the cooling plate 18 can both provide with the spikes 16, the spikes provided by the cover 19 axially extend towards the cooling plate 18 while the spikes provided by the cooling plate axially extend towards the cover 19 so that the spikes from the cooling plate 18 and the cover 19 are spaced so that the flow passage gap between the spikes 16 can be narrowed which will increase the flow velocity around the spikes 16, increasing further the cooling performance of the cooling plate 18. Even if the original water cooling circuit was with high number of the spikes, this double sided spike distribution will allow reaching similar level of cooling as water using oil.
  • Still referring to FIG. 3, the baffles 15 contact with the cover 19 in a sealing manner so as to enclose the oil distribution passage when the cover 19 is corresponding to the cooling plate 18, particularly, a sealing material 20 is provided between an inner surface 191 of the cover 19 and one free end 151 of each baffles 15. The sealing material 20 is also applied in the groove 21 provided by the periphery of the cooling plate 18. By putting the sealing material on the cover, we can ensure zero gap between the cover and the cooling plate so as to avoid flow speed loss in  the channel caused by the gap that allowing the oil flow F go across therebetween. Having the sealing material on the cover allows to increase the number of the spikes on the cooling plate, essential factor to dissipate efficiently the heat, whereas if the sealing material had to be put on the heat sink directly, like on the periphery of the cooling in a classical way, the grooves will take large section decreasing the number of spikes.
  • With the configuration as described above, only one liquid circuit for both cooling and lubrication for the drivetrain assembly is achieved. Further, we can reach around only 10%higher thermal resistance compared to water-cooling with high spike density.
  • This written description uses examples to disclose the embodiments of the present disclosure, including the best mode, and also to enable any person skilled in the art to practice embodiments of the present disclosure, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the embodiments described herein is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.

Claims (11)

  1. An integrated drivetrain assembly (1) for an electrified vehicle, comprising:
    an electric motor (12) comprising a rotor and a stator;
    a power inverter (11) electrically connected to the electric motor (12) and configured for supplying the stator with electric energy;
    a reducer (13) coupled to the electric motor (12) and configured for receiving torque provided by the rotor; and
    one cooling circuit (3) with a single inlet (31) and a single outlet (32) , the cooling circuit (3) configured for distributing oil to flow throughout the integrated drivetrain assembly (1) for lubricating and cooling down all the components in it, the cooling circuit (3) comprising an oil distribution passage arranged inside a cooling plate (18) configured for cooling at least one power switching device (17) provided by the power inverter (11) , at least one baffle (15) for guiding the oil flowing through the distribution passage is provided within the distribution passage, a cover (19) corresponding to the cooling plate (18) being provided to enclose the oil distribution passage and contact with the at least one baffle (15) in a sealing manner.
  2. The drivetrain assembly of claim 1, wherein
    sealing material (20) is provided between an inner surface (191) of the cover (19) and one end (151) of each of the at least one of the baffle (15) .
  3. The drivetrain assembly of claim 2, wherein
    sealing material (20) is disposed on the inner surface (191) of the cover (19) .
  4. The drivetrain assembly of claim 1, wherein
    a plurality of cooling spikes (16) are provided within the oil distribution passage, the cooling spikes (16) are arranged full of the oil distribution passage with a high density.
  5. The drivetrain assembly of claim 4, wherein
    the cooling spikes (16) are provided onto the cooling plate (18) and the cover (19) .
  6. The drivetrain assembly of claim 1, wherein
    the at least one power switching device (17) is arranged between two cooling plates (18) so that the power switching device could be cooled from dual sides.
  7. The drivetrain assembly of claim 1, wherein
    the oil distributed by the cooling circuit (3) is ultra-low viscosity oil.
  8. The drivetrain assembly of claim 1, further comprising:
    an oil pump (4) configured for being in communication with the inlet (31) for controlling a flow of oil through the cooling circuit (3) ,
    wherein the oil pump (4) is provided by the electrified vehicle side (2) and is connected to the inlet (31) when the integrated drivetrain assembly is installed into the electrified vehicle, or the oil pump (4) is integrated with the drivetrain assembly (1) ,
    and wherein the oil pump (4) is a volumetric pump.
  9. The drivetrain assembly of claim 8, further comprising:
    a heat dissipater (5) configured for being in communication with between the outlet (32) and the oil pump (4) for cooling the oil discharged from the drivetrain assembly (1) and transferring the cooled down oil into the drivetrain assembly (1) .
  10. The drivetrain assembly of claim 9, wherein
    the heat dissipater (5) is integrated with the drivetrain assembly (1) or provided by the electrified vehicle side (2) .
  11. An electrified vehicle, comprising the integrated drivetrain assembly (1) according to any one of claims 1 to 10.
EP21838972.4A 2020-12-02 2021-11-29 An integrated drivetrain assembly for an electrified vehicle and an electrified vehicle Pending EP4256680A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011399417.1A CN114583884A (en) 2020-12-02 2020-12-02 Power assembly system for electric vehicle and electric vehicle
PCT/CN2021/134023 WO2022116940A1 (en) 2020-12-02 2021-11-29 An integrated drivetrain assembly for an electrified vehicle and an electrified vehicle

Publications (1)

Publication Number Publication Date
EP4256680A1 true EP4256680A1 (en) 2023-10-11

Family

ID=79270365

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21838972.4A Pending EP4256680A1 (en) 2020-12-02 2021-11-29 An integrated drivetrain assembly for an electrified vehicle and an electrified vehicle

Country Status (5)

Country Link
EP (1) EP4256680A1 (en)
JP (1) JP2023551936A (en)
KR (1) KR20230112690A (en)
CN (1) CN114583884A (en)
WO (1) WO2022116940A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1940011B1 (en) * 2002-09-13 2010-03-03 Aisin AW Co., Ltd. Drive unit
JP2005253167A (en) * 2004-03-03 2005-09-15 Hitachi Ltd Vehicle driving unit and electric four-wheel drive vehicle using it
JP5492599B2 (en) * 2010-02-26 2014-05-14 日立オートモティブシステムズ株式会社 Rotating electrical machine system
JP5501257B2 (en) * 2011-01-12 2014-05-21 日立オートモティブシステムズ株式会社 Rotating electrical machine unit
EP3474426B1 (en) * 2017-10-20 2022-02-09 Valeo Siemens eAutomotive Germany GmbH Inverter for an electric machine comprising a cooling channel, electric machine for a vehicle and vehicle

Also Published As

Publication number Publication date
KR20230112690A (en) 2023-07-27
WO2022116940A1 (en) 2022-06-09
JP2023551936A (en) 2023-12-13
CN114583884A (en) 2022-06-03

Similar Documents

Publication Publication Date Title
US7851954B2 (en) Vehicle drive device
AU2007210461B2 (en) Cooling structure of power semiconductor device and inverter
KR101022000B1 (en) Semiconductor module and drive device for hybrid vehicle having the same
US9210829B2 (en) Mounting structure for power control unit
US8093769B2 (en) Cooling structure for rotating electric machine
JP4382445B2 (en) Cooling structure for electrical equipment
EP2673155A1 (en) Power control unit
CN103802665A (en) Temperature regulation of an inductor assembly
EP3501934B1 (en) Cooling system and method for a dual-powered railroad vehicle
JP2020114087A (en) In-vehicle cooling device
US20210066991A1 (en) Motor device
WO2022116940A1 (en) An integrated drivetrain assembly for an electrified vehicle and an electrified vehicle
WO2022033536A1 (en) An integrated drivetrain assembly for an electrified vehicle and an electrified vehicle
WO2023273689A1 (en) A cooling system for an integrated drivetrain assembly and an electrified vehicle
WO2022222909A1 (en) A cooling system for an integrated drivetrain assembly and an integrated power electronics assembly and an electrified vehicle
US11972888B2 (en) Variable voltage inductor with direct liquid cooling
WO2021109980A1 (en) Drivetrain system for an electrified vehicle and method of cooling the drivetrain system
CN112977048A (en) Transmission system for electric vehicle and method of cooling the transmission system
US20230307980A1 (en) Manifold Assembly for a Fluid Cooled Generator
WO2022135082A1 (en) Drivetrain system for an electrified vehicle
US20240157779A1 (en) Electric drive unit magnetohydrodynamic cooling
CN118054635A (en) Magnetohydrodynamic cooling of an electric drive unit

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230623

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)