EP4251961A1 - Imageur multispectral à domaine spectral élargi - Google Patents

Imageur multispectral à domaine spectral élargi

Info

Publication number
EP4251961A1
EP4251961A1 EP21823963.0A EP21823963A EP4251961A1 EP 4251961 A1 EP4251961 A1 EP 4251961A1 EP 21823963 A EP21823963 A EP 21823963A EP 4251961 A1 EP4251961 A1 EP 4251961A1
Authority
EP
European Patent Office
Prior art keywords
spectral
electromagnetic radiation
multispectral imager
spectral band
filters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21823963.0A
Other languages
German (de)
English (en)
Inventor
Stéphane TISSERAND
Laurent Roux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Silios Technologies SA
Original Assignee
Silios Technologies SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Silios Technologies SA filed Critical Silios Technologies SA
Publication of EP4251961A1 publication Critical patent/EP4251961A1/fr
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2823Imaging spectrometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/26Generating the spectrum; Monochromators using multiple reflection, e.g. Fabry-Perot interferometer, variable interference filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0227Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using notch filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0262Constructional arrangements for removing stray light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2803Investigating the spectrum using photoelectric array detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J2003/1226Interference filters
    • G01J2003/1239Interference filters and separate detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2803Investigating the spectrum using photoelectric array detector
    • G01J2003/2806Array and filter array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2803Investigating the spectrum using photoelectric array detector
    • G01J2003/2806Array and filter array
    • G01J2003/2809Array and correcting filter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2823Imaging spectrometer
    • G01J2003/2826Multispectral imaging, e.g. filter imaging

Definitions

  • TITLE Expanded spectral domain multispectral imager.
  • the invention relates to a multispectral imager capable of instantaneously obtaining two-dimensional images whose spectrum is resolved at each point.
  • Multispectral or hyperspectral imagers make it possible to obtain such images, which consist of two-dimensional images from which the spectrum is extracted at each point.
  • hyperspectral imaging when the extracted spectra are highly resolved, that is to say formed of numerous (typically more than 100) relatively narrow spectral bands (typically 5 to 15 nm), and of multispectral imaging when the ssoonntt spectra formed of fewer spectral bands (typically between 4 and 20) relatively broad (typically 15 to 40 nm).
  • a first method for obtaining multispectral images is to use a scanner comprising a one-dimensional sensor scanning a scene to be analyzed, called a “push broom scanner”.
  • a second method is to use a two-dimensional matrix of elementary photosensitive sensors, matrix called “FPA” for Focal Plane Array in English terminology, in order to practice instantaneous multispectral imaging, or “snapchot imaging”, method for capturing images in a single integration period of the array of sensors,
  • FPA Focal Plane Array
  • snapchot imaging method for capturing images in a single integration period of the array of sensors
  • the present invention falls within the scope of obtaining multispectral images according to this second method, a framework in which patent document US 2019/0145823 discloses a multispectral imager based on an image sensor comprising a two-dimensional matrix formed of a matrix of photosensitive pixels, and a set of elementary filters each associated with one of the photosensitive pixels.
  • the photosensitive pixels are each dedicated to a given spectral band, that is to say provided to receive and measure radiation of wavelength included in this band, all the photosensitive pixels dedicated to the same spectral band forming a sub-image of which each point belongs to one of a plurality of macropixels each formed of a group of pixels and associated filters.
  • each elementary filter is superimposed on that of the photosensitive pixels with which it is associated, defining its spectral band by filtering the incident electromagnetic radiation,
  • the elementary filters each consist of a Fabry-Pérot type interference filter.
  • Devices such as those of US patent 2019/0145823 are designed to analyze only spectral domains of relatively small extents, around 300 nm wide, in order to avoid pollution of one spectral band by another.
  • the spectral domain ranging from 400 to 1000 nm (visible and near infrared domain)
  • two distinct multispectral imagers for example dedicated respectively to the spectral domains 400-700 nm and 700- 1000nm.
  • Patent application LIS 2017/0163901 Al relates to a multispectral imaging system based on optics making it possible to form a plurality of imagettes each forming a duplicate of an image of a scene to be analyzed, each imagette being detected by a separate portion of a color image capture element, as well as a combination of narrow bandwidth filters and color filters integrated into the image capture element.
  • Patent documents US 2015/0138560 Al and DE 112013 002 560 T5 relate to a spectroscopic detector comprising two facing mirrors forming a laser cavity.
  • the aim of the present invention is to increase the extent of the spectral domain that can be analyzed by a single multispectral imager.
  • the invention relates more particularly to a multispectral imager designed to analyze a spectral domain of interest comprising a first spectral band and a second spectral band distinct from the first spectral band, comprising an image sensor formed of a matrix of macropixels ( 110) each comprising a first photosensitive pixel and a second photosensitive pixel dedicated respectively to the first spectral band and to the second spectral band distinct from the first spectral band, and a filtering structure which comprises a first interference filter and a second interference filter which are superimposed respectively on the first photosensitive pixel and on the second photosensitive pixel and which are arranged to transmit respectively a first electromagnetic radiation belonging to the first spectral band and a second.
  • the multispectral imager being characterized in that a wavelength half that of the second electromagnetic radiation is located in the spectral domain of interest, and in that the multispectral imager comprises additionally a filter layer which is superimposed on the second photosensitive pixel and which is configured to block the passage of a third electromagnetic radiation of wavelength half that of the second electromagnetic radiation.
  • An essential advantage of a multispectral imager according to the invention is its ability to analyze a widened spectral domain without undergoing pollution due to the resonances of order 2 of the interference filters.
  • Such a multispectral imager does not require any particular image sensor and can therefore be based on standard commercial image sensors, facilitating the development and considerably reducing the cost of this imager.
  • a multispectral imager having such a structure, with an operation based on the use of macropixels and a filtering layer structured on the scale of a pixel, has other advantageous characteristics.
  • such a structure implies an intimate proximity between the image sensor, the interference filtering structure and the filtering layer, thus ensuring a virtual absence of problems related to the respective angles of view of each of the pixels of a scene to capture.
  • the filter layer may form a high-pass filter configured to block the first electromagnetic radiation and transmit the second electromagnetic radiation;
  • the filter layer can be structured so as not to be superimposed on the first photosensitive pixel
  • the filter layer can consist of a layer of red organic material
  • the filtering layer can be formed from a mosaic of elementary filters, can also be superimposed on the first photosensitive pixel and be configured to transmit the first electromagnetic radiation to the first photosensitive pixel;
  • the filtering layer may comprise a matrix of organic filters each configured to transmit a spectral band in the visible spectral range; the organic filters can be configured to transmit bands of blue, green and red radiation respectively; and
  • the matrix of organic filters can be a Bayer matrix.
  • FIG. 1A illustrates a sectional view of a multispectral imager according to a first embodiment of the invention
  • FIG. 1B illustrates a plan view of an array of macropixels of the spectral imager of FIG. 1A;
  • Figure 1C illustrates a macropixel of Figure 1B
  • FIG. 1D illustrates a first variant of the general principle of the invention
  • FIG. 3 illustrates the characteristics of a multispectral imager according to a second embodiment of the invention
  • FIGS. 2 illustrates structural variants of a spectral imager according to the invention.
  • FIGS. 2 illustrate spectral responses of optical filters, with transmission percentages on the ordinate and wavelengths on the abscissa, expressed in nanometers.
  • FIG. 1A illustrates a sectional view of the structure of a 16-channel multispectral imager according to the invention, with an image sensor 100 comprising a sensor substrate 105, an array of photosensitive pixels 115 formed on and/or in this substrate, respectively dedicated to one of sixteen spectral bands of interest, centered respectively on wavelengths ⁇ 1 to ⁇ 16 , and.a filter structure 150 comprising a substrate, filter 155 as well as a matrix interference filters 160 formed on this substrate and a filter layer 170 formed on the interference filters 160.
  • a plurality of macropixels 110 forming a matrix of macropixels illustrated by FIG. 1B are each formed of a group of pixels, each dedicated to one of the spectral bands of interest, and associated filters.
  • FIG. 1C illustrates in a plan view of one of these macropixels 110, each formed of a 4 ⁇ 4 matrix of photosensitive pixels 115, the photosensitive pixels being designated by the central wavelengths ⁇ 1 to ⁇ 16 of the 16 spectral bands to which they are respectively dedicated, 430, 468, 506, 544, 582, 620, 658, 696, 734, 772, 810, 848, 886, 924, 962 and 1000 nm.
  • the filtering layer 170 could take a continuous form or be composed of discrete elements such as a mosaic of elementary filters, and may or may not have a composition and properties homogeneous over its entire extent; it is here homogeneously formed from a red organic resin structured to be superimposed on the photosensitive pixels dedicated to the spectral bands centered on the high wavelengths ⁇ 1 to ⁇ 16 and to be absent at the level of the pixels dedicated to the centered spectral bands on the low wavelengths ⁇ 1 to ⁇ 5 , as illustrated by FIG. 2 in B) which represents the filtering layer 170 on the scale of a macropixel 110.
  • the filter layer 170 here forms a high-pass organic filter, with a cut-off wavelength located at approximately 590 nm, as illustrated by FIG. 2 at C), but any type of filter could be used, such as for example filters operating by absorption, reflection, interferential or plasmonic, provided that they have an adequate spectral response (high pass here) and that they can be structured on the scale of the photosensitive pixels.
  • block and transmit 3 ⁇ 4> are not to be understood in the sense of total blocking and total transmission, but must be understood according to usage in the field of optical filters, such as example by blocking at least 80% and transmitting at least 30% of electromagnetic radiation, which corresponds to the examples considered in this description.
  • a filter layer superimposed on a photosensitive pixel is configured to transmit radiation to this photosensitive pixel
  • this filter layer is transparent to this radiation (transmission of at least 30% of this radiation ) and. allows it to cross it to irradiate this photosensitive pixel. This does not prevent a first element forming a first part of the filter layer from transmitting a first radiation of given wavelength and a second element forming a second part of the filter layer from blocking a second radiation of this given wavelength.
  • the imager can further comprise an array of microlenses 120 reproducing the arrangement of the photosensitive pixels so that each pixel corresponds to one and only one of the lenses, and configured to concentrate the incident radiation on the photosensitive surfaces of the photosensitive pixels, increasing thus the sensitivity of the imager.
  • this imager requires an intimate proximity between the image sensor, the interference filtering structure and the filtering layer, so that the incident radiation trajectories pass respectively through a photosensitive pixel and an interference filter which is superimposed on it, even with a substantial angle of incidence (greater than 30° for example) while limiting the phenomena of crosstalk (or "crosstalk" in English, pollution of the radiation intended to be received by a given pixel by a radiation intended to be received by a neighboring pixel),
  • Such proximity can be obtained by bringing the elements (160, 170) formed on the sensor substrate 105 into direct contact with the elements (115, 120) formed on the filter substrate 155, or optionally via layers thin protection, then by fixing the substrates (105,155) to each other by means of a strip of glue 157 located on the periphery of these substrates (105, 155).
  • the elements 160, 170, 115 and 120 are interposed between the two substrates 105 and 155 so as not to be separated by the thickness of one or two of these substrates and to maintain the necessary proximity.
  • the imager illustrated in FIG. 1A is associated with an optical focusing system (not .illustrated) comprising one or several lenses located at a distance from the photosensitive pixels 115 and from the interference filters 160 and from their substrate 155.
  • an optical focusing system (not .illustrated) comprising one or several lenses located at a distance from the photosensitive pixels 115 and from the interference filters 160 and from their substrate 155.
  • the interference filters can be, for example, filters of the Fabry-Pérot type, formed by a resonant cavity between two mirrors,
  • Such a filter transmits electromagnetic radiation if it enters into resonance in the cavity, that is to say on the condition that its wavelength belongs to a spectral band centered on a given wavelength defined by the formula [1] following: in which k is an integer greater than or equal to 1 which defines the order of resonance considered, is the index of refraction of the cavity for the wavelength ⁇ k , and e is the physical thickness of the cavity,
  • the width of the spectral band transmitted by such a filter is characterized by the height at mid-height of a resonance peak, which can range from a few nanometers to several tens of nanometers, and depends on the structure and the materials used poul ⁇ ie filter.
  • the orders of resonance of orders 2 limit in practice the spectral range that a given multispectral imager will be able to analyze
  • an interference filter designed to transmit as a useful signal a first radiation thanks to a resonance of order 1 will also transmit a second radiation of wavelength approximately half (at the index dispersion of refraction close) to that of the first radiation due to the resonance of order 2, which pollutes the measurement of the useful signal to the point of making it unusable.
  • the extent of the analyzable spectral range to exclude the latter by the use of a global high-pass filter covering all the photosensitive pixels or by the characteristics of the material used for the detection of the radiation, such as silicon in the case of a CMOS detection technology.
  • Figure 2 shows in A) a graph indicating the spectral responses of the 16 interference filters associated with the 16 photosensitive pixels in a spectral range extending from 400 to 1100 nm, with the transmission peaks due to resonances of orders 1 and 2, with widths at mid-height between 20 and 50 nm.
  • the filtering layer 170 solves the problem of pollution of the useful signals of the high spectral bands (in wavelength) by blocking the radiation of shorter wavelengths, not globally on all the photosensitive pixels. , but specifically at the level of the photosensitive pixels dedicated to these high spectral bands, while allowing radiation from the low spectral bands (in wavelength) to pass at the level of the photosensitive pixels dedicated to these low spectral bands.
  • the filtering layer 170 is, in this embodiment, structured at the level of the photosensitive pixels taken individually so as to be superimposed only on the pixels dedicated to the high spectral bands, being absent at the level of the pixels dedicated to the low spectral bands.
  • the filtering layer 170 has a matrix structure, each element of which reproduces in geometry and in dimensions the structure of the macropixels 110, structure formed in this example of a matrix of 4 ⁇ 4 photosensitive pixels 115.
  • the filtering layer 170 is here formed of elements superimposed respectively on the photosensitive pixels 115 dedicated respectively to the wavelengths ⁇ 6 to ⁇ 16 , each element corresponding to a photosensitive pixel and vice versa.
  • these elements form a continuous filtering layer 170 on the scale of a macropixel 110, superimposed on a first portion only of a macropixel 110 so as not to intercept incident radiation passing through a second portion. of the same macropixel, as shown in B) of Figure 2.
  • a multispectral imager according to the invention can analyze an enlarged spectral range ranging for example from 400 to 1000 n®, of greater range than those of conventional multispectral imagers, without suffering from the pollution phenomenon described above.
  • FIG. 2 illustrates in D) the spectral response of the combination according to the invention between the interference filters 160 and the filtering layer 170 consisting of the high-pass filter illustrated in B), designed to block the radiation corresponding to the resonances of order 2 11 interference filters ⁇ 1 to ⁇ 16 , of wavelengths shorter than the cut-off wavelength of the filtering layer.
  • the filtering layer makes it possible to eliminate or very greatly reduce the transmission of radiation due to resonance peaks of order 2, so as to obtain a spectral image with 16 bands covering a wide spectral range and suffering little or no damage. of pollution caused by these resonance peaks of order 2, according to the principle illustrated by FIG. 1D.
  • the solid arrows indicate the transmission peaks of the 11 photosensitive pixels dedicated to the wavelengths ⁇ 6 to ⁇ 16 , pixels on which the filtering layer 170 is superimposed.
  • FIG. 1D summarizes the general principle of the invention: a first interference filter IF1 superimposed on a first photosensitive pixel PP1 transmits radiation I ⁇ I of a wavelength belonging to a first spectral band of interest centered on the length d wave ⁇ I , a second interference filter IF2 superimposed on a second photosensitive pixel PP2 transmits radiation I ⁇ II of a second wavelength belonging to a second spectral band of interest centered on the wavelength ⁇ II as well as a polluting radiation I ⁇ II — P third wavelength approximately half of ⁇ II due to an order 2 resonance of the second interference filter IF2, and a filtering layer FL which is configured to transmit I ⁇ I to PP1 and I ⁇ II to PP2, and block the polluting radiation I ⁇ II — P at PP2.
  • the filter layer FL also blocks radiation with a wavelength half that of ⁇ II at the level of PP2.
  • the third wavelength of the radiation, pollutant I ⁇ II — P could be very close to or equal to ⁇ 1 , and could in particular be found in a spectral band of interest, centered on ⁇ 1 corresponding to the resonance peak of order 1 of IF1, and therefore be transmitted by the first interference filter IF1.
  • the two spectral bands of interest are distinct, that is to say centered on different wavelengths, and preferably do not overlap.
  • a first variant of this principle consists in structuring the filtering layer FL so as to superimpose it only on the second photosensitive pixel PP2.
  • the expression “approximately” means that a deviation of 10% is authorized between the values of the quantities considered, and is in particular used to take account of the index dispersion in the positioning of the resonance peaks,
  • ⁇ I and ⁇ II correspond for example respectively to ⁇ I and ⁇ 12 , PP1 and PP2 to the photosensitive pixels 115 dedicated to the spectral bands centered on these wavelengths, IF1 and IF2 to the interference filters 160 superimposed respectively on PP1 and PP2, I ⁇ I and I ⁇ II on the radiation transmitted by IF1 and IF2 by resonance of order 1 and I ⁇ II — P on the radiation transmitted by IF2 by resonance of order 2, and the layer filter layer FL to filter layer 170.
  • a multispectral imager applying the general principle of the invention to this first embodiment, combining a matrix of interference filters and a high-pass filter structured at the scale of the photosensitive pixels, makes it possible to analyze a domain spectrum sufficiently wide to include a first spectral band and a second spectral band of wavelengths approximately twice as short as those of the first spectral band without suffering from pollution due to the second orders of resonance.
  • the application of the invention is not limited to filters of the Fabry-Pérot type taken here as an example, but extends to any type of filter producing several orders of interference.
  • This first embodiment is based on the use of a filter layer 170 forming a high-pass filter locally structured so as to be superimposed only on the photosensitive pixels dedicated to the high spectral bands to block the radiation transmitted by the resonances of order 2 and more of the associated interference filters, but the invention is not limited to this configuration and could use other types of filters such as band-pass filters, superimposed or not on all the photosensitive pixels defining a macropixel, as illustrated by the following embodiment.
  • the second embodiment of the invention consists of a 5-channel spectral imager having a structure identical to that of the first embodiment except for the interference filters and the filtering layer, and comprising photosensitive pixels dedicated to 5 bands spectral centers on wavelengths ⁇ 1 to ⁇ 5 , respectively 450, 550, 650, 865 and 945 nm, pixels arranged in macropixels 110 each comprising 16 photosensitive pixels as illustrated by FIG. 4 in C).
  • the first three wavelengths correspond respectively to three interference filters B, G and R respectively transmitting blue, green and red radiation from the visible range, the last two wavelengths corresponding respectively two interference filters NIR1 and NIR2 of the near infrared range,
  • FIG. 3 illustrates in A) the spectral response of the five interference filters, with 5 transmission peaks corresponding respectively to the wavelengths ⁇ 1 to ⁇ 5 of the first-order resonances of each of the 5 filters, and 2 transmission peaks at 444 and 483 nm corresponding respectively to the second order resonances of the NIR1 and NIR2 filters.
  • a filter layer 170 formed from a mosaic of elementary filters, here a classic Bayer matrix comprising filters organic Grg,B, Grg.G and Org.R respectively transmitting bands of blue, green and red radiation from the visible range as illustrated by FIG. 3 in B).
  • FIG. 4 illustrates in A) the arrangement of the interference filters, according to the geometry of the macropixels 110, each filter being superimposed on one and only one of the photosensitive pixels of a given macropixel, with the resonance peaks of orders 1 and 2 of these filters.
  • the organic filters are arranged according to the geometry of the macropixel 110 as illustrated in B) of FIG. 4, each filter being superimposed on one and only one of the photosensitive pixels, and so that the NIR1 and NIR2 filters are superimposed respectively on Org.G and Org.R filters, so as to respectively block radiation from peaks at 444 and 483 nm corresponding to second order resonances.
  • the macropixel 110 is formed from a 2x2 matrix of 4 conventional Bayer matrices which are each formed from a 2x2 element matrix; a red filter Org.R, a blue filter Qrg.B and two green filters Org.G, the two green filters Org.G being placed along a diagonal of the Bayer matrix.
  • the NIR1 and NIR2 filters are superimposed on an Org filter. G and an Org filter. R of each of two Bayer matrices placed along a diagonal of the macropixel 110.
  • the arrangement of the filters detailed above and illustrated in A) and B) of FIG. 4 is advantageous in the sense that it allows on the one hand use of all the photosensitive pixels 115 , each being of a wavelength capable of reaching it, and on the other hand a high spatial resolution and has a high sensitivity combined with the possible use of a commercial photosensitive sensor already equipped with a Bayer matrix and mass-produced , therefore at a reasonable cost.
  • FIG. 3 illustrates in C) the result of the combination of the interference filters with the organic filters; the two peaks at 444 and 483 nm are extremely reduced whereas the 5 peaks of the first order resonances remain transmitted.
  • ⁇ I and ⁇ II correspond for example respectively to ⁇ 2 and ⁇ 4 , PP1 and PP2 to the photosensitive pixels 115 respectively dedicated to the spectral bands of interest centered on these wavelengths, IF1 and IF2 to the interference filters G and NIR1 superimposed respectively at PP1 and PP2, I ⁇ I and I ⁇ II to the radiation transmitted by IF1 and IF2 by resonance of order 1, I ⁇ II — P to the radiation transmitted by IF2 by resonance of order 2 at 444 nm, and two parts of a filtering layer FL' with two elementary filters Org.G of the filtering layer 170 superimposed respectively on PP1 and PP2.
  • the two spectral bands of interest are distinct, that is to say centered on different wavelengths, and preferably do not overlap.
  • the filtering layer is superimposed on the two photosensitive pixels, but it transmits i3 ⁇ 4 to PP1 while blocking I ⁇ II — P at the level of PP2 due to its spectral response which is different depending on the pixels considered.
  • the filtering layer FL′ also blocks radiation with a wavelength half that of ⁇ II at the level of PP2.
  • the organic filters form a Bayer matrix, transmitting in the blue, green and red of the visible spectral domain (particular type of so-called RGB filter), but other types of filtering matrices, and in general any type A filter in the form of a matrix of filters and other transmission bands could be envisaged to design a spectral imager according to the invention, such as for example filters of the RGBE, RYYB, CYYM or else RGBW type.
  • the spectral imager structure of FIG. 1A taken by way of example in the two embodiments above corresponds to a structure obtained by a hybrid technology, that is to say which is based on the parallel fabrication of an image sensor and a filtering structure on two separate substrates then their association, including an array of lenses, but other structures are also appropriate, such as a hybrid structure identical to that of the figure 1A but without lenses as illustrated by FIG. 5 in A), or even a hybrid structure in which the filtering layer 170 is formed on the sensor substrate and. is optionally covered with a planarization layer 175, with or without an array of lenses above the planarization layer, as illustrated respectively in B) and C) of FIG. 5.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

Imageur multispectral conçu pour analyser un domaine spectral d'intérêt, comprenant un capteur d'images (100) formé d'une matrice de macropixels et comprenant un premier et un deuxième pixels photosensibles (115) dédiés respectivement à une première et une deuxième bandes spectrales, et une structure de filtrage (150) comprenant un premier et un deuxième filtres interférentiels (160) qui sont superposés respectivement au premier et au deuxième pixel photosensible (115} et qui sont arrangés pour transmettre respectivement un premier et un deuxième rayonnements électromagnétiques appartenant respectivement à la première et à la deuxième bandes spectrales, l'imageur multispectral dans lequel une longueur d'onde moitié de celle du deuxième rayonnement électromagnétique se situe dans le domaine spectral d'intérêt, et une couche filtrante (170) est superposée au deuxième pixel photosensible (160) et configurée pour bloquer le passage d'un troisième rayonnement électromagnétique de longueur d'onde moitié de celle du deuxième rayonnement électromagnétique.

Description

Description
TITRE : Imageur multispectral à domaine spectral élargi .
Domaine technique
L' invention concerne un imageur multispectral apte à obtenir instantanément des images en deux dimensions dont le spectre est résolu en chaque point .
Technique antérieure
De nombreuses applications en astronomie, minéralogie, chimie ou encore agriculture requièrent l'acquisition d' images spectrales d' objets ou de scènes, c' est-à-dire d' images limitées spectralement à des bandes spécifiques du spectre électromagnétique, dans le visible, l' infra-rouge ou l' ultra-violet .
Des imageurs multispectraux ou hyperspectraux permettent d' obtenir de telles images , qui consistent en images bidimensionnelles dont le spectre est extrait en chaque point . On parle conventionnellement d' imagerie hyperspectrale lorsque les spectres extraits sont très résolus, c' est-à-dire formés de nombreuses (typiquement plus de 100) bandes spectrales relativement étroites (typiquement 5 à 15 nm) , et d' imagerie multispectrale lorsque les spectres ssoonntt formés de moins de bandes spectrales (typiquement entre 4 et 20) relativement larges (typiquement 15 à 40 nm) .
Une première méthode d' obtention d' images multispectrales est d' employer un scanner comprenant un capteur unidimensionnel balayant une scène à analyser, dit « push broom scanner » .
Une deuxième méthode est d' employer une matrice bidimensionnelle de capteurs photosensibles élémentaires, matrice dite « FPA » pour Focal Plane Array en terminologie anglaise, afin de pratiquer de l ' imagerie multispectrale instantanée, ou « snapchot imaging », méthode de capture d'images en une unique période d'intégration de la matrice de capteurs,
La présente invention se situe dans le cadre de l'obtention d'images multispectrales selon cette deuxième méthode, cadre dans lequel le document de brevet US 2019/0145823 divulgue un imageur multispectral basé sur un capteur d'image comprenant une matrice bidimensionnelle formée d'une matrice de pixels photosensibles, et d'un ensemble de filtres élémentaires chacun associés à l'un des pixels photosensibles.
Les pixels photosensibles sont chacun dédiés à une bande spectrale donnée, c'est-à-dire prévus pour recevoir et mesurer un rayonnement de longueur d'onde comprise dans cette bande, l'ensemble des pixels photosensibles dédiés à une même bande spectrale formant une sous-image dont chaque point appartient à l'un d'une pluralité de macropixels chacun formés d'un groupe de pixels et des filtres associés.
Structurellement, chaque filtre élémentaire est superposé à celui des pixels photosensibles auquel il est associé, définissant sa bande spectrale par filtrage du rayonnement électromagnétique incident,
Ici, les filtres élémentaires sont chacun constitués d'un filtre interférentiel de type Fabry-Pérot.
Les dispositifs tels que ceux du brevet US 2019/0145823 sont conçus pour n'analyser que des domaines spectraux d'étendues relativement réduites, environ 300 nm de large, afin d'éviter la pollution d'une bande spectrale par une autre.
En pratique, pour étudier par exemple le domaine spectral allant, de 400 à 1000 nm (domaine visible et proche infra-rouge), on recourt donc a deux imageurs multispectraux distincts, par exemple dédiés respectivement aux domaines spectraux 400-700 nm et 700-1000 nm.
Il serait souhaitable qu’un seul dispositif soit capable de mettre en œuvre de l'imagerie multispectrale pour un domaine spectral étendu . La demande de brevet LIS 2017/0163901 Al porte sur un système d'imagerie multispectrale reposant sur une optique permettant de former une pluralité d'imagettes formant chacune un duplicata d'une image d'une scène à analyser, chaque imagette étant détectée par une portion distincte d'un élément de capture d'image colorée, ainsi que sur une combinaison entre des filtres à bande passantes étroites et des filtres de couleurs intégrés à l'élément de capture d'image.
Les documents de brevet US 2015/0138560 Al et DE 112013 002 560 T5 portent sur un détecteur spectroscopique comprenant deux miroirs en vis-à-vis formant une cavité laser.
Exposé de l'invention
La présente invention a pour but d'augmenter l'étendue du domaine spectral analysable par un seul imageur multispectral.
L'invention porte plus particulièrement sur un imageur multispectral conçu pour analyser un domaine spectral d'intérêt comprenant une première bande spectrale et une deuxième bande spectrale distincte de la première bande spectrale, comprenant un capteur d'images formé d'une matrice de macropixels (110) comprenant chacun un premier pixel photosensible et un deuxième pixel photosensible dédiés respectivement à la première bande spectrale et à la deuxième bande spectrale distincte de la première bande spectrale, et une structure de filtrage qui comprend un premier filtre interférentiel et un deuxième filtre interférentiel qui sont superposés respectivement au premier pixel photosensible et au deuxième pixel photosensible et qui sont arrangés pour transmettre respectivement un premier rayonnement électromagnétique appartenant à la première bande spectrale et un deuxième. rayonnement électromagnétique appartenant à la deuxième bande spectrale, l'imageur multispectral étant caractérisée en ce qu'une longueur d'onde moitié de celle du deuxième rayonnement électromagnétique se situe dans le domaine spectral d'intérêt, et en ce que l'imageur multispectral comprend en outre une couche filtrante qui est superposée au deuxième pixel photosensible et qui est configurée pour bloquer le passage d'un troisième rayonnement électromagnétique de longueur d'onde moitié de celle du deuxième rayonnement électromagnétique.
Un avantage essentiel d'un imageur multispectral selon l'invention est sa capacité a analyser un domaine spectral élargi sans subir de pollution due aux résonnances d'ordre 2 des filtres interférentiels.
En outre, un tel imageur multispectral ne requiert pas de capteur d'images particulier et peut donc être basé sur des capteurs d'images commerciaux standards, facilitant le développement et réduisant considérablement le coût de cet imageur.
Un imageur multispectral ayant une telle structure, avec un fonctionnement basé sur l'emploi de macropixels et une couche filtrante structurée à l'échelle d'un pixel, possède d'autres caractéristiques avantageuses.
Il permet d'utiliser la totalité de la surface photosensible du capteur, amenant ainsi une excellente résolution spatiale.
De plus, une telle structure implique une proximité intime entx'e le capteur d'image, la structure de filtrage interférentiel et la couche filtrante, assurant ainsi une quasi-absence de problèmes liés à aux angles de vue respectifs de chacun des pixels d'une scène à capturer.
L'imageur multispectral selon l'invention peut présenter les caractéristiques suivantes :
- la longueur d'onde moitié de celle du deuxième rayonnement électromagnétique peut se situer dans la première bande spectrale ; la couche filtrante peut former- un filtre passe-haut configuré pour bloquer le premier rayonnement électromagnétique et transmettre le deuxième rayonnement électromagnétique ;
~ la couche filtrante peut être structurée de manière à ne pas être superposée au premier pixel photosensible ;
- la couche filtrante peut être constituée d'une couche de matériau organique rouge - la couche filtrante peut être formée d'une mosaïque de filtres élémentaires, peut en outre être superposée au premier pixel photosensible et être configurée pour transmettre le premier rayonnement électromagnétique au premier pixel photosensible ;
- la couche filtrante peut, comprendre une matrice de filtres organiques configurés pour transmettre chacun une bande spectrale dans le domaine spectral du visible ; les filtres organiques peuvent être configurés pour transmettre respectivement des bandes de rayonnements bleus, verts et rouges ; et
- la matrice de filtres organiques peut être une matrice de Bayer .
Brève description des dessins
La présente invention sera mieux comprise et d'autres avantages apparaîtront à la lecture de la description détaillée des modes de réalisation pris à titre d'exemples nullement limitatifs et illustrés par les dessins annexés, dans lesquels :
- la figure 1A illustre une vue en coupe d'un imageur multispectral selon un premier mode de réalisation de l'invention ; la figure 1B illustre une vue en plan d'une matrice de macropixels de l'imageur spectral de la figure 1A ;
- la figure 1C illustre un macropixel de la figure 1B ;
- la figure 1D illustre une première variante du principe général de l'invention ;
- la figure 2 illustre les caractéristiques de l'imageur multispectral de la figure 1A ;
- la figure 3 illustre les caractéristiques d’un imageur multispectral selon un deuxième mode de réalisation de l'invention ;
- la figure 4 illustre la structure de l'imageur multispectral de la figure 3 ; et
- la figure 5 illustre des variantes de structures d'un imageur spectral selon l'invention. Les figures 2 (en A, C et D) et 3 (en A, B et C) illustrent des réponses spectrales de filtres optiques, avec en ordonnées des pourcentages de transmission et en abscisses des longueurs d'ondes, exprimes en nanomètres.
Description d'un premier mode particulier de réalisation selon l 'invention
La figure 1A illustre une vue en coupe de la structure d'un imageur multispectral à 16 canaux selon l'invention, avec un capteur d'images 100 comprenant un substrat de capteur 105, une matrice de pixels photosensibles 115 formés sur et/ou dans ce substrat, dédiés respectivement à l'une de seize bandes spectrales d'intérêt, centrées respectivement sur des longueurs d'onde λ1 à λ16, et.une structure de filtrage 150 comprenant un substrat, de filtre 155 ainsi qu'une matrice de filtres interférentiels 160 formés sur ce substrat et une couche filtrante 170 formée sur les filtres interférentiels 160.
C'est la combinaison de la matrice de filtres interférentiels et de la couche filtrante qui spécialisent la sensibilité des pixels photosensibles au rayonnement incident, les dédiant ainsi chacun à une bande spectrale donnée.
Une pluralité de macropixels 110 formant une matrice de macropixels illustrée par la figure 1B sont chacun formés d'un groupe de pixels, chacun dédiés à l'une des bandes spectrales d'intérêt, et des filtres associés. La figure 1C illustre dans une vue en plan de l’un de ces macropixels 110, chacun formés d'une matrice de 4x4 des pixels photosensibles 115, les pixels photosensibles étant désignés par les longueurs d'onde centrales λ1 à λ16 des 16 bandes spectrales auxquelles ils sont respectivement dédiés, 430, 468, 506, 544, 582, 620, 658, 696, 734, 772, 810, 848, 886, 924, 962 et 1000 nm.
La couche filtrante 170 pourrait, prendre une forme continue ou être composée d’éléments discrets telle une mosaïque de filtres élémentaires, et avoir ou non une composition et des propriétés homogènes sur toute son étendue ; elle est ici formée de façon homogène d'une résine organique rouge structurée pour se superposer aux pixels photosensibles dédies aux bandes spectrales centrées sur les longueurs d'onde hautes λ1 à λ16 et pour être absente au niveau des pixels dédiés aux bandes spectrales centrées sur les longueurs d'onde basses λ1 à λ5, comme illustrée par la figure 2 en B) qui représente la couche filtrante 170 à l'échelle d'un macropixel 110.
La couche filtrante 170 forme ici un filtre organique passe-haut, avec une longueur d'onde de coupure situé à environ 590 nm, comme illustré par la figure 2 en C), mais tout type de filtre pourrait être employé, comme par exemple des filtres fonctionnant par absorption, par réflexion, interférentiels ou plasmoniques, pourvu qu'ils aient une réponse spectrale adéquate (passe-haut ici) et qu'ils puissent être structurés à l'échelle des pixels photosensibles.
Lorsque l'on dit qu'un filtre est superposé à un pixel photosensible, on doit ici comprendre que ce filtre est décalé du pixel selon une direction perpendiculaire à son plan de formation et situé de manière à intercepter le rayonnement incident sur ce pixel pour le bloquer ou le transmettre.
Dans ce document, les termes « bloquer » et « transmettre ¾> ne sont pas à comprendre dans les sens d'un blocage total et d'une transmission totale, mais doivent être compris selon l'usage du domaine des filtres optiques, comme par exemple par blocage d'au moins 80% et transmission d'au moins 30% d'un rayonnement électromagnétique, ce qui correspond aux exemples considérés dans cette description.
Ainsi, lorsque l'on dit qu'une couche filtrante superposée à un pixel photosensible est configurée pour transmettre un rayonnement à ce pixel photosensible, on comprendra que cette couche filtrante est transparente à ce rayonnement (transmission d'au moins 30% de ce rayonnement) et. lui permet de la traverser pour irradier ce pixel photosensible. Cela n'empêche pas qu’un premier élément formant une première partie de la couche filtrante puisse transmette un premier rayonnement de longueur d'onde donnée et qu’un deuxième élément formant une deuxième partie de la couche filtrante puisse bloquai·une deuxième rayonnement de cette longueur d'onde donnée.
L'imageur peut en outre comprendre un réseau de microlentilles 120 reproduisant l'arrangement des pixels photosensibles de sorte qu'a chaque pixel corresponde une et une seule des lentilles, et configuré pour concentrer le rayonnement incident sur les surfaces photosensibles des pixels photosensibles, augmentant ainsi la sensibilité de l'imageur.
Les éléments de cet imageur requièrent une proximité intime entre le capteur d'image, la structure de filtrage interférentiel et la couche filtrante, de sorte que les trajectoires de rayonnements incidents passent respectivement par un pixel photosensible et un filtre interférentiel qui lui est superposé, même avec un angle d'incidence conséquent (supérieur à 30° par exemple) tout en limitant les phénomènes de diaphonie (ou « crosstalk » en anglais, pollution du rayonnement destiné à être reçu par un pixel donné par un rayonnement destiné à être reçu par un pixel voisin),
Une telle proximité peut être obtenue par mise en contact direct entre les éléments (160, 170) formés sur le substrat de capteur 105 et les éléments (115, 120) formés sur le substrat de filtre 155, ou éventuellement par l'intermédiaire de couches minces de protection, puis par fixation des substrats (105,155) l'un à l'autre au moyen d'un liseré de colle 157 situé en périphérie de ces substrats (105, 155) .
Les éléments 160, 170, 115 et 120 sont interposés entre les deux substrats 105 et 155 afin de ne pas être séparés par l'épaisseur d'un ou deux de ces substrats et maintenir la proximité nécessaire.
En pratique, l'imageur illustré en figure 1A est associé à un système optique de focalisation (non .illustré) comprenant une ou plusieurs lentilles situées à distance des pixels photosensibles 115 et des filtres interférentiels 160 et de leur substrat 155.
Les filtres interférentiels peuvent être, par exemple, des filtres de type Fabry-Pérot, formés d'une cavité résonnante comprise entre deux miroirs,
Un tel filtre transmet un rayonnement électromagnétique s'il entre en résonnance dans la cavité, c'est-à-dire à la condition que sa longueur d'onde appartienne à une bande spectrale centrée sur une longueur d'onde donnée définie par la formule [1] suivante : dans laquelle k est un nombre entier supérieur ou égal à 1 qui définit l'ordre de résonnance considéré, est l'indice de réfraction de la cavité pour la longueur d'onde λk , et e est l'épaisseur physique de la cavité,
La largeur de la bande spectrale transmise par un tel filtre se caractérise par la hauteur à mi-hauteur d'un pic de résonnance, pouvant, aller de quelques nanomètres à plusieurs dizaines de nanomètres, et dépend de la structure et des matériaux employés poul¬ ie filtre.
Pour k=1, on parle de résonnance d’ordre 1 ; la bande de transmission nominale du filtre étant la bande centrée sur λ1. Cependant, d'autres ordres de résonnance vérifiant la condition de transmission de la formule [1] sont associés aux nombres entiers k supérieurs à 1 : ordre 2 pour k valant 2, ordre 3 pour k valant 3 etc.
En permettant la transmission des rayonnements de longueurs d'onde correspondantes, les ordres de résonnance d'ordres 2 limitent en pratique la plage spectrale que pourra analyser un imageur multispectral donné,
En effet, un filtre interférentiel conçu pour transmettre en tant que signal utile un premier rayonnement grâce à une résonnance d'ordre 1 transmettra également un deuxième rayonnement de longueur d'onde approximativement moitié (a la dispersion d'indice de réfraction près) de celle du premier rayonnement en raison de la résonnance d'ordre 2, qui pollue la mesure du signal utile au point de la rendre inexploitable.
Ainsi, pour éviter la pollution du signal par la présence dans le domaine spectral analysé par l'imageur multispectral des longueurs d'ondes approximativement plus courtes de moitié que d'autre longueurs d'ondes de ce même domaine, on limite l'étendu du domaine spectral analysable pour exclure ces dernières, par l'utilisation d'un filtre passe-haut global couvrant l'ensemble des pixels photosensibles ou de par les caractéristiques du matériau utilisé pour la détection du rayonnement, comme le siliciium dans le cas d'une technologie,de détection CMOS.
De cette manière, on évite qu'une longueur d'onde deux fois plus courte que celle d'un rayonnement électromagnétique se situant dans une bande spectrale haute (en longueur d'onde) du domaine spectral analysé se situe dans une bande spectrale basse (en longueur d'onde) de ce même domaine spectral.
De fait, bloquer globalement, à l'échelle de l'ensemble de l'imageur multispectral, les rayonnements transmis par des résonnances d'ordre 2 des filtres dédiés aux bandes spectrales hautes revient à bloquer également des bandes spectrales basses que l'on pourrait souhaiter analyser avec le même imageur multispectral.
La figure 2 montre en A) un graphe indiquant les réponses spectrales des 16 filtres interférentiels associés aux 16 pixels photosensibles dans un domaine spectral s'étendant de 400 à 1100 nm, avec les pics de transmission dus aux résonnances d'ordres 1 et 2, de largeurs à mi-hauteur comprises entre 20 et 50 nm.
Dans cet exemple, en l'absence de la couche filtrante 170, des rayonnements de longueurs d'onde inférieures à approximativement 550 nm seraient transmis aux pixels photosensibles dédiés aux longueurs d'ondes hautes {i.e. de longueurs d'ondes relativement longues) en raison des résonnances d'ordre 2 des filtres interférentiels associés, comme indiqué par les pics de résonnances de la boîte Box où se superposent les pics de résonnances d'ordre 1 des longueurs d'onde basses (i.e. de longueurs d'ondes relativement courtes) et les pics de résonnance d'ordre 2 des filtres interfèrentiels de transmissions nominales correspondant aux longueurs d'onde hautes.
Dans la présente invention, la couche filtrante 170 résout le problème de pollution des signaux utiles des bandes spectrales hautes (en longueur d'onde) en bloquant les rayonnements de longueurs d'onde plus courtes, non pas globalement sur l’ensemble des pixels photosensibles, mais spécifiquement au niveau des pixels photosensibles dédiés à ces bandes spectrales hautes, tout en laissant passer les rayonnements des bandes spectrales basses {en longueur d'onde) au niveau des pixels photosensibles dédiés à ces bandes spectrales basses.
Concrètement, la couche filtrante 170 est, dans ce mode de réalisation, structurée au niveau des pixels photosensibles pris individuellement de manière à ne se superposer qu'aux pixels dédiés aux bandes spectrales hautes, étant absente au niveau des pixels dédiés aux bandes spectrales basses.
De fait, la couche filtrante 170 a une structure matricielle dont chaque élément reproduit en géométrie et en dimensions la structure des macropixels 110, structure formée dans cet exemple d'une matrice de 4x4 pixels photosensibles 115.
Ainsi, la couche filtrante 170 est ici formée d'éléments superposés respectivement aux pixels photosensibles 115 dédiés respectivement aux longueurs d'onde λ6 à λ16 , chaque élément correspondant à un pixel photosensible et réciproquement.
Dans ce mode de réalisation particulier, ces éléments forment une couche filtrante 170 continue à l'échelle d'un macropixel 110, superposée a une première portion seulement d'un macropixel 110 de manière à ne pas intercepter un rayonnement incident passant par une deuxième portion du même macropixel, comme illustré en B) de la figure 2. Ainsi, un imageur multispectral selon l'invention peut analyser un domaine spectral élargi allant par exemple de 400 à 1000 n®, d'étendue plus grande que celles des imageurs multispectraux conventionnels, sans souffrir du phénomène de pollution décrit ci-dessus.
La figure 2 illustre en D) la réponse spectrale de la combinaison selon l'invention entre les filtres interférentiels 160 et la couche filtrante 170 constituée du filtre passe-haut illustrée en B), conçue pour bloquer les rayonnements correspondant aux résonnances d'ordre 2 des 11 filtres interférentiels λ1 à λ16, de longueurs d'onde plus courtes que la longueur d'onde de coupure de la couche filtrante.
On constate que la couche filtrante permet d'éliminer ou de réduire très fortement la transmission des rayonnements due aux pics de résonnance d'ordre 2, de manière à obtenir une image spectrale à 16 bandes couvrant un large domaine spectral et ne souffrant pas ou peu de pollution provoquée par ces pics de résonnance d'ordre 2, selon le principe illustré par la figure 1D.
Les flèches pleines indiquent les pics de transmission des 11 pixels photosensibles dédiés aux longueurs d'onde λ6 à λ16, pixels auxquels est superposée la couche filtrante 170.
La figure 1D résume le principe général de l'invention : un premier filtre interférentiel IF1 superposé à un premier pixel photosensible PP1 transmet un rayonnement IλI d'une longueur d'onde appartenant à une première bande spectrale d'intérêt centrée sur la longueur d'onde λI, un deuxième filtre interférentiel IF2 superposé à un deuxième pixel photosensible PP2 transmet un rayonnement IλII d'une deuxième longueur d'onde appartenant a une deuxième bande spectrale d'intérêt centrée sur la longueur d'onde λII ainsi qu'un rayonnement polluant IλII— P troisième longueur d'onde approximativement moitié de λII en raison d'une résonnance d'ordre 2 du deuxième filtre interférentiei IF2, et une couche filtrante FL qui est configurée pour transmettreIλI à PP1 et IλII à PP2, et bloquer le rayonnement polluant IλII— P au niveau de PP2.
En pratique, on peut considérer que la couche filtrante FL bloque également un rayonnement de longueur d'onde moitié de celle de λII au niveau de PP2.
La troisième longueur d'onde du rayonnement, polluantIλII — P pourrait être très proche de ou égale à λ1 , et pourrait en particulier se trouver dans une bande spectrale d'intérêt,centrée sur λ1 correspondant au pic de résonnance d'ordre 1 de IF1, et donc être transmis par le premier filtre interférentiel IF1.
Les deux bandes spectrales d'intérêt sont distinctes, c'est-à- dire centrées sur des longueurs d'onde différentes, et de préférence ne se chevauchent pas.
One première variante de ce principe, illustrée par la figure 1D, consiste à structurer la couche filtrante FL de manière à ne la superposer qu'au deuxième pixel photosensible PP2.
Dans ce document, l'expression « approximativement » signifie qu'un écart de 10% est autorisé entre les valeurs des grandeurs considérées, et est en particulier utilisée pour tenir compte de la dispersion d'indice dans le positionnement des pics de résonnance,
Ce principe appliqué au premier mode particulier de réalisation de l'invention, λI et λII correspondent par exemple respectivement à λI etλ12 , PP1 et PP2 aux pixels photosensibles 115 dédiée aux bandes spectrales centrées sur ces longueurs d'onde, IF1 et IF2 aux filtres interférentiels 160 superposés respectivement à PP1 et PP2, IλI et IλII aux rayonnements transmis par IF1 et IF2 par résonances d'ordre 1 et IλII — P au rayonnement transmis par IF2 par résonance d'ordre 2, et la couche filtrante FL à la couche filtrante 170.
Un imageur multispectral appliquant le principe général de l'invention à ce premier mode de réalisation, combinant une matrice de filtres interférentiels et un filtre passe-haut structuré à l'échelle des pixels photosensibles, permet d'analyser un domaine spectral suffisamment étendu pour comprendre une première bande spectrale et une deuxième bande spectrale de longueurs d'ondes approximativement deux fois plus courtes que celles de la première bande spectrale sans souffrir de pollution due aux seconds ordres de résonnance.
L'application de l'invention ne se limite pas aux filtres de type Fabry-Pérot pris ici comme exemple, mais s'étend à tout type de filtre produisant plusieurs ordres d'interférence.
Ce premier mode de réalisation repose sur l'emploi d'une couche filtrante 170 formant un filtre passe-haut structuré localement de manière à ne se superposer qu'aux pixels photosensibles dédiés aux bandes spectrales hautes pour bloquer les rayonnement transmis par les résonnances d'ordre 2 et plus des filtres interférentiels associés, mais l'invention ne se limite pas a cette configuration et pourrait employer d'autres types de filtres comme des filtres passe- bandes, superposés ou non à l'ensemble des pixels photosensibles définissant un macropixel, ainsi que l'illustre le mode de réalisation suivant.
Description d'un deuxième mode particulier de réalisation selon l 'invention
Le deuxième mode de réalisation de l'invention consiste en un imageur spectral à 5 canaux ayant une structure identique à celle du premier mode de réalisation à l'exception des filtres interférentiels et de la couche filtrante, et comprenant des pixels photosensibles dédiés à 5 bandes spectrales centrées sur des longueurs d'onde λ1 à λ5, respectivement 450, 550, 650, 865 et 945 nm, pixels arrangés en macropixels 110 comprenant chacun 16 pixels photosensibles comme illustré par la figure 4 en C).
Les trois premières longueurs d'ondes correspondent respectivement à trois filtres interférentiels B, G et R transmettant respectivement des rayonnements bleus, verts et rouges du domaine visible, les deux dernières longueurs d'onde correspondant respectivement à deux filtres interférentiels NIR1 et NIR2 du domaine proche infra-rouge,
La figure 3 illustre en A) la réponse spectrale des cinq filtres interférentiels, avec 5 pics de transmission correspondant respectivement aux longueurs d'onde λ1 à λ5 des résonnances d'ordre 1 de chacun des 5 filtres, et 2 pics de transmission à 444 et 483 nm correspondant respectivement aux résonnances d'ordre 2 des filtres NIR1 et NIR2.
Ces deux derniers pics de transmission sont une source de pollution comme expliqué dans le premier mode de réalisation, et sont éliminés ou fortement réduit en utilisant une couche filtrante 170 formée d'une mosaïque de filtres élémentaire, ici une matrice de Bayer classique comprenant des filtres organiques Grg,B, Grg.G et Org.R transmettant respectivement des bandes de rayonnements bleus, verts et rouges du domaine visible comme illustré par la figure 3 en B) .
La figure 4 illustre en A) l’arrangement des filtres interférentiels, selon la géométrie des macropixels 110, chaque filtre étant superposé à un et un seul des pixels photosensibles d’un macropixel donné, avec les pics de résonnance d'ordres 1 et 2 de ces filtres.
Les filtres organiques sont arrangés selon la géométrie du macropixel 110 comme illustré en B) de la figure 4, chaque filtre étant superposé à l'un et un seul des pixels photosensibles, et de sorte que les filtres NIR1 et NIR2 sont superposés respectivement à des filtres Org.G et Org.R, de manière à bloquer respectivement les rayonnements des pics à 444 et 483 nm correspondant aux résonnances d'ordre 2.
Plus spécifiquement, le macropixel 110 est formé d'une matrice 2x2 de 4 matrices de Bayer conventionnelles qui sont chacune formées d'une matrice de 2x2 éléments ; un filtre rouge Org.R, un filtre bleu Qrg.B et deux filtres verts Org.G, les deux filtres verts Org.G étant placés selon une diagonale de la matrice de Bayer. Les filtres NIR1 et NIR2 sont superposés à un filtre Org. G et un filtre Org. R de chacune de deux matrices de Bayer placées selon une diagonale du macropixel 110.
La disposition des filtres détaillée ci-dessus et illustrée en A) et B) de la figure 4 est avantageuse dans le sens où elle permet d'une part une utilisation de l'ensemble des pixels photosensibles 115 , chacun étant, dédié à la détection d'une longueur d'onde susceptible de lui parvenir, et d'autre part une haute résolution spatiale et a une haute sensibilité combinées à l'utilisation éventuelle d'un capteur photosensible commercial déjà équipé d'une matrice de Bayer et produit en masse, donc d'un coût raisonnable.
La figure 3 illustre en C) le résultat de la combinaison des filtres interférentiels avec les filtres organiques ; les deux pics à 444 et 483 nm sont extrêmement réduits alors que les 5 pics des résonnances d'ordre 1 restent transmis.
Une deuxième variante du principe général de l'invention, appliquée à ce deuxième mode particulier de réalisation de l'invention, est ici résumé en D) de la figure 4 ; λI et λII correspondent par exemple respectivement à λ2 et λ4, PP1 et PP2 aux pixels photosensibles 115 respectivement dédiés aux bandes spectrales d'intérêts centrées sur ces longueurs d'onde, IF1 et IF2 aux filtres interfêrentiels G et NIR1 superposés respectivement à PP1 et PP2,IλI et IλII aux rayonnements transmis par IF1 et IF2 par résonances d'ordre 1, IλII— P au rayonnement transmis par IF2 par résonance d'oi'dre 2 à 444 nm, et deux parties d’une couche filtrante FL’ à deux filtres élémentaires Org.G de la couche filtrante 170 superposés respectivement à PP1 et PP2.
Les deux bandes spectrales d'intérêt sont, distinctes, c'est-à- dire centrées sur des longueurs d'onde différentes, et de préférence ne se chevauchent pas.
Dans cette variante, la couche filtrante est superposée aux deux pixels photosensibles, mais elle transmet i¾ à PP1 tout en bloquant IλII— P au niveau de PP2 en raison de sa réponse spectrale qui est différente selon les pixels considérés.
En pratique, on peut considérer que la couche filtrante FL' bloque également un rayonnement de longueur d'onde moitié de celle de λII au niveau de PP2.
Ici, les filtres organiques forment une matrice de Bayer, transmettant dans le bleu, le vert et le rouge du domaine spectral visible (type particulier de filtre dit RGB), mais d'autres types de matrices de filtrage, et de manière générale tout type de filtre se présentant sous forme d'une matrice de filtres et d'autres bandes de transmissions pourraient être envisagés pour concevoir un imageur spectral selon l'invention, comme par exemple des filtres de type RGBE, RYYB, CYYM ou encore RGBW.
L'utilisation d'un capteur d'image équipé d'une matrice de Bayer dans l'imageur multispectral est extrêmement avantageux dans la mesure où de tels capteurs sont largement disponibles à coûts raisonnables dans le commerce.
En outre, la structure d'imageur spectral de.la figure 1A pris à titre d'exemple dans les deux modes de réalisation ci-dessus correspond à une structure obtenue par une technologie hybride, c'est-à-dire qui repose sur la fabrication en parallèle d'un capteur d'images et d'une structure de filtrage sur deux substrats distincts puis leur association, incluant un réseau de lentilles, mais d’autres structures sont également appropriées, comme une structure hybride identique à celle de la figure 1A mais sans lentilles comme illustré par la figure 5 en A), ou encore une structure hybride dans laquelle la couche de filtrage 170 est formée sur le substrat de capteur et. est éventuellement recouverte d'une couche de planarisation 175, sans ou avec réseau de lentilles au-dessus de la couche de planarisation, comme illustré respectivement en B) et C) de la figure 5.
Il est également possible d'employer une structure obtenue par une technologie monolithique, c'est-à-dire obtenue par la formation en succession de tous les éléments de l'imageur sur un unique substrat, comme illustré en D) et E) de la figure 5, avec respectivement une superposition dans cet ordre des pixels photosensibles 115, des filtres interférentiels 160 et de la couche filtrante 170 et une superposition dans cet ordre des pixels photosensibles 115, de la couche filtrante 170, éventuellement d’une couche de planarisation 176, et des filtres interférentiels 160.
Il va de soi que la présente invention ne saurait être limitée aux modes de réalisation exposés plus haut, susceptibles de subir des modifications et d’être combinés sans pour autant sortir du cadre de I'invention.

Claims

REVENDICATIONS 1. Imageur multispectral conçu pour analyser un domaine spectral d'intérêt comprenant une première bande spectrale et une deuxième bande spectrale distincte de la première bande spectrale, comprenant :
- un capteur d'images (100) formé d'une matrice de macropixels (110) comprenant chacun un premier pixel photosensible (115, PP1) et un deuxième pixel photosensible (115, PP2) dédiés respectivement à la première bande spectrale et a la deuxième bande spectrale distincte de la première bande spectrale ; et
- une structure de filtrage (150) qui comprend un premier filtre interférentiel (160, IF1) et un deuxième filtre interférentiel {160, IF2) qui sont superposés respectivement au premier pixel photosensible (115, PP1) et au deuxième pixel photosensible (115, PP2) et qui sont arrangés pour transmettre respectivement un premier rayonnement électromagnétique ( IλI) appartenant à la première bande spectrale et un deuxième rayonnement électromagnétique ( IλII) appartenant à la deuxième bande spectrale, l'imageur multispectral étant caractérisé en ce que :
- une longueur d'onde moitié de celle du deuxième rayonnement électromagnétique se situe dans le domaine spectral d'intérêt ,* et
-- l'imageur multispectral comprend en outre une couche filtrante (170, FL ; FL') qui est superposée au deuxième pixel photosensible (160, PP2) et qui est configurée pour bloquer le passage d'un troisième rayonnement électromagnétique de longueur d'onde moitié de celle du deuxième rayonnement électromagnétique.
2. L'imageur multispectral selon la revendication 1, caractérisé en ce que la longueur d'onde moitié de celle du deuxième rayonnement, électromagnétique se situe dans la première bande spectrale.
3. L'imageur multispectral selon la revendication 1 ou 2, caractérisé en ce que la couche filtrante (170, FL) forme un filtre passe-haut configuré pour bloquer le premier rayonnement électromagnétique et transmettre le deuxième rayonnement électromagnétique,
4, L'imageur mulltispectral selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la couche filtrante (170, FL) est structurée de manière à ne pas être superposée au premier pixel photosensible (160, PP1),
5, L'imageur multispectral selon l'une quelconques des revendications 1 à 4, caractérisé en ce que la couche filtrante (FL) est constituée d'une couche de matériau organique rouge,
6, L'imageur multispectral selon la revendication 1 ou 2, caractérisé en ce que la couche filtrante (FL') est formée d'une mosaïque de filtres élémentaires, est en outre superposée au premier pixel photosensible (PP1) et est configurée pour transmettre le premier rayonnement électromagnétique (IλI) au premier pixel photosensible (PP1),
7, L'imageur multispectral selon la revendication 1 ou 6, caractérisé en ce que la couche filtrante(FL') comprend une matrice de filtres organiques (Org.R, Org.G, Org.B) configurés pour transmettre chacun une bande spectrale dans le domaine spectral du visible,
8, L'imageur multispectral selon la revendication 7, caractérisé en ce que les filtres organiques sont configurés pour transmettre respectivement des bandes de rayonnements bleus, verts et rouges.
9. L'imageur multispectral selon la revendication 8, caractérisé en ce que la matrice de filtres organiques est une matrice de Bayer.
EP21823963.0A 2020-11-30 2021-11-18 Imageur multispectral à domaine spectral élargi Pending EP4251961A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2012418A FR3116899B1 (fr) 2020-11-30 2020-11-30 Imageur multispectral à domaine spectral élargi.
PCT/FR2021/052036 WO2022112688A1 (fr) 2020-11-30 2021-11-18 Imageur multispectral à domaine spectral élargi

Publications (1)

Publication Number Publication Date
EP4251961A1 true EP4251961A1 (fr) 2023-10-04

Family

ID=74871509

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21823963.0A Pending EP4251961A1 (fr) 2020-11-30 2021-11-18 Imageur multispectral à domaine spectral élargi

Country Status (7)

Country Link
US (1) US20240102861A1 (fr)
EP (1) EP4251961A1 (fr)
JP (1) JP2023551686A (fr)
CN (1) CN116507892A (fr)
CA (1) CA3200228A1 (fr)
FR (1) FR3116899B1 (fr)
WO (1) WO2022112688A1 (fr)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5875936B2 (ja) * 2012-05-18 2016-03-02 浜松ホトニクス株式会社 分光センサ
TWI579540B (zh) * 2015-12-02 2017-04-21 財團法人工業技術研究院 多點光譜系統
FR3050831B1 (fr) * 2016-04-29 2018-04-27 Silios Technologies Dispositif d'imagerie multispectrale

Also Published As

Publication number Publication date
WO2022112688A1 (fr) 2022-06-02
FR3116899A1 (fr) 2022-06-03
JP2023551686A (ja) 2023-12-12
US20240102861A1 (en) 2024-03-28
CN116507892A (zh) 2023-07-28
CA3200228A1 (fr) 2022-06-02
FR3116899B1 (fr) 2023-07-21

Similar Documents

Publication Publication Date Title
US9823128B2 (en) Multispectral imaging based on computational imaging and a narrow-band absorptive filter array
EP2773929B1 (fr) Caméra spectrale ayant une mosaïque de filtres pour chaque pixel d'image
EP2515335B1 (fr) Circuit integré imageur et dispositif de capture d'images stéréoscopiques
EP1482288B1 (fr) Spectromètre statique par transformée de Fourier
FR2994282A1 (fr) Structure de filtrage optique dans le domaine visible et/ou infrarouge
EP3387824B1 (fr) Système et procédé d'acquisition d'images visibles et dans le proche infrarouge au moyen d'un capteur matriciel unique
KR20180025137A (ko) 광학모듈 및 이를 이용한 광학디바이스
EP3449228B1 (fr) Dispositif d'imagerie multispectrale
EP3607585A1 (fr) Dispositif et procede d'imagerie multispectrale dans l'infrarouge
EP3198625B1 (fr) Dispositif d'acquisition d'images bimode a photocathode
EP3458819B1 (fr) Spectro-imageur multivoie a transformee de fourier
EP4251961A1 (fr) Imageur multispectral à domaine spectral élargi
Gupta Acousto-optic tunable filter based spectropolarimetric imagers
FR3084459A1 (fr) Capteur d'imagerie multispectrale pourvu de moyens de limitation de la diaphonie
He et al. Metasurfaces and Multispectral Imaging
EP2991115A1 (fr) Capteur photosensible
EP2002226B1 (fr) Dispositif de formation de spectre sur un capteur optique a rejet spatial
WO2023110922A1 (fr) Camera multispectrale a acquisition " snapshot " (instantanee)
WO2024213410A1 (fr) Spectrometre optique et microscope raman comprenant un tel spectrometre
EP2373962B1 (fr) Engin aeronautique
EP4390343A1 (fr) Capteur d'images polarimétrique
EP4390475A1 (fr) Filtre polariseur et capteur d'images polarimétrique intégrant un tel filtre

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230505

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)