EP4256252A1 - Evaporateur pour installation frigorifique délimitant deux enceintes d'évaporation respectivement à haute pression et basse pression et séparées par un écran de filtration - Google Patents

Evaporateur pour installation frigorifique délimitant deux enceintes d'évaporation respectivement à haute pression et basse pression et séparées par un écran de filtration

Info

Publication number
EP4256252A1
EP4256252A1 EP21845085.6A EP21845085A EP4256252A1 EP 4256252 A1 EP4256252 A1 EP 4256252A1 EP 21845085 A EP21845085 A EP 21845085A EP 4256252 A1 EP4256252 A1 EP 4256252A1
Authority
EP
European Patent Office
Prior art keywords
working fluid
enclosure
pressure enclosure
evaporator
liquid phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21845085.6A
Other languages
German (de)
English (en)
Inventor
Thomas Charbonneau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alpinov X
Original Assignee
Alpinov X
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alpinov X filed Critical Alpinov X
Publication of EP4256252A1 publication Critical patent/EP4256252A1/fr
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/003Filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/02Details of evaporators
    • F25B2339/024Evaporators with refrigerant in a vessel in which is situated a heat exchanger
    • F25B2339/0241Evaporators with refrigerant in a vessel in which is situated a heat exchanger having plate-like elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0017Flooded core heat exchangers

Definitions

  • TITLE Evaporator for refrigeration installation delimiting two evaporation enclosures respectively at high pressure and low pressure and separated by a filtration screen
  • the present invention relates firstly to an evaporator for a refrigeration installation where the refrigeration installation comprises a circuit in which a working fluid circulates, the evaporator comprising a main enclosure containing a working fluid where a gaseous phase and a liquid phase of said fluid coexist, said main enclosure comprising a supply inlet intended to be connected to the circuit to supply the main enclosure with working fluid in the liquid state and an extraction outlet intended to extract from the main enclosure the working fluid in the gaseous state to the circuit, the evaporator comprising a heat exchange device capable of heating the working fluid contained in the main enclosure.
  • the invention also relates to a refrigeration installation comprising such an evaporator.
  • the invention finds an application in particular in refrigeration installations intended for the production of artificial snow, in refrigeration installations intended for the production of ice, for example for the food industry, or even in refrigeration installations intended to be integrated into a air conditioning and cold production system, for example for cooling data management computer centres.
  • a refrigeration installation comprises a circuit in which a working fluid circulates and the following elements staggered along the circuit and through which the working fluid circulates successively: an evaporator for heat exchange with a cold source, the fluid of work undergoing a loss of calories due to evaporation, a compression machine and a condenser with possibly an exchanger for heat exchange with a hot source.
  • Such a refrigeration installation corresponds, for example, to the teachings of document WO2019/020940A1 in the name of the Applicant.
  • the volume ratio between gas and liquid can be greater than 200,000 and evaporation in the evaporator can be very explosive, with a very high risk of seeing droplets being carried towards the compression machine. This may cause malfunctions or maintenance problems of the compression machine and this is not satisfactory.
  • the purpose of the present invention is to propose an evaporator and a refrigeration installation which respond to the problems presented above in connection with the state of the art.
  • the object of the invention is to propose a solution which meets at least one of the following objectives: to be economical and efficient, to limit internal pressure drops, to avoid any risk of damage to the compression machine due to of the evaporator, be operational and efficient in the case where the working fluid is essentially water-based.
  • an evaporator for a refrigeration installation where the refrigeration installation comprises a circuit in which a working fluid circulates, the evaporator comprising a main enclosure containing a working fluid where a gaseous phase and a liquid phase of said working fluid coexist, said main enclosure comprising a supply inlet intended to be connected to the circuit to supply the main enclosure with working fluid in the liquid state and an extraction outlet intended to extract from the main enclosure of the working fluid in the gaseous state towards the circuit, the evaporator comprising a heat exchange device capable of heating the working fluid contained in the main enclosure, noteworthy in that the evaporator comprises: a high pressure enclosure delimited within the main enclosure, at the level of which the supply inlet is arranged so that the high-pressure enclosure is supplied with working fluid in the liquid state by the circuit, the high-pressure enclosure containing working fluid in the gaseous phase at a first value of pressure and working fluid in the liquid phase, the high-pressure enclosure delimiting at least one tank containing the working fluid in the liquid phase present in the
  • the communication duct is an overflow-type overflow system arranged at the level of said at least one tank of the high-pressure enclosure.
  • the overflow system is configured to act as a siphon between the working fluid in the liquid phase of at least one tank of the high pressure vessel and the working fluid in the liquid phase of at least a tank of the low pressure enclosure.
  • the ratio between the evaporation surface of the working fluid in the liquid phase contained in the low pressure enclosure and the evaporation surface of the working fluid in the liquid phase contained in the high pressure enclosure is greater than 2 and preferably greater than or equal to 5.
  • the communication of working fluid in the gaseous phase from the low pressure enclosure to the circuit is free, devoid of filtration.
  • the ratio between the mass flow rate of working fluid evaporated in the high pressure enclosure and the mass flow rate of working fluid evaporated in the low pressure enclosure is between 5 and 10.
  • the ratio between the mass flow rate of working fluid in the gas phase circulating through the filtration screen and the mass flow rate of working fluid in the gas phase circulating in the communication conduit is greater than 100.
  • the high-pressure enclosure comprises at least two stacked tanks that are successively supplied with working fluid in the liquid phase by gravity flow through a pouring device fitted to at least one tank of the high-pressure enclosure.
  • the low-pressure enclosure comprises at least two superposed tanks which are fed successively with working fluid in the liquid phase by gravity flow through a pouring device fitted to at least one tank of the low-pressure enclosure.
  • the filtration screen is a wall, having through pores adapted to allow the working fluid to pass into the gaseous phase on either side of this wall, and presenting undulations along the height of the wall.
  • the invention also relates to a refrigeration installation comprising a circuit in which a working fluid circulates, the refrigeration installation comprising the following elements staggered along said circuit and through which the working fluid circulates successively: an evaporator as mentioned above in which the working fluid in the liquid phase undergoes a loss of calories due to the evaporation occurring in the high pressure enclosure and in the low pressure enclosure, a compression machine, a condenser.
  • the working fluid mainly contains water.
  • the working fluid may be of another nature, such as for example methyl ethylene glycol.
  • the mass flow rate of the gaseous phase of the working fluid circulating in the circuit is between 15 g/s and 15 kg/s.
  • the low pressure enclosure of the evaporator includes an evacuation outlet for extracting out of the main enclosure the working fluid in the liquid phase from the at least one tank of the low pressure enclosure.
  • the high-pressure enclosure of the evaporator comprises an inlet pipe making it possible to supply at least one tank of the high-pressure enclosure with working fluid in the liquid phase previously extracted from the low-pressure enclosure via the outlet evacuation.
  • the refrigeration installation comprises a second circuit in which circulates an operational fluid separate from the working fluid and a heat exchanger between the operational fluid circulating in the second circuit and working fluid in the liquid phase present in, or resulting from, the main enclosure of the evaporator.
  • it may be a refrigeration installation of the air conditioning system type, comprising an evaporator previously described and in which the working fluid which circulates in the evaporator being maintained at a pressure of between 5 and 100 mbar performs a decontamination against predetermined bacteria, in particular Legionella.
  • FIG. 1 is a schematic sectional view of an example of a refrigeration installation comprising a first example of an evaporator according to the invention.
  • FIG. 2 is a schematic sectional view of an example of a refrigeration installation comprising a second example of an evaporator according to the invention.
  • the invention relates first to an evaporator 10 for a refrigeration installation 100 where the refrigeration installation 100 comprises a circuit 50 in which a working fluid circulates, the evaporator 10 comprising a main enclosure 11 containing a working fluid where a gaseous phase and a liquid phase of the working fluid coexist.
  • the main enclosure 11 comprises a supply inlet 12 intended to be connected to the circuit 50 to supply the main enclosure 11 with working fluid in the liquid state and an extraction outlet 13 intended to extract from the enclosure main 11 of the working fluid in the gaseous state to the circuit 50, in order to supply the compression machine 60.
  • the evaporator 10 also includes a heat exchange device 70 capable of heating the working fluid contained in the main enclosure 11.
  • the refrigeration installation 100 with which the evaporator 10 described in this document is associated is a refrigeration installation corresponding to the teachings of document WO2019/020940A1 in the name of the Applicant.
  • the invention finds an application in particular in refrigeration installations intended for the production of artificial snow, in refrigeration installations intended for the production of ice, for example for the food industry, or even in refrigeration installations intended to be integrated into a air conditioning system, for example for cooling data management computer centres.
  • the evaporator 10 comprises a high-pressure enclosure 14 delimited within the main enclosure 11, at the level of which the supply inlet 12 is arranged so that the high-pressure enclosure 14 is supplied with working fluid in the liquid state by the circuit 50.
  • the high pressure enclosure 14 contains working fluid in the gaseous phase 15 at a first pressure value and working fluid in the liquid phase 16.
  • this first pressure value is between 6 and 7 mbar, typically 6.5 mbar, which advantageously makes it possible to provide strong boiling of the liquid (which mixes it and helps heat transfer) but the projections remain contained by the filtration screen 24 detailed below.
  • One of the goals is to be close to the low pressure enclosure 17 so as not to be boiling in the low pressure enclosure 17.
  • the high pressure enclosure 14 delimits at least one tank 20 containing the working fluid in the liquid phase 16 present in the high pressure enclosure 14.
  • the at least one tank 20 of the high pressure enclosure provides a surface evaporation 21 of the working fluid in the liquid phase 16 contained in the high pressure enclosure 14, this evaporation taking place at a first evaporation pressure value.
  • the working fluid thus evaporated mixes with the rest of the working fluid in the gaseous phase 15.
  • the evaporation surface 21 corresponds at the interface between the working fluid in the liquid phase 16 and the working fluid in the gaseous phase 15.
  • this first evaporation pressure value is between 6 and 7 mbar, typically of the order of 6 .5 mbar.
  • the evaporator 10 also comprises a low-pressure enclosure 17 delimited within the main enclosure 11, containing working fluid in the gaseous phase 18 at a second pressure value strictly lower than the first pressure value and working in the liquid phase 19.
  • this second pressure value is of the order of 6.11 mbar, in order to avoid boiling and therefore avoid having any projection.
  • the extraction outlet 13 is arranged at the level of the low-pressure enclosure 17 so that the working fluid in the gaseous phase 18 contained in the low-pressure enclosure 17 is extracted in the direction of the circuit 50 until it is supplied the compression machine 60.
  • the compression machine 60 makes it possible on the one hand to transfer the material with a certain volume flow, on the other hand to maintain a pressure ratio between the delivery pressure and the suction pressure.
  • the nature of the compression machine 60 is not limiting, comprising one or more compression stages and possibly a compression ratio greater than, equal to, or greater than 10.
  • the low-pressure enclosure 17 delimits at least one tank 22 containing the working fluid in the liquid phase 19 present in the low-pressure enclosure 17.
  • the at least one tank 22 of the low-pressure enclosure 17 confers a evaporation surface 23 of the working fluid in the liquid phase 19 contained in the low pressure enclosure 17, this evaporation taking place at a second evaporation pressure value strictly different from the first evaporation pressure value.
  • the working fluid thus evaporated mixes with the rest of the working fluid in the gas phase 18.
  • the evaporation surface 23 corresponds to the interface between the working fluid in the liquid phase 19 and the working fluid in the gas phase 18.
  • this second evaporation pressure value is of the order of 6.11 mbar.
  • the evaporator 10 also includes a filtration screen 24 interposed between the high pressure enclosure 14 and the low pressure enclosure 17.
  • the filtration screen 24 is configured so as to allow the working fluid to pass into the gaseous phase. 15 from the high pressure enclosure 14 to the low pressure enclosure 17 so that it mixes with the working fluid in the gaseous phase 18, and to block the passage of the working fluid into the liquid phase 16 of the high pressure enclosure 14 to the low pressure enclosure 17.
  • the filtration screen 24 acts to prevent splashes of working fluid in the liquid phase 16 from reaching the compression machine 60 and ensures that the liquid thus blocked falls back by gravity into the tank 20 from which it was projected during the evaporation.
  • the skilled person is able, according to his general knowledge, to design a filtration screen 24 that meets these functions, the structure of the filtration screen 24 not being limiting in itself.
  • the evaporator 10 comprises a communication conduit 25 connecting the high pressure enclosure 14 to the low pressure enclosure 17.
  • the communication conduit 25 is configured so as to essentially allow the working fluid to pass into the liquid phase 16 of the high pressure enclosure 14 to the low pressure enclosure 17 and to oppose free passage of the working fluid in the gaseous phase 15 from the high pressure enclosure 14 to the low pressure enclosure 17 and to oppose a free passage of the working fluid in the gaseous phase 18 from the low pressure enclosure 17 to the high pressure enclosure 14.
  • a person skilled in the art is able, based on his general knowledge, to design a communication conduit 25 that meets these functions, the structure of the communication conduit 25 not being limiting in itself.
  • the ratio between the mass flow rate of working fluid in the gas phase flowing through the filtration screen 24 and the mass flow rate of working fluid in the gas phase flowing in the communication conduit 25 is greater than 100, or even preferably greater than 1000, or even more preferably greater than 10,000.
  • the mass flow rate of working fluid in the gaseous phase which would possibly circulate through the communication conduit 25 is in fact considered as an unsought leak, even harmful. It is therefore sought a mass flow rate of working fluid in the gaseous phase which would possibly circulate through the communication conduit 25 as close to 0 as possible.
  • the communication conduit 25 is an overflow-type overflow system arranged at the level of at least one tank 20 of the high-pressure enclosure 14, suitable for pour the excess working fluid into the liquid phase 16 contained in this at least one tank 20 into the at least one tank 22 arranged in the low-pressure enclosure 17.
  • this overflow system is configured to act like a siphon between the working fluid in the liquid phase 16 of at least one tank 20 of the enclosure at high pressure 14 and the working fluid in the liquid phase 19 of at least one tank 22 of the low pressure enclosure.
  • This can be obtained by arranging a simple tube, an upper end of which opens into this tray 20 and a lower end of which is arranged in the volume of this tray 22.
  • the positioning of the upper end of the tube fixes the height of the working fluid in the liquid phase 16 in the tank 20 concerned and the lower end fixes the height of the working fluid is embedded in the working fluid in the liquid phase 19 contained in the tank 22 concerned.
  • the working fluid communication in the gas phase 18 of the low pressure enclosure 17 to the circuit 50 is free and devoid of filtration. This makes it possible to reduce internal pressure drops as much as possible, thereby improving operating efficiency. It is possible to afford this type of arrangement due to the very organization of the evaporator 10 with the filtration screen
  • the ratio between the mass flow rate of working fluid evaporated in the high-pressure enclosure 14 at the level of the evaporation surface 21 and the mass flow rate of working fluid evaporated in the enclosure at low pressure 17 at the level of the evaporation surface 23 is between 5 and 10.
  • the choice and adaptation of this ratio results from a compromise between the dimensions of the enclosure, the size of the filtration screen 24 and risks of boiling in the low pressure enclosure 17.
  • the high pressure enclosure 14 comprises at least two tanks 20 (for example three in number as shown) superposed and successively fed in cascade with working fluid in the liquid phase 16 by gravity flow through a pouring device 26 fitted to each tank 20 of the high pressure enclosure 14 except the furthest downstream. Boiling is then only possible on the top (a few centimeters) of the liquid because below, the hydrostatic pressure prevents boiling. Boiling acts as an agitator in heat transfer.
  • the low-pressure enclosure 17 comprises a single tank 22 arranged in its lower part at the manner of a simple gravity receptacle for liquid
  • the low pressure enclosure 17 can comprise at least two tanks 20 (for example three in number as shown) superimposed and feeding successively in cascade with working fluid in the liquid phase 19 by gravity flow through a pouring device 27 fitted to each tank 22 of the low-pressure enclosure 17 except the furthest downstream.
  • the exchange surface is then increased for the same diameter of the tank (this in relation to the ratio between the evaporation surface 23 of the working fluid in the liquid phase 19 contained in the low pressure enclosure 17 and the surface evaporation 21 of the working fluid in the liquid phase 16 contained in the high pressure enclosure 14).
  • the high pressure enclosure 14 may optionally include a single tank 20 while the low pressure enclosure 17 would include several tanks 22 organized as described above.
  • the low pressure enclosure 17 may optionally include a single tank 22 while the high pressure enclosure 14 would include several tanks 20 organized as described above.
  • the filtration screen 24 is a wall, having through pores (not shown in detail) adapted to allow the working fluid to pass into the gaseous phase 15, 18 on either side of this wall, and having undulations 28 along the height of the wall.
  • the wall can be vertical, horizontal, or oblique. According to one possible embodiment, it is possible to integrate metal or plastic straw to agglomerate the drops and then baffles to stop them.
  • the invention also relates to a refrigeration installation 100 comprising a circuit 50 in which the working fluid circulates, the refrigeration installation 100 comprising the following elements staggered along the circuit 50 and through which the working fluid circulates successively: an evaporator 10 as previously described in which the working fluid in the liquid phase undergoes a loss of calories due to the evaporation occurring in the high pressure enclosure 14 and in the low pressure enclosure 17, a compression machine 60 , a condenser 80 where the working fluid undergoes liquefaction, the condensates 90 being sent, via the circuit 50, to the supply input 12.
  • the working fluid contains at least one aqueous fluid, essentially water, optionally with some additives such as glycol.
  • the mass flow rate of the gaseous phase of the working fluid circulating in the circuit 50 is between 15 g/s and 15 kg/s.
  • the low-pressure enclosure 17 of the evaporator 10 comprises an evacuation outlet 29 making it possible to extract from the main enclosure 11 working fluid in the liquid phase. 19 from at least one tray 22 of the low-pressure enclosure 14.
  • the liquid working fluid previously extracted at the discharge outlet 29 is reinjected into the high pressure enclosure 14.
  • the high pressure enclosure 14 of the evaporator 10 comprises an inlet pipe 30 for supplying at least one tank 20 of the high-pressure enclosure 14 with working fluid in the liquid phase 16 previously extracted from the low-pressure enclosure 17 via the evacuation outlet 29 .
  • the working fluid is the fluid intended to be used by the customer
  • the liquid working fluid previously extracted at the evacuation outlet 29 is directly exploited by the customer, the latter using the advantage of the fact that it has been previously cooled in the evaporator 10.
  • the cooling of the working fluid which circulates in the evaporator 10 while being maintained at a pressure level of between 5 and 100 mbar ensures a decontamination function against predetermined bacteria, in particular Legionella. It is the very low pressure (between 5 and 100 mbar) in the evaporator 10 which ensures the destruction of the bacteria. Indeed, a pressure level contained in this range typically corresponds to a temperature between 25° C. and 45° C., this temperature range being favored for the development of the Legionella bacterium.
  • the refrigeration installation 100 comprises a second circuit (not shown) in which circulates an operational fluid distinct from the working fluid and a heat exchanger (not shown) between the operational fluid circulating in the second circuit and fluid working in the liquid phase present in, or coming from, the main enclosure 11 of the evaporator 10.
  • a heat exchanger can therefore be arranged inside or outside the main enclosure 11 of the evaporator 10.
  • the invention which has just been described has the advantage of being economical and efficient, of limiting the pressure drops internal to the evaporator 10 and to the refrigeration installation 100, of avoiding any risk of damage to the compression machine 60 due to the evaporator 10, and to be operational and efficient in the event that the working fluid is essentially water-based.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Il est décrit un évaporateur (10) pour installation frigorifique (100) comprenant une enceinte à haute pression (14), une enceinte à basse pression (17), un écran de filtration (24) interposé entre l'enceinte à haute pression (14) et l'enceinte à basse pression (17), et un conduit de communication (25) reliant l'enceinte à haute pression (14) à l'enceinte à basse pression (17). L'écran de filtration (24) laisse passer le fluide de travail dans la phase gazeuse (15) de l'enceinte à haute pression (14) vers l'enceinte à basse pression (17), et bloque le passage du fluide de travail dans la phase liquide (16, 19) de l'enceinte à haute pression (14) vers l'enceinte à basse pression (17) et réciproquement. Le conduit de communication (25) laisse essentiellement passer le fluide de travail dans la phase liquide (16) de l'enceinte à haute pression (14) vers l'enceinte à basse pression (17), et s'oppose à un passage libre du fluide de travail dans la phase gazeuse (15, 18) de l'enceinte à haute pression (14) à l'enceinte à basse pression (17) et réciproquement.

Description

DESCRIPTION
TITRE : Evaporateur pour installation frigorifique délimitant deux enceintes d’évaporation respectivement à haute pression et basse pression et séparées par un écran de filtration
Domaine technique de l’invention
La présente invention concerne d’abord un évaporateur pour installation frigorifique où l’installation frigorifique comporte un circuit dans lequel circule un fluide de travail, l’évaporateur comprenant une enceinte principale contenant un fluide de travail où une phase gazeuse et une phase liquide dudit fluide de travail coexistent, ladite enceinte principale comprenant une entrée d’alimentation destinée à être raccordée au circuit pour alimenter l’enceinte principale en fluide de travail à l’état liquide et une sortie d’extraction destinée à extraire hors de l’enceinte principale du fluide de travail à l’état gazeux vers le circuit, l’évaporateur comprenant un dispositif d’échange thermique apte à chauffer le fluide de travail contenu dans l’enceinte principale.
L’invention concerne également une installation frigorifique comprenant un tel évaporateur.
L’invention trouve une application notamment dans les installations frigorifiques destinées à la production de neige artificielle, dans les installations frigorifiques destinées à la production de glace par exemple pour l’industrie alimentaire, ou bien encore dans les installations frigorifiques destinées à être intégrées dans un système de climatisation et de production de froid, par exemple pour le refroidissement de centres informatiques de gestion de données.
Etat de la technique
Il est connu qu’une installation frigorifique comprenne un circuit dans lequel circule un fluide de travail et les éléments suivants échelonnés le long du circuit et à travers lesquels le fluide de travail circule successivement : un évaporateur pour échange thermique avec une source froide, le fluide de travail subissant une perte de calories due à l’évaporation, une machine de compression et un condenseur avec possiblement un échangeur pour un échange thermique avec une source chaude.
Une telle installation frigorifique correspond, par exemple, aux enseignements du document W02019/020940A1 au nom de la Demanderesse.
Il s’avère que le phénomène d’évaporation qui se produit dans l’évaporateur est susceptible de s’accompagner d’un certains bouillonnements ou bullage du fluide de travail, cela risquant de provoquer le transfert de gouttelettes du fluide de travail en direction de la machine de compression. Ce risque augmente d’autant plus que la pression et la densité du gaz au sein de l’évaporateur baissent, compte tenu de l’augmentation du rapport entre la densité du liquide par rapport à celle du gaz.
L’une des difficultés est de réussir à vaincre ces problèmes lorsque le fluide de travail est par exemple essentiellement constitué à base d’eau, éventuellement avec certains additifs. Pour une pression d’évaporation de 6 mbar, le rapport de volume entre le gaz et le liquide peut être supérieur à 200000 et l’évaporation dans l’évaporateur peut être très explosive, avec un risque très élevé de voir des gouttelettes être entrainées vers la machine de compression. Cela peut causer des problèmes de dysfonctionnements ou d’entretien de la machine de compression et cela n’est pas satisfaisant.
Il a déjà été imaginé de placer un écran anti-gouttelettes en sortie de l’évaporateur, mais les simulations montrent que les pertes de charge sont trop élevées et grèvent le fonctionnement général de l’installation frigorifique.
Même si les problématiques ci-avant sont présentées en lien avec le fluide de travail essentiellement à base d’eau, elles sont susceptibles de se poser pour d’autres natures de fluide, par exemple le methyl ethylene glycol.
Objet de l’invention
La présente invention a pour but de proposer un évaporateur et une installation frigorifique qui répondent aux problématiques présentées précédemment en lien avec l’état de la technique
Notamment, le but de l’invention est de proposer une solution qui réponde à au moins l’un des objectifs suivants : être économique et efficace, limiter les pertes de charge internes, éviter tout risque d’endommagement de la machine de compression en raison de l’évaporateur, être opérationnel et efficace dans le cas où le fluide de travail est essentiellement constitué à base d’eau.
Ce but peut être atteint grâce à la fourniture d’un évaporateur pour installation frigorifique où l’installation frigorifique comporte un circuit dans lequel circule un fluide de travail, l’évaporateur comprenant une enceinte principale contenant un fluide de travail où une phase gazeuse et une phase liquide dudit fluide de travail coexistent, ladite enceinte principale comprenant une entrée d’alimentation destinée à être raccordée au circuit pour alimenter l’enceinte principale en fluide de travail à l’état liquide et une sortie d’extraction destinée à extraire hors de l’enceinte principale du fluide de travail à l’état gazeux vers le circuit, l’évaporateur comprenant un dispositif d’échange thermique apte à chauffer le fluide de travail contenu dans l’enceinte principale, remarquable en ce que l’évaporateur comprend : une enceinte à haute pression délimitée au sein de l’enceinte principale, au niveau de laquelle l’entrée d’alimentation est aménagée de sorte que l’enceinte à haute pression est alimentée en fluide de travail à l’état liquide par le circuit, l’enceinte à haute pression contenant du fluide de travail dans la phase gazeuse à une première valeur de pression et du fluide de travail dans la phase liquide, l’enceinte à haute pression délimitant au moins un bac contenant le fluide de travail dans la phase liquide présent dans l’enceinte à haute pression, l’au moins un bac de l’enceinte à haute pression conférant une surface d’évaporation du fluide de travail dans la phase liquide contenu dans l’enceinte à haute pression à une première valeur de pression d’évaporation, une enceinte à basse pression délimitée au sein de l’enceinte principale, contenant du fluide de travail dans la phase gazeuse à une deuxième valeur de pression strictement inférieure à la première valeur de pression et du fluide de travail dans la phase liquide, la sortie d’extraction étant aménagée au niveau de l’enceinte à basse pression de sorte que du fluide de travail dans la phase gazeuse contenu dans l’enceinte à basse pression est extrait vers le circuit, l’enceinte à basse pression délimitant au moins un bac contenant le fluide de travail dans la phase liquide présent dans l’enceinte à basse pression, l’au moins un bac de l’enceinte à basse pression conférant une surface d’évaporation du fluide de travail dans la phase liquide contenu dans l’enceinte à basse pression à une deuxième valeur de pression d’évaporation strictement différente de la première valeur de pression d’évaporation, un écran de filtration interposé entre l’enceinte à haute pression et l’enceinte à basse pression, l’écran de filtration laissant passer le fluide de travail dans la phase gazeuse de l’enceinte à haute pression vers l’enceinte à basse pression, et bloquant le passage du fluide de travail dans la phase liquide de l’enceinte à haute pression vers l’enceinte à basse pression et réciproquement, un conduit de communication reliant l’enceinte à haute pression à l’enceinte à basse pression, ledit conduit de communication laissant essentiellement passer le fluide de travail dans la phase liquide de l’enceinte à haute pression vers l’enceinte à basse pression, et s’opposant à un passage libre du fluide de travail dans la phase gazeuse de l’enceinte à haute pression à l’enceinte à basse pression et réciproquement.
Certains aspects préférés mais non limitatifs de cet évaporateur sont les suivants, pris isolément ou en combinaison.
Le conduit de communication est un système de déversement de type trop-plein agencé au niveau dudit au moins un bac de l’enceinte à haute pression. Le système de déversement est configuré pour agir à la manière d’un siphon entre le fluide de travail dans la phase liquide d’au moins un bac de l’enceinte à haute pression et le fluide de travail dans la phase liquide d’au moins un bac de l’enceinte à basse pression.
Le rapport entre la surface d’évaporation du fluide de travail dans la phase liquide contenu dans l’enceinte à basse pression et la surface d’évaporation du fluide de travail dans la phase liquide contenu dans l’enceinte à haute pression est supérieur à 2 et préférentiellement supérieur ou égal à 5.
La communication en fluide de travail dans la phase gazeuse de l’enceinte à basse pression vers le circuit est libre, dépourvue de filtration.
Le rapport entre le débit massique de fluide de travail évaporé dans l’enceinte à haute pression et le débit massique de fluide de travail évaporé dans l’enceinte à basse pression est compris entre 5 et 10.
Le ratio entre le débit massique de fluide de travail dans la phase gazeuse circulant à travers l’écran de filtration et le débit massique de fluide de travail dans la phase gazeuse circulant dans le conduit de communication est supérieur à 100.
L’enceinte à haute pression comprend au moins deux bacs superposés et s’alimentant successivement en fluide de travail dans la phase liquide par écoulement gravitaire au travers d’un dispositif verseur équipant au moins un bac de l’enceinte à haute pression.
L’enceinte à basse pression comprend au moins deux bacs superposés et s’alimentant successivement en fluide de travail dans la phase liquide par écoulement gravitaire au travers d’un dispositif verseur équipant au moins un bac de l’enceinte à basse pression.
L’écran de filtration est une paroi, ayant des pores traversants adaptés à laisser passer le fluide de travail dans la phase gazeuse de part et d’autre de cette paroi, et présentant des ondulations le long de la hauteur de la paroi.
L’invention porte également sur une installation frigorifique comprenant un circuit dans lequel circule un fluide de travail, l’installation frigorifique comprenant les éléments suivants échelonnés le long dudit circuit et à travers lesquels le fluide de travail circule successivement : un évaporateur tel qu’évoqué ci-dessus dans lequel le fluide de travail dans la phase liquide subit une perte de calories due à l’évaporation se produisant dans l’enceinte à haute pression et dans l’enceinte à basse pression, une machine de compression, un condenseur.
Certains aspects préférés mais non limitatifs de cette installation frigorifique sont les suivants, pris isolément ou en combinaison.
Le fluide de travail contient essentiellement de l’eau.
Il n’en demeure pas moins que le fluide de travail peut être d’une autre nature, comme par exemple le methyl ethylene glycol. Le débit massique de la phase gazeuse du fluide de travail circulant dans le circuit est compris entre 15 g/s et 15 kg/s.
L’enceinte à basse pression de l’évaporateur comprend une sortie d’évacuation permettant d’extraire hors de l’enceinte principale du fluide de travail dans la phase liquide à partir du au moins un bac de l’enceinte à basse pression.
L’enceinte à haute pression de l’évaporateur comprend une conduite d’admission permettant d’alimenter au moins un bac de l’enceinte haute pression en fluide de travail dans la phase liquide préalablement extrait de l’enceinte à basse pression par la sortie d’évacuation.
L’installation frigorifique comprend un deuxième circuit dans lequel circule un fluide opérationnel distinct du fluide de travail et un échangeur thermique entre le fluide opérationnel circulant dans le deuxième circuit et du fluide de travail dans la phase liquide présent dans, ou issu de, l’enceinte principale de l’évaporateur.
Alternativement, il peut s’agir d’une installation frigorifique de type système de climatisation, comprenant un évaporateur précédemment décrit et dans laquelle le fluide de travail qui circule dans l’évaporateur étant maintenu à une pression comprise entre 5 et 100 mbar assure une fonction de décontamination contre des bactéries prédéterminées, notamment la légionnelle.
Description sommaire des dessins
D’autres aspects, buts, avantages et caractéristiques de l’invention apparaîtront mieux à la lecture de la description détaillée suivante de modes de réalisation préférés de celle- ci, donnée à titre d’exemple non limitatif, et faite en référence aux dessins annexés sur lesquels : [Fig. 1] est une vue schématique en coupe d’un exemple d’installation frigorifique comprenant un premier exemple d’évaporateur selon l’invention.
[Fig. 2] est une vue schématique en coupe d’un exemple d’installation frigorifique comprenant un deuxième exemple d’évaporateur selon l’invention.
Description détaillée
Sur les figures 1 et 2 et dans la suite de la description, les mêmes références représentent des éléments identiques ou similaires. De plus, les différents éléments ne sont pas forcément représentés à l’échelle de manière à privilégier la clarté des figures si nécessaire. Par ailleurs, les différents modes de réalisation et variantes ne sont pas exclusifs les uns des autres et peuvent, au contraire, être combinés entre eux.
L’invention porte d’abord sur un évaporateur 10 pour installation frigorifique 100 où l’installation frigorifique 100 comporte un circuit 50 dans lequel circule un fluide de travail, l’évaporateur 10 comprenant une enceinte principale 11 contenant un fluide de travail où une phase gazeuse et une phase liquide du fluide de travail coexistent.
L’enceinte principale 11 comprend une entrée d’alimentation 12 destinée à être raccordée au circuit 50 pour alimenter l’enceinte principale 11 en fluide de travail à l’état liquide et une sortie d’extraction 13 destinée à extraire hors de l’enceinte principale 11 du fluide de travail à l’état gazeux vers le circuit 50, en vue d’alimenter la machine de compression 60.
L’évaporateur 10 comprend aussi un dispositif d’échange thermique 70 apte à chauffer le fluide de travail contenu dans l’enceinte principale 11.
Selon une application particulière non limitative, l’installation frigorifique 100 à laquelle l’évaporateur 10 décrit dans le présent document est associé est une installation frigorifique correspondant aux enseignements du document W02019/020940A1 au nom de la Demanderesse.
L’invention trouve une application notamment dans les installations frigorifiques destinées à la production de neige artificielle, dans les installations frigorifiques destinées à la production de glace par exemple pour l’industrie alimentaire, ou bien encore dans les installations frigorifiques destinées à être intégrées dans un système de climatisation, par exemple pour le refroidissement de centres informatiques de gestion de données.
Comme cela est visible sur chacune des deux figures 1 et 2, l’évaporateur 10 comprend une enceinte à haute pression 14 délimitée au sein de l’enceinte principale 11 , au niveau de laquelle l’entrée d’alimentation 12 est aménagée de sorte que l’enceinte à haute pression 14 est alimentée en fluide de travail à l’état liquide par le circuit 50.
L’enceinte à haute pression 14 contient du fluide de travail dans la phase gazeuse 15 à une première valeur de pression et du fluide de travail dans la phase liquide 16. Autrement dit, au sein de l’enceinte à haute pression 14, le fluide de travail dans la phase gazeuse 15 et le fluide de travail dans la phase liquide 16 coexistent. Avantageusement, cette première valeur de pression est comprise entre 6 et 7 mbar, typiquement de 6,5 mbar, ce qui permet avantageusement de procurer une ébullition forte du liquide (ce qui le mélange et aide au transfert thermique) mais les projections restent contenues par l’écran de filtration 24 détaillé plus loin. L’un des buts est d’être proche de l’enceinte à basse pression 17 pour ne pas être en ébullition dans l’enceinte à basse pression 17.
L’enceinte à haute pression 14 délimite au moins un bac 20 contenant le fluide de travail dans la phase liquide 16 présent dans l’enceinte à haute pression 14. L’au moins un bac 20 de l’enceinte à haute pression confère une surface d’évaporation 21 du fluide de travail dans la phase liquide 16 contenu dans l’enceinte à haute pression 14, cette évaporation se pratiquant à une première valeur de pression d’évaporation. Le fluide de travail ainsi évaporé se mélange au reste du fluide de travail dans la phase gazeuse 15. La surface d’évaporation 21 correspond à l’interface entre le fluide de travail dans la phase liquide 16 et le fluide de travail dans la phase gazeuse 15. Avantageusement, cette première valeur de pression d’évaporation est comprise entre 6 et 7 mbar, typiquement de l’ordre de 6,5 mbar.
L’évaporateur 10 comprend également une enceinte à basse pression 17 délimitée au sein de l’enceinte principale 11 , contenant du fluide de travail dans la phase gazeuse 18 à une deuxième valeur de pression strictement inférieure à la première valeur de pression et du fluide de travail dans la phase liquide 19. Autrement dit, au sein de l’enceinte à basse pression 17, le fluide de travail dans la phase gazeuse 18 et le fluide de travail dans la phase liquide 19 coexistent. Typiquement, cette deuxième valeur de pression est de l’ordre de 6,11 mbar, afin d’éviter d’être en ébullition et donc permettre de ne pas avoir de projection.
La sortie d’extraction 13 est aménagée au niveau de l’enceinte à basse pression 17 de sorte que du fluide de travail dans la phase gazeuse 18 contenu dans l’enceinte à basse pression 17 est extrait en direction du circuit 50 jusqu’à alimenter la machine de compression 60. La machine de compression 60 permet d’une part de transférer la matière avec un certain débit volumique, d’autre part de maintenir un ratio de pression entre la pression de refoulement et la pression d’aspiration. La nature de la machine de compression 60 n’est pas limitative, comprenant un ou plusieurs étages de compression et possiblement un taux de compression supérieur, égal, ou supérieur à 10.
L’enceinte à basse pression 17 délimite au moins un bac 22 contenant le fluide de travail dans la phase liquide 19 présent dans l’enceinte à basse pression 17. L’au moins un bac 22 de l’enceinte à basse pression 17 confère une surface d’évaporation 23 du fluide de travail dans la phase liquide 19 contenu dans l’enceinte à basse pression 17, cette évaporation se pratiquant à une deuxième valeur de pression d’évaporation strictement différente de la première valeur de pression d’évaporation. Le fluide de travail ainsi évaporé se mélange au reste du fluide de travail dans la phase gazeuse 18. La surface d’évaporation 23 correspond à l’interface entre le fluide de travail dans la phase liquide 19 et le fluide de travail dans la phase gazeuse 18. Typiquement, cette deuxième valeur de pression d’évaporation est de l’ordre de 6,11 mbar.
L’évaporateur 10 comprend aussi un écran de filtration 24 interposé entre l’enceinte à haute pression 14 et l’enceinte à basse pression 17. L’écran de filtration 24 est configuré de sorte à laisser passer le fluide de travail dans la phase gazeuse 15 de l’enceinte à haute pression 14 vers l’enceinte à basse pression 17 afin qu’il se mélange au fluide de travail dans la phase gazeuse 18, et à bloquer le passage du fluide de travail dans la phase liquide 16 de l’enceinte à haute pression 14 vers l’enceinte à basse pression 17. L’écran de filtration 24 agit de sorte à éviter que des projections de fluide de travail dans la phase liquide 16 n’atteignent la machine de compression 60 et garantit que le liquide ainsi bloqué retombe par gravité dans le bac 20 d’où il était projeté pendant l’évaporation. L’Homme du métier est à-même, d’après ses connaissances générales, de concevoir un écran de filtration 24 répondant à ces fonctions, le structure de l’écran de filtration 24 n’étant pas limitative en soi.
L’évaporateur 10 comprend un conduit de communication 25 reliant l’enceinte à haute pression 14 à l’enceinte à basse pression 17. Le conduit de communication 25 est configuré de sorte à laisser essentiellement passer le fluide de travail dans la phase liquide 16 de l’enceinte à haute pression 14 vers l’enceinte à basse pression 17 et à s’opposer à un passage libre du fluide de travail dans la phase gazeuse 15 de l’enceinte à haute pression 14 à l’enceinte à basse pression 17 et à s’opposer à un passage libre du fluide de travail dans la phase gazeuse 18 de l’enceinte à basse pression 17 à l’enceinte à haute pression 14.
L’Homme du métier est à-même, d’après ses connaissances générales, de concevoir un conduit de communication 25 répondant à ces fonctions, le structure du conduit de communication 25 n’étant pas limitative en soi.
Selon un mode de réalisation non limitatif, le ratio entre le débit massique de fluide de travail dans la phase gazeuse circulant à travers l’écran de filtration 24 et le débit massique de fluide de travail dans la phase gazeuse circulant dans le conduit de communication 25 est supérieur à 100, voire préférentiellement supérieur à 1000, ou encore plus préférentiellement supérieur à 10000. Le débit massique de fluide de travail dans la phase gazeuse qui circulerait éventuellement à travers le conduit de communication 25 est en fait considéré comme une fuite non recherchée, voire néfaste. Il est donc recherché un débit massique de fluide de travail dans la phase gazeuse qui circulerait éventuellement à travers le conduit de communication 25 aussi proche de 0 que possible.
Selon un mode de réalisation avantageux en termes de simplicité et d’efficacité, le conduit de communication 25 est un système de déversement de type trop-plein agencé au niveau du au moins un bac 20 de l’enceinte à haute pression 14, adapté à déverser le trop de fluide travail dans la phase liquide 16 contenu dans ce au moins un bac 20 jusque dans l’au moins un bac 22 agencé dans l’enceinte à basse pression 17.
Selon un mode de réalisation non limitatif, et comme cela est représenté, ce système de déversement est configuré pour agir à la manière d’un siphon entre le fluide de travail dans la phase liquide 16 d’au moins un bac 20 de l’enceinte à haute pression 14 et le fluide de travail dans la phase liquide 19 d’au moins un bac 22 de l’enceinte à basse pression. Cela peut être obtenu par l’agencement d’un simple tube dont une extrémité supérieure débouche dans ce bac 20 et dont une extrémité inférieure est agencée dans le volume de ce bac 22. Le positionnement de l’extrémité supérieure du tube fixe la hauteur du fluide de travail dans la phase liquide 16 dans le bac 20 concerné et l’extrémité inférieure fixe la hauteur du fluide de travail est noyée dans le fluide de travail dans la phase liquide 19 contenu dans le bac 22 concerné. Selon un mode de réalisation non limitatif, le rapport entre la surface d’évaporation
23 du fluide de travail dans la phase liquide 19 contenu dans l’enceinte à basse pression 17 et la surface d’évaporation 21 du fluide de travail dans la phase liquide 16 contenu dans l’enceinte à haute pression 14 est supérieur à 2 et préférentiellement supérieur ou égal à 5. Ces dispositions garantissant une grande surface d’évaporation permettent de ne pas être en ébullition dans l’enceinte à basse pression 17.
Comme cela est schématisé sur les figures 1 et 2, la communication en fluide de travail dans la phase gazeuse 18 de l’enceinte à basse pression 17 vers le circuit 50 est libre et dépourvue de filtration. Cela permet de diminuer autant que possible les pertes de charge internes, améliorant d’autant les rendements de fonctionnement. Il est possible de se permettre ce type de disposition du fait de l’organisation même de l’évaporateur 10 avec l’écran de filtration
24 qui bloque les projection liquides qui apparaissent dans les zones où des évaporations violentes se produisent et du fait que l’évaporation se produisant dans l’enceinte à basse pression 17 se pratique à basse pression d’une manière évitant en soi les risques de projections liquides.
Selon un mode de réalisation non limitatif, le rapport entre le débit massique de fluide de travail évaporé dans l’enceinte à haute pression 14 au niveau de la surface d’évaporation 21 et le débit massique de fluide de travail évaporé dans l’enceinte à basse pression 17 au niveau de la surface d’évaporation 23 est compris entre 5 et 10. De manière générale, le choix et l’adaptation de ce rapport résulte d’un compromis entre les dimensions de l’enceinte, la taille de l’écran de filtration 24 et des risques d’ébullition dans l’enceinte à basse pression 17.
En référence à la figure 2 et contrairement au mode de réalisation de la figure 1 où l’enceinte à haute pression 14 comprend un unique bac 20 agencé dans sa partie inférieure à la manière d’un simple réceptacle, l’enceinte à haute pression 14 comprend au moins deux bacs 20 (par exemple au nombre de trois comme cela est illustré) superposés et s’alimentant en cascade successivement en fluide de travail dans la phase liquide 16 par écoulement gravitaire au travers d’un dispositif verseur 26 équipant chaque bac 20 de l’enceinte à haute pression 14 sauf le plus en aval. L’ébullition n’est alors possible que sur le haut (quelques centimètres) du liquide car en dessous, la pression hydrostatique empêche l’ébullition. L’ébullition joue un rôle d’agitateur dans le transfert thermique.
De manière combinée aux dispositions du paragraphe précédent ou de manière isolée, et toujours en référence à la figure 2 et contrairement au mode de réalisation de la figure 1 où l’enceinte à basse pression 17 comprend un unique bac 22 agencé dans sa partie inférieure à la manière d’un simple réceptacle gravitaire pour liquide, l’enceinte à basse pression 17 peut comprendre au moins deux bacs 20 (par exemple au nombre de trois comme cela est illustré) superposés et s’alimentant en cascade successivement en fluide de travail dans la phase liquide 19 par écoulement gravitaire au travers d’un dispositif verseur 27 équipant chaque bac 22 de l’enceinte à basse pression 17 sauf le plus en aval. On augmente alors la surface d’échange pour un même diamètre de la cuve (ceci en rapport avec le rapport entre la surface d’évaporation 23 du fluide de travail dans la phase liquide 19 contenu dans l’enceinte à basse pression 17 et la surface d’évaporation 21 du fluide de travail dans la phase liquide 16 contenu dans l’enceinte à haute pression 14).
De ce qui précède, il peut être compris que l’enceinte à haute pression 14 peut éventuellement comporter un unique bac 20 tandis que l’enceinte à basse pression 17 comporterait plusieurs bacs 22 organisés comme cela est décrit ci-avant. Alternativement, l’enceinte à basse pression 17 peut éventuellement comporter un unique bac 22 tandis que l’enceinte à haute pression 14 comporterait plusieurs bacs 20 organisés comme cela est décrit ci-avant. Ces dispositions possibles ne sont pas illustrées.
Selon un mode de réalisation non limitatif, l’écran de filtration 24 est une paroi, ayant des pores traversants (non représentés en détails) adaptés à laisser passer le fluide de travail dans la phase gazeuse 15, 18 de part et d’autre de cette paroi, et présentant des ondulations 28 le long de la hauteur de la paroi. La paroi peut être verticale, horizontale, ou oblique. Selon un mode de réalisation possible, il est possible d’intégrer de la paille métallique ou plastique pour agglomérer les gouttes puis des chicanes pour les arrêter.
L’invention porte aussi sur une installation frigorifique 100 comprenant un circuit 50 dans lequel circule le fluide de travail, l’installation frigorifique 100 comprenant les éléments suivants échelonnés le long du circuit 50 et à travers lesquels le fluide de travail circule successivement : un évaporateur 10 tel que décrit précédemment dans lequel le fluide de travail dans la phase liquide subit une perte de calories due à l’évaporation se produisant dans l’enceinte à haute pression 14 et dans l’enceinte à basse pression 17, une machine de compression 60, un condenseur 80 où le fluide de travail subit une liquéfaction, les condensais 90 étant adressés, via le circuit 50, jusqu’à l’entrée d’alimentation 12.
Avantageusement, le fluide de travail contient au moins un fluide aqueux, essentiellement de l’eau, éventuellement avec quelques additifs tels que du glycol.
Selon un mode de réalisation non limitatif, le débit massique de la phase gazeuse du fluide de travail circulant dans le circuit 50 est compris entre 15 g/s et 15 kg/s.
Comme cela est représenté sur chacune des figures 1 et 2, l’enceinte à basse pression 17 de l’évaporateur 10 comprend une sortie d’évacuation 29 permettant d’extraire hors de l’enceinte principale 11 du fluide de travail dans la phase liquide 19 à partir du au moins un bac 22 de l’enceinte à basse pression 14. Ces dispositions permettent d’extraire hors de l’évaporateur 10 le fluide de travail liquide préalablement refroidi dans l’évaporateur 10 en conséquence de la double évaporation se produisant respectivement dans l’enceinte à haute pression 14 et dans l’enceinte à basse pression 17, ceci permettant une utilisation du fluide ainsi extrait.
Après avoir été utilisé, le fluide travail liquide préalablement extrait à la sortie d’évacuation 29 est réinjecté dans l’enceinte à haute pression 14. A cet effet, il est avantageux de prévoir que l’enceinte à haute pression 14 de l’évaporateur 10 comprenne une conduite d’admission 30 permettant d’alimenter au moins un bac 20 de l’enceinte haute pression 14 en fluide de travail dans la phase liquide 16 préalablement extrait de l’enceinte à basse pression 17 par la sortie d’évacuation 29.
Dans une première utilisation possible où le fluide de travail est le fluide destiné à être utilisé par le client, le fluide de travail liquide préalablement extrait à la sortie d’évacuation 29 est directement exploité par le client, ce dernier utilisant l’avantage du fait qu’il a été préalablement refroidi dans l’évaporateur 10.
Selon un mode de réalisation particulièrement avantageux où l’installation frigorifique 100 est un système de climatisation, le refroidissement du fluide de travail (qui est notamment essentiellement aqueux) qui circule dans l’évaporateur 10 en étant maintenu à un niveau de pression compris entre 5 et 100 mbar assure une fonction de décontamination contre des bactéries prédéterminées, notamment la légionnelle. C’est la très faible pression (entre 5 et 100 mbar) dans l’évaporateur 10 qui assure une destruction des bactéries. En effet, un niveau de pression contenu dans cette plage correspond typiquement à une température comprise entre 25°C et 45°C, cette plage de température étant privilégiée pour le développement de la bactérie légionnelle.
Dans une autre utilisation possible, l’installation frigorifique 100 comprend un deuxième circuit (non représenté) dans lequel circule un fluide opérationnel distinct du fluide de travail et un échangeur thermique (non représenté) entre le fluide opérationnel circulant dans le deuxième circuit et du fluide de travail dans la phase liquide présent dans, ou issu de, l’enceinte principale 11 de l’évaporateur 10. Un tel échangeur thermique peut donc être agencé à l’intérieur ou à l’extérieur de l’enceinte principale 11 de l’évaporateur 10.
L’invention qui vient d’être décrite présente l’avantage d’être économique et efficace, de limiter les pertes de charge internes à l’évaporateur 10 et à l’installation frigorifique 100, d’éviter tout risque d’endommagement de la machine de compression 60 en raison de l’évaporateur 10, et d’être opérationnel et efficace dans le cas où le fluide de travail est essentiellement constitué à base d’eau.

Claims

REVENDICATIONS
1. Evaporateur (10) pour installation frigorifique (100) où l’installation frigorifique (100) comporte un circuit (50) dans lequel circule un fluide de travail, l’évaporateur (10) comprenant une enceinte principale (11 ) contenant un fluide de travail où une phase gazeuse et une phase liquide dudit fluide de travail coexistent, ladite enceinte principale (11) comprenant une entrée d’alimentation (12) destinée à être raccordée au circuit (50) pour alimenter l’enceinte principale (11 ) en fluide de travail à l’état liquide et une sortie d’extraction (13) destinée à extraire hors de l’enceinte principale (11 ) du fluide de travail à l’état gazeux vers le circuit (50), l’évaporateur (10) comprenant un dispositif d’échange thermique (70) apte à chauffer le fluide de travail contenu dans l’enceinte principale (11 ), caractérisé en ce que l’évaporateur (10) comprend : une enceinte à haute pression (14) délimitée au sein de l’enceinte principale (11 ), au niveau de laquelle l’entrée d’alimentation (12) est aménagée de sorte que l’enceinte à haute pression (14) est alimentée en fluide de travail à l’état liquide par le circuit (50), l’enceinte à haute pression (14) contenant du fluide de travail dans la phase gazeuse (15) à une première valeur de pression et du fluide de travail dans la phase liquide (16), l’enceinte à haute pression (14) délimitant au moins un bac (20) contenant le fluide de travail dans la phase liquide (16) présent dans l’enceinte à haute pression (14), l’au moins un bac (20) de l’enceinte à haute pression (14) conférant une surface d’évaporation (21 ) du fluide de travail dans la phase liquide (16) contenu dans l’enceinte à haute pression (14) à une première valeur de pression d’évaporation, une enceinte à basse pression (17) délimitée au sein de l’enceinte principale (11 ), contenant du fluide de travail dans la phase gazeuse (18) à une deuxième valeur de pression strictement inférieure à la première valeur de pression et du fluide de travail dans la phase liquide (19), la sortie d’extraction (13) étant aménagée au niveau de l’enceinte à basse pression (17) de sorte que du fluide de travail dans la phase gazeuse (18) contenu dans l’enceinte à basse pression (17) est extrait vers le circuit (50), l’enceinte à basse pression (17) délimitant au moins un bac (22) contenant le fluide de travail dans la phase liquide (19) présent dans l’enceinte à basse pression (17), l’au moins un bac (22) de l’enceinte à basse pression (17) conférant une surface d’évaporation (23) du fluide de travail dans la phase liquide (19) contenu dans l’enceinte à basse pression (17) à une deuxième valeur de pression d’évaporation strictement différente de la première valeur de pression d’évaporation, un écran de filtration (24) interposé entre l’enceinte à haute pression (14) et l’enceinte à basse pression (17), l’écran de filtration (24) laissant passer le fluide de travail dans la phase gazeuse (15) de l’enceinte à haute pression (14) vers l’enceinte à basse pression (17), et bloquant le passage du fluide de travail dans la phase liquide (16, 19) de l’enceinte à haute pression (14) vers l’enceinte à basse pression (17) et réciproquement, un conduit de communication (25) reliant l’enceinte à haute pression (14) à l’enceinte à basse pression (17), ledit conduit de communication (25) laissant essentiellement passer le fluide de travail dans la phase liquide (16) de l’enceinte à haute pression (14) vers l’enceinte à basse pression (17), et s’opposant à un passage libre du fluide de travail dans la phase gazeuse (15, 18) de l’enceinte à haute pression (14) à l’enceinte à basse pression (17) et réciproquement.
2. Evaporateur (10) selon la revendication 1 , dans lequel le conduit de communication (25) est un système de déversement de type trop-plein agencé au niveau dudit au moins un bac (20) de l’enceinte à haute pression (14).
3. Evaporateur (10) selon la revendication 2, dans lequel le système de déversement est configuré pour agir à la manière d’un siphon entre le fluide de travail dans la phase liquide (16) d’au moins un bac (20) de l’enceinte à haute pression (14) et le fluide de travail dans la phase liquide (19) d’au moins un bac (22) de l’enceinte à basse pression (17).
4. Evaporateur (10) selon l’une des revendications 1 à 3, dans lequel le rapport entre la surface d’évaporation (23) du fluide de travail dans la phase liquide (19) contenu dans l’enceinte à basse pression (14) et la surface d’évaporation (21 ) du fluide de travail dans la phase liquide (16) contenu dans l’enceinte à haute pression (14) est supérieur à 2 et préférentiellement supérieur ou égal à 5.
5. Evaporateur (10) selon l’une des revendications 1 à 4, dans lequel la communication en fluide de travail dans la phase gazeuse (19) de l’enceinte à basse pression (17) vers le circuit (55) est libre, dépourvue de filtration.
6. Evaporateur (10) selon l’une des revendications 1 à 5, dans lequel le rapport entre le débit massique de fluide de travail évaporé dans l’enceinte à haute pression (14) et le débit massique de fluide de travail évaporé dans l’enceinte à basse pression (17) est compris entre 5 et 10.
7. Evaporateur (10) selon l’une des revendications 1 à 6, dans lequel le ratio entre le débit massique de fluide de travail dans la phase gazeuse (15, 18) circulant à travers l’écran de filtration (24) et le débit massique de fluide de travail dans la phase gazeuse (15, 18) circulant dans le conduit de communication (25) est supérieur à 100.
8. Evaporateur (10) selon l’une des revendications 1 à 7, dans lequel l’enceinte à haute pression (14) comprend au moins deux bacs (20) superposés et s’alimentant successivement en fluide de travail dans la phase liquide (16) par écoulement gravitaire au travers d’un dispositif verseur (26) équipant au moins un bac (22) de l’enceinte à haute pression (14).
9. Evaporateur (10) selon l’une des revendications 1 à 8, dans lequel l’enceinte à basse pression (17) comprend au moins deux bacs (22) superposés et s’alimentant successivement en fluide 14 de travail dans la phase liquide (19) par écoulement gravitaire au travers d’un dispositif verseur (27) équipant au moins un bac (22) de l’enceinte à basse pression (17).
10. Evaporateur (10) selon l’une quelconque des revendications 1 à 9, dans lequel l’écran de filtration (24) est une paroi, ayant des pores traversants adaptés à laisser passer le fluide de travail dans la phase gazeuse (15, 18) de part et d’autre de cette paroi, et présentant des ondulations (28) le long de la hauteur de la paroi.
11 . Installation frigorifique (100) comprenant un circuit (50) dans lequel circule un fluide de travail, l’installation frigorifique (100) comprenant les éléments suivants échelonnés le long dudit circuit (50) et à travers lesquels le fluide de travail circule successivement : un évaporateur (10) selon l’une quelconque des revendications précédentes dans lequel le fluide de travail dans la phase liquide (16, 19) subit une perte de calories due à l’évaporation se produisant dans l’enceinte à haute pression (14) et dans l’enceinte à basse pression (17), une machine de compression (60), un condenseur (80).
12. Installation frigorifique (100) selon la revendication 11 , dans lequel le fluide de travail contient essentiellement de l’eau.
13. Installation frigorifique (100) selon l’une des revendications 11 ou 12, dans lequel le débit massique de la phase gazeuse du fluide de travail circulant dans le circuit (50) est compris entre 15 g/s et 15 kg/s.
14. Installation frigorifique (100) selon l’une des revendications 11 à 13, dans lequel l’enceinte à basse pression (17) de l’évaporateur (10) comprend une sortie d’évacuation (29) permettant d’extraire hors de l’enceinte principale (11 ) du fluide de travail dans la phase liquide (19) à partir du au moins un bac (22) de l’enceinte à basse pression (17).
15. Installation frigorifique (100) selon la revendication 14, dans lequel l’enceinte à haute pression (14) de l’évaporateur (10) comprend une conduite d’admission (30) permettant d’alimenter au moins un bac (20) de l’enceinte haute pression (14) en fluide de travail dans la phase liquide (16) préalablement extrait de l’enceinte à basse pression (14) par la sortie d’évacuation (29).
16. Installation frigorifique (100) selon l’une des revendications 11 à 15, dans lequel l’installation frigorifique (100) comprend un deuxième circuit dans lequel circule un fluide opérationnel distinct du fluide de travail et un échangeur thermique entre le fluide opérationnel circulant dans le deuxième circuit et du fluide de travail dans la phase liquide présent dans, ou issu de, l’enceinte principale (11 ) de l’évaporateur (10).
17. Installation frigorifique (100) de type système de climatisation, comprenant un évaporateur (10) selon l’une des revendications 1 à 10 et dans laquelle le fluide de travail qui circule dans l’évaporateur (10) étant maintenu à une pression comprise entre 5 et 100 mbar 15 assure une fonction de décontamination contre des bactéries prédéterminées, notamment la légionnelle.
EP21845085.6A 2020-12-04 2021-12-01 Evaporateur pour installation frigorifique délimitant deux enceintes d'évaporation respectivement à haute pression et basse pression et séparées par un écran de filtration Pending EP4256252A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2012719A FR3117199B1 (fr) 2020-12-04 2020-12-04 Evaporateur pour installation frigorifique délimitant deux enceintes d’évaporation respectivement à haute pression et basse pression et séparées par un écran de filtration
PCT/FR2021/052172 WO2022117956A1 (fr) 2020-12-04 2021-12-01 Evaporateur pour installation frigorifique délimitant deux enceintes d'évaporation respectivement à haute pression et basse pression et séparées par un écran de filtration

Publications (1)

Publication Number Publication Date
EP4256252A1 true EP4256252A1 (fr) 2023-10-11

Family

ID=74347356

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21845085.6A Pending EP4256252A1 (fr) 2020-12-04 2021-12-01 Evaporateur pour installation frigorifique délimitant deux enceintes d'évaporation respectivement à haute pression et basse pression et séparées par un écran de filtration

Country Status (8)

Country Link
US (1) US20240027111A1 (fr)
EP (1) EP4256252A1 (fr)
JP (1) JP2023551718A (fr)
CN (1) CN116829887A (fr)
AU (1) AU2021393068A1 (fr)
CA (1) CA3200912A1 (fr)
FR (1) FR3117199B1 (fr)
WO (1) WO2022117956A1 (fr)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07111313B2 (ja) * 1987-10-31 1995-11-29 株式会社竹中工務店 熱移動装置
JPH0784965B2 (ja) * 1991-12-24 1995-09-13 誠之 渡辺 太陽熱冷却装置
FI20115125A0 (fi) * 2011-02-09 2011-02-09 Vahterus Oy Laite pisaroiden erottamiseksi
FR3069624B1 (fr) 2017-07-28 2019-10-18 Alpinov X Installation frigorifique

Also Published As

Publication number Publication date
US20240027111A1 (en) 2024-01-25
WO2022117956A1 (fr) 2022-06-09
FR3117199B1 (fr) 2022-12-16
CN116829887A (zh) 2023-09-29
JP2023551718A (ja) 2023-12-12
AU2021393068A1 (en) 2023-06-29
FR3117199A1 (fr) 2022-06-10
CA3200912A1 (fr) 2022-06-09

Similar Documents

Publication Publication Date Title
EP0415840B1 (fr) Condenseur avec réservoir/refroidisseur secondaire
BE1017473A5 (fr) Dispositif et procede de refroidissement de boissons.
EP2013549B1 (fr) Dispositif de refroidissement par absorption et vehicule automobile associe
US8695359B2 (en) Water circulation and drainage system for an icemaker
EP0427648B1 (fr) Procédé et dispositif de transfert de froid
EP4256252A1 (fr) Evaporateur pour installation frigorifique délimitant deux enceintes d'évaporation respectivement à haute pression et basse pression et séparées par un écran de filtration
FR2657420A1 (fr) Systeme de refrigeration, separateur d'huile pour un tel systeme et procede pour separer de l'huile d'un melange de gaz refrigerant comprime.
EP1987292B1 (fr) Dispositif échangeur de chaleur destiné aux systèmes de chauffage ou de climatisation
WO2013087996A1 (fr) Machine multifonction de préparation de boisson par extraction de capsule
WO2015104330A1 (fr) Pompe à chaleur produisant du froid
FR2902867A1 (fr) Procede de conservation de produits alimentaires stockes dans une enceinte
WO2000071945A1 (fr) Procede pour detacher les cristaux de glace d'un echangeur thermique generateur d'un frigoporteur diphasique liquide-solide
KR200285212Y1 (ko) 제빙기를 포함하는 냉온수 공급기
FR3091337A1 (fr) Système de production de froid
BE406891A (fr)
FR3133657A1 (fr) Dispositif de degazage d’hydrogene liquide
FR2625871A1 (fr) Procede et systeme de stockage et de conservation du lait dans une installation de refroidissement a compression de vapeur et a detente directe
WO1997025574A1 (fr) Appareil de refroidissement rapide d'un liquide
FR3082609A1 (fr) Systeme comprenant une machine a absorption pour la production de froid a partir de la chaleur fatale de gaz d'echappement d'un vehicule comprenant un module de stockage de l'energie thermique
FR3002159A1 (fr) Separateur de fluide liquide/gaz
BE355086A (fr)
FR2907200A1 (fr) Installation de climatisation a deplacement automatique du refrigerant.
BE526435A (fr)
FR2790543A1 (fr) Systeme modulaire de refroidissement rapide des liquides
BE429824A (fr)

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230608

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)