EP4250971A1 - Electronic aerosol provision system - Google Patents

Electronic aerosol provision system

Info

Publication number
EP4250971A1
EP4250971A1 EP21820309.9A EP21820309A EP4250971A1 EP 4250971 A1 EP4250971 A1 EP 4250971A1 EP 21820309 A EP21820309 A EP 21820309A EP 4250971 A1 EP4250971 A1 EP 4250971A1
Authority
EP
European Patent Office
Prior art keywords
aerosol
user input
generating material
generator
input mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21820309.9A
Other languages
German (de)
French (fr)
Inventor
Anna Azzopardi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nicoventures Trading Ltd
Original Assignee
Nicoventures Trading Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nicoventures Trading Ltd filed Critical Nicoventures Trading Ltd
Publication of EP4250971A1 publication Critical patent/EP4250971A1/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/30Devices using two or more structurally separated inhalable precursors, e.g. using two liquid precursors in two cartridges
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/60Devices with integrated user interfaces
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/42Cartridges or containers for inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • A24F40/465Shape or structure of electric heating means specially adapted for induction heating
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/53Monitoring, e.g. fault detection
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/57Temperature control

Definitions

  • the present disclosure relates to electronic aerosol provision systems such as nicotine delivery systems (e.g. electronic cigarettes and the like).
  • nicotine delivery systems e.g. electronic cigarettes and the like.
  • Electronic aerosol provision systems such as electronic cigarettes (e-cigarettes) generally contain an aerosol (or vapour) precursor / forming material, such as a reservoir of a source liquid containing a formulation, typically comprising a base liquid with additives such as nicotine and often flavourants, and / or a solid material such as a tobacco-based product, from which an aerosol is generated, e.g. through heat vaporisation.
  • an aerosol provision system will typically comprise an aerosol generation chamber containing an atomiser (or vaporiser), e.g. a heating element, arranged to vaporise a portion of precursor material to generate an aerosol in the aerosol generation chamber.
  • Aerosol provision systems may comprise a modular assembly including both reusable and replaceable cartridge parts.
  • a cartridge part will comprise the consumable aerosol precursor material and / or the vaporiser, while a reusable device part will comprise longer-life items, such as a rechargeable battery, device control circuitry, activation sensors and user interface features.
  • the reusable part may also be referred to as a control unit or battery section and replaceable cartridge parts that include both a vaporiser and precursor material may also be referred to as cartomisers.
  • Some aerosol provision systems may include multiple aerosol sources which can be used to generate vapour / aerosol that is mixed and inhaled by a user.
  • a user may desire a more consistent control over delivery of aerosol irrespective of the type of source and/ or heater.
  • Various approaches are described which seek to help address some of these issues.
  • an aerosol provision device for generating aerosol from a first aerosol generating material and a second aerosol generating material
  • the device comprising: a first user input mechanism for controlling a first aerosol generator configured to generate aerosol from the first aerosol generating material; a second user input mechanism for controlling a second aerosol generator configured to generate aerosol from the second aerosol generating material; and control circuitry configured to receive an input from a user via either the first user input mechanism or the second user input mechanism and to control a property of the respective aerosol generator; wherein, in response to the input, the control circuitry is configured to alter the property of the first aerosol generator by a first amount when the input is provided to the first user input mechanism and the control circuitry is configured to alter the property of the second aerosol generator by a second amount, different from the first amount, when the input is provided to the second user input mechanism.
  • an aerosol provision system for generating aerosol from a first aerosol generating material and for generating aerosol from a second aerosol generating material, the system comprising: an aerosol provision device in accordance with the first aspect, a first aerosol generating material, and a second aerosol generating material.
  • a method of controlling an aerosol provision device for generating aerosol from a first aerosol generating material and a second aerosol generating material comprising a first user input mechanism for controlling a first aerosol generator configured to generate aerosol from a first aerosol generating material, a second user input mechanism for controlling a second aerosol generator configured to generate aerosol from a second aerosol generating material; and control circuitry configured to receive an input from a user via either the first user input mechanism or the second user input mechanism and to control a property of the respective aerosol generator, the method comprising: identifying an input to either the first user input mechanism or to the second user input mechanism; and either altering the property of the first aerosol generator by a first amount when the input is provided to the first user input mechanism; or altering the property of the second aerosol generator by a second amount when the input is provided to the second user input mechanism; wherein, the second amount is different from the first amount.
  • aerosol provision means for generating aerosol from first aerosol generating material means and a second aerosol generating material means
  • the aerosol provision means comprising: first user input means for controlling first aerosol generator means configured to generate aerosol from the first aerosol generating material means; second user input means for controlling second aerosol generator means configured to generate aerosol from the second aerosol generating material means; and control means configured to receive an input from a user via either the first user input means or the second user input means and to control a property of the respective aerosol generator means; wherein, in response to the input, the control means is configured to alter the property of the first aerosol generator means by a first amount when the input is provided to the first user input means and the control means is configured to alter the property of the second aerosol generator means by a second amount, different from the first amount, when the input is provided to the second user input means.
  • Figure 1 schematically shows an aerosol delivery system in cross-section, the aerosol delivery system including a control part, a mouthpiece part, and two aerosol generating materials, and configured to deliver aerosol to a user from one or more of the aerosol generating materials;
  • Figure 2 schematically shows, in cross-section, the aerosol delivery system of Figure 1 in exploded form showing the individual constituents of the aerosol delivery system
  • Figure 3 schematically shows, in cross-section, an alternative control part in which each receptacle is provided with an individual air flow path connected to an individual air inlet
  • Figure 4 schematically shows, in cross-section, an alternative aerosol delivery system in cross-section, the aerosol delivery system including a control part, a mouthpiece part, and two aerosol generating materials arranged in series, and configured to deliver aerosol to a user from one or more of the aerosol generating materials
  • Figure 5 diagrammatically shows an example circuit layout in a state where two aerosol generators are electrically connected to the control part of Figures 1, 2 and 4
  • Figure 6 schematically represents a method of controlling an aspect of the electronic aerosol provision device in accordance with certain embodiments of the disclosure.
  • a device having control circuitry which allows a user to control the amount of aerosol generated from a first aerosol generating material and a second aerosol generating material by the user interacting with a first user input mechanism and / or a second user input mechanism.
  • the system is able to provide a level of user control over the composition of the aerosol to be inhaled based on a single input by the user to one of the user input mechanisms.
  • aerosol provision system which may also be referred to as vapour provision systems, such as e-cigarettes.
  • vapour provision system is intended to encompass systems that deliver at least one substance to a user, such as non-combustible aerosol provision systems.
  • Non-combustible aerosol provision systems release compounds from at least one aerosol-generating material without combusting the aerosol-generating material, such as electronic cigarettes, tobacco heating products, and hybrid systems to generate aerosol using a combination of aerosol-generating materials.
  • means of generating an aerosol other than via a condensation aerosol are envisaged, such as atomization via vibrational, photonic, irradiative, electrostatic means etc.
  • a “non-combustible” aerosol provision system is one where a constituent aerosol-generating material of the aerosol provision system (or component thereof) is not combusted or burned in order to facilitate delivery of at least one substance to a user.
  • the non-combustible aerosol provision system is an electronic cigarette, also known as a vaping device or electronic nicotine delivery system (END), although it is noted that the presence of nicotine in the aerosol-generating material is not a requirement.
  • END electronic nicotine delivery system
  • the non-combustible aerosol provision system is an aerosol generating material heating system, also known as a heat-not-burn system.
  • a heat-not-burn system is a tobacco heating system.
  • the non-combustible aerosol provision system is a hybrid system to generate aerosol using a combination of aerosol-generating materials, one or a plurality of which may be heated.
  • Each of the aerosol-generating materials may be, for example, in the form of a solid, liquid or gel and may or may not contain nicotine.
  • the hybrid system comprises a liquid or gel aerosol-generating material and a solid aerosol-generating material.
  • the solid aerosol-generating material may comprise, for example, tobacco or a non-tobacco product.
  • the non-combustible aerosol provision system may comprise a non combustible aerosol provision device and one or more consumables for use with the non-combustible aerosol provision device.
  • the disclosure relates to consumables comprising aerosol- generating material and configured to be used with non-combustible aerosol provision devices. These consumables are sometimes referred to as articles throughout the disclosure.
  • the non-combustible aerosol provision system such as a non-combustible aerosol provision device thereof, may comprise a power source and a controller.
  • the power source may, for example, be an electric power source.
  • the non-combustible aerosol provision system may comprise one or more areas for receiving consumables, one or more aerosol generators, one or more aerosol generation areas, a housing, a mouthpiece, a filter and/ or an aerosol modifying agent.
  • An aerosol generator is an apparatus configured to cause aerosol to be generated from the aerosol-generating material.
  • the aerosol generator is a heater configured to subject the aerosol-generating material to heat energy, so as to release one or more volatiles from the aerosol-generating material to form an aerosol.
  • the aerosol generator is configured to cause an aerosol to be generated from the aerosol-generating material without heating.
  • the aerosol generator maybe configured to subject the aerosol-generating material to one or more of vibration, increased pressure, or electrostatic energy.
  • consumables are articles comprising or consisting of aerosol generating material, part or all of which is intended to be consumed during use by a user.
  • a consumable may comprise one or more other components, such as an aerosol generating material storage area, an aerosol-generating material transfer component, an aerosol generation area, a housing, a wrapper, a mouthpiece, a filter and/or an aerosol-modifying agent.
  • a consumable may also comprise an aerosol generator, such as a heater, that emits heat to cause the aerosol-generating material to generate aerosol in use.
  • the heater may, for example, comprise combustible material, a material heatable by electrical conduction, or a susceptor.
  • a susceptor is a material that is heatable by penetration with a varying magnetic field, such as an alternating magnetic field.
  • the susceptor may be an electrically-conductive material, so that penetration thereof with a varying magnetic field causes induction heating of the heating material.
  • the heating material may be magnetic material, so that penetration thereof with a varying magnetic field causes magnetic hysteresis heating of the heating material.
  • the susceptor may be both electrically-conductive and magnetic, so that the susceptor is heatable by both heating mechanisms.
  • the device that is configured to generate the varying magnetic field is referred to as a magnetic field generator, herein.
  • the substance(s) to be delivered are aerosol-generating materials.
  • a substance may comprise one or more active constituents, one or more flavours, one or more aerosol-former materials, and/or one or more other functional materials.
  • the substance to be delivered comprises an active substance.
  • the active substance as used herein may be a physiologically active material, which is a material intended to achieve or enhance a physiological response.
  • the active substance may for example be selected from nutraceuticals, nootropics, psychoactives.
  • the active substance may be naturally occurring or synthetically obtained.
  • the active substance may comprise for example nicotine, caffeine, taurine, theine, vitamins such as B6 or Bi2 or C, melatonin, cannabinoids, or constituents, derivatives, or combinations thereof.
  • the active substance may comprise one or more constituents, derivatives or extracts of tobacco, cannabis or another botanical.
  • the active substance comprises nicotine. In some embodiments, the active substance comprises caffeine, melatonin or vitamin B12.
  • the active substance comprises or is derived from one or more botanicals or constituents, derivatives or extracts thereof and the botanical is tobacco.
  • the active substance comprises or derived from one or more botanicals or constituents, derivatives or extracts thereof and the botanical is selected from eucalyptus, star anise, cocoa and hemp.
  • the active substance comprises or derived from one or more botanicals or constituents, derivatives or extracts thereof and the botanical is selected from rooibos and fennel.
  • the substance to be delivered comprises a flavour.
  • flavour and “flavourant” refer to materials which, where local regulations permit, may be used to create a desired taste, aroma or other somatosensorial sensation in a product for adult consumers. They may include naturally occurring flavour materials, botanicals, extracts of botanicals, synthetically obtained materials, or combinations thereof.
  • the flavour comprises menthol, spearmint and/or peppermint.
  • the flavour comprises flavour components of cucumber, blueberry, citrus fruits and/or redberry.
  • the flavour comprises eugenol.
  • the flavour comprises flavour components extracted from tobacco.
  • the flavour comprises flavour components extracted from cannabis.
  • the flavour may comprise a sensate, which is intended to achieve a somatosensorial sensation which are usually chemically induced and perceived by the stimulation of the fifth cranial nerve (trigeminal nerve), in addition to or in place of aroma or taste nerves, and these may include agents providing heating, cooling, tingling, numbing effect.
  • a suitable heat effect agent may be, but is not limited to, vanillyl ethyl ether and a suitable cooling agent may be, but not limited to eucolyptol, WS-3.
  • Aerosol-generating material is a material that is capable of generating aerosol, for example when heated, irradiated or energized in any other way. Aerosol-generating material may, for example, be in the form of a solid, liquid or gel which may or may not contain an active substance and/or flavourants. In some embodiments, the aerosol generating material may comprise an “amorphous solid”, which may alternatively be referred to as a “monolithic solid” (i.e. non-fibrous). In some embodiments, the amorphous solid may be a dried gel. The amorphous solid is a solid material that may retain some fluid, such as liquid, within it. In some embodiments, the aerosol generating material may for example comprise from about 50wt%, 6owt% or 70wt% of amorphous solid, to about 90wt%, 95wt% or ioowt% of amorphous solid.
  • the aerosol-generating material may comprise one or more active substances and/or flavours, one or more aerosol-former materials, and optionally one or more other functional material.
  • the aerosol-former material may comprise one or more constituents capable of forming an aerosol.
  • the aerosol-former material may comprise one or more of glycerine, glycerol, propylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, 1,3-butylene glycol, erythritol, meso-Erythritol, ethyl vanillate, ethyl laurate, a diethyl suberate, triethyl citrate, triacetin, a diacetin mixture, benzyl benzoate, benzyl phenyl acetate, tributyrin, lauryl acetate, lauric acid, myristic acid, and propylene carbonate.
  • the one or more other functional materials may comprise one or more of pH regulators, colouring agents, preservatives, binders, fillers, stabilizers, and/or antioxidants.
  • the material may be present on or in a support, to form a substrate.
  • the support may, for example, be or comprise paper, card, paperboard, cardboard, reconstituted material, a plastics material, a ceramic material, a composite material, glass, a metal, or a metal alloy.
  • the support comprises a susceptor.
  • the susceptor is embedded within the material.
  • the susceptor is on one or either side of the material.
  • An aerosol-modifying agent is a substance, typically located downstream of the aerosol generation area, that is configured to modify the aerosol generated, for example by changing the taste, flavour, acidity or another characteristic of the aerosol.
  • the aerosol- modifying agent may be provided in an aerosol-modifying agent release component, that is operable to selectively release the aerosol-modifying agent.
  • the aerosol-modifying agent may, for example, be an additive or a sorbent.
  • the aerosol-modifying agent may, for example, comprise one or more of a flavourant, a colourant, water, and a carbon adsorbent.
  • the aerosol-modifying agent may, for example, be a solid, a liquid, or a gel.
  • the aerosol-modifying agent maybe in powder, thread or granule form.
  • the aerosol-modifying agent may be free from filtration material.
  • an aerosol provision device for generating aerosol from a first aerosol generating material and a second aerosol generating material comprises a first user input mechanism, a second user input mechanism and control circuitry.
  • the first user input mechanism allows for control of a first aerosol generator configured to generate aerosol from a first aerosol generating material.
  • the second user input mechanism allows for control of a second aerosol generator configured to generate aerosol from a second aerosol generating material.
  • the control circuitry is configured to receive an input from a user via either the first user input mechanism or the second user input mechanism and to control a property of the respective aerosol generator (i.e. the first or second aerosol generator).
  • the control circuitry is configured to alter the property of the first aerosol generator by a first amount when the input is provided to the first user input mechanism and the control circuitry is configured to alter the property of the second aerosol generator by a second amount, different from the first amount, when the input is provided to the second user input mechanism.
  • the system is able to affect two different responses (i.e. changing a property of a respective aerosol generator) based on which user input mechanism the user interacts with.
  • control circuitry is configured to determine which user input mechanism the input is provided to.
  • the first user input mechanism comprises at least one user input mechanism selected from the group comprising a slider, a rotatable wheel, one or more buttons, one or more switches, and a touchscreen.
  • the second user input mechanism comprises at least one selected from the group comprising a slider, a dial, one or more buttons, one or more switches, and a touchscreen.
  • the first user input mechanism and the second user input mechanism are configured similarly (e.g. both maybe sliders or both maybe sliders displayed on a touchscreen).
  • a single touchscreen provides both the first and second user input mechanism.
  • the control circuitry may be configured to display any of one or more virtual sliders, one or more virtual dials, one or more virtual buttons, and one or more virtual switches.
  • Figures 1 and 2 are highly schematic cross-sectional views of an example aerosol provision system 1 in accordance with some embodiments of the disclosure.
  • Figure 1 shows the aerosol provision system 1 in an assembled state while Figure 2 shows the aerosol provision systemi in a disassembled state / partially exploded state.
  • parts of the example aerosol provision system 1 are provided as removable / detachable from other parts of the aerosol provision system 1.
  • the example aerosol provision system 1 comprises a control / device (or battery / reusable) part 2, a detachable mouthpiece (or lid) part 3, and, in this example, two aerosol generating components 4a and 4b, collectively referred to herein as the aerosol generating components 4.
  • the aerosol provision system 1 is configured to generate aerosol from the aerosol generating components 4 (by vaporising an aerosol precursor material) and deliver / provide the aerosol to a user through the mouthpiece part 3 as the user inhales through the mouthpiece part 3.
  • the aerosol provision system 1 includes the aerosol generating components 4 in addition to the control part 2 and mouthpiece part 3.
  • aerosol provision device refers to the control / device part 2 and mouthpiece part 3 without the aerosol generating components 4.
  • system and “device” are used interchangeably herein to refer to either of the device including aerosol generating components and the device excluding aerosol generating components.
  • One aspect of the example aerosol provision system is the functionality of providing consistent control of the delivery of aerosol to the user regardless of the state / configuration of the aerosol provision system.
  • a control of a first input mechanism controlling an aspect related to production of aerosol from the first aerosol generating component 4a
  • a control of a second input mechanism controlling an aspect related to production of aerosol from the second aerosol generating component 4b
  • the user will be provided with a consistent (or close to consistent) experience of control.
  • the operational characteristics related to generating aerosol from each of the aerosol generating components 4 differ (based on the aerosol precursor material and the mechanism for generating aerosol); the user may experience an equivalent control of aerosol generation when interacting with either of the input mechanisms.
  • This may be in terms of the quantity of aerosol produced (i.e., the quantity / volume of aerosol inhaled). That is, the user may adjust the quantity of aerosol produced by the same proportion or amount (or approximately the same, e.g., within 10%) for equivalent interactions with either of the first input mechanism or the second input mechanism.
  • the control part 2 includes a housing 20 which is configured to house a power source 21 for providing operating power for the aerosol provision device 1 and control circuitry 22 for controlling and monitoring the operation of the aerosol delivery device 1.
  • the power source 21 comprises a battery that is rechargeable and may be of a conventional type, for example of the kind normally used in electronic cigarettes and other applications requiring provision of relatively high currents over relatively short periods.
  • the control part 2 also comprises a first user input mechanism 25a and a second user input mechanism 25b (collectively, the user input mechanisms 25).
  • the user input mechanism 25 may be provided on or through the housing 20 such that it is accessible (i.e. able to be interacted with) by the user during normal use of the device (i.e. without having to deconstruct the device).
  • the user input mechanisms 25 are in electronic communication with the control circuitry 22 such that an interaction with either of the user input mechanisms 25 is communicated as a signal to the control circuitry 22.
  • user input mechanism 25 it is meant that a mechanism is provided that the user can interact with to provide an input to the control circuitry 22.
  • the user input mechanism 25 maybe a physical input mechanism; for example a slider, wheel, switch(es), or button(s).
  • the user input mechanism may be a virtual input mechanism; for example the user input mechanisms 25 may be displayed on a single touchscreen, or on separate touchscreens, provided on the side of the control part 2.
  • the touch screen may depict a slider or wheel depicting a value associated with a parameter, and the user can interact with the slider or wheel (e.g. by placing their finger on the slider or wheel and moving their finger along the screen) to change the value.
  • the outer housing 20 may be formed, for example, from a plastics or metallic material and in this example has a generally rectangular cross section with a width (in the plane of Figure 1) of around 1.5 to 2 times its thickness (perpendicular to the plane of Figure 1).
  • the electronic cigarette may have a width of around 5 cm and a thickness of around 3 cm.
  • the control part 2 takes the form of a box / cuboid, in this example, although it should be appreciated that the control part 2 can have other shapes as desired.
  • the control part 2 further comprises an air inlet 23 provided on / in the outer surface of the housing 20, two discrete aerosol generating areas, e.g.
  • receptacles, 24a and 24b each defining a space / volume for receiving one of the aerosol generating components, e.g. the first aerosol generating component 4a or the second aerosol generating component 4b, an air channel 26 which extends into the housing 20 and fluidly connects the air inlet 23 with the receptacles 24a and 24b.
  • these features form part of an air or aerosol pathway through the aerosol provision device 1 in which air is passed from outside the aerosol provision device 1 via air inlet 23, through the aerosol generating areas / receptacles 24a and 24b containing the aerosol generating components 4 and into the user’s mouth.
  • consumables are articles comprising or consisting of aerosol-generating material 46, part or all of which is intended to be consumed during use by a user.
  • a consumable consists solely of an aerosol generating material; for example a plant based material, such as a tobacco material.
  • Such an aerosol generating component may be formed in a variety of ways; for example as a loose material or as a solid “plug” of material.
  • the aerosol generating component may be inserted into one or both of the receptacles 24a and 24b.
  • the device then comprises an aerosol generator configured to produce an aerosol from aerosol generating material contained in one of the receptacles 24.
  • the aerosol generator is a heater configured to subject the aerosol-generating material to heat energy, so as to release one or more volatiles from the aerosol-generating material to form an aerosol.
  • the aerosol generator is configured to cause an aerosol to be generated from the aerosol-generating material without heating.
  • the aerosol generator may be configured to subject the aerosol-generating material to one or more of vibration, increased pressure, or electrostatic energy.
  • the control part 2 comprises a heating element 47a (i.e. the aerosol generator) configured to heat the aerosol-generating material by conduction.
  • the consumable 4 may comprise one or more other components, such as a housing or wrapper 40.
  • the housing and /or the aerosol generating material may define one or more of an aerosol-generating material storage area, an aerosol-generating material transfer component, an aerosol generation area, a mouthpiece, a filter and/or an aerosol-modifying agent.
  • consumable 4a comprises an aerosol-generating material 46a and a housing or wrapper 40a.
  • the housing or wrapper 40a provides an external barrier layer which protects the aerosol-generating material 46a at least partially.
  • the housing or wrapper 40a comprise or define an inlet and an outlet for allowing air flowthrough the consumable 4a during use (for example, when a user puffs on the device, air may flow into the consumable 4a through the inlet and out of the outlet.
  • the housing or wrapper 40a may be formed of a material which does not inhibit the transfer of heat to the aerosol-generating material 46a.
  • the aerosol generating material 46a may also have a susceptor material interspersed within it and / or the housing or wrapper 40a may comprise or consist of a susceptor material.
  • the control part 2 comprises a heating element 47a configured to generate a varying magnetic field which acts to heat the susceptor material.
  • a consumable 4b comprises a housing 40b, which defines a liquid reservoir 41b that stores a source liquid for vaporisation (i.e. an aerosol-generating material 46b), and a cartomiser channel 44b, and an aerosol generator which in this example is formed of a wicking element 42b and a heating element 43b coiled around the wicking element 42b.
  • the wicking elements 42b are configured to wick / transport a source liquid (using the capillary motion) from the respective liquid reservoirs 41b to the respective heating elements 43b.
  • the aerosol generator is provided in the channel 44b defined by the housing 40b of the consumable 4b.
  • a consumable is sometimes referred to as a cartomiser.
  • the channel 44b is arranged such that, when the consumable 4b is installed or provided in its respective receptacles, the channels 44a and 44b are fluidly communicated with the air channel 26 and air inlet 23, and thus air drawn in through the air inlet 23 passes along the air channel 26 and along cartomiser channels 44a and 44b of the cartomisers 4.
  • aerosol generating area refers to an area / region within the system in which aerosol is or can be generated.
  • the aerosol generating area includes receptacles 24a and 24b, which are configured to receive the consumables 4.
  • the consumables are considered as the components responsible for generating aerosol, whereas the receptacles 24 house the consumables 4 and thus define an area where aerosol is generated.
  • the mouthpiece part 3 includes a housing 30 which comprises two openings 31a, 31b at one end (a top end); that is, the mouthpiece openings are located at the same end of the mouthpiece part 3 and are generally arranged such that a user can place their mouth over both of the openings.
  • the mouthpiece part 3 also includes receptacles 32a, 32b at the opposite end (a bottom end), and respective mouthpiece channels 33a, 33b extending between the receptacles 32a, 32b and the openings 31a, 31b.
  • the mouthpiece part 3 has a generally tapered or pyramidal outer profile which tapers towards the top end of the mouthpiece part 3.
  • the bottom end of the mouthpiece part 3 is where the mouthpiece part 3 and control unit 2 meet or interface and is sized to have dimensions in the width direction (i.e., in the horizontal direction of the plane of Figures 1 and 2) and thickness direction (i.e., in a direction orthogonal to the plane of Figures 1 and 2) that broadly correspond to equivalent dimensions of the control part 2 in order to provide a flush outer profile when the control part 2 and the mouthpiece part 3 are coupled together.
  • the end of the mouthpiece part 3 in which the openings 31 are located (top end) is smaller in the width direction than the bottom end by around one third (e.g. to around 2 cm wide).
  • the mouthpiece part 3 tapers in the width direction towards the top end. This end forms the part of the aerosol provision device 1 that is received in the user’s mouth (in other words, this is the end the user would normally put their lips around and inhale through).
  • the mouthpiece part 3 is formed as a separate and removable component from the control part 2 and is provided with any suitable coupling / mounting mechanism that allows the mouthpiece part 3 to couple to the control part 2, e.g., snap-fitting, screw thread, etc.
  • the mouthpiece part 3 is coupled to the control part 2 to form the assembled aerosol provision device 1 (e.g., as generally shown in Figure 1), the length of the assembled aerosol provision device 1 is around 10 cm.
  • the receptacles 32a, 32b are arranged to fluidly connect to air passages (e.g. channel 44b) in the consumables 4a and 4b respectively (specifically at an opposite end of the consumables to the end that connects to and is received in receptacles 24a, 24b).
  • the receptacles 32a, 32b are fluidly connected to mouthpiece channels 33a and 33b which in turn are fluidly connected to openings 31a and 31b. Therefore, it should be appreciated that when the device 1 is fully assembled (e.g., as shown in Figure 1), the openings 31a and 31b of the mouthpiece part 3 are fluidly connected to air inlet 23 in the control part 2.
  • the example aerosol provision device 1 generally provides two routes through which air / aerosol may pass through the device.
  • a first route starts from air inlet 23, passes along air channel 26, then passes into the receptacle 24a and through the first aerosol generating component 4a (e.g. through the aerosol-generating material 46a within the aerosol generating component 4a between the inlet and outlet), into the receptacle 32a, and along the mouthpiece channel 33a of the mouthpiece part 3 to the opening 31a.
  • a second route starts from air inlet 23, passes along air channel 26, then passes into the receptacle 24b and through the second aerosol generating component 4b (e.g.
  • each of the first and second routes share a common component upstream of the aerosol generating components 4 (namely, air channel 26 which is coupled to air inlet 23) but branch off from this common component.
  • the cross- section of the routes is described as circular; however, it should be appreciated that the cross-section maybe non-circular (e.g., any regular polygon) and also that the cross- section need not be a constant size or shape along the length of the two routes.
  • the example aerosol provision device 1 includes a number of components that are referenced by a number followed by a letter, e.g., 24a.
  • Components indicated by the letter “a” are components that connect to, or define a first air / aerosol path, associated with a first aerosol generating component 4a
  • components indicated by the letter “b” are components that connect to, or define a second air / aerosol path, associated with a second aerosol generating component 4b.
  • Components having the same number will have the same functionality and construction as one another unless otherwise indicated.
  • the aerosol provision system l may comprise a different configuration of aerosol generating components.
  • a system (not shown) may comprise multiple aerosol generating components, each in accordance with the consumable 4a.
  • either the aerosol generating material and / or the aerosol generator have different characteristics or properties.
  • a system (not shown) may comprise multiple aerosol generating components, each in accordance with the consumable 4b.
  • either the aerosol generating material and / or the aerosol generator have different characteristics or properties.
  • either or both of the consumables 4 may be replaced with a consumable having a different configuration (for example a consumable intended to be heated by optical illumination or by a vibration, increased pressure, or electrostatic energy).
  • the control part 2 may be altered for use with a consumable of a different type.
  • a system may have more than two aerosol generating components.
  • a user inhales on the mouthpiece part 3 of the example device 1 (and specifically through openings 31) to cause air to pass from outside the housing 20 of the reusable part 2, through the respective routes through the device along which the air / aerosol passes and ultimately into the user’s mouth.
  • the aerosol generators e.g. heating elements 47a and 43b
  • the aerosol generators are activated in order to vaporise the aerosol generating material (e.g. source liquid contained in the wicking element 42b) such that the air passing through the consumables 4 collects or mixes with the aerosol (e.g. vaporised source liquid).
  • source liquid may pass into / along the wicking elements 42b from the liquid reservoir 41b through surface tension / capillary action.
  • control circuitry 22 is configured to control the supply of electrical power from the battery 21 to the heating elements 43b, 47a so as to generate a vapour from the aerosol generating components 4 for inhalation by a user.
  • respective heating element 43b within an aerosol generating component 4b via electrical contacts (not shown) established across the interface between the respective aerosol generating component 4b and the control part 2, for example through sprung / pogo pin connectors, or any other configuration of electrical contacts which engage when the aerosol generating component 4b are received in / connected to the receptacles 24b of the control part 2.
  • respective heating elements 43b could be supplied with energy via other means, such as via induction heating, in which case electrical contacts that interfaces between the control part 2 / receptacles 24 and the aerosol generating components 4 are not required.
  • the control circuitry 22 is suitably configured / programmed to provide functionality in accordance with embodiments of the disclosure as described herein, as well as for providing conventional operating functions of the aerosol provision device 1 in line with the established techniques for controlling conventional e-cigarettes.
  • the control circuitry 22 may be considered to logically comprise a number of different functional blocks, for example a functional block for controlling the supply of power from the battery 21 to the heating element 47a for heating the first aerosol generating component 4a, a functional block for controlling the supply of power from the battery 21 to the heating element 43b in the second aerosol generating component 4b, a functional block for controlling operational aspects of the device 1 in response to user input (e.g., for initiating power supply), for example configuration settings, as well as other functional blocks associated with the normal operation of electronic cigarettes and functionality in accordance with the principles described herein.
  • the functionality of these logical blocks maybe provided in various different ways, for example using a single suitably programmed general purpose computer, or suitably configured application-specific integrated circuit(s) / circuitry.
  • the aerosol provision device 1 will in general comprise various other elements associated with its operating functionality, for example a port for charging the battery 21, such as a USB port, and these may be conventional and are not shown in the figures or discussed in detail in the interests of brevity.
  • Power maybe supplied to the heating elements 43, 47 on the basis of actuation of a button (or equivalent user actuation mechanism) provided on the surface of the housing 20 and which supplies power when the user presses the button.
  • power maybe supplied based on detection of a user inhalation, e.g., using an airflow sensor or pressure sensor, such as a diaphragm microphone, connected to and controlled by the control circuitry 22 which sends a signal to the control circuitry 22 when a change in pressure or airflow is detected. It should be understood that the principles of the mechanism for starting power delivery is not significant to the principles of the present disclosure.
  • an aspect of the present disclosure is an aerosol delivery device 1 configured to provide consistent control of aerosol delivery to the user regardless of the configuration of the device 1 (e.g. number and type of aerosol generating components 4).
  • the aerosol generating components 4 are provided separately from the control part 2 and the mouthpiece part 3 and can therefore be inserted into or removed from the receptacles 24.
  • the aerosol generating components 4 may be replaced / removed for a variety of reasons.
  • the aerosol generating components 4 may be provided with different flavoured source liquids and the user can insert two aerosol generating components 4 of different flavours (e.g., strawberry flavoured and menthol / mint flavoured) into the respective receptacles 24 to create different flavoured aerosols, if desired.
  • the aerosol generating components 4 can be removed / replaced in the event that a aerosol generating components 4 runs dry (that is, the source liquid in the liquid reservoir 41 is depleted).
  • the consumables 4 each comprise the housing 40, which in this example is formed of a plastics material.
  • the housing 40 is generally in the form of a hollow cylinder having an outer diameter.
  • the housing 40b additionally defines an inner diameter, with the walls of the inner diameter defining the limits of the cartomiser channel 44b.
  • the housing 40b supports other components of the cartomiser 4b, such as the aerosol generator mentioned above, and also provides a mechanical interface with the receptacle 24b of the control part 2 (described in more detail below).
  • the consumables 4 has a length of around 1 to 1.5 cm, an outer diameter of 6 to 8 mm and an inner diameter of around 2 to 4 mm.
  • the specific geometry, and more generally the overall shapes involved, may be different in different implementations.
  • the consumable 4b comprises a source liquid reservoir 41b which takes the form of a cavity between the outer and inner walls of the housing 40b.
  • the source liquid reservoir 41b contains a source liquid.
  • a source liquid for an electronic cigarette will typically comprise a base liquid formulation, which makes up the majority of the liquid, with additives for providing desired flavour / smell / nicotine delivery characteristics to the base liquid.
  • a typical base liquid may comprise a mixture of propylene glycol (PG) and vegetable glycerol (VG).
  • PG propylene glycol
  • VG vegetable glycerol
  • the liquid reservoir 41b in this example comprises the majority of the interior volume of the cartomiser 4b.
  • the reservoir 41b may be formed in accordance with conventional techniques, for example comprising a moulded plastics material.
  • the aerosol generator of consumable 4b comprises a heating element 43b which in this example comprise an electrically resistive wire coiled around the wicking element 42b.
  • the heating element 43b comprises a nickel chrome alloy (Cr2oNi8o) wire and the wicking element 42b comprises a glass fibre bundle, but it will be appreciated that the specific atomiser configuration is not significant to the principles described herein.
  • the receptacles 24 formed in the control part 2 are approximately cylindrical and generally have a shape (inner surface) that conforms to the outer shape of the aerosol generating components 4. As mentioned, the receptacles 24 are configured to receive at least a part of the aerosol generating components 4.
  • the depth of the receptacles is slightly less than the length of the aerosol generating components 4 (e.g., 0.8 to 1.3 cm) such that, when the aerosol generating components 4 are received in the receptacles 24, the exposed ends of the aerosol generating components 4 slightly protrude from the surface of the housing 20.
  • the outer diameter of the aerosol generating components 4 is slightly smaller (e.g., about 1 mm or less) than the diameter of the receptacles 24 to allow the aerosol generating components 4 to slide into the receptacles with relative ease, but to fit reasonably well within the receptacles 24 to reduce or prevent movement in a direction orthogonal to the longitudinal axis of the aerosol generating components 4.
  • the aerosol generating components 4 are mounted in a generally side-by-side configuration in the body of the control part 2.
  • the user will typically disassemble the device 1 (e.g., into a state generally as shown in Figure 2).
  • the user will remove the mouthpiece part 3 from the control part 2 by pulling the mouthpiece part 3 in a direction away from the control part 2, remove any previous aerosol generating components 4 located in the receptacles (if applicable) by pulling the aerosol generating components 4 in a direction away from the control part 2, and insert a new aerosol generating component 4 in the receptacle 24.
  • the user With the aerosol generating component(s) 4 inserted in the receptacles 24, the user then reassembles the device 1 by coupling the mouthpiece part 3 to the reusable part 2.
  • An assembled device 1 is schematically shown in Figure 1, although it should be noted that certain features are not shown to scale and exaggerated for the purposes of clarity, such as the gap between the mouthpiece part 2 and the housing 20 of the control part 2, for example.
  • Figure 3 schematically shows, in cross-section, an alternative arrangement of the control part.
  • Figure 3 depicts a control part 2’ which is the same as control part 2, with the exception that control part 2’ comprises two air inlets 23a’ and 23b’ and two air channels 26a’ and 26b’.
  • the air channels 26’ are separate from one another - that is, they are not fluidly connected within the control part 2’.
  • Each air channel 26’ connects to a receptacle 24 and to an air inlet 23’.
  • Figure 3 depicts an implementation that is identical to the implementations described above with respect to Figures 1 and 2 with the exception that there is no shared (or common) component of the flow paths through the device.
  • FIG 4 schematically shows, in cross-section, an alternative serial arrangement of the aerosol provision system in which the air flows through each consumable 4 in turn.
  • Figure 4 depicts a control part 2” which is the same as control part 2, with the exception that control part 2” comprises only a single receptacle 24b for receiving consumable 4b.
  • Figure 4 additionally depicts a mouthpiece 3” which is the same as mouthpiece 3, with the exception that mouthpiece 2” comprises only a cavity 51 for receiving consumable 4a.
  • example aerosol provision device 1 generally provides a single route through which air / aerosol may pass through the device.
  • the route starts from air inlet 23, passes along air channel 26, then passes into the receptacle 24b and through the second aerosol generating component 4b (e.g. through channel 44b of the second aerosol generating component 4b), into the receptacle 32a, then passes through the mouthpiece channel 33 into cavity 51 and through the first aerosol generating component 4a (e.g. through the aerosol-generating material 46a within the aerosol generating component 4a between the inlet and outlet), and along to the opening 31 in the mouthpiece part 3”.
  • Figure 4 depicts an implementation that operates identically to the implementations described above with respect to Figures 1 and 2 with the exception that there aerosol produced by in the second aerosol generating component 4b must travel through the first aerosol generating component 4a before being inhaled by the user.
  • a mouthpiece 3 in accordance with the above example comprises an aerosol generator, such as heating element 47, for generating an aerosol from the aerosol generating material 46a.
  • the mouthpiece 3 may include contacts for forming an electrical connection with the control part 2”.
  • the mouthpiece 3 may not include an aerosol generator and instead the aerosol generator maybe provided in the aerosol generating component or in the control part 2. Where the aerosol generator component includes the aerosol generator, the mouthpiece 3” may include contacts for forming an electrical contact with both the control part 2” and the aerosol generator component 4.
  • control part 2 may accommodate both consumables 4 in series with the mouthpiece 3” forming a fluid airflow connection with the final consumable of the series.
  • the mouthpiece 3” and a consumable 4b are provided as a single integrally formed component.
  • the two components are not intended to be separated and may have a common housing material formed as a single piece.
  • aspects of the present disclosure relate to the distribution of power between the consumables 4a and 4b in order to influence aerosol generation.
  • control circuitry 22 is configured to control the supply of power to the heating elements 47a, 47b of the different aerosol generating components 4; hence one function of the control circuitry 22 is power distribution.
  • power distribution circuitry refers to the power distribution function / functionality of the control circuitry 22.
  • Figure 5 is an exemplary schematic circuit diagram showing the electrical connections between battery 21 and the heating elements 47a and 43b of two aerosol generating components 4a and 4b installed in the device 1.
  • Figure 4 shows heating element 47a and heating element 43b connected in parallel with the battery 21 through control circuitry 22.
  • the control circuitry 22 maybe a single chip / electronic component configured to perform the described functionality.
  • Control circuitry block 22 is a power control mechanism for controlling the power supplied to heating element 47a, and for controlling the power supplied to heating element 43b.
  • the power control mechanism may implement, for example, a pulse width modulation (PWM) control technique for supplying power to the respective heating elements 47a, 43b.
  • PWM pulse width modulation
  • two aerosol generators are installed in the device as identified by the presence of two heating elements 43b, 47a.
  • Heating element 43b is depicted as a single resistive wire while heating element 47a is depicted as two perpendicular wires. While not shown the two depicted wires of heating element 47a may be provided on alternative sides of the consumable 4a to provide heating to both sides of the aerosol- generating material.
  • heating elements 43b 47a other resistive materials maybe used such as conductive plates or mesh materials. It will be further appreciated that as previously discussed the heating elements 43b, 47a maybe replaced in some embodiments with different types of aerosol generators (e.g. optical aerosol generators or vibration based aerosol generators).
  • aerosol generators e.g. optical aerosol generators or vibration based aerosol generators.
  • the control circuitry 22 is configured to identify the presence of both aerosol generating components 4 in the device and subsequently supply power to both aerosol generating components 4.
  • the control circuitry 22 is electrically connected to the first user input mechanism 25a and the second user input mechanism 25b. While not shown, the user input mechanisms 25 maybe connected directly to the power source 21 or maybe connected indirectly to the power source 21 through the control circuitry 22.
  • the control circuitry 22 is configured to receive an input from either the first user input mechanism 25a or the second user input mechanism 25b that indicates that a user has interacted or actuated the respective user input mechanism 25and to control a property of the respective aerosol generator 43a, 47b.
  • the control circuitry 22 is configured to control a property of the respective aerosol generator based on the input.
  • a property may be a characteristic of how the respective aerosol generator is operated.
  • a property may include a power supplied to the respective aerosol generator, a target operating temperature, a target resistance of the respective aerosol generator, a target current through the respective aerosol generator, or a time period for powering the respective aerosol generator during use (e.g. during a puff operation) .
  • the control circuitry 22 may receive an input during a puff operation or at the start of a puff operation and may control a property for that puff operation.
  • the control circuitry may receive the input prior to the puff operation and may control a property for use in a next puff operation or for use in subsequent puff operations (until the user input and/or the device is turned off).
  • puff operation it is meant the operation of one or both of the aerosol generators in response to a user inhalation or puff (such an inhalation could be detected directly through use of a puff sensor or could be detected indirectly by a user interacting (e.g. actuating) with a user input).
  • the control circuitry 22 in response to the input, is configured to alter the property of the first aerosol generator 47a by a first amount when the input is provided to the first user input mechanism 25a and the control circuitry 22 is configured to alter the property of the second aerosol generator 43b by a second amount, different from the first amount, when the input is provided to the second user input mechanism 25b.
  • the property is a target power then the first amount may be a smaller change in power (e.g. 0.5W) than the second amount (e.g. 1.0W).
  • the characteristics of aerosol produced by the first and second aerosol generators is changed, for example an increase in power or temperature may cause an increase in the level of aerosol produced from the modified aerosol generator, change an average size of aerosol particles produced by the modified aerosol generator (e.g. the median mass aerodynamic diameter of the particles), or increase the aerosol temperature.
  • the scale of the effect will be dependent on at least the aerosol generator and the aerosol generating material. For example, the same power increase (as a result of a user input) will result in a greater effect to a more efficient aerosol generator.
  • the aerosol generator acts on a larger mass or surface area of aerosol generating material then the effect will be diminished because the increased energy supplied to the aerosol generating material is distributed to a larger volume of material (i.e. it is less specific). Hence, the effect resulting from a change to a property of an aerosol generator is highly dependent on the configuration of the device 1.
  • the first and second amounts may be chosen to cause an equivalent or near equivalent effect.
  • altering the property of the first aerosol generator by the first amount causes a first change in the amount of aerosol generated by the first aerosol generator
  • altering the property of the second aerosol generator by the second amount causes a second change in the amount of aerosol generated by the second aerosol generator where the first change and the second change are approximately equal.
  • the second amount may be selected so that altering a property of the second aerosol generator by the second amount (e.g. increasing power by 5%) also results in an increase of aerosol generation of around 10%.
  • a user using such an example system will interpret that they are causing an equivalent effect based on their input (10% increase in aerosol production) irrespective of the change made to the property of the first or second aerosol generator.
  • the second amount is set such that altering the property of the second aerosol generator by the second amount causes a change in the amount of aerosol generated by the second aerosol generator that is approximately equal to the change in the amount of aerosol generated by the first aerosol generator when the property of the first aerosol generator is altered by the first amount.
  • the first and second amounts are different because the first and second aerosol generators are different types to each other.
  • the first aerosol generator maybe selected from the group comprising a resistive heater, a piezo electric atomiser, an optical aerosol generator (e.g.
  • the second aerosol generator maybe selected from the group comprising a resistive heater, a piezo-electric atomiser, an optical aerosol generator (e.g. a laser), and an inductive heater.
  • a resistive heater e.g. a resistive heater
  • an optical aerosol generator e.g. a laser
  • the effect of a change to a parameter has a different effect for each type of aerosol generator.
  • a 20% increase in power to a resistive heater may result in a 10% increase in aerosol generation
  • a 20% increase in power to an optical aerosol generator, such as a laser may result in an increase of 15%.
  • the first and second aerosol generators are the same type of aerosol generator but have different configurations.
  • one of the first and second aerosol generators may be larger than the other of the first and second aerosol generators.
  • one of the first and second aerosol generators may be configured to operate at a higher power rating.
  • one of the first and second aerosol generators may be configured to generate aerosol from a smaller volume (e.g. the first and second aerosol generating materials maybe different sizes and the aerosol generators may be configured to match.
  • the resultant change in aerosol generation due to a change to the property of either the first or second aerosol generator is dependent on the configuration of the respective aerosol generator.
  • the first and second amounts are different because the first and second aerosol generating materials differ.
  • the first and second aerosol generators may be substantially similar in configuration (e.g. they may be the same type), while in others of these examples, the first and second aerosol generators maybe substantially different in configuration (e.g. they may have a different type).
  • the first and the second aerosol generating material are selected from the group comprising a liquid, a gel or a solid, wherein the second aerosol generating material is different to the first aerosol generating material. The amount of aerosol generated from each aerosol generating material will depend on the type of material and the characteristics of the aerosol generator.
  • the first aerosol generating material has different vaporisation temperature to the second aerosolisable material.
  • An aerosol generating material having a lower vaporisation temperature will vaporise at a lower temperature than an aerosol generating material having a higher vaporisation temperature.
  • the effect of changing a property by the first or second amount differs depending on the respective aerosol generating material.
  • the first aerosol generating material has different specific heat capacity to the second aerosolisable material.
  • An aerosol generating material having a lower specific heat capacity requires less energy to heat to a target temperature. Hence, the effect of changing a property by the first or second amount differs depending on the respective aerosol generating material.
  • the input is a selection of one of a plurality of values for a property of either the first or second aerosol generator.
  • the control circuitry 22 is configured to alter the property of the first aerosol generator 47a by a first amount when the input is provided to the first user input mechanism 25a selecting a different one of the plurality of values for a property of the first aerosol generator.
  • the control circuitry 22 is configured to alter the property of the second aerosol generator 47b by a second amount when the input is provided to the second user input mechanism 25b selecting a different one of the plurality of values for a property of the second aerosol generator.
  • the input is a selection of a boost mode for either the first or second aerosol generator.
  • a boost mode it is meant that the generation of aerosol is increased.
  • a plurality of values consists of a first and second value where the default or normal mode corresponds to the first value of the plurality of values and the boost mode corresponds to the second value of the plurality of values.
  • the control circuitry 22 is configured to alter the property of the first aerosol generator 47a by a first amount when the input is provided to the first user input mechanism 25a to select the boost mode for the first aerosol generator.
  • the control circuitry 22 is configured to alter the property of the second aerosol generator 47b by a second amount when the input is provided to the second user input mechanism 25b to select the boost mode for the second aerosol generator.
  • altering the property of the second aerosol generator by a second amount causes a change in the amount of aerosol generated by the second aerosol generator that is approximately equal to the change in the amount of aerosol generated by the first aerosol generator when the property of the first aerosol generator is altered by the first amount.
  • the user experiences an approximately equal increase in the amount of aerosol generated.
  • Figure 6 schematically represents a method of controlling an aspect of the electronic aerosol provision device for generating aerosol from a first aerosol generating material and a second aerosol generating material in accordance with certain embodiments of the disclosure.
  • the device comprises a first user input mechanism for controlling a first aerosol generator configured to generate aerosol from a first aerosol generating material, a second user input mechanism for controlling a second aerosol generator configured to generate aerosol from a second aerosol generating material, and control circuitry configured to receive an input from a user via either the first user input mechanism or the second user input mechanism and to control a property of the respective aerosol generator.
  • the method comprises the control unit performing a first step Si of identifying an input to either the first user input mechanism or to the second user input mechanism; and either a second step S2 of altering the property of the first aerosol generator by a first amount when the input is provided to the first user input mechanism or a third step S3 of altering the property of the second aerosol generator by a second amount when the input is provided to the second user input mechanism.
  • the second amount being different from the first amount.
  • altering the property of the second aerosol generator by a second amount causes a change in the amount of aerosol generated by the second aerosol generator that is approximately equal to the change in the amount of aerosol generated by the first aerosol generator when the property of the first aerosol generator is altered by the first amount.
  • the user experiences an approximately equal increase in the amount of aerosol generated.
  • This allows a user to change the characteristics (e.g. flavours) of the aerosol in an intuitive way (e.g. independently of the flavour source or aerosol generator).
  • an aerosol provision device for generating aerosol from a first aerosol generating material and a second aerosol generating material
  • the device comprising: a first user input mechanism for controlling a first aerosol generator configured to generate aerosol from the first aerosol generating material; a second user input mechanism for controlling a second aerosol generator configured to generate aerosol from the second aerosol generating material; and control circuitry configured to receive an input from a user via either the first user input mechanism or the second user input mechanism and to control a property of the respective aerosol generator; wherein, in response to the input, the control circuitry is configured to alter the property of the first aerosol generator by a first amount when the input is provided to the first user input mechanism and the control circuitry is configured to alter the property of the second aerosol generator by a second amount, different from the first amount, when the input is provided to the second user input mechanism.
  • an aerosol provision system for generating aerosol from a first aerosol generating material and for generating aerosol from a second aerosol generating material
  • the system comprising: a first aerosol generating material, a second aerosol generating material, and an aerosol provision device for generating aerosol from the first aerosol generating material and the second aerosol generating material
  • the device comprising: a first user input mechanism for controlling a first aerosol generator configured to generate aerosol from the first aerosol generating material; a second user input mechanism for controlling a second aerosol generator configured to generate aerosol from the second aerosol generating material; and control circuitry configured to receive an input from a user via either the first user input mechanism or the second user input mechanism and to control a property of the respective aerosol generator; wherein, in response to the input, the control circuitry is configured to alter the property of the first aerosol generator by a first amount when the input is provided to the first user input mechanism and the control circuitry is configured to alter the property of the second aerosol generator by a second
  • an aerosol provision device for generating aerosol from a first aerosol generating material and a second aerosol generating material
  • the device comprising a first user input mechanism for controlling a first aerosol generator configured to generate aerosol from a first aerosol generating material, a second user input mechanism for controlling a second aerosol generator configured to generate aerosol from a second aerosol generating material; and control circuitry configured to receive an input from a user via either the first user input mechanism or the second user input mechanism and to control a property of the respective aerosol generator, the method comprising: identifying an input to either the first user input mechanism or to the second user input mechanism; and either altering the property of the first aerosol generator by a first amount when the input is provided to the first user input mechanism; or altering the property of the second aerosol generator by a second amount when the input is provided to the second user input mechanism; wherein, the second amount is different from the first amount.
  • aerosol provision means for generating aerosol from first aerosol generating material means and a second aerosol generating material means
  • the aerosol provision means comprising: first user input means for controlling first aerosol generator means configured to generate aerosol from the first aerosol generating material means; second user input means for controlling second aerosol generator means configured to generate aerosol from the second aerosol generating material means; and control means configured to receive an input from a user via either the first user input means or the second user input means and to control a property of the respective aerosol generator means; wherein, in response to the input, the control means is configured to alter the property of the first aerosol generator means by a first amount when the input is provided to the first user input means and the control means is configured to alter the property of the second aerosol generator means by a second amount, different from the first amount, when the input is provided to the second user input means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)
  • Nozzles (AREA)
  • Catching Or Destruction (AREA)

Abstract

An aerosol provision device for generating aerosol from a first aerosol generating material and a second aerosol generating material is described. The device can include a first user input mechanism for controlling a first aerosol generator configured to generate aerosol from the first aerosol generating material and a second user input mechanism for controlling a second aerosol generator configured to generate aerosol from the second aerosol generating material. The device can also include control circuitry configured to receive an input from a user via either the first user input mechanism or the second user input mechanism and to control a property of the respective aerosol generator, wherein, in response to the input, the control circuitry is configured to alter the property of the first aerosol generator by a first amount when the input is provided to the first user input mechanism and the control circuitry is configured to alter the property of the second aerosol generator by a second amount, different from the first amount, when the input is provided to the second user input mechanism. There is also provided an aerosol provision system, a method of controlling an aerosol provision device and aerosol provision means.

Description

ELECTRONIC AEROSOL PROVISION SYSTEM
Field
The present disclosure relates to electronic aerosol provision systems such as nicotine delivery systems (e.g. electronic cigarettes and the like).
Background
Electronic aerosol provision systems such as electronic cigarettes (e-cigarettes) generally contain an aerosol (or vapour) precursor / forming material, such as a reservoir of a source liquid containing a formulation, typically comprising a base liquid with additives such as nicotine and often flavourants, and / or a solid material such as a tobacco-based product, from which an aerosol is generated, e.g. through heat vaporisation. Thus, an aerosol provision system will typically comprise an aerosol generation chamber containing an atomiser (or vaporiser), e.g. a heating element, arranged to vaporise a portion of precursor material to generate an aerosol in the aerosol generation chamber. As a user inhales on the device and electrical power is supplied to the heating element, air is drawn into the device through inlet holes and into the aerosol generation chamber where the air mixes with the vaporised precursor material to form an aerosol. There is a flow path connecting the aerosol generation chamber with an opening in the mouthpiece so the incoming air drawn through the aerosol generation chamber continues along the flow path to the mouthpiece opening, carrying some of the vapour with it, and out through the mouthpiece opening for inhalation by the user. Aerosol provision systems may comprise a modular assembly including both reusable and replaceable cartridge parts. Typically a cartridge part will comprise the consumable aerosol precursor material and / or the vaporiser, while a reusable device part will comprise longer-life items, such as a rechargeable battery, device control circuitry, activation sensors and user interface features. The reusable part may also be referred to as a control unit or battery section and replaceable cartridge parts that include both a vaporiser and precursor material may also be referred to as cartomisers.
Some aerosol provision systems may include multiple aerosol sources which can be used to generate vapour / aerosol that is mixed and inhaled by a user. However, in some cases, a user may desire a more consistent control over delivery of aerosol irrespective of the type of source and/ or heater. Various approaches are described which seek to help address some of these issues.
Summary
According to a first aspect of certain embodiments there is provided an aerosol provision device for generating aerosol from a first aerosol generating material and a second aerosol generating material, the device comprising: a first user input mechanism for controlling a first aerosol generator configured to generate aerosol from the first aerosol generating material; a second user input mechanism for controlling a second aerosol generator configured to generate aerosol from the second aerosol generating material; and control circuitry configured to receive an input from a user via either the first user input mechanism or the second user input mechanism and to control a property of the respective aerosol generator; wherein, in response to the input, the control circuitry is configured to alter the property of the first aerosol generator by a first amount when the input is provided to the first user input mechanism and the control circuitry is configured to alter the property of the second aerosol generator by a second amount, different from the first amount, when the input is provided to the second user input mechanism.
According to a second aspect of certain embodiments there is provided an aerosol provision system for generating aerosol from a first aerosol generating material and for generating aerosol from a second aerosol generating material, the system comprising: an aerosol provision device in accordance with the first aspect, a first aerosol generating material, and a second aerosol generating material. According to a third aspect of certain embodiments there is provided a method of controlling an aerosol provision device for generating aerosol from a first aerosol generating material and a second aerosol generating material, the device comprising a first user input mechanism for controlling a first aerosol generator configured to generate aerosol from a first aerosol generating material, a second user input mechanism for controlling a second aerosol generator configured to generate aerosol from a second aerosol generating material; and control circuitry configured to receive an input from a user via either the first user input mechanism or the second user input mechanism and to control a property of the respective aerosol generator, the method comprising: identifying an input to either the first user input mechanism or to the second user input mechanism; and either altering the property of the first aerosol generator by a first amount when the input is provided to the first user input mechanism; or altering the property of the second aerosol generator by a second amount when the input is provided to the second user input mechanism; wherein, the second amount is different from the first amount. According to a fourth aspect of certain embodiments there is provided aerosol provision means for generating aerosol from first aerosol generating material means and a second aerosol generating material means, the aerosol provision means comprising: first user input means for controlling first aerosol generator means configured to generate aerosol from the first aerosol generating material means; second user input means for controlling second aerosol generator means configured to generate aerosol from the second aerosol generating material means; and control means configured to receive an input from a user via either the first user input means or the second user input means and to control a property of the respective aerosol generator means; wherein, in response to the input, the control means is configured to alter the property of the first aerosol generator means by a first amount when the input is provided to the first user input means and the control means is configured to alter the property of the second aerosol generator means by a second amount, different from the first amount, when the input is provided to the second user input means. It will be appreciated that features and aspects of the invention described above in relation to the first and other aspects of the invention are equally applicable to, and maybe combined with, embodiments of the invention according to other aspects of the invention as appropriate, and not just in the specific combinations described above. Brief Description of the Drawings
Embodiments of the invention will now be described, by way of example only, with reference to the accompanying drawings, in which:
Figure 1 schematically shows an aerosol delivery system in cross-section, the aerosol delivery system including a control part, a mouthpiece part, and two aerosol generating materials, and configured to deliver aerosol to a user from one or more of the aerosol generating materials;
Figure 2 schematically shows, in cross-section, the aerosol delivery system of Figure 1 in exploded form showing the individual constituents of the aerosol delivery system; Figure 3 schematically shows, in cross-section, an alternative control part in which each receptacle is provided with an individual air flow path connected to an individual air inlet; Figure 4 schematically shows, in cross-section, an alternative aerosol delivery system in cross-section, the aerosol delivery system including a control part, a mouthpiece part, and two aerosol generating materials arranged in series, and configured to deliver aerosol to a user from one or more of the aerosol generating materials; Figure 5 diagrammatically shows an example circuit layout in a state where two aerosol generators are electrically connected to the control part of Figures 1, 2 and 4; and Figure 6 schematically represents a method of controlling an aspect of the electronic aerosol provision device in accordance with certain embodiments of the disclosure. Detailed Description
Aspects and features of certain examples and embodiments are discussed / described herein. Some aspects and features of certain examples and embodiments may be implemented conventionally and these are not discussed / described in detail in the interests of brevity. It will thus be appreciated that aspects and features of apparatus and methods discussed herein which are not described in detail may be implemented in accordance with any conventional techniques for implementing such aspects and features.
In accordance with embodiments of the disclosure a device is described having control circuitry which allows a user to control the amount of aerosol generated from a first aerosol generating material and a second aerosol generating material by the user interacting with a first user input mechanism and / or a second user input mechanism. Advantageously, the system is able to provide a level of user control over the composition of the aerosol to be inhaled based on a single input by the user to one of the user input mechanisms.
As such, the present disclosure relates to aerosol provision systems, which may also be referred to as vapour provision systems, such as e-cigarettes. The term “aerosol provision system” is intended to encompass systems that deliver at least one substance to a user, such as non-combustible aerosol provision systems.
Non-combustible aerosol provision systems release compounds from at least one aerosol-generating material without combusting the aerosol-generating material, such as electronic cigarettes, tobacco heating products, and hybrid systems to generate aerosol using a combination of aerosol-generating materials. In this regard, means of generating an aerosol other than via a condensation aerosol are envisaged, such as atomization via vibrational, photonic, irradiative, electrostatic means etc.
According to the present disclosure, a “non-combustible” aerosol provision system is one where a constituent aerosol-generating material of the aerosol provision system (or component thereof) is not combusted or burned in order to facilitate delivery of at least one substance to a user.
In some embodiments, the non-combustible aerosol provision system is an electronic cigarette, also known as a vaping device or electronic nicotine delivery system (END), although it is noted that the presence of nicotine in the aerosol-generating material is not a requirement.
In some embodiments, the non-combustible aerosol provision system is an aerosol generating material heating system, also known as a heat-not-burn system. An example of such a system is a tobacco heating system.
In some embodiments, the non-combustible aerosol provision system is a hybrid system to generate aerosol using a combination of aerosol-generating materials, one or a plurality of which may be heated. Each of the aerosol-generating materials may be, for example, in the form of a solid, liquid or gel and may or may not contain nicotine.
In some embodiments, the hybrid system comprises a liquid or gel aerosol-generating material and a solid aerosol-generating material. The solid aerosol-generating material may comprise, for example, tobacco or a non-tobacco product. Typically, the non-combustible aerosol provision system may comprise a non combustible aerosol provision device and one or more consumables for use with the non-combustible aerosol provision device.
In some embodiments, the disclosure relates to consumables comprising aerosol- generating material and configured to be used with non-combustible aerosol provision devices. These consumables are sometimes referred to as articles throughout the disclosure.
In some embodiments, the non-combustible aerosol provision system, such as a non- combustible aerosol provision device thereof, may comprise a power source and a controller. The power source may, for example, be an electric power source. In some embodiments, the non-combustible aerosol provision system may comprise one or more areas for receiving consumables, one or more aerosol generators, one or more aerosol generation areas, a housing, a mouthpiece, a filter and/ or an aerosol modifying agent.
An aerosol generator is an apparatus configured to cause aerosol to be generated from the aerosol-generating material. In some embodiments, the aerosol generator is a heater configured to subject the aerosol-generating material to heat energy, so as to release one or more volatiles from the aerosol-generating material to form an aerosol. In some embodiments, the aerosol generator is configured to cause an aerosol to be generated from the aerosol-generating material without heating. For example, the aerosol generator maybe configured to subject the aerosol-generating material to one or more of vibration, increased pressure, or electrostatic energy. In some embodiments, consumables are articles comprising or consisting of aerosol generating material, part or all of which is intended to be consumed during use by a user. A consumable may comprise one or more other components, such as an aerosol generating material storage area, an aerosol-generating material transfer component, an aerosol generation area, a housing, a wrapper, a mouthpiece, a filter and/or an aerosol-modifying agent. A consumable may also comprise an aerosol generator, such as a heater, that emits heat to cause the aerosol-generating material to generate aerosol in use. The heater may, for example, comprise combustible material, a material heatable by electrical conduction, or a susceptor. A susceptor is a material that is heatable by penetration with a varying magnetic field, such as an alternating magnetic field. The susceptor may be an electrically-conductive material, so that penetration thereof with a varying magnetic field causes induction heating of the heating material. The heating material may be magnetic material, so that penetration thereof with a varying magnetic field causes magnetic hysteresis heating of the heating material. The susceptor may be both electrically-conductive and magnetic, so that the susceptor is heatable by both heating mechanisms. The device that is configured to generate the varying magnetic field is referred to as a magnetic field generator, herein. The substance(s) to be delivered are aerosol-generating materials. As appropriate, a substance may comprise one or more active constituents, one or more flavours, one or more aerosol-former materials, and/or one or more other functional materials.
In some embodiments, the substance to be delivered comprises an active substance.
The active substance as used herein may be a physiologically active material, which is a material intended to achieve or enhance a physiological response. The active substance may for example be selected from nutraceuticals, nootropics, psychoactives. The active substance may be naturally occurring or synthetically obtained. The active substance may comprise for example nicotine, caffeine, taurine, theine, vitamins such as B6 or Bi2 or C, melatonin, cannabinoids, or constituents, derivatives, or combinations thereof. The active substance may comprise one or more constituents, derivatives or extracts of tobacco, cannabis or another botanical.
In some embodiments, the active substance comprises nicotine. In some embodiments, the active substance comprises caffeine, melatonin or vitamin B12.
In some embodiments, the active substance comprises or is derived from one or more botanicals or constituents, derivatives or extracts thereof and the botanical is tobacco.
In some embodiments, the active substance comprises or derived from one or more botanicals or constituents, derivatives or extracts thereof and the botanical is selected from eucalyptus, star anise, cocoa and hemp.
In some embodiments, the active substance comprises or derived from one or more botanicals or constituents, derivatives or extracts thereof and the botanical is selected from rooibos and fennel.
In some embodiments, the substance to be delivered comprises a flavour.
As used herein, the terms "flavour" and "flavourant" refer to materials which, where local regulations permit, may be used to create a desired taste, aroma or other somatosensorial sensation in a product for adult consumers. They may include naturally occurring flavour materials, botanicals, extracts of botanicals, synthetically obtained materials, or combinations thereof. In some embodiments, the flavour comprises menthol, spearmint and/or peppermint. In some embodiments, the flavour comprises flavour components of cucumber, blueberry, citrus fruits and/or redberry. In some embodiments, the flavour comprises eugenol. In some embodiments, the flavour comprises flavour components extracted from tobacco. In some embodiments, the flavour comprises flavour components extracted from cannabis. In some embodiments, the flavour may comprise a sensate, which is intended to achieve a somatosensorial sensation which are usually chemically induced and perceived by the stimulation of the fifth cranial nerve (trigeminal nerve), in addition to or in place of aroma or taste nerves, and these may include agents providing heating, cooling, tingling, numbing effect. A suitable heat effect agent may be, but is not limited to, vanillyl ethyl ether and a suitable cooling agent may be, but not limited to eucolyptol, WS-3.
Aerosol-generating material is a material that is capable of generating aerosol, for example when heated, irradiated or energized in any other way. Aerosol-generating material may, for example, be in the form of a solid, liquid or gel which may or may not contain an active substance and/or flavourants. In some embodiments, the aerosol generating material may comprise an “amorphous solid”, which may alternatively be referred to as a “monolithic solid” (i.e. non-fibrous). In some embodiments, the amorphous solid may be a dried gel. The amorphous solid is a solid material that may retain some fluid, such as liquid, within it. In some embodiments, the aerosol generating material may for example comprise from about 50wt%, 6owt% or 70wt% of amorphous solid, to about 90wt%, 95wt% or ioowt% of amorphous solid.
The aerosol-generating material may comprise one or more active substances and/or flavours, one or more aerosol-former materials, and optionally one or more other functional material.
The aerosol-former material may comprise one or more constituents capable of forming an aerosol. In some embodiments, the aerosol-former material may comprise one or more of glycerine, glycerol, propylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, 1,3-butylene glycol, erythritol, meso-Erythritol, ethyl vanillate, ethyl laurate, a diethyl suberate, triethyl citrate, triacetin, a diacetin mixture, benzyl benzoate, benzyl phenyl acetate, tributyrin, lauryl acetate, lauric acid, myristic acid, and propylene carbonate. The one or more other functional materials may comprise one or more of pH regulators, colouring agents, preservatives, binders, fillers, stabilizers, and/or antioxidants. The material may be present on or in a support, to form a substrate. The support may, for example, be or comprise paper, card, paperboard, cardboard, reconstituted material, a plastics material, a ceramic material, a composite material, glass, a metal, or a metal alloy. In some embodiments, the support comprises a susceptor. In some embodiments, the susceptor is embedded within the material. In some alternative embodiments, the susceptor is on one or either side of the material.
An aerosol-modifying agent is a substance, typically located downstream of the aerosol generation area, that is configured to modify the aerosol generated, for example by changing the taste, flavour, acidity or another characteristic of the aerosol. The aerosol- modifying agent may be provided in an aerosol-modifying agent release component, that is operable to selectively release the aerosol-modifying agent.
The aerosol-modifying agent may, for example, be an additive or a sorbent. The aerosol-modifying agent may, for example, comprise one or more of a flavourant, a colourant, water, and a carbon adsorbent. The aerosol-modifying agent may, for example, be a solid, a liquid, or a gel. The aerosol-modifying agent maybe in powder, thread or granule form. The aerosol-modifying agent may be free from filtration material. In accordance with certain embodiments of the disclosure an aerosol provision device for generating aerosol from a first aerosol generating material and a second aerosol generating material comprises a first user input mechanism, a second user input mechanism and control circuitry. The first user input mechanism allows for control of a first aerosol generator configured to generate aerosol from a first aerosol generating material. The second user input mechanism allows for control of a second aerosol generator configured to generate aerosol from a second aerosol generating material.
The control circuitry is configured to receive an input from a user via either the first user input mechanism or the second user input mechanism and to control a property of the respective aerosol generator (i.e. the first or second aerosol generator). In response to the input, the control circuitry is configured to alter the property of the first aerosol generator by a first amount when the input is provided to the first user input mechanism and the control circuitry is configured to alter the property of the second aerosol generator by a second amount, different from the first amount, when the input is provided to the second user input mechanism. Advantageously based on a single input by the user, the system is able to affect two different responses (i.e. changing a property of a respective aerosol generator) based on which user input mechanism the user interacts with. It will be appreciated that the control circuitry is configured to determine which user input mechanism the input is provided to. In some examples the first user input mechanism comprises at least one user input mechanism selected from the group comprising a slider, a rotatable wheel, one or more buttons, one or more switches, and a touchscreen. In some examples the second user input mechanism comprises at least one selected from the group comprising a slider, a dial, one or more buttons, one or more switches, and a touchscreen. In some examples the first user input mechanism and the second user input mechanism are configured similarly (e.g. both maybe sliders or both maybe sliders displayed on a touchscreen).
In some examples, a single touchscreen provides both the first and second user input mechanism. The control circuitry may be configured to display any of one or more virtual sliders, one or more virtual dials, one or more virtual buttons, and one or more virtual switches.
Figures 1 and 2 are highly schematic cross-sectional views of an example aerosol provision system 1 in accordance with some embodiments of the disclosure. Figure 1 shows the aerosol provision system 1 in an assembled state while Figure 2 shows the aerosol provision systemi in a disassembled state / partially exploded state. As will be discussed below, parts of the example aerosol provision system 1 are provided as removable / detachable from other parts of the aerosol provision system 1.
With reference to Figures 1 and 2, the example aerosol provision system 1 comprises a control / device (or battery / reusable) part 2, a detachable mouthpiece (or lid) part 3, and, in this example, two aerosol generating components 4a and 4b, collectively referred to herein as the aerosol generating components 4. In use, the aerosol provision system 1 is configured to generate aerosol from the aerosol generating components 4 (by vaporising an aerosol precursor material) and deliver / provide the aerosol to a user through the mouthpiece part 3 as the user inhales through the mouthpiece part 3. It should be appreciated that the aerosol provision system 1 includes the aerosol generating components 4 in addition to the control part 2 and mouthpiece part 3. In this example, the term aerosol provision device refers to the control / device part 2 and mouthpiece part 3 without the aerosol generating components 4. However, to aid in the general explanation of the system disclosed, the terms “system” and “device” are used interchangeably herein to refer to either of the device including aerosol generating components and the device excluding aerosol generating components.
One aspect of the example aerosol provision system is the functionality of providing consistent control of the delivery of aerosol to the user regardless of the state / configuration of the aerosol provision system. By this, and as will become apparent from below, it is meant that whether a user interacts with a control of a first input mechanism (controlling an aspect related to production of aerosol from the first aerosol generating component 4a) or whether the user interacts with a control of a second input mechanism (controlling an aspect related to production of aerosol from the second aerosol generating component 4b), the user will be provided with a consistent (or close to consistent) experience of control. In other words while the operational characteristics related to generating aerosol from each of the aerosol generating components 4 differ (based on the aerosol precursor material and the mechanism for generating aerosol); the user may experience an equivalent control of aerosol generation when interacting with either of the input mechanisms.
This may be in terms of the quantity of aerosol produced (i.e., the quantity / volume of aerosol inhaled). That is, the user may adjust the quantity of aerosol produced by the same proportion or amount (or approximately the same, e.g., within 10%) for equivalent interactions with either of the first input mechanism or the second input mechanism.
By way of reference only, the following discussion will refer to top, bottom, left and right sides of the system. This will generally refer to the corresponding directions in the associated figures; that is, the natural directions in the plane of the figures. However, these directions are not meant to confer a particular orientation of the system 1 during normal use. For example, the top of the assembled system refers to a part of the system that contacts the user’s mouth in use, while the bottom refers to the opposite end of the system. The choice of directions is only meant to illustrate the relative locations of the various features described herein. Turning back to Figures l and 2, the control part 2 includes a housing 20 which is configured to house a power source 21 for providing operating power for the aerosol provision device 1 and control circuitry 22 for controlling and monitoring the operation of the aerosol delivery device 1. In this example, the power source 21 comprises a battery that is rechargeable and may be of a conventional type, for example of the kind normally used in electronic cigarettes and other applications requiring provision of relatively high currents over relatively short periods. The control part 2 also comprises a first user input mechanism 25a and a second user input mechanism 25b (collectively, the user input mechanisms 25). The user input mechanism 25 may be provided on or through the housing 20 such that it is accessible (i.e. able to be interacted with) by the user during normal use of the device (i.e. without having to deconstruct the device). The user input mechanisms 25 are in electronic communication with the control circuitry 22 such that an interaction with either of the user input mechanisms 25 is communicated as a signal to the control circuitry 22. By user input mechanism 25 it is meant that a mechanism is provided that the user can interact with to provide an input to the control circuitry 22. The user input mechanism 25 maybe a physical input mechanism; for example a slider, wheel, switch(es), or button(s). Alternatively the user input mechanism may be a virtual input mechanism; for example the user input mechanisms 25 may be displayed on a single touchscreen, or on separate touchscreens, provided on the side of the control part 2. For example the touch screen may depict a slider or wheel depicting a value associated with a parameter, and the user can interact with the slider or wheel (e.g. by placing their finger on the slider or wheel and moving their finger along the screen) to change the value.
The outer housing 20 may be formed, for example, from a plastics or metallic material and in this example has a generally rectangular cross section with a width (in the plane of Figure 1) of around 1.5 to 2 times its thickness (perpendicular to the plane of Figure 1). For example, the electronic cigarette may have a width of around 5 cm and a thickness of around 3 cm. The control part 2 takes the form of a box / cuboid, in this example, although it should be appreciated that the control part 2 can have other shapes as desired. The control part 2 further comprises an air inlet 23 provided on / in the outer surface of the housing 20, two discrete aerosol generating areas, e.g. receptacles, 24a and 24b each defining a space / volume for receiving one of the aerosol generating components, e.g. the first aerosol generating component 4a or the second aerosol generating component 4b, an air channel 26 which extends into the housing 20 and fluidly connects the air inlet 23 with the receptacles 24a and 24b. As will be appreciated in the following these features form part of an air or aerosol pathway through the aerosol provision device 1 in which air is passed from outside the aerosol provision device 1 via air inlet 23, through the aerosol generating areas / receptacles 24a and 24b containing the aerosol generating components 4 and into the user’s mouth. Turning now to the aerosol generating components 4, by the term it is meant a consumable from which an aerosol can be generated. In some embodiments, consumables are articles comprising or consisting of aerosol-generating material 46, part or all of which is intended to be consumed during use by a user. In its simplest form a consumable consists solely of an aerosol generating material; for example a plant based material, such as a tobacco material. Such an aerosol generating component may be formed in a variety of ways; for example as a loose material or as a solid “plug” of material. The aerosol generating component may be inserted into one or both of the receptacles 24a and 24b. The device then comprises an aerosol generator configured to produce an aerosol from aerosol generating material contained in one of the receptacles 24. In some embodiments, the aerosol generator is a heater configured to subject the aerosol-generating material to heat energy, so as to release one or more volatiles from the aerosol-generating material to form an aerosol. In some embodiments, the aerosol generator is configured to cause an aerosol to be generated from the aerosol-generating material without heating. For example, the aerosol generator may be configured to subject the aerosol-generating material to one or more of vibration, increased pressure, or electrostatic energy. In some examples, the control part 2 comprises a heating element 47a (i.e. the aerosol generator) configured to heat the aerosol-generating material by conduction. In some examples the consumable 4 may comprise one or more other components, such as a housing or wrapper 40. Additionally the housing and /or the aerosol generating material may define one or more of an aerosol-generating material storage area, an aerosol-generating material transfer component, an aerosol generation area, a mouthpiece, a filter and/or an aerosol-modifying agent. For example, as shown in consumable 4a comprises an aerosol-generating material 46a and a housing or wrapper 40a. For consumable 4a, the housing or wrapper 40a provides an external barrier layer which protects the aerosol-generating material 46a at least partially. The housing or wrapper 40a comprise or define an inlet and an outlet for allowing air flowthrough the consumable 4a during use (for example, when a user puffs on the device, air may flow into the consumable 4a through the inlet and out of the outlet.
Where the consumable 4a comprises a housing or wrapper 40a and the control part 2 comprises a heating element 47a configured to heat the aerosol-generating material by conduction, the housing or wrapper 40a may be formed of a material which does not inhibit the transfer of heat to the aerosol-generating material 46a. In some examples, the aerosol generating material 46a may also have a susceptor material interspersed within it and / or the housing or wrapper 40a may comprise or consist of a susceptor material. In some examples, the control part 2 comprises a heating element 47a configured to generate a varying magnetic field which acts to heat the susceptor material.
In some examples, a consumable 4b comprises a housing 40b, which defines a liquid reservoir 41b that stores a source liquid for vaporisation (i.e. an aerosol-generating material 46b), and a cartomiser channel 44b, and an aerosol generator which in this example is formed of a wicking element 42b and a heating element 43b coiled around the wicking element 42b. The wicking elements 42b are configured to wick / transport a source liquid (using the capillary motion) from the respective liquid reservoirs 41b to the respective heating elements 43b.
In the example shown, the aerosol generator is provided in the channel 44b defined by the housing 40b of the consumable 4b. Such a consumable is sometimes referred to as a cartomiser. The channel 44b is arranged such that, when the consumable 4b is installed or provided in its respective receptacles, the channels 44a and 44b are fluidly communicated with the air channel 26 and air inlet 23, and thus air drawn in through the air inlet 23 passes along the air channel 26 and along cartomiser channels 44a and 44b of the cartomisers 4.
The term “aerosol generating area” refers to an area / region within the system in which aerosol is or can be generated. For instance, in Figures 1 and 2, the aerosol generating area includes receptacles 24a and 24b, which are configured to receive the consumables 4. In other words, the consumables are considered as the components responsible for generating aerosol, whereas the receptacles 24 house the consumables 4 and thus define an area where aerosol is generated.
The mouthpiece part 3 includes a housing 30 which comprises two openings 31a, 31b at one end (a top end); that is, the mouthpiece openings are located at the same end of the mouthpiece part 3 and are generally arranged such that a user can place their mouth over both of the openings. The mouthpiece part 3 also includes receptacles 32a, 32b at the opposite end (a bottom end), and respective mouthpiece channels 33a, 33b extending between the receptacles 32a, 32b and the openings 31a, 31b.
The mouthpiece part 3 has a generally tapered or pyramidal outer profile which tapers towards the top end of the mouthpiece part 3. The bottom end of the mouthpiece part 3 is where the mouthpiece part 3 and control unit 2 meet or interface and is sized to have dimensions in the width direction (i.e., in the horizontal direction of the plane of Figures 1 and 2) and thickness direction (i.e., in a direction orthogonal to the plane of Figures 1 and 2) that broadly correspond to equivalent dimensions of the control part 2 in order to provide a flush outer profile when the control part 2 and the mouthpiece part 3 are coupled together. The end of the mouthpiece part 3 in which the openings 31 are located (top end) is smaller in the width direction than the bottom end by around one third (e.g. to around 2 cm wide). That is, the mouthpiece part 3 tapers in the width direction towards the top end. This end forms the part of the aerosol provision device 1 that is received in the user’s mouth (in other words, this is the end the user would normally put their lips around and inhale through). The mouthpiece part 3 is formed as a separate and removable component from the control part 2 and is provided with any suitable coupling / mounting mechanism that allows the mouthpiece part 3 to couple to the control part 2, e.g., snap-fitting, screw thread, etc. When the mouthpiece part 3 is coupled to the control part 2 to form the assembled aerosol provision device 1 (e.g., as generally shown in Figure 1), the length of the assembled aerosol provision device 1 is around 10 cm. However, it will be appreciated that the overall shape and scale of an aerosol provision device 1 implementing the present disclosure is not significant to the principles described herein. The receptacles 32a, 32b are arranged to fluidly connect to air passages (e.g. channel 44b) in the consumables 4a and 4b respectively (specifically at an opposite end of the consumables to the end that connects to and is received in receptacles 24a, 24b). The receptacles 32a, 32b are fluidly connected to mouthpiece channels 33a and 33b which in turn are fluidly connected to openings 31a and 31b. Therefore, it should be appreciated that when the device 1 is fully assembled (e.g., as shown in Figure 1), the openings 31a and 31b of the mouthpiece part 3 are fluidly connected to air inlet 23 in the control part 2.
Hence, the example aerosol provision device 1 generally provides two routes through which air / aerosol may pass through the device. For example, a first route starts from air inlet 23, passes along air channel 26, then passes into the receptacle 24a and through the first aerosol generating component 4a (e.g. through the aerosol-generating material 46a within the aerosol generating component 4a between the inlet and outlet), into the receptacle 32a, and along the mouthpiece channel 33a of the mouthpiece part 3 to the opening 31a. Equally, a second route starts from air inlet 23, passes along air channel 26, then passes into the receptacle 24b and through the second aerosol generating component 4b (e.g. through channel 44b), into the receptacle 32b, along the mouthpiece channel 33b of the mouthpiece part 3 and to the opening 31b. In this example, each of the first and second routes share a common component upstream of the aerosol generating components 4 (namely, air channel 26 which is coupled to air inlet 23) but branch off from this common component. In the following, the cross- section of the routes is described as circular; however, it should be appreciated that the cross-section maybe non-circular (e.g., any regular polygon) and also that the cross- section need not be a constant size or shape along the length of the two routes. It should be appreciated by the foregoing that the example aerosol provision device 1 includes a number of components that are referenced by a number followed by a letter, e.g., 24a. Components indicated by the letter “a” are components that connect to, or define a first air / aerosol path, associated with a first aerosol generating component 4a, while components indicated by the letter “b” are components that connect to, or define a second air / aerosol path, associated with a second aerosol generating component 4b. Components having the same number will have the same functionality and construction as one another unless otherwise indicated. In general, the components will be collectively referred to in the following by their corresponding number, and unless otherwise indicated, the description applies to both components “a” and “b” referenced by that number. It will be appreciated that in other examples in accordance with other embodiments of the disclosure, the aerosol provision system l may comprise a different configuration of aerosol generating components. For example, a system (not shown) may comprise multiple aerosol generating components, each in accordance with the consumable 4a.
In some of these examples, either the aerosol generating material and / or the aerosol generator have different characteristics or properties. In another example, a system (not shown) may comprise multiple aerosol generating components, each in accordance with the consumable 4b. In some of these examples, either the aerosol generating material and / or the aerosol generator have different characteristics or properties. In another example, either or both of the consumables 4 may be replaced with a consumable having a different configuration (for example a consumable intended to be heated by optical illumination or by a vibration, increased pressure, or electrostatic energy). For these examples, the control part 2 may be altered for use with a consumable of a different type. In another example, a system may have more than two aerosol generating components.
Returning to Figures 1 and 2; in use, a user inhales on the mouthpiece part 3 of the example device 1 (and specifically through openings 31) to cause air to pass from outside the housing 20 of the reusable part 2, through the respective routes through the device along which the air / aerosol passes and ultimately into the user’s mouth. The aerosol generators (e.g. heating elements 47a and 43b) are activated in order to vaporise the aerosol generating material (e.g. source liquid contained in the wicking element 42b) such that the air passing through the consumables 4 collects or mixes with the aerosol (e.g. vaporised source liquid). For example consumables such as the consumable 4b, source liquid may pass into / along the wicking elements 42b from the liquid reservoir 41b through surface tension / capillary action.
Electrical power is supplied to the heating elements 43b, 47a from battery 21, controlled / regulated by control circuitry 22. The control circuitry 22 is configured to control the supply of electrical power from the battery 21 to the heating elements 43b, 47a so as to generate a vapour from the aerosol generating components 4 for inhalation by a user.
In some examples where the consumable comprises an aerosol generator, electrical power is supplied to a respective heating element 43b within an aerosol generating component 4b via electrical contacts (not shown) established across the interface between the respective aerosol generating component 4b and the control part 2, for example through sprung / pogo pin connectors, or any other configuration of electrical contacts which engage when the aerosol generating component 4b are received in / connected to the receptacles 24b of the control part 2. Of course, respective heating elements 43b could be supplied with energy via other means, such as via induction heating, in which case electrical contacts that interfaces between the control part 2 / receptacles 24 and the aerosol generating components 4 are not required.
The control circuitry 22 is suitably configured / programmed to provide functionality in accordance with embodiments of the disclosure as described herein, as well as for providing conventional operating functions of the aerosol provision device 1 in line with the established techniques for controlling conventional e-cigarettes. Thus the control circuitry 22 may be considered to logically comprise a number of different functional blocks, for example a functional block for controlling the supply of power from the battery 21 to the heating element 47a for heating the first aerosol generating component 4a, a functional block for controlling the supply of power from the battery 21 to the heating element 43b in the second aerosol generating component 4b, a functional block for controlling operational aspects of the device 1 in response to user input (e.g., for initiating power supply), for example configuration settings, as well as other functional blocks associated with the normal operation of electronic cigarettes and functionality in accordance with the principles described herein. It will be appreciated the functionality of these logical blocks maybe provided in various different ways, for example using a single suitably programmed general purpose computer, or suitably configured application-specific integrated circuit(s) / circuitry. As will be appreciated the aerosol provision device 1 will in general comprise various other elements associated with its operating functionality, for example a port for charging the battery 21, such as a USB port, and these may be conventional and are not shown in the figures or discussed in detail in the interests of brevity.
Power maybe supplied to the heating elements 43, 47 on the basis of actuation of a button (or equivalent user actuation mechanism) provided on the surface of the housing 20 and which supplies power when the user presses the button. Alternatively, power maybe supplied based on detection of a user inhalation, e.g., using an airflow sensor or pressure sensor, such as a diaphragm microphone, connected to and controlled by the control circuitry 22 which sends a signal to the control circuitry 22 when a change in pressure or airflow is detected. It should be understood that the principles of the mechanism for starting power delivery is not significant to the principles of the present disclosure.
As mentioned previously, an aspect of the present disclosure is an aerosol delivery device 1 configured to provide consistent control of aerosol delivery to the user regardless of the configuration of the device 1 (e.g. number and type of aerosol generating components 4). In the example aerosol delivery device 1 shown in Figures 1 and 2, the aerosol generating components 4 are provided separately from the control part 2 and the mouthpiece part 3 and can therefore be inserted into or removed from the receptacles 24. The aerosol generating components 4 may be replaced / removed for a variety of reasons. For example, the aerosol generating components 4 may be provided with different flavoured source liquids and the user can insert two aerosol generating components 4 of different flavours (e.g., strawberry flavoured and menthol / mint flavoured) into the respective receptacles 24 to create different flavoured aerosols, if desired. Alternatively, the aerosol generating components 4 can be removed / replaced in the event that a aerosol generating components 4 runs dry (that is, the source liquid in the liquid reservoir 41 is depleted).
Turning to the aerosol generating components 4 in more detail, the consumables 4 each comprise the housing 40, which in this example is formed of a plastics material. The housing 40 is generally in the form of a hollow cylinder having an outer diameter. For the consumable 4b the housing 40b additionally defines an inner diameter, with the walls of the inner diameter defining the limits of the cartomiser channel 44b. The housing 40b supports other components of the cartomiser 4b, such as the aerosol generator mentioned above, and also provides a mechanical interface with the receptacle 24b of the control part 2 (described in more detail below).
In this example the consumables 4 has a length of around 1 to 1.5 cm, an outer diameter of 6 to 8 mm and an inner diameter of around 2 to 4 mm. However, it will be appreciated the specific geometry, and more generally the overall shapes involved, may be different in different implementations.
As mentioned, the consumable 4b comprises a source liquid reservoir 41b which takes the form of a cavity between the outer and inner walls of the housing 40b. The source liquid reservoir 41b contains a source liquid. A source liquid for an electronic cigarette will typically comprise a base liquid formulation, which makes up the majority of the liquid, with additives for providing desired flavour / smell / nicotine delivery characteristics to the base liquid. For example, a typical base liquid may comprise a mixture of propylene glycol (PG) and vegetable glycerol (VG).The liquid reservoir 41b in this example comprises the majority of the interior volume of the cartomiser 4b. The reservoir 41b may be formed in accordance with conventional techniques, for example comprising a moulded plastics material.
The aerosol generator of consumable 4b comprises a heating element 43b which in this example comprise an electrically resistive wire coiled around the wicking element 42b. In this example, the heating element 43b comprises a nickel chrome alloy (Cr2oNi8o) wire and the wicking element 42b comprises a glass fibre bundle, but it will be appreciated that the specific atomiser configuration is not significant to the principles described herein. The receptacles 24 formed in the control part 2 are approximately cylindrical and generally have a shape (inner surface) that conforms to the outer shape of the aerosol generating components 4. As mentioned, the receptacles 24 are configured to receive at least a part of the aerosol generating components 4. The depth of the receptacles (that is a dimension along the longitudinal axis of the receptacles 24) is slightly less than the length of the aerosol generating components 4 (e.g., 0.8 to 1.3 cm) such that, when the aerosol generating components 4 are received in the receptacles 24, the exposed ends of the aerosol generating components 4 slightly protrude from the surface of the housing 20. The outer diameter of the aerosol generating components 4 is slightly smaller (e.g., about 1 mm or less) than the diameter of the receptacles 24 to allow the aerosol generating components 4 to slide into the receptacles with relative ease, but to fit reasonably well within the receptacles 24 to reduce or prevent movement in a direction orthogonal to the longitudinal axis of the aerosol generating components 4. In this example the aerosol generating components 4 are mounted in a generally side-by-side configuration in the body of the control part 2.
In order to insert, replace or remove the aerosol generating components 4, the user will typically disassemble the device 1 (e.g., into a state generally as shown in Figure 2). The user will remove the mouthpiece part 3 from the control part 2 by pulling the mouthpiece part 3 in a direction away from the control part 2, remove any previous aerosol generating components 4 located in the receptacles (if applicable) by pulling the aerosol generating components 4 in a direction away from the control part 2, and insert a new aerosol generating component 4 in the receptacle 24. With the aerosol generating component(s) 4 inserted in the receptacles 24, the user then reassembles the device 1 by coupling the mouthpiece part 3 to the reusable part 2. An assembled device 1 is schematically shown in Figure 1, although it should be noted that certain features are not shown to scale and exaggerated for the purposes of clarity, such as the gap between the mouthpiece part 2 and the housing 20 of the control part 2, for example.
Figure 3 schematically shows, in cross-section, an alternative arrangement of the control part. Figure 3 depicts a control part 2’ which is the same as control part 2, with the exception that control part 2’ comprises two air inlets 23a’ and 23b’ and two air channels 26a’ and 26b’. As can be seen from Figure 3, the air channels 26’ are separate from one another - that is, they are not fluidly connected within the control part 2’. Each air channel 26’ connects to a receptacle 24 and to an air inlet 23’. In essence, Figure 3 depicts an implementation that is identical to the implementations described above with respect to Figures 1 and 2 with the exception that there is no shared (or common) component of the flow paths through the device. That is, air channel 26a’ connects air inlet 23a’ to receptacle 24a only, and air channel 26b’ connects air inlet 23b’ to receptacle 24b only. Figure 4 schematically shows, in cross-section, an alternative serial arrangement of the aerosol provision system in which the air flows through each consumable 4 in turn. Figure 4 depicts a control part 2” which is the same as control part 2, with the exception that control part 2” comprises only a single receptacle 24b for receiving consumable 4b. Figure 4 additionally depicts a mouthpiece 3” which is the same as mouthpiece 3, with the exception that mouthpiece 2” comprises only a cavity 51 for receiving consumable 4a. As can be seen from Figure 4, example aerosol provision device 1” generally provides a single route through which air / aerosol may pass through the device. For example, the route starts from air inlet 23, passes along air channel 26, then passes into the receptacle 24b and through the second aerosol generating component 4b (e.g. through channel 44b of the second aerosol generating component 4b), into the receptacle 32a, then passes through the mouthpiece channel 33 into cavity 51 and through the first aerosol generating component 4a (e.g. through the aerosol-generating material 46a within the aerosol generating component 4a between the inlet and outlet), and along to the opening 31 in the mouthpiece part 3”.
In essence, Figure 4 depicts an implementation that operates identically to the implementations described above with respect to Figures 1 and 2 with the exception that there aerosol produced by in the second aerosol generating component 4b must travel through the first aerosol generating component 4a before being inhaled by the user. It will be appreciated that a mouthpiece 3” in accordance with the above example comprises an aerosol generator, such as heating element 47, for generating an aerosol from the aerosol generating material 46a. In these examples, the mouthpiece 3” may include contacts for forming an electrical connection with the control part 2”.
In other examples, the mouthpiece 3” may not include an aerosol generator and instead the aerosol generator maybe provided in the aerosol generating component or in the control part 2. Where the aerosol generator component includes the aerosol generator, the mouthpiece 3” may include contacts for forming an electrical contact with both the control part 2” and the aerosol generator component 4.
In some examples, the control part 2” may accommodate both consumables 4 in series with the mouthpiece 3” forming a fluid airflow connection with the final consumable of the series.
In some examples the mouthpiece 3” and a consumable 4b are provided as a single integrally formed component. In other words the two components are not intended to be separated and may have a common housing material formed as a single piece. Aspects of the present disclosure relate to the distribution of power between the consumables 4a and 4b in order to influence aerosol generation.
As mentioned, the control circuitry 22 is configured to control the supply of power to the heating elements 47a, 47b of the different aerosol generating components 4; hence one function of the control circuitry 22 is power distribution. As used herein the term “power distribution circuitry” refers to the power distribution function / functionality of the control circuitry 22. Figure 5 is an exemplary schematic circuit diagram showing the electrical connections between battery 21 and the heating elements 47a and 43b of two aerosol generating components 4a and 4b installed in the device 1. Figure 4 shows heating element 47a and heating element 43b connected in parallel with the battery 21 through control circuitry 22. The control circuitry 22 maybe a single chip / electronic component configured to perform the described functionality. Control circuitry block 22 is a power control mechanism for controlling the power supplied to heating element 47a, and for controlling the power supplied to heating element 43b. The power control mechanism may implement, for example, a pulse width modulation (PWM) control technique for supplying power to the respective heating elements 47a, 43b. In Figure 5, two aerosol generators are installed in the device as identified by the presence of two heating elements 43b, 47a. Heating element 43b is depicted as a single resistive wire while heating element 47a is depicted as two perpendicular wires. While not shown the two depicted wires of heating element 47a may be provided on alternative sides of the consumable 4a to provide heating to both sides of the aerosol- generating material. Additionally, in place of the wires of heating elements 43b, 47a other resistive materials maybe used such as conductive plates or mesh materials. It will be further appreciated that as previously discussed the heating elements 43b, 47a maybe replaced in some embodiments with different types of aerosol generators (e.g. optical aerosol generators or vibration based aerosol generators).
The control circuitry 22 is configured to identify the presence of both aerosol generating components 4 in the device and subsequently supply power to both aerosol generating components 4. The control circuitry 22 is electrically connected to the first user input mechanism 25a and the second user input mechanism 25b. While not shown, the user input mechanisms 25 maybe connected directly to the power source 21 or maybe connected indirectly to the power source 21 through the control circuitry 22. The control circuitry 22 is configured to receive an input from either the first user input mechanism 25a or the second user input mechanism 25b that indicates that a user has interacted or actuated the respective user input mechanism 25and to control a property of the respective aerosol generator 43a, 47b. The control circuitry 22 is configured to control a property of the respective aerosol generator based on the input. A property may be a characteristic of how the respective aerosol generator is operated. For example, a property may include a power supplied to the respective aerosol generator, a target operating temperature, a target resistance of the respective aerosol generator, a target current through the respective aerosol generator, or a time period for powering the respective aerosol generator during use (e.g. during a puff operation) . In some examples the control circuitry 22 may receive an input during a puff operation or at the start of a puff operation and may control a property for that puff operation. In some examples the control circuitry may receive the input prior to the puff operation and may control a property for use in a next puff operation or for use in subsequent puff operations (until the user input and/or the device is turned off). By puff operation, it is meant the operation of one or both of the aerosol generators in response to a user inhalation or puff (such an inhalation could be detected directly through use of a puff sensor or could be detected indirectly by a user interacting (e.g. actuating) with a user input). In examples, in response to the input, the control circuitry 22 is configured to alter the property of the first aerosol generator 47a by a first amount when the input is provided to the first user input mechanism 25a and the control circuitry 22 is configured to alter the property of the second aerosol generator 43b by a second amount, different from the first amount, when the input is provided to the second user input mechanism 25b. For example, if the property is a target power then the first amount may be a smaller change in power (e.g. 0.5W) than the second amount (e.g. 1.0W).
In response to providing an input to the first or second user input mechanism 253,25b the characteristics of aerosol produced by the first and second aerosol generators is changed, for example an increase in power or temperature may cause an increase in the level of aerosol produced from the modified aerosol generator, change an average size of aerosol particles produced by the modified aerosol generator (e.g. the median mass aerodynamic diameter of the particles), or increase the aerosol temperature. However, the scale of the effect will be dependent on at least the aerosol generator and the aerosol generating material. For example, the same power increase (as a result of a user input) will result in a greater effect to a more efficient aerosol generator.
Additionally, if the aerosol generator acts on a larger mass or surface area of aerosol generating material then the effect will be diminished because the increased energy supplied to the aerosol generating material is distributed to a larger volume of material (i.e. it is less specific). Hence, the effect resulting from a change to a property of an aerosol generator is highly dependent on the configuration of the device 1.
In some examples, the first and second amounts may be chosen to cause an equivalent or near equivalent effect. As such, altering the property of the first aerosol generator by the first amount causes a first change in the amount of aerosol generated by the first aerosol generator, and altering the property of the second aerosol generator by the second amount causes a second change in the amount of aerosol generated by the second aerosol generator where the first change and the second change are approximately equal.
For example, if altering a property of the first aerosol generator by the first amount (e.g. increasing power by 20%) results in an increase of aerosol generation of around 10% then the second amount may be selected so that altering a property of the second aerosol generator by the second amount (e.g. increasing power by 5%) also results in an increase of aerosol generation of around 10%. Advantageously, a user using such an example system will interpret that they are causing an equivalent effect based on their input (10% increase in aerosol production) irrespective of the change made to the property of the first or second aerosol generator. In other words, in some examples, the second amount is set such that altering the property of the second aerosol generator by the second amount causes a change in the amount of aerosol generated by the second aerosol generator that is approximately equal to the change in the amount of aerosol generated by the first aerosol generator when the property of the first aerosol generator is altered by the first amount. In some examples, the first and second amounts are different because the first and second aerosol generators are different types to each other. For example, the first aerosol generator maybe selected from the group comprising a resistive heater, a piezo electric atomiser, an optical aerosol generator (e.g. a laser), and an inductive heater, and the second aerosol generator maybe selected from the group comprising a resistive heater, a piezo-electric atomiser, an optical aerosol generator (e.g. a laser), and an inductive heater. The effect of a change to a parameter has a different effect for each type of aerosol generator. By way of example only and simply to illustrate the principles of the present disclosure, a 20% increase in power to a resistive heater may result in a 10% increase in aerosol generation, whereas a 20% increase in power to an optical aerosol generator, such as a laser, may result in an increase of 15%.
In some examples, the first and second aerosol generators are the same type of aerosol generator but have different configurations. For example, one of the first and second aerosol generators may be larger than the other of the first and second aerosol generators. In an example, one of the first and second aerosol generators may be configured to operate at a higher power rating. In a further example, one of the first and second aerosol generators may be configured to generate aerosol from a smaller volume (e.g. the first and second aerosol generating materials maybe different sizes and the aerosol generators may be configured to match. In these examples, the resultant change in aerosol generation due to a change to the property of either the first or second aerosol generator is dependent on the configuration of the respective aerosol generator.
In some examples, the first and second amounts are different because the first and second aerosol generating materials differ. In some of these examples, the first and second aerosol generators may be substantially similar in configuration (e.g. they may be the same type), while in others of these examples, the first and second aerosol generators maybe substantially different in configuration (e.g. they may have a different type). In some examples the first and the second aerosol generating material are selected from the group comprising a liquid, a gel or a solid, wherein the second aerosol generating material is different to the first aerosol generating material. The amount of aerosol generated from each aerosol generating material will depend on the type of material and the characteristics of the aerosol generator.
In some examples, the first aerosol generating material has different vaporisation temperature to the second aerosolisable material. An aerosol generating material having a lower vaporisation temperature will vaporise at a lower temperature than an aerosol generating material having a higher vaporisation temperature. Hence, the effect of changing a property by the first or second amount differs depending on the respective aerosol generating material. In some examples, the first aerosol generating material has different specific heat capacity to the second aerosolisable material. An aerosol generating material having a lower specific heat capacity requires less energy to heat to a target temperature. Hence, the effect of changing a property by the first or second amount differs depending on the respective aerosol generating material.
In some examples, the input is a selection of one of a plurality of values for a property of either the first or second aerosol generator. The control circuitry 22 is configured to alter the property of the first aerosol generator 47a by a first amount when the input is provided to the first user input mechanism 25a selecting a different one of the plurality of values for a property of the first aerosol generator. Similarly the control circuitry 22 is configured to alter the property of the second aerosol generator 47b by a second amount when the input is provided to the second user input mechanism 25b selecting a different one of the plurality of values for a property of the second aerosol generator. It will be appreciated that there will be a corresponding first and second amount for each potential change between a first one of the plurality of values and a second one of a plurality of values. In some examples, the input is a selection of a boost mode for either the first or second aerosol generator. By a boost mode it is meant that the generation of aerosol is increased. In some examples a plurality of values consists of a first and second value where the default or normal mode corresponds to the first value of the plurality of values and the boost mode corresponds to the second value of the plurality of values. The control circuitry 22 is configured to alter the property of the first aerosol generator 47a by a first amount when the input is provided to the first user input mechanism 25a to select the boost mode for the first aerosol generator. Similarly the control circuitry 22 is configured to alter the property of the second aerosol generator 47b by a second amount when the input is provided to the second user input mechanism 25b to select the boost mode for the second aerosol generator.
In some examples, altering the property of the second aerosol generator by a second amount causes a change in the amount of aerosol generated by the second aerosol generator that is approximately equal to the change in the amount of aerosol generated by the first aerosol generator when the property of the first aerosol generator is altered by the first amount. Hence, whether the input is to the first or second user input mechanism 25 (thereby selecting a boost mode of either the first or second aerosol generator), the user experiences an approximately equal increase in the amount of aerosol generated.
Figure 6 schematically represents a method of controlling an aspect of the electronic aerosol provision device for generating aerosol from a first aerosol generating material and a second aerosol generating material in accordance with certain embodiments of the disclosure. The device comprises a first user input mechanism for controlling a first aerosol generator configured to generate aerosol from a first aerosol generating material, a second user input mechanism for controlling a second aerosol generator configured to generate aerosol from a second aerosol generating material, and control circuitry configured to receive an input from a user via either the first user input mechanism or the second user input mechanism and to control a property of the respective aerosol generator. The method comprises the control unit performing a first step Si of identifying an input to either the first user input mechanism or to the second user input mechanism; and either a second step S2 of altering the property of the first aerosol generator by a first amount when the input is provided to the first user input mechanism or a third step S3 of altering the property of the second aerosol generator by a second amount when the input is provided to the second user input mechanism. The second amount being different from the first amount. In some examples, altering the property of the second aerosol generator by a second amount causes a change in the amount of aerosol generated by the second aerosol generator that is approximately equal to the change in the amount of aerosol generated by the first aerosol generator when the property of the first aerosol generator is altered by the first amount. Hence, whether the input is to the first or second user input mechanism 25, the user experiences an approximately equal increase in the amount of aerosol generated. This allows a user to change the characteristics (e.g. flavours) of the aerosol in an intuitive way (e.g. independently of the flavour source or aerosol generator). Thus, there has been described an aerosol provision device for generating aerosol from a first aerosol generating material and a second aerosol generating material, the device comprising: a first user input mechanism for controlling a first aerosol generator configured to generate aerosol from the first aerosol generating material; a second user input mechanism for controlling a second aerosol generator configured to generate aerosol from the second aerosol generating material; and control circuitry configured to receive an input from a user via either the first user input mechanism or the second user input mechanism and to control a property of the respective aerosol generator; wherein, in response to the input, the control circuitry is configured to alter the property of the first aerosol generator by a first amount when the input is provided to the first user input mechanism and the control circuitry is configured to alter the property of the second aerosol generator by a second amount, different from the first amount, when the input is provided to the second user input mechanism.
Thus, there has also been described an aerosol provision system for generating aerosol from a first aerosol generating material and for generating aerosol from a second aerosol generating material, the system comprising: a first aerosol generating material, a second aerosol generating material, and an aerosol provision device for generating aerosol from the first aerosol generating material and the second aerosol generating material, the device comprising: a first user input mechanism for controlling a first aerosol generator configured to generate aerosol from the first aerosol generating material; a second user input mechanism for controlling a second aerosol generator configured to generate aerosol from the second aerosol generating material; and control circuitry configured to receive an input from a user via either the first user input mechanism or the second user input mechanism and to control a property of the respective aerosol generator; wherein, in response to the input, the control circuitry is configured to alter the property of the first aerosol generator by a first amount when the input is provided to the first user input mechanism and the control circuitry is configured to alter the property of the second aerosol generator by a second amount, different from the first amount, when the input is provided to the second user input mechanism.
Thus, there has also been described a method of controlling an aerosol provision device for generating aerosol from a first aerosol generating material and a second aerosol generating material, the device comprising a first user input mechanism for controlling a first aerosol generator configured to generate aerosol from a first aerosol generating material, a second user input mechanism for controlling a second aerosol generator configured to generate aerosol from a second aerosol generating material; and control circuitry configured to receive an input from a user via either the first user input mechanism or the second user input mechanism and to control a property of the respective aerosol generator, the method comprising: identifying an input to either the first user input mechanism or to the second user input mechanism; and either altering the property of the first aerosol generator by a first amount when the input is provided to the first user input mechanism; or altering the property of the second aerosol generator by a second amount when the input is provided to the second user input mechanism; wherein, the second amount is different from the first amount.
Thus, there has also been described aerosol provision means for generating aerosol from first aerosol generating material means and a second aerosol generating material means, the aerosol provision means comprising: first user input means for controlling first aerosol generator means configured to generate aerosol from the first aerosol generating material means; second user input means for controlling second aerosol generator means configured to generate aerosol from the second aerosol generating material means; and control means configured to receive an input from a user via either the first user input means or the second user input means and to control a property of the respective aerosol generator means; wherein, in response to the input, the control means is configured to alter the property of the first aerosol generator means by a first amount when the input is provided to the first user input means and the control means is configured to alter the property of the second aerosol generator means by a second amount, different from the first amount, when the input is provided to the second user input means. While the above described embodiments have in some respects focussed on some specific example aerosol provision systems, it will be appreciated the same principles can be applied for aerosol provision systems using other technologies. That is to say, the specific manner in which various aspects of the aerosol provision system function are not directly relevant to the principles underlying the examples described herein. In order to address various issues and advance the art, this disclosure shows by way of illustration various embodiments in which the claimed invention(s) may be practiced. The advantages and features of the disclosure are of a representative sample of embodiments only, and are not exhaustive and/or exclusive. They are presented only to assist in understanding and to teach the claimed invention(s). It is to be understood that advantages, embodiments, examples, functions, features, structures, and/or other aspects of the disclosure are not to be considered limitations on the disclosure as defined by the claims or limitations on equivalents to the claims, and that other embodiments maybe utilised and modifications maybe made without departing from the scope of the claims. Various embodiments may suitably comprise, consist of, or consist essentially of, various combinations of the disclosed elements, components, features, parts, steps, means, etc. other than those specifically described herein, and it will thus be appreciated that features of the dependent claims may be combined with features of the independent claims in combinations other than those explicitly set out in the claims. The disclosure may include other inventions not presently claimed, but which may be claimed in future.

Claims

Claims
1. An aerosol provision device for generating aerosol from a first aerosol generating material and a second aerosol generating material, the device comprising: a first user input mechanism for controlling a first aerosol generator configured to generate aerosol from the first aerosol generating material; a second user input mechanism for controlling a second aerosol generator configured to generate aerosol from the second aerosol generating material; and control circuitry configured to receive an input from a user via either the first user input mechanism or the second user input mechanism and to control a property of the respective aerosol generator; wherein, in response to the input, the control circuitry is configured to alter the property of the first aerosol generator by a first amount when the input is provided to the first user input mechanism and the control circuitry is configured to alter the property of the second aerosol generator by a second amount, different from the first amount, when the input is provided to the second user input mechanism.
2. The aerosol provision device of claim l, wherein the property is selected from the group comprising a power setting of the respective aerosol generator, a temperature setting of the respective aerosol generator, a target resistance of the respective aerosol generator, a target current through the respective aerosol generator, and a time period for powering the respective aerosol generator during a puff operation.
3. The aerosol provision device of any of claims l or 2, wherein altering the property of the first aerosol generator by the first amount causes a first change in the amount of aerosol generated by the first aerosol generator; and wherein altering the property of the second aerosol generator by the second amount causes a second change in the amount of aerosol generated by the second aerosol generator; wherein the first change and the second change are approximately equal.
4. The aerosol provision device of any of claims l to 3, wherein the first aerosol generating material has different vaporisation temperature to the second aerosolisable material; and /or wherein the first aerosol generating material has different specific heat capacity to the second aerosolisable material.
5. The aerosol provision device of any of claims 1 to 4, wherein the first user input mechanism comprises at least one of a type selected from the group comprising a slider, a dial, one or more buttons, one or more switches, and a touchscreen.
6. The aerosol provision device of any of claims 1 to 5, wherein the second user input mechanism comprises at least one of a type selected from the group comprising a slider, a dial, one or more buttons, one or more switches, and a touchscreen.
7. The aerosol provision device of any of claims 1 to 6, wherein the first user input mechanism is the same type as the second user input mechanism.
8. The aerosol provision device of any of claims 1 to 7, wherein the input is a selection of one of a plurality of selectable states for the property of the respective aerosol generator.
9. The aerosol provision device of claim 8, wherein the property has the same number of selectable states for the first aerosol generator and the second aerosol generator.
10. The aerosol provision device of any of claims 8 or 9, wherein the plurality of selectable states comprises a default state and a boost state; and wherein, in response to the input, the control circuitry is configured to select the boost state for the property of the first aerosol generator when the input is provided to the first user input mechanism and / or the control circuitry is configured to select the boost state for the property of the second aerosol generator when the input is provided to the second user input mechanism.
11. The aerosol provision device of any of claims 1 to 10, wherein the first aerosol generating material is selected from the group comprising a liquid, a gel and a solid.
12. The aerosol provision device of any of claims 1 to 11, wherein the second aerosol generating material is selected from the group a liquid, a gel and a solid; wherein the second aerosol generating material is different to the first aerosol generating material.
13. The aerosol provision device of any of claims 1 to 12, wherein the first aerosol generator is selected from the group comprising a resistive heater, a piezo-electric atomiser, a laser, and an inductive heater.
14. The aerosol provision device of any of claims 1 to 13, wherein the second aerosol generator is selected from the group comprising a resistive heater, a piezo-electric atomiser, a laser, and an inductive heater.
15. The aerosol provision device of any of claims 1 to 14, wherein the device comprises a first receptacle for retaining the first aerosolisable material; and / or wherein the device comprises a second receptacle for retaining the second aerosolisable material.
16. An aerosol provision system for generating aerosol from a first aerosol generating material and for generating aerosol from a second aerosol generating material, the system comprising: the aerosol provision device of any of claims 1 to 15; a first aerosol generating material; and a second aerosol generating material.
17. The aerosol provision system of claim 16, wherein the system comprises: a first cartridge for retaining the first aerosol generating material, the first cartridge configured to removably attach to the aerosol provision device; and / or a second cartridge for retaining the second aerosol generating material, the second cartridge configured to removably attach to the aerosol provision device.
18. A method of controlling an aerosol provision device for generating aerosol from a first aerosol generating material and a second aerosol generating material, the device comprising a first user input mechanism for controlling a first aerosol generator configured to generate aerosol from a first aerosol generating material, a second user input mechanism for controlling a second aerosol generator configured to generate aerosol from a second aerosol generating material; and control circuitry configured to receive an input from a user via either the first user input mechanism or the second user input mechanism and to control a property of the respective aerosol generator, the method comprising: identifying an input to either the first user input mechanism or to the second user input mechanism; and either altering the property of the first aerosol generator by a first amount when the input is provided to the first user input mechanism; or altering the property of the second aerosol generator by a second amount when the input is provided to the second user input mechanism; wherein, the second amount is different from the first amount.
19. Aerosol provision means for generating aerosol from first aerosol generating material means and a second aerosol generating material means, the aerosol provision means comprising: first user input means for controlling first aerosol generator means configured to generate aerosol from the first aerosol generating material means; second user input means for controlling second aerosol generator means configured to generate aerosol from the second aerosol generating material means; and control means configured to receive an input from a user via either the first user input means or the second user input means and to control a property of the respective aerosol generator means; wherein, in response to the input, the control means is configured to alter the property of the first aerosol generator means by a first amount when the input is provided to the first user input means and the control means is configured to alter the property of the second aerosol generator means by a second amount, different from the first amount, when the input is provided to the second user input means.
EP21820309.9A 2020-11-27 2021-11-26 Electronic aerosol provision system Pending EP4250971A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB2018721.7A GB202018721D0 (en) 2020-11-27 2020-11-27 Electronic Aerosol Provision System
PCT/GB2021/053077 WO2022112781A1 (en) 2020-11-27 2021-11-26 Electronic aerosol provision system

Publications (1)

Publication Number Publication Date
EP4250971A1 true EP4250971A1 (en) 2023-10-04

Family

ID=74099824

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21820309.9A Pending EP4250971A1 (en) 2020-11-27 2021-11-26 Electronic aerosol provision system

Country Status (8)

Country Link
US (1) US20240008531A1 (en)
EP (1) EP4250971A1 (en)
JP (1) JP2023550957A (en)
KR (1) KR20230110587A (en)
CA (1) CA3199140A1 (en)
GB (1) GB202018721D0 (en)
MX (1) MX2023006192A (en)
WO (1) WO2022112781A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240027929A (en) * 2022-08-23 2024-03-05 주식회사 케이티앤지 Powder inhalation device and control method thereof
KR20240039694A (en) * 2022-09-20 2024-03-27 주식회사 케이티앤지 Aerosol generating device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL3066940T3 (en) * 2015-03-13 2020-11-16 Fontem Holdings 1 B.V. Aerosol generating component for an electronic smoking device and electronic smoking device
GB201721447D0 (en) * 2017-12-20 2018-01-31 British American Tobacco Investments Ltd Electronic aerosol provision system
EP3897258A1 (en) * 2018-12-19 2021-10-27 JT International S.A. Electronic cigarette

Also Published As

Publication number Publication date
KR20230110587A (en) 2023-07-24
CA3199140A1 (en) 2022-06-02
GB202018721D0 (en) 2021-01-13
WO2022112781A1 (en) 2022-06-02
US20240008531A1 (en) 2024-01-11
JP2023550957A (en) 2023-12-06
MX2023006192A (en) 2023-06-09

Similar Documents

Publication Publication Date Title
US11871795B2 (en) Electronic aerosol provision system
KR102664648B1 (en) Aerosol delivery devices including a selector and related methods
US11800898B2 (en) Electronic aerosol provision system
CA3085802C (en) Electronic aerosol provision system
UA124306C2 (en) Flavour delivery device
US20240008531A1 (en) Electronic aerosol provision system
US20230284693A1 (en) Aerosol provision system
CA3237459A1 (en) Aerosol provision system with variable aerosol stream concentration
WO2023084193A1 (en) Aerosol provision system with volume varying aerosol generating region
CN117898476A (en) Aerosol delivery subsystem
KR20240089529A (en) Aerosol delivery system with variable aerosol stream concentration

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230626

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20240423