EP4247540A1 - Method for preparing biodegradable microcapsules and microcapsules obtained in this manner - Google Patents

Method for preparing biodegradable microcapsules and microcapsules obtained in this manner

Info

Publication number
EP4247540A1
EP4247540A1 EP21810754.8A EP21810754A EP4247540A1 EP 4247540 A1 EP4247540 A1 EP 4247540A1 EP 21810754 A EP21810754 A EP 21810754A EP 4247540 A1 EP4247540 A1 EP 4247540A1
Authority
EP
European Patent Office
Prior art keywords
microcapsules
phase
microcapsule
aqueous phase
surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21810754.8A
Other languages
German (de)
French (fr)
Inventor
Yohann Guillaneuf
Catherine Lefay
Didier Gigmes
The Hien HO
Kaouthar OUDOUA
Thierry RIBEIRO
Yves Ortais
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gem Innov
Original Assignee
Gem Innov
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gem Innov filed Critical Gem Innov
Publication of EP4247540A1 publication Critical patent/EP4247540A1/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • B01J13/18In situ polymerisation with all reactants being present in the same phase
    • B01J13/185In situ polymerisation with all reactants being present in the same phase in an organic phase
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/26Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests in coated particulate form
    • A01N25/28Microcapsules or nanocapsules
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P1/00Disinfectants; Antimicrobial compounds or mixtures thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P3/00Fungicides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P10/00Shaping or working of foodstuffs characterised by the products
    • A23P10/30Encapsulation of particles, e.g. foodstuff additives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P10/00Shaping or working of foodstuffs characterised by the products
    • A23P10/30Encapsulation of particles, e.g. foodstuff additives
    • A23P10/35Encapsulation of particles, e.g. foodstuff additives with oils, lipids, monoglycerides or diglycerides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/11Encapsulated compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5021Organic macromolecular compounds
    • A61K9/5026Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5021Organic macromolecular compounds
    • A61K9/5031Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poly(lactide-co-glycolide)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5073Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals having two or more different coatings optionally including drug-containing subcoatings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5089Processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/20After-treatment of capsule walls, e.g. hardening
    • B01J13/22Coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/10General cosmetic use
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/412Microsized, i.e. having sizes between 0.1 and 100 microns

Definitions

  • the present description concerns the field of microcapsules, and more particularly the processes for manufacturing microcapsules with a view to enclosing active substances such as essential oils. More specifically, it relates to a method for preparing biodegradable microcapsules. This method proceeds by radical polymerization of multifunctional compounds in an O/W type emulsion (oil in water) leading to a crosslinked poly(beta-amino ester) type wall which is biodegradable. The invention also relates to the biodegradable microcapsules obtained by this method.
  • Microencapsulation is a process making it possible to protect a reactive, sensitive or volatile substance (called here “active principle”) in a capsule whose size can vary from nanometer to micrometer.
  • active principle a reactive, sensitive or volatile substance
  • the core of the capsule is therefore isolated from its external environment by a wall. This makes it possible to delay its evaporation, its release or its deterioration; there are many applications that exploit these technical effects when the microcapsules are incorporated into a complex formulation or applied to a product.
  • the microcapsules can be used to spread in a controlled manner the active principle that they contain, which can in particular be a biocidal active ingredient, an insecticide, a disinfectant, or a fragrance; this can be done by diffusion through the wall or under the influence of an external force which breaks the wall.
  • the release of the active principle takes place under the influence of an external force which breaks the wall of the microcapsules; thus, an adhesive can be released (see for example WO 03/016369 - Henkel), or a reagent (see for example WO 2009/115671 - Catalysis).
  • the contents of the microcapsule cannot escape but its color change under the effect of a variation in temperature (thermochromy) or UV irradiation (photochromy) is visible from the outside (see for example WO 2013/114 025 - Gem Innov, or WO 2007/070118 - Kimberly-Clark, or EP 1 084 860 - The Pilot Ink Co.).
  • thermalchromy a variation in temperature
  • photochromy UV irradiation
  • PA polyamides
  • PU polyurethanes
  • PA polyamides
  • PU polyurethanes
  • PA polyamides
  • PU polyurethanes
  • the production of the walls of the microcapsules in PA generally uses monomers of the diamine type (hexamethylene diamine for example) and acyl chloride (sebacoyl chloride for example), while those in PU use monomers of the diamine type.
  • -isocyanate HDI, IPDI etc.
  • diols diols.
  • polyureas monomers of the diisocyanate and diamine type or diisocyanates alone are used, the hydrolysis of which at the interface produces the amines allowing the synthesis of the urea function.
  • WO 2009/115671 describes the formation of microcapsule walls by interfacial polycondensation, from different mixtures of monomers: hexamethylene diisocyanate (HMDI) and ethylene diamine; tetraethylorthosilicate (TEO) and 3-(trimethoxysilyl)propylmethacrylate (MPTS); 2,4-tolylenediisocyanate (TDI) and 1,3 phenylenediamine; 2,4-toluene diisocyanate and 1,3-phenylene diamine.
  • HMDI hexamethylene diisocyanate
  • TEO tetraethylorthosilicate
  • MPTS 3-(trimethoxysilyl)propylmethacrylate
  • TDI 2,4-tolylenediisocyanate
  • 1,3 phenylenediamine 2,4-toluene diisocyanate and 1,3-phenylene diamine.
  • Patent application US 2015/0017214 A1 (Tagasago) describes a process for manufacturing microcapsules by radical polymerization in which two or three types of vinyl monomers are introduced into the hydrophobic (core) phase of an O/W type emulsion ( oil in water). A radical initiator is also added to carry out the polymerization in the heart of the emulsion.
  • This process uses at least three types of monomers: a hydrophilic monomer (for example methacrylic acid) to bring the growing polymer towards the interface, a hydrophobic monomer to vary the mechanical properties of the wall of the microcapsules, and a compound di or tri (meth) acrylate type to obtain a crosslinked material.
  • a hydrophilic monomer for example methacrylic acid
  • a hydrophobic monomer to vary the mechanical properties of the wall of the microcapsules
  • a compound di or tri (meth) acrylate type to obtain a crosslinked material.
  • microcapsules are already used in many technical applications, but their application potential has not yet been fully recognized, and it is a highly emerging sector set to grow significantly from the moment the microcapsule wall meets increasingly stringent criteria in terms of toxicity and recyclability.
  • microcapsules represent micro parts of polymeric materials.
  • microparticles of polymeric materials have been identified as an area of ecological concern, because of their wide dissemination in ecosystems, in soils, in aquatic and maritime ecosystems, to places far from their place of origin. introduction into the ecosystem. This wide spread not only generally harms the organisms present in these ecosystems, but could also have adverse consequences for human health.
  • microcapsules made of degradable polymeric material.
  • the microcapsules used in numerous special applications and capable of being incorporated into numerous products in common use (such as textiles, cosmetic or phytosanitary products) or for technical use (such as paints, varnishes, inks), will not normally be collected at the end of their life, and cannot therefore be subject to biodegradation by composting, as can be envisaged for collected plastic products.
  • the degradability of the plastic materials which constitute the wall of the microcapsules cannot be based on the chemical mechanisms which take place during composting.
  • the problem that the present invention seeks to solve is to present a new type of microcapsule, easy to synthesize, without using toxic and/or expensive raw materials, which is (bio)degradable in the natural environment, which can be used with a large number of active ingredients, which leads to fairly pure polymers, and which provides good external protection to the active ingredient that it is intended to contain.
  • Objects of the invention are to present a new type of microcapsule, easy to synthesize, without using toxic and/or expensive raw materials, which is (bio)degradable in the natural environment, which can be used with a large number of active ingredients, which leads to fairly pure polymers, and which provides good external protection to the active ingredient that it is intended to contain.
  • microcapsules prepared from poly(beta-amino)ester (abbreviated here PBAE) oligomers by radical polymerization This reaction leads to microcapsules comprising a wall made of a crosslinked polymer of the PBAE type.
  • an O/W emulsion (oil in water) comprising at least one so-called active substance, a surfactant, at least one poly(beta-amino ester) prepolymer (functionalized at chain ends by acrylate functions) and optionally one or two vinyl monomers X1 and/or X2, the polymerization is initiated within said emulsion, and the polymerization reaction is allowed to continue.
  • the monomers X1 and/or X2 which are optional, are selected from (meth)acrylates.
  • a polymerization initiator is in the internal phase and/or in the aqueous phase.
  • Poly(beta-amino esters) are known as such and have been widely used in recent years (Lynn, DM; Langer, RJ Am. Chem. Soc. 2000, 122 (44), 10761-10768.; Liu , Y.; Li, Y.; Keskin, D.; Shi, L. Adv. Healthcare Mater. 2018, 2 (2), 1801359-24) thanks to their biocompatibility and biodegradability properties, and today they represent a family of materials which has many applications such as biomaterials (for example as a carrier of anticancer molecules, as an antimicrobial material, and for tissue engineering).
  • biomaterials for example as a carrier of anticancer molecules, as an antimicrobial material, and for tissue engineering.
  • linear or cross-linked PBAEs are relatively stable in a neutral medium but degrade more rapidly by hydrolysis of the ester functions at acidic and/or basic pH. This phenomenon of hydrolysis leads to the release of small molecules such as bis(P-amino acid)s and diols when linear PBAEs are used; these molecules are known to be non-toxic with respect to mammalian cells, and of little influence on the metabolism of healthy cells.
  • the microcapsules having a polymer wall of the PBAE type are synthesized by radical polymerization.
  • the inventors have found that this process, applicable to various active ingredients to be encapsulated, makes it possible to prepare stable microcapsules which can be isolated by drying and which have the property of being (bio)degradable.
  • the prepolymer is a beta-aminoester prepolymer (the latter being abbreviated here as BAE), and preferably a branched PBAE prepolymer.
  • microencapsulation process comprises the following steps:
  • steps (a) and (b) can be reversed.
  • the presence of a polymerization initiator is necessary, it can be in the oily phase and/or in the aqueous phase.
  • Said oily phase is advantageously a homogeneous phase.
  • Said prepolymer of a poly(beta-aminoester) can be prepared by solution polymerization of multi-acrylate and multi-amine compounds. It is soluble in an oily phase.
  • a first object of the invention is a process for manufacturing microcapsules comprising a wall containing a so-called active substance, process in which: a prepolymer of a poly(beta-aminoester) is supplied, said active substance, optionally one or two monomers X1 and/or X2, a polymerization initiator and an aqueous solution of at least one surfactant; an oily phase is prepared comprising said prepolymer, said active substance and the monomer(s) X1 and/or X2, if present; knowing that said polymerization initiator can be introduced into said oily phase and/or into said aqueous solution; an emulsion of O/W type is prepared by adding said oily phase to said aqueous solution of surfactant; the polymerization is triggered within said emulsion, the polymerization reaction is allowed to continue.
  • Said microcapsules have a biodegradable polymer wall.
  • Said polymer is a crosslinked polymer of the poly(beta-amino ester) type.
  • X1 and/or X2 monomers are optional, the prepolymer of a poly(beta-aminoester) being capable of polymerizing on itself, especially if it has been prepared by a process which will be described below. It is preferred that the cumulative mass of monomers X1 and X2 does not exceed 40% of the total mass of monomers X1 + X2 and of the PBAE prepolymer.
  • Said monomer X1 is selected from vinyl monomers. It can be selected so as to obtain a microcapsule wall having desired properties.
  • a monomer X1 such as methyl methacrylate or isobornyl methacrylate increases the value of the temperature of glass transition Tg of the polymer obtained, whereas the use of a monomer X1 such as butyl methacrylate or a linear alkyl acrylate decreases the value of Tg of the polymer obtained.
  • Said X2 monomer is also selected from vinyl monomers, but it is a monomer of polymerizable surfactant type (“polymerizable surfactant”, also called “surfmer”) or reactive surfactant.
  • polymerizable surfactant also called “surfmer”
  • These X2 monomers may or may not be charged: they may be neutral with PEG or alcohol functions, anionic with a carboxylic acid such as acrylic acid, methacrylic acid, or cationic, or even zwitterionic (for example molecules of the 3-[[ 2-(Acryloyloxy)ethyl]-dimethylammonio]propane-1-sulfonate).
  • Said poly(beta-aminoester) prepolymer can be prepared by reaction between an amine and a multiacrylate. Said prepolymer must be a prepolymer soluble in the active phase.
  • Said amine is selected from functional primary amines and/or functional secondary amines, and more particularly from the group formed by: primary amines R—NH2 advantageously selected from the group formed by: primary amines R—NH2; primary diamines of the NH2(CH2) n NH2 type where n is an integer which can typically be between 1 and 20, and which is preferably 2 or 6; primary diamines comprising an aromatic core such as meta-xylylene diamine; primary (multi)amines such as tris(2-aminoethyl)amine; secondary diamines such as piperazine; (multi)amines containing primary and secondary amine functions such as tetraethylene pentamine; polymers containing primary and/or secondary amine functions such as polyethylene imine.
  • primary (multi)amine is meant any compound comprising at least two primary amine functions.
  • the wall of the microcapsules thus prepared can be modified by adding a layer of polymer deposited on the surface of the microcapsules. This deposition can be done by adding a polymer dispersed in an aqueous phase which will be deposited on the surface of the capsules.
  • polysaccharides for example cellulose, starch, alginates, chitosan
  • their derivatives for example cellulose, starch, alginates, chitosan
  • Another possibility for modifying the wall of the microcapsules is to modify it by adding a radical initiator in the aqueous phase and/or in the oily phase.
  • a last possibility is to react the residual amine functions on the surface with water-soluble monofunctional acrylates to modify the surface state of the microcapsules.
  • Another object of the invention are microcapsules capable of being obtained by the process according to the invention. tricks
  • Figure 1 shows the general diagram of the process according to the invention.
  • the four-digit numerals designate steps in this process.
  • the ingredient in parentheses is optional, the ingredient marked with an asterisk (*) can be present in either solution, but is necessary for the reaction to take place.
  • * asterisk
  • oligomer and "prepolymer” are used as defined in the Compendium of Chemical Terminology ("Gold Book”) published by the International Union of Pure and Applied Chemistry (IUPAC), version 2.3.3 (2014-02-24); the IUPAC terminology work is a reference for a person skilled in the field of chemistry.
  • an "oligomer” is a substance composed of oligomeric molecules; an "oligomeric molecule” is a molecule of intermediate relative molecular mass, the structure of which consists essentially of a small plurality of units derived, actually or conceptually, from molecules of lower relative molecular mass.
  • a molecule is considered to have an "intermediate” molecular mass if its properties change significantly when one or a few of these units are removed.
  • a “pre-polymer” is a polymer or oligomer composed of pre-polymer molecules;
  • a “pre-polymer molecule” is a macromolecule or an oligomeric molecule capable of entering, via reactive terminal groups, into subsequent polymerization, contributing more than one monomer unit to at least one chain of the final macromolecule .
  • FIG. 1 shows a general diagram of the process according to the invention.
  • the aqueous solution of the surfactant (1000) is prepared.
  • An organic solution (also called “oily phase”) is also prepared comprising the phase to be encapsulated (which comprises the so-called active substance), the monomer(s) X1 and/or X2 (which are optional) and a prepolymer of PBAE (1002) .
  • the initiator which is necessary for the reaction, is in the aqueous solution 1000 and/or in the oily phase 1002.
  • this oily phase 1002 which is an organic solution
  • an emulsion 1022 of the O/W type oil in water, in English "Oil in Water”, according to a designation known to those skilled in the art.
  • said organic solution is the so-called oily phase (O phase).
  • said emulsion is slowly heated with stirring to a temperature sufficient to trigger radical polymerization.
  • the polymerization reaction leads to a reaction mixture 1042 from which gradually forms in step 1050 a heterogeneous mixture 1052 called slurry which comprises, in aqueous-based suspension, the microcapsules containing the phase to be encapsulated.
  • Step 1050 typically involves a temperature of reaction mixture 1042 above about 30°C, typically between 30°C and 100°C.
  • a temperature between about 30°C and about 90°C is preferred, and even more preferably between about 60°C and about 80°C.
  • This process can be applied to different X1 and/or X2 monomers and to different PBAE prepolymers.
  • said poly(beta-aminoester) prepolymer can be prepared by reaction between an amine and a multiacrylate.
  • diacrylates which can be used: 1,6-hexanediol diacrylate (HDDA), Tripropylene glycol diacrylate (TPGDA), Tricyclodecan dimethanol diacrylate, bisphenol A-diethyl ether diacrylate (BHEDA).
  • TMPTA Trimethylol propane triacrylate
  • DPHPA dipentaerythritol penta/hexa acrylate
  • PETEA pentaerythritol tetraacrylate
  • tris(2-hydroxyethyl)isocyanate triacrylate trimethylpropane tetraacrylate .
  • an initiator is necessary. It can be introduced into the oily phase and/or into the aqueous phase. An azo type initiator can be used.
  • 2,2'-Azobis[2-methyl-N-(2-hydroxyethyl)propionamide] (CAS no: 61551-69-7), 2,2'-Azobis(2-methylpropionamidine)dihydrochloride (CAS no: 2997 -92-4), 2,2'-Azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride (CAS no: 27776-21-2), 4,4'-Azobis(4-cyanovaleric acid ) (CAS RN: 2638-94-0), 2,2'-Azobis[2-(2-imidazolin-2-yl)propane] (CAS RN: 20858-12-2), 2,2'-Azobis [N-(2-carboxyethyl)-2-methylpropionamidine]tetrahydrate (CAS no: 1400693-47-1).
  • red-ox systems comprising a compound of the potassium persulfate (known by the acronym KPS) or ammonium persulfate (known by the acronym APS) type and an inorganic (for example of the FeSO4 type) or organic (for example of the metabisulphite type).
  • KPS potassium persulfate
  • APS ammonium persulfate
  • inorganic for example of the FeSO4 type
  • organic for example of the metabisulphite type
  • the organic core of the microcapsules can consist of an organic phase comprising an active substance.
  • this organic (oily) phase will be enclosed by the polymeric wall of the microcapsule, which protects it from the environment.
  • Said organic (oily) phase may consist of said active substance, or said active substance may form part of said organic (oily) phase, in which it may in particular be dissolved.
  • substance active refers here to the specific purpose for which the microcapsules are intended to be used; as a general rule, given the specificity of the microcapsule product, this purpose is always known during their manufacture.
  • the active substance can be selected in particular from oils (pure or possibly containing other molecules in solution or in dispersion), such as essential oils, natural and edible oils, vegetable and edible oils, liquid alkanes, esters and fatty acids, or also from dyes, inks, paints, thermochromic and/or photochromic substances, fragrances, products with a biocidal effect, products with a fungicide effect, products with an antiviral effect, products with a phytosanitary effect , active pharmaceutical ingredients, products with cosmetic effects, glues; these active principles possibly being in the presence of an organic vector.
  • oils pure or possibly containing other molecules in solution or in dispersion
  • essential oils such as essential oils, natural and edible oils, vegetable and edible oils, liquid alkanes, esters and fatty acids, or also from dyes, inks, paints, thermochromic and/or photochromic substances, fragrances, products with a biocidal effect, products with a fungicide effect, products with an antiviral effect, products with a phytosanitary effect ,
  • natural products such as essential oils of eucalyptus, lemongrass, lavender, mint, cinnamon, camphor, anise, lemon, orange, which may have been obtained by extraction from plant material, or by synthesis.
  • long chain alkanes for example tetradecane
  • hydrophobic compound which will thus be naturally dispersed in the form of an emulsion of hydrophobic drops suspended in an aqueous phase.
  • the wall of the microcapsules can be modified by adding a surface coating thereof. This deposition can be done by adding a polymer dispersed in an aqueous phase which will be deposited on the surface of the capsules. Among these polymers, mention may be made of polysaccharides (cellulose, starch, alginates, chitosan, etc.) and their derivatives. This addition can be done either hot or at room temperature at the end of the interfacial polymerization step.
  • the wall of the microcapsules can also be modified by adding a radical initiator either in the aqueous phase or in the organic (oily) phase. The addition to the organic phase can be done before and/or after the preparation of the PBAE wall.
  • the radical initiator can be diluted in acetone to promote transport into the microcapsules.
  • These initiators can be azo compounds (such as azobis-isobutyronitrile and its derivatives) or peroxide compounds (lauroyl peroxide, etc.).
  • these may in particular be water-soluble azo compounds (such as 2,2'-Azobis(2-methylpropionamidine)dihydrochloride) or red-ox systems (ammonium persulphate or potassium in combination with potassium metabisulphate for example).
  • the radicals resulting from the decomposition of radical initiators can add to the residual acrylate functions of the wall of PBAE and mechanically reinforce it and/or modify its polarity.
  • Another way of modifying the wall of the microcapsules is to react the residual amine functions on the surface with water-soluble monofunctional acrylates.
  • water-soluble monofunctional acrylates that can be used, mention may be made of acrylic acid, 2-carboxyethyl acrylate, 2-(dimethylamino)ethyl acrylate, 2-hydroxyethyl acrylate, poly(ethylene glycol) acrylates, salt of potassium from 3-sulfopropyl acrylate.
  • nonionic surfactants such as polyvinyl pyrrolidone (PVP), polyethylene glycol sorbitan monopalmitate (known under the trade mark Tween 20TM), polyethylene glycol sorbitan monolaurate (known under the trade mark Tween 40 TM), polyethylene glycol sorbitan monooleate (known under the trademark Tween 80TM), or ionic surfactants, such as partially neutralized salts of polyacrylic acids such as sodium or potassium polyacrylate or polymethacrylate, or lignosulfate sodium. It is possible to use copolymers of acrylic acid - alkyl acrylate, polyacrylic acid, polyoxyalkylene fatty esters. It is possible to use the surfactants which are cited in Encyclopedia of Chemical Technology, volume 8, pages 912 to 915, and which have a hydrophilic-lipophilic balance (according to the HLB system) equal to or greater than 10.
  • PVP polyvinyl pyrrolidone
  • Tween 20TM polyethylene glyco
  • macromolecular surfactants can also be used. Mention may be made, for example, of polyacrylates, methylcelluloses, carboxymethylcelluloses, polyvinyl alcohol (PVA) optionally partially esterified or etherified, polyacrylamide or synthetic polymers having anhydride or carboxylic acid functions such as ethylene/maleic anhydride copolymers. Preferably, polyvinyl alcohol can be used as surfactant.
  • aqueous solutions of a cellulosic compound it may be necessary, for example in the case of aqueous solutions of a cellulosic compound, to add a little alkaline hydroxide such as sodium hydroxide, in order to facilitate its dissolution; it is also possible to use such cellulosic compounds directly in the form of their sodium salts, for example.
  • Amphiphilic copolymers of the Pluronics type can also be used.
  • aqueous solutions containing from 0.1 to 5% by weight of surfactant are used.
  • the size of the droplets is a function of the nature and the concentration of the surfactant and of the speed of agitation, the latter being chosen all the greater as smaller average diameters of the droplets are desired.
  • the stirring speed during the preparation of the emulsion is 5,000 to 10,000 revolutions per minute.
  • the emulsion is usually prepared at a temperature between 15°C and 95°C.
  • the agitation by turbine is stopped and the emulsion is agitated using a slower agitator of the usual type, for example of the frame agitator type, typically at a speed of order of 150 to 1,500 revolutions per minute.
  • the process according to the invention thus leads to homogeneous and fluid suspensions containing, depending on the fillers introduced, generally from 20% to 80% by weight of microcapsules having an average diameter of 100 nm to 100 ⁇ m.
  • the diameter of the microcapsules can preferably be between 1 ⁇ m and 50 ⁇ m, and even more preferably between 10 ⁇ m and 40 ⁇ m.
  • the microcapsules, and in particular their wall, according to the invention are (bio)degradable.
  • the biodegradation can be determined for example by one of the methods described in the document “OECD Guidelines for the Testing of Chemicals: Ready Biodegradability” (adopted by the Council of the OECD on July 17, 1992).
  • the manometric respirometry test (method 301 F) can be used.
  • this test is carried out on emptied and washed microcapsules, so that the biodegradation of the content of the microcapsules does not interfere with the test, the purpose of which is to characterize the biodegradation of the material forming the wall of the microcapsules.
  • the microcapsule according to the invention shows a biodegradation of at least 60%, preferably of at least 70%, more preferably of at least 80%, measured after an incubation of 10 days using the said 301 F method.
  • the microcapsules according to the invention preferably show a biodegradation of at least 70%, preferably of at least 80%, and even more preferably of at least 90%, and even more preferably of at least 95%.
  • 1,6-hexanediol diacrylate monomer 80% Aldrich, 3.0 g
  • tetraethylene pentamine Technical Aldrich grade, 0.4 g
  • the reaction mixture was heated and stirred at 40°C for 1 h, then for 30 min at room temperature, to obtain a mixture comprising the viscous branched poly(beta-aminoester) prepolymer and the excess of 1,6- hexanediol diacrylate.
  • This reaction is illustrated in the reaction scheme below.
  • a perfume, methylacrylic acid, methyl methacrylate and lauryl peroxide were placed in the bottle containing the branched PBAE and the excess 1,6-hexandiol diacrylate, as obtained in step (i) below. above.
  • This mixture was stirred at 30°C until a homogeneous solution was obtained. It was then gradually added to a PVA solution (2%) prepared beforehand, preheated to 30°C.
  • the resulting mixture was homogenized using an UltraturraxTM at about 700 rpm to 800 rpm for 4 min to 10 min at 30°C to form an emulsion.
  • a batch of microcapsules prepared according to Example 1 was supplied.
  • the dry microcapsules but containing essential oil (Eucalyptus) were subjected to the biodegradability test described in document OECD 301 ("OECD Guideline for the Testing of Chemicals: Easy Biodegradability") using the method 301 F (Manometric respirometry test). After an incubation period of nineteen days the percentage of biodegradation was 70%.
  • a batch of microcapsules prepared according to Example 1 was supplied.
  • the microcapsules were opened, emptied and washed. They were then subjected to the biodegradability test described in document OECD 301 (“OECD Guideline for the Testing of Chemicals: Easy Biodegradability”) using method 301 F (Manometric respirometry test). After an incubation period of twenty-eight days the percentage of biodegradation was 85%.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plant Pathology (AREA)
  • Environmental Sciences (AREA)
  • Zoology (AREA)
  • Pest Control & Pesticides (AREA)
  • Birds (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Dentistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Materials Engineering (AREA)
  • Molecular Biology (AREA)
  • Dermatology (AREA)
  • Biophysics (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Medicinal Preparation (AREA)

Abstract

Method for manufacturing microcapsules comprising a wall made of polymer material containing an active substance, comprising the following steps: - preparing an oil phase comprising a poly(beta-aminoester) prepolymer, and an active substance constituting the phase to be encapsulated; - preparing an aqueous phase comprising at least one surfactant; - preparing an O/W (oil in water) emulsion by adding the oil phase to the aqueous phase; and - initiating radical polymerisation within the emulsion. A polymerisation initiator must be present in the aqueous and/or oil phase.

Description

PROCEDE DE PREPARATION DE MICROCAPSULES BIODEGRADABLES ET MICROCAPSULES AINSI OBTENUES METHOD FOR PREPARING BIODEGRADABLE MICROCAPSULES AND MICROCAPSULES THUS OBTAINED
Domaine technique de l’invention Technical field of the invention
La présente description concerne le domaine des microcapsules, et plus particulièrement les procédés de fabrication de microcapsules en vue d’enfermer des substances actives telles que des huiles essentielles. Plus précisément elle a pour objet une méthode de préparation de microcapsules biodégradables. Cette méthode procède par polymérisation radicalaire de composés multifonctionnels dans une émulsion de type O/W (huile dans l’eau) conduisant à une paroi de type poly(beta-amino ester) réticulée qui est biodégradable. L’invention concerne également les microcapsules biodégradables obtenues par cette méthode. The present description concerns the field of microcapsules, and more particularly the processes for manufacturing microcapsules with a view to enclosing active substances such as essential oils. More specifically, it relates to a method for preparing biodegradable microcapsules. This method proceeds by radical polymerization of multifunctional compounds in an O/W type emulsion (oil in water) leading to a crosslinked poly(beta-amino ester) type wall which is biodegradable. The invention also relates to the biodegradable microcapsules obtained by this method.
Etat de la technique State of the art
La microencapsulation est un procédé permettant de protéger une substance réactive, sensible ou volatile (appelée ici « principe actif ») dans une capsule dont la taille peut varier du nanomètre au micromètre. Le cœur de la capsule est donc isolé de son environnement extérieur par une paroi. Cela permet de retarder son évaporation, son relargage ou sa détérioration ; il existe de nombreuses applications qui exploitent ces effets techniques lorsque les microcapsules sont incorporées dans une formulation complexe ou appliquées sur un produit. Microencapsulation is a process making it possible to protect a reactive, sensitive or volatile substance (called here “active principle”) in a capsule whose size can vary from nanometer to micrometer. The core of the capsule is therefore isolated from its external environment by a wall. This makes it possible to delay its evaporation, its release or its deterioration; there are many applications that exploit these technical effects when the microcapsules are incorporated into a complex formulation or applied to a product.
A titre d’exemple, les microcapsules peuvent servir pour répandre de manière contrôlée le principe actif qu’elles renferment, qui peut notamment être un actif biocide, un insecticide, un désinfectant, ou une fragrance ; cela peut se faire par diffusion à travers la paroi ou sous l’influence d’une force externe qui rompt la paroi. Dans certaines applications la libération du principe actif se fait sous l’influence d’une force externe qui casse la paroi des microcapsules ; ainsi on peut libérer une colle (voir par exemple WO 03/016369 - Henkel), ou un réactif (voir par exemple WO 2009/115671 - Catalyse). By way of example, the microcapsules can be used to spread in a controlled manner the active principle that they contain, which can in particular be a biocidal active ingredient, an insecticide, a disinfectant, or a fragrance; this can be done by diffusion through the wall or under the influence of an external force which breaks the wall. In certain applications, the release of the active principle takes place under the influence of an external force which breaks the wall of the microcapsules; thus, an adhesive can be released (see for example WO 03/016369 - Henkel), or a reagent (see for example WO 2009/115671 - Catalysis).
Dans d’autres applications, le contenu de la microcapsule ne peut pas s’échapper mais son changement de couleur sous l’effet d’une variation de température (thermochromie) ou d’irradiation UV (photochromie) est visible de l’extérieur (voir par exemple WO 2013/114 025 - Gem Innov, ou WO 2007/070118 - Kimberly-Clark, ou EP 1 084 860 - The Pilot Ink Co.). Il existe plusieurs techniques pour préparer des microcapsules. Les principales sont l’atomisation (en anglais : « spray-drying »), la polymérisation interfaciale, l’évaporation de solvant, l’auto-assemblage de polymères par la technique Layer by Layer (LbL) et la préparation de colloïdosomes. Toutes ces techniques permettent d’obtenir des microcapsules stables d’un diamètre moyen d’environ 10 pm. La polymérisation interfaciale est néanmoins la technique prépondérante car elle permet la préparation rapide et en une seule étape de microcapsules dont la paroi est suffisamment solide pour que celles-ci soient isolées et ainsi être utilisés dans de nombreuses applications. In other applications, the contents of the microcapsule cannot escape but its color change under the effect of a variation in temperature (thermochromy) or UV irradiation (photochromy) is visible from the outside ( see for example WO 2013/114 025 - Gem Innov, or WO 2007/070118 - Kimberly-Clark, or EP 1 084 860 - The Pilot Ink Co.). There are several techniques for preparing microcapsules. The main ones are atomization (in English: "spray-drying"), interfacial polymerization, solvent evaporation, self-assembly of polymers by the Layer by Layer (LbL) technique and the preparation of colloidosomes. All these techniques make it possible to obtain stable microcapsules with an average diameter of approximately 10 μm. Interfacial polymerization is nevertheless the preponderant technique because it allows the rapid preparation and in a single step of microcapsules whose wall is strong enough for them to be isolated and thus be used in many applications.
Plusieurs familles de polymère sont classiquement utilisées pour fabriquer la paroi des microcapsules (Perignon, C. et al., Journal of Microencapsulation 2015, 32 (1), 1-15), comme les polyamides (PA), les polyurethanes (PU) ou les polyurées. L’élaboration des parois des microcapsules en PA utilise en général des monomères du type diamine (hexamethylène diamine par exemple) et chlorure d’acyle (le chlorure de sebacoyle par exemple), tandis que celles en PU fait appel à des monomères du type di-isocyanate (HDI, IPDI etc.) et diols. Dans le cas des polyurées, on utilise des monomères du type di- isocyanate et diamine ou des di-isocyanates seuls dont l’hydrolyse à l’interface produit les amines permettant la synthèse de la fonction urée. Several polymer families are conventionally used to manufacture the wall of microcapsules (Perignon, C. et al., Journal of Microencapsulation 2015, 32 (1), 1-15), such as polyamides (PA), polyurethanes (PU) or polyureas. The production of the walls of the microcapsules in PA generally uses monomers of the diamine type (hexamethylene diamine for example) and acyl chloride (sebacoyl chloride for example), while those in PU use monomers of the diamine type. -isocyanate (HDI, IPDI etc.) and diols. In the case of polyureas, monomers of the diisocyanate and diamine type or diisocyanates alone are used, the hydrolysis of which at the interface produces the amines allowing the synthesis of the urea function.
A titre d’exemple, le document WO 2009/115671 précité décrit la formation de parois de microcapsule par polycondensation interfaciale, à partir de différents mélanges de monomères : hexaméthylène diisocyanate (HMDI) et éthylène diamine ; tétraéthylortho- silicate (TEO) et 3-(triméthoxysilyl)propylméthacrylate (MPTS) ; 2,4-tolylènediisocyanate (TDI) et 1,3 phénylènediamine ; 2,4-toluène diisocyanate et 1,3-phénylène diamine. By way of example, the aforementioned document WO 2009/115671 describes the formation of microcapsule walls by interfacial polycondensation, from different mixtures of monomers: hexamethylene diisocyanate (HMDI) and ethylene diamine; tetraethylorthosilicate (TEO) and 3-(trimethoxysilyl)propylmethacrylate (MPTS); 2,4-tolylenediisocyanate (TDI) and 1,3 phenylenediamine; 2,4-toluene diisocyanate and 1,3-phenylene diamine.
Il existe déjà quelques travaux rapportant la préparation de microcapsules par polymérisation interfaciale utilisant d’autres types de polymères. On peut citer par exemple, les travaux de J. Bernard sur la préparation de glyconanocapsules par cycloaddition d’azoture - alcyne catalysée par le cuivre (R. Roux et al., J. ACS Macro Lett. 2012, 1 (8), 1074-1078), ou les travaux de K. Landfester (Siebert et al. Chem. Commun. 2012, 48, 5470-5472). L. Shi et al. (J. Appl. Polym. Sci. 2016, 133 (36), 168-7) ainsi que D. Patton et al. (ACS Appl. Mater. Interfaces 2017, 9 (4), 3288-3293) qui ont aussi pu préparer des microcapsules par chimie thiol-ene amorcées par respectivement une base et un photoamorceur. L’inconvénient de la polymérisation interfaciale est la possibilité de réactions secondaires entre l’amine et un groupement carbonyle. Ainsi, en fonction des monomères employés et des conditions réactionnelles choisies, la polymérisation interfaciale peut conduire à des mélanges de polymères assez complexes. There are already some works reporting the preparation of microcapsules by interfacial polymerization using other types of polymers. Mention may be made, for example, of the work of J. Bernard on the preparation of glyconanocapsules by azide-alkyne cycloaddition catalyzed by copper (R. Roux et al., J. ACS Macro Lett. 2012, 1 (8), 1074 -1078), or the work of K. Landfester (Siebert et al. Chem. Commun. 2012, 48, 5470-5472). L.Shi et al. (J. Appl. Polym. Sci. 2016, 133 (36), 168-7) as well as D. Patton et al. (ACS Appl. Mater. Interfaces 2017, 9 (4), 3288-3293) who were also able to prepare microcapsules by thiol-ene chemistry primed with a base and a photoinitiator respectively. The disadvantage of interfacial polymerization is the possibility of secondary reactions between the amine and a carbonyl group. Thus, depending on the monomers employed and the reaction conditions chosen, the interfacial polymerization can lead to mixtures of quite complex polymers.
On sait que la polymérisation radicalaire est susceptible de conduire à des polymères de bonne pureté, ou avec moins de réactions secondaires, que d’autres techniques de polymérisation. La demande de brevet US 2015/0017214 A1 (Tagasago) décrit un procédé de fabrication de microcapsules par polymérisation radicalaire dans lequel deux ou trois types de monomères vinyliques sont introduits dans la phase (cœur) hydrophobe d’une émulsion de type O/W (huile dans l’eau). On ajoute aussi un amorceur radicalaire pour effectuer la polymérisation dans le cœur de l’émulsion. Ce procédé utilise au moins trois types de monomères : un monomère hydrophile (par exemple l’acide méthacrylique) pour emmener le polymère en croissance vers l’interface, un monomère hydrophobe pour faire varier les propriétés mécaniques de la paroi des microcapsules, et un composé de type di ou tri (méth)acrylate pour obtenir un matériau réticulé. It is known that radical polymerization is likely to lead to polymers of good purity, or with fewer side reactions, than other polymerization techniques. Patent application US 2015/0017214 A1 (Tagasago) describes a process for manufacturing microcapsules by radical polymerization in which two or three types of vinyl monomers are introduced into the hydrophobic (core) phase of an O/W type emulsion ( oil in water). A radical initiator is also added to carry out the polymerization in the heart of the emulsion. This process uses at least three types of monomers: a hydrophilic monomer (for example methacrylic acid) to bring the growing polymer towards the interface, a hydrophobic monomer to vary the mechanical properties of the wall of the microcapsules, and a compound di or tri (meth) acrylate type to obtain a crosslinked material.
D’une manière générale, un assez large spectre de matériaux polymériques s’offre donc à l’homme du métier pour sélectionner le type de microcapsule approprié pour une utilisation donnée. Ainsi, les microcapsules sont déjà utilisées dans de nombreuses applications techniques, mais leur potentiel d’application n’a pas encore entièrement reconnu, et c’est un secteur fortement émergent appelé à croître de manière significative à partir du moment où la paroi des microcapsules répond aux critères de plus en plus sévères en termes de toxicité et de recyclabilité. In general, a fairly broad spectrum of polymeric materials is therefore available to those skilled in the art to select the type of microcapsule appropriate for a given use. Thus, microcapsules are already used in many technical applications, but their application potential has not yet been fully recognized, and it is a highly emerging sector set to grow significantly from the moment the microcapsule wall meets increasingly stringent criteria in terms of toxicity and recyclability.
Cependant, les microcapsules représentent des micro parti eu les de matières polymériques. Depuis quelques années, les microparticules de matières polymériques ont été identifiées comme un domaine de préoccupation écologique, à cause de leur large dissémination dans les écosystèmes, dans les sols, dans les écosystèmes aquatiques et maritimes, jusqu’à des endroits éloignés de leur lieu d’introduction dans l’écosystème. Cette large dissémination nuit non seulement d’une manière générale aux organismes présents dans ces écosystèmes, mais pourrait également avoir des conséquences néfastes pour la santé humaine. On voit déjà annoncer des règlementations de plus en plus sévères qui restreignent l’utilisation de matières plastiques susceptibles de former des microparticules lors de leur dégradation en situation dans un milieu naturel, et a fortiori de matières plastiques utilisées d’emblée sous la forme de microparticules. Pour des raisons écologiques il peut paraître antinomique de chercher à développer un nouveau produit consistant en microparticules polymériques. Il est par conséquent apparu désirable de disposer de microcapsules en matériau polymérique dégradable. On note que les microcapsules, utilisées dans de nombreuses applications spéciales et susceptibles d’être incorporées dans de nombreux produits d’usage courant (tels que des matières textiles, des produits cosmétiques ou phytosanitaires) ou d’usage technique (tels que des peintures, vernis, encres), ne feront normalement pas l'objet d’une collecte en fin de vie, et ne peuvent donc faire l’objet d’une biodégradation par compostage, comme cela peut être envisagé pour des produits plastiques collectés. Ainsi, la dégradabilité des matières plastiques qui constituent la paroi des microcapsules ne peut pas se baser sur les mécanismes chimiques qui se déroulent lors d’un compostage. Dans ce contexte, la question de savoir si la dégradabilité des microcapsules fait intervenir un mécanisme biologique est assez peu importante ; ce qui importe est leur dégradabilité dans un écosystème, quel que soit le mécanisme chimique de cette dégradation. A titre d’exemple, une fermentation serait une biodégradation, alors qu’une simple dégradation dans un écosystème sous l’effet de la lumière pourrait être une réaction photochimique indépendante de l’écosystème ; en réalité la situation sera souvent mixte, surtout si la dégradation procède par étapes. Nous utilisons dans ce qui suit l’expression « (bio)dégradable » pour désigner la caractéristique d’un matériau de se dégrader dans un milieu naturel à une échelle assez courte (de l’ordre de semaines ou de l’année), en fonction des caractéristiques de ce milieu naturel et de l’exposition du matériau aux différents agents présents dans ce milieu naturel. However, microcapsules represent micro parts of polymeric materials. In recent years, microparticles of polymeric materials have been identified as an area of ecological concern, because of their wide dissemination in ecosystems, in soils, in aquatic and maritime ecosystems, to places far from their place of origin. introduction into the ecosystem. This wide spread not only generally harms the organisms present in these ecosystems, but could also have adverse consequences for human health. We are already seeing the announcement of increasingly stringent regulations which restrict the use of plastic materials liable to form microparticles during their degradation in a situation in a natural environment, and a fortiori plastic materials used from the outset in the form of microparticles . For ecological reasons, it may seem contradictory to seek to develop a new product consisting of polymeric microparticles. It therefore appeared desirable to have microcapsules made of degradable polymeric material. It should be noted that the microcapsules, used in numerous special applications and capable of being incorporated into numerous products in common use (such as textiles, cosmetic or phytosanitary products) or for technical use (such as paints, varnishes, inks), will not normally be collected at the end of their life, and cannot therefore be subject to biodegradation by composting, as can be envisaged for collected plastic products. Thus, the degradability of the plastic materials which constitute the wall of the microcapsules cannot be based on the chemical mechanisms which take place during composting. In this context, the question of whether the degradability of the microcapsules involves a biological mechanism is relatively unimportant; what matters is their degradability in an ecosystem, regardless of the chemical mechanism of this degradation. For example, a fermentation would be a biodegradation, while a simple degradation in an ecosystem under the effect of light could be a photochemical reaction independent of the ecosystem; in reality the situation will often be mixed, especially if degradation proceeds in stages. In what follows, we use the expression "(bio)degradable" to designate the characteristic of a material to degrade in a natural environment on a fairly short scale (of the order of weeks or a year), in depending on the characteristics of this natural environment and the exposure of the material to the various agents present in this natural environment.
On constate que toutes les microcapsules développées précédemment conduisent à la préparation de chaînes de polymère (polyamide, polyurée, polyuréthane, etc.) qui seront soit enchevêtrées physiquement dans le cas d’une réaction entre composés bifonctionnels, ou alors réticulées dans le cas d’un ou de plusieurs composés multifonctionnels (fonctionnalité > 3). Dans tous les cas (et dans tous les documents de l’état de la technique cités ci-dessus), les parois ne sont pas (bio)dégradables du fait de la nature de la chaine de polymère. It can be seen that all the microcapsules developed previously lead to the preparation of polymer chains (polyamide, polyurea, polyurethane, etc.) which will be either physically entangled in the case of a reaction between bifunctional compounds, or cross-linked in the case of one or more multifunctional compounds (functionality > 3). In all cases (and in all the state-of-the-art documents cited above), the walls are not (bio)degradable due to the nature of the polymer chain.
Le problème que la présente invention cherche à résoudre est de présenter un nouveau type de microcapsules, facile à synthétiser, sans faire appel à des matières premières toxiques et/ou coûteuses, qui soit (bio)dégradable en milieu naturel, qui soit utilisable avec un grand nombre de principes actifs, qui conduit à des polymères assez purs, et qui procure une bonne protection externe au principe actif qu’elle a vocation à renfermer. Objets de l’invention The problem that the present invention seeks to solve is to present a new type of microcapsule, easy to synthesize, without using toxic and/or expensive raw materials, which is (bio)degradable in the natural environment, which can be used with a large number of active ingredients, which leads to fairly pure polymers, and which provides good external protection to the active ingredient that it is intended to contain. Objects of the invention
Lors de leurs travaux de recherche, les inventeurs ont trouvé qu’une possibilité pour obtenir des microcapsules dégradables serait de préparer des parois en polyester, qui est un polymère connu pour sa (bio)dégradabilité. La littérature montre que des études ont déjà été menées sur cette thématique, et il a été montré que la vitesse de réaction entre des chlorures d’acide et des diols était très lente. Ce système est ainsi peu adapté à la polymérisation interfaciale (voir E.M. Hodnett et D.A. Holmer, J Polym Sci, 1962, 58, 1415-21). Des conditions particulières comme l’utilisation du bisphenol A comme diol et/ou une réaction à pH très élevé a permis d’obtenir des microcapsules (voir W. Eareckson, J Polym Sci, 1959, 399-406 ; voir aussi P.W. Morgan et S.L. Kwolek, J Polym Sci, 1959, 299-327) mais ces conditions sont trop contraignantes pour de nombreuses phases internes et/ou applications. De plus la lenteur des réactions de polymérisation nuit à leur usage industriel en termes économiques et de cycles de productions courts ou même en continu. During their research work, the inventors found that one possibility for obtaining degradable microcapsules would be to prepare walls in polyester, which is a polymer known for its (bio)degradability. The literature shows that studies have already been conducted on this topic, and it has been shown that the reaction rate between acid chlorides and diols was very slow. This system is thus poorly suited to interfacial polymerization (see E.M. Hodnett and D.A. Holmer, J Polym Sci, 1962, 58, 1415-21). Special conditions such as the use of bisphenol A as diol and/or a very high pH reaction made it possible to obtain microcapsules (see W. Eareckson, J Polym Sci, 1959, 399-406; see also P.W. Morgan and S.L. Kwolek, J Polym Sci, 1959, 299-327) but these conditions are too restrictive for many internal phases and/or applications. In addition, the slowness of the polymerization reactions harms their industrial use in economic terms and short or even continuous production cycles.
Ainsi, les inventeurs n’ont pas poursuivi dans cette voie. Thus, the inventors did not pursue this path.
Selon l’invention, le problème est résolu en utilisant des microcapsules préparés à partir d’oligomères de poly(beta-amino)ester (abrégé ici PBAE) par polymérisation radicalaire. Cette réaction conduit à des microcapsules comportant une paroi en un polymère réticulé de type PBAE. According to the invention, the problem is solved by using microcapsules prepared from poly(beta-amino)ester (abbreviated here PBAE) oligomers by radical polymerization. This reaction leads to microcapsules comprising a wall made of a crosslinked polymer of the PBAE type.
Selon l’invention, on approvisionne une émulsion O/W (huile dans l’eau) comprenant au moins une substance dite active, un tensioactif, au moins un pré-polymère de poly(beta- amino ester) (fonctionnalisé en extrémités de chaines par des fonctions acrylate) et éventuellement un ou deux monomères vinyliques X1 et/ou X2, on déclenche la polymérisation au sein de ladite émulsion, et on laisse la réaction de polymérisation se poursuivre. D’une manière générale les monomères X1 et/ou X2, qui sont optionnels, sont sélectionné parmi les (méth)acrylates. Un amorceur de polymérisation se trouve dans la phase interne et/ou dans la phase aqueuse. According to the invention, an O/W emulsion (oil in water) comprising at least one so-called active substance, a surfactant, at least one poly(beta-amino ester) prepolymer (functionalized at chain ends by acrylate functions) and optionally one or two vinyl monomers X1 and/or X2, the polymerization is initiated within said emulsion, and the polymerization reaction is allowed to continue. In general, the monomers X1 and/or X2, which are optional, are selected from (meth)acrylates. A polymerization initiator is in the internal phase and/or in the aqueous phase.
Les poly(beta-amino ester)s sont connus en tant que tels et ont été beaucoup utilisés ces dernières années (Lynn, D. M.; Langer, R. J. Am. Chem. Soc. 2000, 122 (44), 10761- 10768. ; Liu, Y.; Li, Y.; Keskin, D.; Shi, L. Adv. Healthcare Mater. 2018, 2 (2), 1801359- 24) grâce à leur propriétés de biocompatibilité et biodégradabilité, et ils représentent aujourd’hui une famille de matériaux qui connaît de nombreuses applications comme biomatériaux (par exemple comme vecteur de molécules anticancéreuses, comme matériau antimicrobien, et pour l’ingénierie tissulaire). Poly(beta-amino esters) are known as such and have been widely used in recent years (Lynn, DM; Langer, RJ Am. Chem. Soc. 2000, 122 (44), 10761-10768.; Liu , Y.; Li, Y.; Keskin, D.; Shi, L. Adv. Healthcare Mater. 2018, 2 (2), 1801359-24) thanks to their biocompatibility and biodegradability properties, and today they represent a family of materials which has many applications such as biomaterials (for example as a carrier of anticancer molecules, as an antimicrobial material, and for tissue engineering).
On sait également que les PBAE linéaires ou réticulés sont relativement stables en milieu neutre mais se dégradent plus rapidement par hydrolyse des fonctions ester à pH acide et/ou basique. Ce phénomène d’hydrolyse conduit à la libération de petites molécules comme des bis(P-amino acid)s et des diols lorsque des PBAE linéaires sont utilisés; ces molécules sont connues pour être non toxiques vis à vis des cellules mammaliennes, et de faible influence sur le métabolisme des cellules saines. It is also known that linear or cross-linked PBAEs are relatively stable in a neutral medium but degrade more rapidly by hydrolysis of the ester functions at acidic and/or basic pH. This phenomenon of hydrolysis leads to the release of small molecules such as bis(P-amino acid)s and diols when linear PBAEs are used; these molecules are known to be non-toxic with respect to mammalian cells, and of little influence on the metabolism of healthy cells.
Selon une caractéristique essentielle de la présente invention, les microcapsules présentant une paroi en polymère de type PBAE sont synthétisées par polymérisation radicalaire. Les inventeurs ont trouvé que ce procédé, applicable à différents principes actifs à encapsuler, permet de préparer des microcapsules stables pouvant être isolées par séchage et qui ont la propriété d’être (bio)dégradables. According to an essential characteristic of the present invention, the microcapsules having a polymer wall of the PBAE type are synthesized by radical polymerization. The inventors have found that this process, applicable to various active ingredients to be encapsulated, makes it possible to prepare stable microcapsules which can be isolated by drying and which have the property of being (bio)degradable.
Selon une autre caractéristique essentielle du procédé selon l’invention, le pré-polymère est un prépolymère de béta-aminoester (ce dernier étant abrégé ici BAE), et de préférence un prépolymère de PBAE branché. According to another essential characteristic of the process according to the invention, the prepolymer is a beta-aminoester prepolymer (the latter being abbreviated here as BAE), and preferably a branched PBAE prepolymer.
Le procédé de microencapsulation selon l’invention comprend les étapes suivantes : The microencapsulation process according to the invention comprises the following steps:
(a) Préparation d’une phase huileuse comprenant : un pré-polymère de béta-aminoester, une substance active, possiblement en solution organique, constituant la phase à encapsuler, éventuellement un ou deux monomères X1 et/ou X2, éventuellement un amorceur de polymérisation ; (a) Preparation of an oily phase comprising: a beta-aminoester prepolymer, an active substance, possibly in organic solution, constituting the phase to be encapsulated, optionally one or two monomers X1 and/or X2, optionally an initiator of polymerization;
(b) Préparation d’une phase aqueuse comprenant au moins un tensioactif ; et éventuellement un amorceur de polymérisation ; (b) Preparation of an aqueous phase comprising at least one surfactant; and optionally a polymerization initiator;
(c) Préparation d’une émulsion de type O/W (huile dans l’eau) par ajout de ladite phase huileuse à ladite phase aqueuse ; (c) Preparation of an emulsion of the O/W type (oil in water) by adding said oily phase to said aqueous phase;
(d) Déclenchement de la polymérisation radicalaire au sein de ladite émulsion ; (d) Triggering of radical polymerization within said emulsion;
(e) Poursuite de la polymérisation, de préférence à une température comprise entre environ 20 °C et 100 °C, pour former des microcapsules en PBAE renfermant ladite phase à encapsuler ; (f) Optionnellement, collecte, lavage et séchage des microcapsules. (e) Continuation of the polymerization, preferably at a temperature between approximately 20° C. and 100° C., to form PBAE microcapsules containing the said phase to be encapsulated; (f) Optionally, collection, washing and drying of the microcapsules.
L’ordre des étapes (a) et (b) peut être inversé. La présence d’un amorceur de polymérisation est nécessaire, il peut se trouver dans la phase huileuse et/ou dans la phase aqueuse. Ladite phase huileuse est avantageusement une phase homogène. The order of steps (a) and (b) can be reversed. The presence of a polymerization initiator is necessary, it can be in the oily phase and/or in the aqueous phase. Said oily phase is advantageously a homogeneous phase.
Ledit prépolymère d’un poly(beta-aminoester) peut être préparé par polymérisation en solution de composés multi acrylate et multiamine. Il est soluble dans une phase huileuse. Said prepolymer of a poly(beta-aminoester) can be prepared by solution polymerization of multi-acrylate and multi-amine compounds. It is soluble in an oily phase.
Ainsi, un premier objet de l’invention est un procédé de fabrication de microcapsules comportant une paroi renfermant une substance dite active, procédé dans lequel : on approvisionne un pré-polymère d’un poly(beta-aminoester), ladite substance active, éventuellement un ou deux monomères X1 et/ou X2, un amorceur de polymérisation et une solution aqueuse d’au moins un tensioactif ; on prépare une phase huileuse comprenant ledit pré-polymère, ladite substance active et le ou les monomères X1 et/ou X2, si présent ; sachant que ledit amorceur de polymérisation peut être introduit dans ladite phase huileuse et/ou dans ladite solution aqueuse ; on prépare une émulsion de type O/W par ajout de ladite phase huileuse à ladite solution aqueuse de tensioactif ; on déclenche la polymérisation au sein de ladite émulsion, on laisse la réaction de polymérisation se poursuivre. Thus, a first object of the invention is a process for manufacturing microcapsules comprising a wall containing a so-called active substance, process in which: a prepolymer of a poly(beta-aminoester) is supplied, said active substance, optionally one or two monomers X1 and/or X2, a polymerization initiator and an aqueous solution of at least one surfactant; an oily phase is prepared comprising said prepolymer, said active substance and the monomer(s) X1 and/or X2, if present; knowing that said polymerization initiator can be introduced into said oily phase and/or into said aqueous solution; an emulsion of O/W type is prepared by adding said oily phase to said aqueous solution of surfactant; the polymerization is triggered within said emulsion, the polymerization reaction is allowed to continue.
Lesdites microcapsules présentent une paroi en polymère biodégradable. Ledit polymère est un polymère réticulé de type poly(beta-amino ester). Said microcapsules have a biodegradable polymer wall. Said polymer is a crosslinked polymer of the poly(beta-amino ester) type.
La présence de monomères X1 et/ou X2 est optionnelle, le prépolymère d’un poly(beta- aminoester) étant capable de se polymériser sur lui-même, surtout s’il a été préparé par un procédé qui sera décrit ci-dessous. On préfère que la masse cumulée des monomères X1 et X2 ne dépasse pas 40% de la masse totale des monomères X1 + X2 et du prépolymère de PBAE. The presence of X1 and/or X2 monomers is optional, the prepolymer of a poly(beta-aminoester) being capable of polymerizing on itself, especially if it has been prepared by a process which will be described below. It is preferred that the cumulative mass of monomers X1 and X2 does not exceed 40% of the total mass of monomers X1 + X2 and of the PBAE prepolymer.
Ledit monomère X1 est sélectionné parmi les monomères vinyliques. Il peut être sélectionné de manière à obtenir une paroi de microcapsule présentant des propriétés souhaitées. A titre d’exemple, l’utilisation d’un monomère X1 tel que le méthyl méthacrylate ou l’isobornyl méthacrylate augmente la valeur de la température de transition vitreuse Tg du polymère obenu, alors que l’utilisation d’un monomère X1 tel que le butyl méthacrylate ou un alkyl acrylate linéaire diminue la valeur de Tg du polymère obtenu. Said monomer X1 is selected from vinyl monomers. It can be selected so as to obtain a microcapsule wall having desired properties. By way of example, the use of a monomer X1 such as methyl methacrylate or isobornyl methacrylate increases the value of the temperature of glass transition Tg of the polymer obtained, whereas the use of a monomer X1 such as butyl methacrylate or a linear alkyl acrylate decreases the value of Tg of the polymer obtained.
Ledit monomère X2 est également sélectionné parmi les monomères vinyliques, mais il s’agit d’un monomère de type tensioactif polymérisable (en anglais « polymerisable surfactant », appelé aussi « surfmer ») ou tensioactif réactif. Ces monomères X2 peuvent être chargés ou non : ils peuvent être neutres avec des fonctions PEG ou alcool, anioniques avec un acide carboxylique de type acide acrylique, acide methacrylique, ou cationiques, ou encore zwitterioniques (par exemple de molécules de type 3-[[2- (Acryloyloxy)éthyl]- diméthylammonio]propane-1 -sulfonate). Said X2 monomer is also selected from vinyl monomers, but it is a monomer of polymerizable surfactant type (“polymerizable surfactant”, also called “surfmer”) or reactive surfactant. These X2 monomers may or may not be charged: they may be neutral with PEG or alcohol functions, anionic with a carboxylic acid such as acrylic acid, methacrylic acid, or cationic, or even zwitterionic (for example molecules of the 3-[[ 2-(Acryloyloxy)ethyl]-dimethylammonio]propane-1-sulfonate).
Ledit pré-polymère de poly(beta-aminoester) peut être préparé par réaction entre une amine et un multiacrylate. Ledit prépolymere doit être un prépolymère soluble dans la phase active. Ladite amine est sélectionnée parmi les amines primaires fonctionnelles et/ou les amines secondaires fonctionnelles, et plus particulièrement dans le groupe formé par : les amines primaires R-NH2 avantageusement sélectionnée dans le groupe formé par : les amines primaires R-NH2; les diamines primaires de type NH2(CH2)nNH2 où n est un nombre entier qui peut typiquement être compris entre 1 et 20, et qui est de préférence 2 ou 6 ; les diamines primaires comprenant un cœur aromatique comme la meta-xylylène diamine ; les (multi)amines primaires comme la tris(2-aminoéthyl)amine ; les diamines secondaires comme la pipérazine ; les (multi)amines contenant des fonctions amines primaires et secondaires comme la tétraéthylène pentamine ; les polymères contenant des fonctions amines primaires et ou secondaires comme le polyéthylène imine. Said poly(beta-aminoester) prepolymer can be prepared by reaction between an amine and a multiacrylate. Said prepolymer must be a prepolymer soluble in the active phase. Said amine is selected from functional primary amines and/or functional secondary amines, and more particularly from the group formed by: primary amines R—NH2 advantageously selected from the group formed by: primary amines R—NH2; primary diamines of the NH2(CH2) n NH2 type where n is an integer which can typically be between 1 and 20, and which is preferably 2 or 6; primary diamines comprising an aromatic core such as meta-xylylene diamine; primary (multi)amines such as tris(2-aminoethyl)amine; secondary diamines such as piperazine; (multi)amines containing primary and secondary amine functions such as tetraethylene pentamine; polymers containing primary and/or secondary amine functions such as polyethylene imine.
On entend par (multi)amine primaire, tout composé comprenant au moins deux fonctions amine primaire. Ledit multiacrylate est avantageusement un (multi)acrylate de formule X’-(-O(C=O)- CH=CH2)n avec n > 2 et où X’ représente une molécule sur laquelle est greffée n motifs acrylate. Plus précisément, il est avantageusement sélectionné dans le groupe formé par : les diacrylates, et de préférence ceux décrits dans l’article de Nayak et al. (S. Dev Maurya, S. K. Kurmvanshi, S. Mohanty & S. K. Nayak (2018), “A Review on Acrylate-Terminated Urethane Oligomers and Polymers: Synthesis and Applications’’, Polymer-Plastics Technology and Engineering, 2018, 57, 7, 625- 656, DOI: 10.1080/03602559. 2017.1332764) ; les triacrylates, notamment le C15O6H20 (n° CAS 15625-89-5, i.e. le triacrylate de triméthylolpropane), les tetraacrylates, les pentaacrylates, les hexaacrylates, les mélanges entre ces différents acrylates de type O[CH2C(CH2OR)s]2 où R est H ou COCH=CH2 ; les (multi)acrylates décrits dans l’article de Nayak et al. (S. Dev Maurya, S. K. Kurmvanshi, S. Mohanty & S. K. Nayak (2018), “A Review on Acrylate-Terminated Urethane Oligomers and Polymers: Synthesis and Applications’’, Polymer-Plastics Technology and Engineering, 2018, 57, 7, 625-656, DOI: 10.1080/03602559.2017. 1332764); les polymères portant des fonctions acrylates pendantes ; le mélange de différents composés décrit ci-dessus. By primary (multi)amine is meant any compound comprising at least two primary amine functions. Said multiacrylate is advantageously a (multi)acrylate of formula X'-(-O(C=O)-CH=CH 2 )n with n>2 and where X' represents a molecule on which n acrylate units are grafted. More specifically, it is advantageously selected from the group formed by: diacrylates, and preferably those described in the article by Nayak et al. (S. Dev Maurya, SK Kurmvanshi, S. Mohanty & SK Nayak (2018), “A Review on Acrylate-Terminated Urethane Oligomers and Polymers: Synthesis and Applications'', Polymer-Plastics Technology and Engineering, 2018, 57, 7, 625-656, DOI: 10.1080/03602559.2017.1332764); triacrylates, in particular C15O6H20 (CAS No. 15625-89-5, ie trimethylolpropane triacrylate), tetraacrylates, pentaacrylates, hexaacrylates, mixtures between these different acrylates of the O[CH2C(CH2OR)s]2 type where R is H or COCH=CH 2 ; the (multi)acrylates described in the article by Nayak et al. (S. Dev Maurya, SK Kurmvanshi, S. Mohanty & SK Nayak (2018), “A Review on Acrylate-Terminated Urethane Oligomers and Polymers: Synthesis and Applications'', Polymer-Plastics Technology and Engineering, 2018, 57, 7, 625-656, DOI: 10.1080/03602559.2017.1332764); polymers carrying pendant acrylate functions; the mixture of different compounds described above.
La paroi des microcapsules ainsi préparées peut être modifiée par l’ajout d’une couche de polymère déposée en surface des microcapsules. Ce dépôt peut se faire par l’ajout d’un polymère dispersé dans une phase aqueuse qui va se déposer à la surface des capsules. Parmi ces polymères on peut citer les polysaccharides (par exemple la cellulose, l’amidon, les alginates, le chitosan) et leurs dérivés. The wall of the microcapsules thus prepared can be modified by adding a layer of polymer deposited on the surface of the microcapsules. This deposition can be done by adding a polymer dispersed in an aqueous phase which will be deposited on the surface of the capsules. Among these polymers, mention may be made of polysaccharides (for example cellulose, starch, alginates, chitosan) and their derivatives.
Une autre possibilité pour modifier la paroi des microcapsules est de la modifier par ajout d’un amorceur radicalaire dans la phase aqueuse et/ou dans la phase huileuse. Une dernière possibilité est de faire réagir les fonctions amines résiduelles en surface avec des acrylates monofonctionnels hydrosolubles pour modifier l’état de surface des microcapsules. Another possibility for modifying the wall of the microcapsules is to modify it by adding a radical initiator in the aqueous phase and/or in the oily phase. A last possibility is to react the residual amine functions on the surface with water-soluble monofunctional acrylates to modify the surface state of the microcapsules.
Un autre objet de l’invention sont des microcapsules susceptible d’être obtenue par le procédé selon l’invention. Figures Another object of the invention are microcapsules capable of being obtained by the process according to the invention. tricks
La Figure 1 montre le schéma général du procédé selon l’invention. Les repères numériques à quatre chiffres désignent des étapes de ce procédé. L’ingrédient entre parenthèses est optionnel, l’ingrédient marqué d’un astérisque (*) peut être présent dans l’une et/ou l’autre solution, mais est nécessaire pour que la réaction puisse se dérouler. Figure 1 shows the general diagram of the process according to the invention. The four-digit numerals designate steps in this process. The ingredient in parentheses is optional, the ingredient marked with an asterisk (*) can be present in either solution, but is necessary for the reaction to take place.
Description détaillée detailed description
Dans le cadre de la présente invention, les termes « oligomère » et « prépolymère » sont utilisés comme définis dans le Compendium of Chemical Terminology (« Gold Book ») édité par International Union of Pure and Applied Chemistry (IUPAC), version 2.3.3 (2014- 02-24) ; le travail terminologique de l’IUPAC fait référence pour un homme de métier dans le domaine de la chimie. In the context of the present invention, the terms "oligomer" and "prepolymer" are used as defined in the Compendium of Chemical Terminology ("Gold Book") published by the International Union of Pure and Applied Chemistry (IUPAC), version 2.3.3 (2014-02-24); the IUPAC terminology work is a reference for a person skilled in the field of chemistry.
A ce titre, un « oligomère » est une substance composée de molécules oligomères ; une « molécule oligomère » est une molécule de masse moléculaire relative intermédiaire, dont la structure comprend essentiellement une petite pluralité d’unités dérivées, réellement ou conceptuellement, de molécules de masse moléculaire relative plus faible. Dans ce contexte, une molécule est considérée comme ayant une masse moléculaire « intermédiaire » si ses propriétés changent de manière significative lorsqu’une ou quelques-unes de ces unités sont enlevées. As such, an "oligomer" is a substance composed of oligomeric molecules; an "oligomeric molecule" is a molecule of intermediate relative molecular mass, the structure of which consists essentially of a small plurality of units derived, actually or conceptually, from molecules of lower relative molecular mass. In this context, a molecule is considered to have an "intermediate" molecular mass if its properties change significantly when one or a few of these units are removed.
A ce titre également, un « pré-polymère » est un polymère ou oligomère composé de molécules pré-polymères ; une « molécule pré-polymère » est une macromolécule ou une molécule oligomère capable d’entrer, par l’intermédiaire de groupements terminaux réactifs, dans une polymérisation ultérieure, en contribuant plus qu’une unité monomère à au moins une chaîne de la macromolécule finale. Also in this respect, a “pre-polymer” is a polymer or oligomer composed of pre-polymer molecules; a “pre-polymer molecule” is a macromolecule or an oligomeric molecule capable of entering, via reactive terminal groups, into subsequent polymerization, contributing more than one monomer unit to at least one chain of the final macromolecule .
Dans la description détaillée qui suit, des modes de réalisation de la présente description et de nombreux détails spécifiques sont exposés afin de fournir une compréhension plus approfondie de la présente invention, et afin de permettre à l’homme du métier d’exécuter l’invention. Cependant, il apparaîtra à l’homme du métier que la présente description peut être mise en œuvre sans ces détails spécifiques. Dans d’autres cas, des caractéristiques bien connues n’ont pas été décrites en détail pour éviter de surcharger inutilement la description. La figure 1 montre un schéma général du procédé selon l’invention. On prépare la solution aqueuse du tensioactif (1000). On prépare également une solution organique (appelée aussi « phase huileuse ») comprenant la phase à encapsuler (qui comprend la substance dite active), les ou les monomères X1 et/ou X2 (qui sont optionnels) et un prépolymère de PBAE (1002). L’amorceur, qui est nécessaire pour la réaction, se trouve dans la solution aqueuse 1000 et/ou dans la phase huileuse 1002. In the detailed description that follows, embodiments of the present description and numerous specific details are set forth in order to provide a more thorough understanding of the present invention, and to enable those skilled in the art to carry out the invention. . However, it will be apparent to those skilled in the art that the present description can be implemented without these specific details. In other cases, well-known characteristics have not been described in detail to avoid unnecessarily overloading the description. Figure 1 shows a general diagram of the process according to the invention. The aqueous solution of the surfactant (1000) is prepared. An organic solution (also called “oily phase”) is also prepared comprising the phase to be encapsulated (which comprises the so-called active substance), the monomer(s) X1 and/or X2 (which are optional) and a prepolymer of PBAE (1002) . The initiator, which is necessary for the reaction, is in the aqueous solution 1000 and/or in the oily phase 1002.
A l’étape 1010 on ajoute cette phase huileuse 1002, qui est une solution organique, à ladite solution aqueuse 1000 et obtient à l’étape 1020 une émulsion 1022 de type O/W (huile dans l’eau, en anglais « Oil in Water », selon une désignation connue de l’homme du métier). Dans cette émulsion, ladite solution organique est la phase dite huileuse (phase O). A l’étape 1040 on chauffe lentement ladite émulsion sous agitation à une température suffisante pour déclencher la polymérisation radicalaire. La réaction de polymérisation conduit à un mélange réactionnel 1042 à partir duquel se forme progressivement à l’étape 1050 un mélange hétérogène 1052 appelé slurry qui comprend, en suspension à base aqueuse, les microcapsules renfermant la phase à encapsuler. At step 1010, this oily phase 1002, which is an organic solution, is added to said aqueous solution 1000 and at step 1020 an emulsion 1022 of the O/W type (oil in water, in English "Oil in Water”, according to a designation known to those skilled in the art). In this emulsion, said organic solution is the so-called oily phase (O phase). In step 1040, said emulsion is slowly heated with stirring to a temperature sufficient to trigger radical polymerization. The polymerization reaction leads to a reaction mixture 1042 from which gradually forms in step 1050 a heterogeneous mixture 1052 called slurry which comprises, in aqueous-based suspension, the microcapsules containing the phase to be encapsulated.
L’étape 1050 implique en règle générale une température du mélange réactionnel 1042 supérieure à environ 30 °C, typiquement comprise entre 30 °C et 100 °C. On préfère une température comprise entre environ 30 °C et environ 90 °C, et encore plus préférentiellement de préférence entre environ 60 °C et environ 80 °C. Step 1050 typically involves a temperature of reaction mixture 1042 above about 30°C, typically between 30°C and 100°C. A temperature between about 30°C and about 90°C is preferred, and even more preferably between about 60°C and about 80°C.
Ce procédé peut être appliqué à différents monomères X1 et/ou X2 et à différents prépolymères de PBAE. This process can be applied to different X1 and/or X2 monomers and to different PBAE prepolymers.
Comme indiqué ci-dessus, ledit pré-polymère de poly(beta-aminoester) peut être préparé par réaction entre une amine et un multiacrylate. Nous donnons ici une liste non exhaustive de diacrylates qui peuvent être utilisés :1,6-hexanediol diacrylate (HDDA), Tripropylène glycol diacrylate (TPGDA), Tricyclodecan diméthanol diacrylate, bisphenol A-diéthyléther diacrylate (BHEDA). As indicated above, said poly(beta-aminoester) prepolymer can be prepared by reaction between an amine and a multiacrylate. We give here a non-exhaustive list of diacrylates which can be used: 1,6-hexanediol diacrylate (HDDA), Tripropylene glycol diacrylate (TPGDA), Tricyclodecan dimethanol diacrylate, bisphenol A-diethyl ether diacrylate (BHEDA).
Nous donnons ici une liste non exhaustive de (multi)acrylates qui peuvent être utilisés : Triméthylol propane triacrylate (TMPTA), dipentaerythritol penta/hexa acrylate (DPHPA), pentaerythritol tetraacrylate (PETEA), tris(2-hydroxyéthyl)isocyanate triacrylate, triméthylpropane tetraacrylate. La présence d’un amorceur est nécessaire. Il peut être introduit dans la phase huileuse et/ou dans la phase aqueuse. On peut utiliser un amorceur de type azoïque. We give here a non-exhaustive list of (multi)acrylates which can be used: Trimethylol propane triacrylate (TMPTA), dipentaerythritol penta/hexa acrylate (DPHPA), pentaerythritol tetraacrylate (PETEA), tris(2-hydroxyethyl)isocyanate triacrylate, trimethylpropane tetraacrylate . The presence of an initiator is necessary. It can be introduced into the oily phase and/or into the aqueous phase. An azo type initiator can be used.
Parmi les amorceurs azoïques susceptibles d’être introduites dans la phase aqueuse on cite ici: Among the azo initiators likely to be introduced into the aqueous phase, the following are mentioned here:
2,2'-Azobis[2-methyl-N-(2-hydroxyethyl)propionamide] (n° CAS : 61551-69-7), 2,2'-Azobis(2-methylpropionamidine)dihydrochloride (n° CAS : 2997-92-4), 2,2'-Azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride (n° CAS : 27776-21-2), 4,4'-Azobis(4-cyanovaleric acid) (n° CAS 2638-94-0), 2,2'-Azobis[2-(2-imidazolin-2-yl)propane] (n° CAS : 20858-12-2), 2,2'-Azobis[N-(2-carboxyethyl)-2-methylpropionamidine]tetrahydrate (n° CAS : 1400693- 47-1). 2,2'-Azobis[2-methyl-N-(2-hydroxyethyl)propionamide] (CAS no: 61551-69-7), 2,2'-Azobis(2-methylpropionamidine)dihydrochloride (CAS no: 2997 -92-4), 2,2'-Azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride (CAS no: 27776-21-2), 4,4'-Azobis(4-cyanovaleric acid ) (CAS RN: 2638-94-0), 2,2'-Azobis[2-(2-imidazolin-2-yl)propane] (CAS RN: 20858-12-2), 2,2'-Azobis [N-(2-carboxyethyl)-2-methylpropionamidine]tetrahydrate (CAS no: 1400693-47-1).
Parmi les amorceurs azoïques susceptibles d’être introduites dans la phase huileuse on cite ici : Among the azo initiators likely to be introduced into the oily phase, the following are mentioned here:
Dimethyl 2,2'-azobis(2-methylpropionate) (n° CAS : 2589-57-3), Dimethyl 2,2'-azobis(2-methylpropionate) (CAS no: 2589-57-3),
2,2'-Azobis(4-methoxy-2,4-dimethylvaleronitrile) (n° CAS : 15545-97-8), 1 ,1'-Azobis(cyclohexane-1-carbonitrile (n° CAS : 2094-98-6), 2,2'-Azobis(isobutyronitrile) (n° CAS : 78-67-1), 2,2'-Azobis(4-methoxy-2,4-dimethylvaleronitrile) (CAS no: 15545-97-8), 1,1'-Azobis(cyclohexane-1-carbonitrile (CAS no: 2094-98- 6), 2,2'-Azobis(isobutyronitrile) (CAS no: 78-67-1),
2,2'-Azobis(2,4-dimethylvaleronitrile) (n° CAS : 4419-11-8), 2,2'-Azobis(2,4-dimethylvaleronitrile) (CAS no: 4419-11-8),
2,2'-Azobis(N-butyl-2-methylpropionamide (n° CAS : 195520-32-2), 2,2'-Azobis(2-methylbutyronitrile) (n° CAS : 13472-08-7). 2,2'-Azobis(N-butyl-2-methylpropionamide (CAS no: 195520-32-2), 2,2'-Azobis(2-methylbutyronitrile) (CAS no: 13472-08-7).
Tous ces produits sont commercialement disponibles. All of these products are commercially available.
On peut aussi utiliser un amorceur de type peroxydique, dont il existe un très grand nombre dans le commerce. On peut également utiliser des systèmes red-ox comprenant un composé de type persulfate de potassium (connu sous le sigle KPS) ou persulfate d’ammonium (connu sous le sigle APS) et un réducteur inorganique (par exemple de type FeSO4) ou organique (par exemple de type métabisulfite). It is also possible to use an initiator of the peroxidic type, of which there are a very large number on the market. It is also possible to use red-ox systems comprising a compound of the potassium persulfate (known by the acronym KPS) or ammonium persulfate (known by the acronym APS) type and an inorganic (for example of the FeSO4 type) or organic ( for example of the metabisulphite type).
Le cœur organique des microcapsules peut être constitué d’une phase organique comprenant une substance active. Lors de la formation de la microcapsule, cette phase organique (huileuse) sera enfermée par la paroi polymérique de la microcapsule, qui la protège de l’environnement. Ladite phase organique (huileuse) peut consister en ladite substance active, ou ladite substance active peut faire partie de ladite phase organique (huileuse), dans laquelle elle peut notamment être dissoute. L’expression « substance active » se réfère ici au but précis dans lequel les microcapsules ont vocation à être utilisées ; en règle générale, compte tenu de la spécificité du produit microcapsule, ce but est toujours connu lors de leur fabrication. The organic core of the microcapsules can consist of an organic phase comprising an active substance. During the formation of the microcapsule, this organic (oily) phase will be enclosed by the polymeric wall of the microcapsule, which protects it from the environment. Said organic (oily) phase may consist of said active substance, or said active substance may form part of said organic (oily) phase, in which it may in particular be dissolved. The term "substance active” refers here to the specific purpose for which the microcapsules are intended to be used; as a general rule, given the specificity of the microcapsule product, this purpose is always known during their manufacture.
La substance active peut être sélectionnée notamment parmi les huiles (pures ou contenant possiblement d’autres molécules en solution ou en dispersion), telles que les huiles essentielles, les huiles naturelles et alimentaires, les huiles végétales et alimentaires, les alcanes liquides, les esters et acides gras, ou encore parmi les colorants, les encres, les peintures, les substances thermochromiques et/ou photochromiques, les fragrances, les produits à effet biocide, les produits à effet foncigide, les produits à effet antiviral, les produits à effet phytosanitaire, les principes actifs pharmaceutiques, les produits à effet cosmétique, les colles ; ces principes actifs étant éventuellement en présence d’un vecteur organique. The active substance can be selected in particular from oils (pure or possibly containing other molecules in solution or in dispersion), such as essential oils, natural and edible oils, vegetable and edible oils, liquid alkanes, esters and fatty acids, or also from dyes, inks, paints, thermochromic and/or photochromic substances, fragrances, products with a biocidal effect, products with a fungicide effect, products with an antiviral effect, products with a phytosanitary effect , active pharmaceutical ingredients, products with cosmetic effects, glues; these active principles possibly being in the presence of an organic vector.
On peut utiliser par exemple et de façon non limitative des extraits de distillation de produits naturels telles que les huiles essentielles d’eucalyptus, de citronnelle, de lavande, de menthe, de cannelle, de camphrier, d’anis, de citron, d’orange, qui peuvent avoir été obtenues par extraction à partir de matière végétale, ou par synthèse. Can be used for example and in a non-limiting way extracts of distillation of natural products such as essential oils of eucalyptus, lemongrass, lavender, mint, cinnamon, camphor, anise, lemon, orange, which may have been obtained by extraction from plant material, or by synthesis.
On peut également utiliser d’autres substances telles que des alcanes à long chaine (par exemple le tetradécane), qui peuvent contenir des molécules lipophiles en solution. One can also use other substances such as long chain alkanes (for example tetradecane), which can contain lipophilic molecules in solution.
De manière générale, et suivant la fonction recherchée pour les microcapsules, il est possible d’utiliser tout composé hydrophobe, qui sera ainsi naturellement dispersé sous forme d’émulsion de gouttes hydrophobes en suspension dans une phase aqueuse. In general, and depending on the function sought for the microcapsules, it is possible to use any hydrophobic compound, which will thus be naturally dispersed in the form of an emulsion of hydrophobic drops suspended in an aqueous phase.
Peuvent être incorporés dans la microcapsule de nombreux additifs permettant une meilleure protection de la phase organique (huileuse) à encapsuler, contre les rayonnements infrarouges, les rayonnements ultra-violets, la pénétration involontaire d’un gaz spécifique ou l’oxydation. Many additives can be incorporated into the microcapsule allowing better protection of the organic (oily) phase to be encapsulated, against infrared radiation, ultraviolet radiation, the involuntary penetration of a specific gas or oxidation.
La paroi des microcapsules peut être modifiée par l’ajout d’un revêtement en surface de celles-ci. Ce dépôt peut se faire par l’ajout d’un polymère dispersé dans une phase aqueuse qui va se déposer à la surface des capsules. Parmi ces polymères on peut citer les polysaccharides (cellulose, amidon, alginates, chitosan, etc.) et leurs dérivés. Cet ajout peut se faire soit à chaud soit à temperature ambiante à la fin de l’étape de polymerisation interfaciale. La paroi des microcapsules peut aussi être modifiée par ajout d’un amorceur radicalaire soit dans la phase aqueuse soit dans la phase organique (huileuse). L’ajout dans la phase organique peut se faire avant et/ou après la préparation de la paroi de PBAE. Si l’ajout est fait après, l’amorceur radicalaire peut être dilué dans de l’acétone pour favoriser le transport dans les microcapsules. Ces amorceurs peuvent être des composés azoïques (tels que le azobis-isobutyronitrile et ses dérivés) ou des composés péroxydiques (peroxyde de lauroyle, etc.). Dans le cas d’amorceurs rajoutés dans la phase aqueuse, il peut s’agir notamment de composés azoïques hydrosolubles (tels que 2,2'-Azobis(2- méthylpropionamidine)dihydrochloride) ou de systèmes red-ox (persulfate d’ammonium ou de potassium en combinaison avec le métabisulfate de potassium par exemple). Sous atmosphère inerte, les radicaux issus de la décomposition des amorceurs radicalaires peuvent s’additionner sur les fonctions acrylates résiduelles de la paroi de PBAE et la renforcer mécaniquement et/ou modifier sa polarité. The wall of the microcapsules can be modified by adding a surface coating thereof. This deposition can be done by adding a polymer dispersed in an aqueous phase which will be deposited on the surface of the capsules. Among these polymers, mention may be made of polysaccharides (cellulose, starch, alginates, chitosan, etc.) and their derivatives. This addition can be done either hot or at room temperature at the end of the interfacial polymerization step. The wall of the microcapsules can also be modified by adding a radical initiator either in the aqueous phase or in the organic (oily) phase. The addition to the organic phase can be done before and/or after the preparation of the PBAE wall. If the addition is made later, the radical initiator can be diluted in acetone to promote transport into the microcapsules. These initiators can be azo compounds (such as azobis-isobutyronitrile and its derivatives) or peroxide compounds (lauroyl peroxide, etc.). In the case of initiators added to the aqueous phase, these may in particular be water-soluble azo compounds (such as 2,2'-Azobis(2-methylpropionamidine)dihydrochloride) or red-ox systems (ammonium persulphate or potassium in combination with potassium metabisulphate for example). Under an inert atmosphere, the radicals resulting from the decomposition of radical initiators can add to the residual acrylate functions of the wall of PBAE and mechanically reinforce it and/or modify its polarity.
Une autre manière de modifier la paroi des microcapsules est de faire réagir les fonctions amines résiduelles en surface avec des acrylates monofonctionnels hydrosolubles. Sans vouloir être liés par cette hypothèse, les inventeurs pensent que par addition de Michael, on formerait une liaison amino-ester et ancrerait en surface un groupe fonctionnel. Parmi les acrylates hydrosolubles utilisables on peut citer l’acide acrylique, l’acrylate de 2- carboxyéthyle, le 2-(diméthylamino)éthyl acrylate, l’acrylate de 2-hydroxyéthyle, les acrylates de poly(éthylène glycol), le sel de potassium de l’acrylate de 3-sulfopropyle. Another way of modifying the wall of the microcapsules is to react the residual amine functions on the surface with water-soluble monofunctional acrylates. Without wishing to be bound by this hypothesis, the inventors believe that by adding Michael, an amino-ester bond would be formed and a functional group would be anchored to the surface. Among the water-soluble acrylates that can be used, mention may be made of acrylic acid, 2-carboxyethyl acrylate, 2-(dimethylamino)ethyl acrylate, 2-hydroxyethyl acrylate, poly(ethylene glycol) acrylates, salt of potassium from 3-sulfopropyl acrylate.
Comme agent tensioactif, on peut notamment utiliser des agents tensioactifs non ioniques, tels que le polyvinyl pyrrolidone (PVP), le polyéthylène glycol sorbitan monopalmitate (connu sous la marque Tween 20™), le polyéthylène glycol sorbitan monolaurate (connu sous la marque Tween 40™), le polyéthylène glycol sorbitan monooléate (connu sous la marque Tween 80™), ou des agents tensioactifs ioniques, tels que des sels partiellement neutralisés d’acides polyacryliques tels que le polyacrylate ou le polyméthacrylate de sodium ou de potassium, ou le lignosulfate de sodium. On peut utiliser des copolymères acide acrylique - acrylate d’alkyl, l’acide polyacrylique, les esters gras de polyoxyalkylène. On peut utiliser les agents tensioactifs qui sont cités dans Encyclopedia of Chemical Technology, volume 8, pages 912 à 915, et qui possèdent une balance hydrophile lipophile (selon le système HLB) égale ou supérieure à 10. As surfactant, it is possible in particular to use nonionic surfactants, such as polyvinyl pyrrolidone (PVP), polyethylene glycol sorbitan monopalmitate (known under the trade mark Tween 20™), polyethylene glycol sorbitan monolaurate (known under the trade mark Tween 40 ™), polyethylene glycol sorbitan monooleate (known under the trademark Tween 80™), or ionic surfactants, such as partially neutralized salts of polyacrylic acids such as sodium or potassium polyacrylate or polymethacrylate, or lignosulfate sodium. It is possible to use copolymers of acrylic acid - alkyl acrylate, polyacrylic acid, polyoxyalkylene fatty esters. It is possible to use the surfactants which are cited in Encyclopedia of Chemical Technology, volume 8, pages 912 to 915, and which have a hydrophilic-lipophilic balance (according to the HLB system) equal to or greater than 10.
D’autres tensioactifs macromoléculaires peuvent aussi être utilisés. On peut citer par exemple les polyacrylates, les méthylcelluloses, les carboxyméthylcelluloses, l'alcool polyvinylique (PVA) éventuellement partiellement estérifié ou éthérifié, le polyacrylamide ou les polymères synthétiques possédant des fonctions anhydride ou acide carboxylique tels que les copolymères éthylène/anhydride maléique. De manière préférée, l'alcool polyvinylique peut être utilisé comme agent tensioactif. Other macromolecular surfactants can also be used. Mention may be made, for example, of polyacrylates, methylcelluloses, carboxymethylcelluloses, polyvinyl alcohol (PVA) optionally partially esterified or etherified, polyacrylamide or synthetic polymers having anhydride or carboxylic acid functions such as ethylene/maleic anhydride copolymers. Preferably, polyvinyl alcohol can be used as surfactant.
Il peut être nécessaire, par exemple dans le cas de solutions aqueuses d'un composé cellulosique, d'ajouter un peu d'hydroxyde alcalin tel que la soude, afin de faciliter sa dissolution ; on peut également utiliser directement de tels composés cellulosiques sous la forme de leurs sels de sodium par exemple. Les copolymères amphiphiles de type Pluronics peuvent aussi être utilisés. Généralement on utilise des solutions aqueuses contenant de 0,1 à 5 % en poids de tensioactif. It may be necessary, for example in the case of aqueous solutions of a cellulosic compound, to add a little alkaline hydroxide such as sodium hydroxide, in order to facilitate its dissolution; it is also possible to use such cellulosic compounds directly in the form of their sodium salts, for example. Amphiphilic copolymers of the Pluronics type can also be used. Generally, aqueous solutions containing from 0.1 to 5% by weight of surfactant are used.
La taille des gouttelettes est fonction de la nature et de la concentration du tensioactif et de la vitesse d'agitation, cette dernière étant choisie d'autant plus grande que l'on souhaite des diamètres moyens de gouttelettes plus faibles. The size of the droplets is a function of the nature and the concentration of the surfactant and of the speed of agitation, the latter being chosen all the greater as smaller average diameters of the droplets are desired.
En général la vitesse d'agitation pendant la préparation de l'émulsion est de 5 000 à 10 000 tours par minute. L'émulsion est habituellement préparée à une température comprise entre 15 °C et 95 °C. In general, the stirring speed during the preparation of the emulsion is 5,000 to 10,000 revolutions per minute. The emulsion is usually prepared at a temperature between 15°C and 95°C.
Généralement lorsque l'émulsion a été obtenue, on arrête l'agitation par turbine et on agite l'émulsion à l'aide d'un agitateur plus lent de type courant, par exemple du type agitateur cadre, typiquement à une vitesse de l'ordre de 150 à 1 500 tours par minute.Generally when the emulsion has been obtained, the agitation by turbine is stopped and the emulsion is agitated using a slower agitator of the usual type, for example of the frame agitator type, typically at a speed of order of 150 to 1,500 revolutions per minute.
Le procédé selon l'invention conduit ainsi à des suspensions homogènes et fluides contenant, selon les charges introduites, généralement de 20 % à 80 % en poids de microcapsules ayant de 100 nm à 100 pm de diamètre moyen. Le diamètre des microcapsules peut être préférentiellement compris entre 1 pm et 50 pm, et encore plus préférentiellement entre 10 pm et 40 pm. The process according to the invention thus leads to homogeneous and fluid suspensions containing, depending on the fillers introduced, generally from 20% to 80% by weight of microcapsules having an average diameter of 100 nm to 100 μm. The diameter of the microcapsules can preferably be between 1 μm and 50 μm, and even more preferably between 10 μm and 40 μm.
Les microcapsules, et en particulier leur paroi, selon l’invention sont (bio)dégradables. La biodégradation peut être déterminée par exemple par l’une des méthodes décrites dans le document « Lignes Directrices de l’OCDE pour les Essais de Produits Chimiques : Biodégradabilité Facile » (adopté par le conseil de l’OCDE le 17 juillet 1992). On peut utiliser en particulier l’essai de respirométrie manométrique (méthode 301 F). De préférence cet essai est mis en oeuvre sur des microcapsules vidées et lavées, afin que la biodégradation du contenu des microcapsules n’intérfère pas avec l’essai dont le but est de caractériser la biodégradation du matériau formant la paroi des microcapsules. De manière préférée la microcapsule selon l’invention, et/ou sa paroi, montre une biodégradation d’au moins 60 %, de préférence d’au moins 70 %, en plus préférentiellement d’au moins 80 %, mesurée après une incubation de 10 jours à l’aide de ladite méthode 301 F. Avec cette même méthode, après une incubation de 28 jours, les microcapsules selon l’invention montrent de préférence une biodégradation d’au moins 70 %, de préférence d’au moins 80 %, et encore plus préférentiellement d’au moins 90 %, et encore plus préférentiellement d’au moins 95 %. The microcapsules, and in particular their wall, according to the invention are (bio)degradable. The biodegradation can be determined for example by one of the methods described in the document “OECD Guidelines for the Testing of Chemicals: Ready Biodegradability” (adopted by the Council of the OECD on July 17, 1992). In particular, the manometric respirometry test (method 301 F) can be used. Preferably, this test is carried out on emptied and washed microcapsules, so that the biodegradation of the content of the microcapsules does not interfere with the test, the purpose of which is to characterize the biodegradation of the material forming the wall of the microcapsules. Preferably, the microcapsule according to the invention, and/or its wall, shows a biodegradation of at least 60%, preferably of at least 70%, more preferably of at least 80%, measured after an incubation of 10 days using the said 301 F method. With this same method, after an incubation of 28 days, the microcapsules according to the invention preferably show a biodegradation of at least 70%, preferably of at least 80%, and even more preferably of at least 90%, and even more preferably of at least 95%.
Exemples Examples
Pour permettre à l’homme du métier de reproduire l’invention on donne ici des exemples de mise en œuvre ; ils ne limitent pas la portée de l’invention. To enable those skilled in the art to reproduce the invention, examples of implementation are given here; they do not limit the scope of the invention.
Exemple 1 Example 1
(i) Préparation du prépolymère de poly(PAE) branchés (i) Preparation of the branched poly(PAE) prepolymer
Dans un flacon avec bouchon fermé, le monomère de 1 ,6-hexanediol diacrylate (80 % Aldrich, 3.0 g) et tetraéthylène pentamine (Qualité Technical Aldrich, 0,4 g), ont été agités à température ambiante jusqu’à obtenir solution homogène. Ensuite, le mélange réactionnel a été chauffé et agité à 40 °C pendant 1 h, puis pendant 30 min à température ambiante, pour obtenir un mélange comportant le prépolymère visqueux poly(beta- aminoester) branchés et l’excès de 1,6-hexanediol diacrylate. Cette réaction est illustrée sur le schéma réactionnel ci-dessous. In a flask with a closed cap, 1,6-hexanediol diacrylate monomer (80% Aldrich, 3.0 g) and tetraethylene pentamine (Technical Aldrich grade, 0.4 g) were stirred at room temperature until a homogeneous solution was obtained. . Then, the reaction mixture was heated and stirred at 40°C for 1 h, then for 30 min at room temperature, to obtain a mixture comprising the viscous branched poly(beta-aminoester) prepolymer and the excess of 1,6- hexanediol diacrylate. This reaction is illustrated in the reaction scheme below.
[Chem 1] [Chem 1]
1. 40°C, 1h PBAE branché1. 40°C, 1h PBAE connected
2. rt, 30 min tetraethylene pentamine 1 ,6-diol hexane diacrylate 2nd round, 30 mins tetraethylene pentamine 1,6-diol hexane diacrylate
(ii) Microencapsulation (ii) Microencapsulation
Un parfum, l’acide de méthylacrylique, du méthacrylate de méthyle et du lauryl peroxide ont été placées dans le flacon comportant le PBAE branché et l’excès de 1 ,6-hexandiol diacrylate, comme obtenu à l’étape (i) ci-dessus. Ce mélange a été agité à 30°C jusqu'à obtenir une solution homogène. Il a ensuite été ajouté progressivement à une solution de PVA (2 %) préparée préalablement, préchauffée à 30°C. Le mélange ainsi obtenu a été homogénéisé à l’aide d’un Ultraturrax™ à environ 700 rpm à 800 rpm pendant 4 min à 10 min à 30°C pour former une émulsion. A perfume, methylacrylic acid, methyl methacrylate and lauryl peroxide were placed in the bottle containing the branched PBAE and the excess 1,6-hexandiol diacrylate, as obtained in step (i) below. above. This mixture was stirred at 30°C until a homogeneous solution was obtained. It was then gradually added to a PVA solution (2%) prepared beforehand, preheated to 30°C. The resulting mixture was homogenized using an Ultraturrax™ at about 700 rpm to 800 rpm for 4 min to 10 min at 30°C to form an emulsion.
Cette émulsion a été introduite dans un ballon monocol (100 mL) et agitée à 30 °C. L’émulsion a ensuite été dégazée par le barbotage d’argon sous agitation à 30 °C pendant 60 min. Ensuite, l’émulsion a été chauffée lentement (1 °C / min) à 70 °C et agitée sous atmosphère d’argon pendant 18 h. On a ainsi obtenu des microcapsules avec une paroi de type PBAE renfermant un parfum. Exemple 2 : Essai de biodégradation This emulsion was added to a single neck flask (100 mL) and stirred at 30°C. The emulsion was then degassed by bubbling argon with stirring at 30° C. for 60 min. Then the emulsion was slowly heated (1°C/min) to 70°C and stirred under an argon atmosphere for 18 h. Microcapsules were thus obtained with a wall of the PBAE type containing a perfume. Example 2: Biodegradation test
Un lot de microcapsules préparées selon l’exemple 1 a été approvisionné. Les microcapsules sèches mais contenant de l’huile essentielle (Eucalyptus) ont été soumises à l’essai de biodégradabilité décrit dans le document OCDE 301 (« Ligne Directrice de l’OCDE pour les Essais de Produis Chimiques : Biodégradabilité Facile ») en utilisant la méthode 301 F (Essai de réspirométrie manométrique). Après une durée d’incubation de dix-neuf jours le pourcentage de biodégradation était de 70 %. A batch of microcapsules prepared according to Example 1 was supplied. The dry microcapsules but containing essential oil (Eucalyptus) were subjected to the biodegradability test described in document OECD 301 ("OECD Guideline for the Testing of Chemicals: Easy Biodegradability") using the method 301 F (Manometric respirometry test). After an incubation period of nineteen days the percentage of biodegradation was 70%.
Exemple 3 : Essai de biodégradation Example 3: Biodegradation test
Un lot de microcapsules préparées selon l’exemple 1 a été approvisionné. Les microcapsules ont été ouvertes, vidées et lavées. Ensuite elles ont été soumises à l’essai de biodégradabilité décrit dans le document OCDE 301 (« Ligne Directrice de l’OCDE pour les Essais de Produis Chimiques : Biodégradabilité Facile ») en utilisant la méthode 301 F (Essai de réspirométrie manométrique). Après une durée d’incubation de vingt-huit jours le pourcentage de biodégradation était de 85 %. A batch of microcapsules prepared according to Example 1 was supplied. The microcapsules were opened, emptied and washed. They were then subjected to the biodegradability test described in document OECD 301 (“OECD Guideline for the Testing of Chemicals: Easy Biodegradability”) using method 301 F (Manometric respirometry test). After an incubation period of twenty-eight days the percentage of biodegradation was 85%.

Claims

REVENDICATIONS
1. Procédé de fabrication de microcapsules comportant une paroi en matériau polymère renfermant une substance dite active, comprenant les étapes suivantes : 1. Process for manufacturing microcapsules comprising a wall made of polymer material containing a so-called active substance, comprising the following steps:
(a) Préparation d’une phase huileuse comprenant : un pré-polymère de poly(béta-aminoester), une substance active, possiblement en solution organique, constituant la phase à encapsuler, éventuellement un ou deux monomères vinyliques X1 et/ou X2, éventuellement un amorceur de polymérisation ; (a) Preparation of an oily phase comprising: a poly(beta-aminoester) prepolymer, an active substance, possibly in organic solution, constituting the phase to be encapsulated, optionally one or two vinyl monomers X1 and/or X2, optionally a polymerization initiator;
(b) Préparation d’une phase aqueuse comprenant au moins un tensioactif ; et éventuellement un amorceur de polymérisation ; (b) Preparation of an aqueous phase comprising at least one surfactant; and optionally a polymerization initiator;
(c) Préparation d’une émulsion de type O/W (huile dans l’eau) par ajout de ladite phase huileuse à ladite phase aqueuse ; (c) Preparation of an emulsion of the O/W type (oil in water) by adding said oily phase to said aqueous phase;
(d) Déclenchement de la polymérisation radicalaire au sein de ladite émulsion ; (d) Triggering of radical polymerization within said emulsion;
(e) Poursuite de la polymérisation, de préférence à une température comprise entre environ 20 °C et 100 °C, pour former des microcapsules renfermant ladite phase à encapsuler ; (e) Continuation of the polymerization, preferably at a temperature between approximately 20° C. and 100° C., to form microcapsules containing the said phase to be encapsulated;
(f) Optionnellement, collecte, lavage et/ou séchage des microcapsules ; sachant que l’ordre des étapes (a) et (b) peut être inversé, et que ledit amorceur de polymérisation, dont la présence est nécessaire, peut se trouver dans ladite phase huileuse et/ou dans ladite phase aqueuse. (f) Optionally, collection, washing and/or drying of the microcapsules; knowing that the order of steps (a) and (b) can be reversed, and that said polymerization initiator, the presence of which is necessary, can be in said oily phase and/or in said aqueous phase.
2. Procédé selon la revendication 1, caractérisé en ce que ledit matériau polymère de la paroi est un polymère de type poly(beta-aminoester) réticulé. 2. Method according to claim 1, characterized in that said polymeric material of the wall is a crosslinked poly(beta-aminoester) type polymer.
3. Procédé selon l’une quelconque des revendications 1 à 2, caractérisé en ce que : ledit monomère X1 est sélectionné dans le groupe formé le méthyl méthacrylate, l’isobornyl méthacrylate, le butyl méthacrylate, les alkyl acrylates linéaires ; et/ou en ledit monomère X2 est sélectionné parmi les monomères de type tensioactif polymérisable ou tensioactif réactif, qui peuvent être neutres, anioniques, cationiques ou zwitterioniques. 3. Method according to any one of claims 1 to 2, characterized in that: said monomer X1 is selected from the group formed by methyl methacrylate, isobornyl methacrylate, butyl methacrylate, linear alkyl acrylates; and/or said monomer X2 is selected from monomers of the polymerizable surfactant or reactive surfactant type, which may be neutral, anionic, cationic or zwitterionic.
4. Procédé selon l’une quelconque des revendications 1 à 3, caractérisé en ce que ledit prépolymère d’un poly(beta-aminoester) est obtenu par la réaction entre une amine et un multiacrylate. 4. Method according to any one of claims 1 to 3, characterized in that said prepolymer of a poly (beta-aminoester) is obtained by the reaction between an amine and a multiacrylate.
5. Procédé selon la revendication 4, caractérisé en ce que ledit multiacrylate est sélectionné dans le groupe formé par : les diacrylates ; les triacrylates, notamment le triacrylate de triméthylolpropane, les tetraacrylates, les pentaacrylates, les hexaacrylates, les mélanges entre ces différents acrylates de type O[CH2C(CH2OR)s]2 où R est H ou COCH=CH2. 5. Method according to claim 4, characterized in that said multiacrylate is selected from the group formed by: diacrylates; triacrylates, in particular trimethylolpropane triacrylate, tetraacrylates, pentaacrylates, hexaacrylates, mixtures of these different acrylates of the O[CH 2 C(CH 2 OR)s]2 type where R is H or COCH=CH 2 .
6. Procédé selon l’une quelconque des revendications 4 à 5, caractérisé en ce que ladite amine est sélectionnée parmi les amines primaires fonctionnelles et/ou les amines secondaires fonctionnelles, et plus particulièrement dans le groupe formé par : les amines primaires R-NH2 ; les diamines primaires de type NH2(CH2)nNH2 où n est un nombre entier qui peut être compris entre 1 et 20, et qui est de préférence 2 ou 6 ; les diamines primaires possédant un cœur aromatique, et de preference la méta- xylylène diamine ; les (multi)amines primaires, et de préférence la tris(2-aminoéthyl)amine ; les (multi)amines contenant des fonctions amines primaires et secondaires, et de preference la tetraéthylène pentamine ; les diamines secondaires et de préférence la pipérazine ; les polymères contenant des fonctions amines primaires et ou secondaires, et de préférence le polyéthylène imine. 6. Process according to any one of Claims 4 to 5, characterized in that the said amine is selected from functional primary amines and/or functional secondary amines, and more particularly from the group formed by: primary amines R-NH 2 ; primary diamines of the NH 2 (CH 2 ) n NH 2 type where n is an integer which may be between 1 and 20, and which is preferably 2 or 6; primary diamines having an aromatic core, and preferably meta-xylylene diamine; (multi)primary amines, and preferably tris(2-aminoethyl)amine; (multi)amines containing primary and secondary amine functions, and preferably tetraethylene pentamine; secondary diamines and preferably piperazine; polymers containing primary and or secondary amine functions, and preferably polyethylene imine.
7. Procédé selon l’une quelconque des revendications 1 à 6, caractérisé en ce que ledit tensioactif est sélectionné dans le groupe formé par les tensioactifs macromoléculaires, de préférence en ce que ledit tensioactif est sélectionné dans le groupe formé par les polyacrylates, les méthylcelluloses, les carboxyméthylcelluloses, l'alcool polyvinylique éventuellement partiellement estérifié ou éthérifié, le polyacrylamide, les polymères synthétiques possédant des fonctions anhydride ou acide carboxylique, les copolymères éthylène/anhydride maléique, et en ce que ledit tensioactif est encore plus préférentiellement l'alcool polyvinylique. 7. Method according to any one of claims 1 to 6, characterized in that said surfactant is selected from the group formed by macromolecular surfactants, preferably in that said surfactant is selected from the group formed by polyacrylates, methylcelluloses , carboxymethylcelluloses, optionally partially esterified or etherified polyvinyl alcohol, polyacrylamide, synthetic polymers having anhydride or carboxylic acid functions, ethylene/maleic anhydride copolymers, and in that said surfactant is even more preferably polyvinyl alcohol.
8. Procédé selon l’une quelconque des revendications 1 à 7, caractérisé en ce que ladite substance active est sélectionnée dans le groupe formé par : huiles essentielles, les fragrances, les encres, les peintures, les substances thermochromiques et/ou photochromiques, les colorants, les colles, les produits à effet biocide, les produits à effet fongicide, les produits à effet antiviral, les produits à effet phytosanitaire, les produits à effet cosmétique, les principes actifs pharmaceutiques, les huiles naturelles et alimentaires, les huiles végétales et alimentaires, les alcanes liquides, les esters et acides gras. 8. Method according to any one of claims 1 to 7, characterized in that said active substance is selected from the group formed by: essential oils, fragrances, inks, paints, thermochromic and/or photochromic substances, dyes, glues, products with a biocidal effect, products with a fungicidal effect, products with an antiviral effect, products with a phytosanitary effect, products with a cosmetic effect, active pharmaceutical ingredients, natural and edible oils, vegetable oils and food, liquid alkanes, esters and fatty acids.
9. Procédé selon l’une quelconque des revendications 1 à 8, caractérisé en ce que la paroi des microcapsules est modifiée soit par une couche de polymère déposée en surface de la microcapsule, soit par ajout d’un amorceur radicalaire dans la phase aqueuse et/ou la phase huileuse, soit par ajout dans la phase aqueuse d’un acrylate hydrosoluble capable de modifier l’état de surface des microcapsules. 9. Method according to any one of claims 1 to 8, characterized in that the wall of the microcapsules is modified either by a layer of polymer deposited on the surface of the microcapsule, or by adding a radical initiator in the aqueous phase and / or the oily phase, or by adding to the aqueous phase a water-soluble acrylate capable of modifying the surface state of the microcapsules.
10. Microcapsules susceptible d’être obtenue par le procédé selon l’une quelconque des revendications 1 à 9. 10. Microcapsules obtainable by the method according to any one of claims 1 to 9.
11. Microcapsule selon l’une quelconque des revendications 10, caractérisée en ce que ladite microcapsule et/ou sa paroi montre une biodégradation d’au moins 60 %, de préférence d’au moins 70 %, et encore plus préférentiellement d’au moins 80 %, mesurée par un essai de respirométrie manométrique selon la méthode 301 F des « Lignes Directrices de l’OCDE pour les Essais de Produits Chimiques : Biodégradabilité Facile » après une incubation de dix jours. 11. Microcapsule according to any one of claims 10, characterized in that said microcapsule and/or its wall shows a biodegradation of at least 60%, preferably of at least 70%, and even more preferentially of at least 80%, measured by a manometric respirometry test according to method 301 F of the "OECD Guidelines for the Testing of Chemicals: Ready Biodegradability" after a ten-day incubation.
12. Microcapsule selon l’une quelconque des revendications 10 à 11 , caractérisée en ce que ladite microcapsule et/ou sa paroi montre une biodégradation d’au moins 85 %, de préférence d’au moins 90 %, et encore plus préférentiellement d’au moins 95 %, mesurée par un essai de respirométrie manométrique selon la méthode 301 F des « Lignes Directrices de l’OCDE pour les Essais de Produits Chimiques : Biodégradabilité Facile » après une incubation de 28 jours. 12. Microcapsule according to any one of claims 10 to 11, characterized in that said microcapsule and / or its wall shows a biodegradation of at least 85%, preferably at least 90%, and even more preferably of at least 95%, measured by a manometric respirometry test according to method 301 F of the “OECD Guidelines for the Testing of Chemicals: Ready Biodegradability” after incubation for 28 days.
13. Microcapsule selon l’une quelconque des revendications 10 à 12, caractérisée en ce que sa paroi a été modifiée soit par une couche de polymère déposée en surface de la 21 microcapsule, soit par ajout d’un amorceur radicalaire dans la phase aqueuse et/ou la phase huileuse, soit par ajout dans la phase aqueuse d’un acrylate hydrosoluble capable de modifier l’état de surface des microcapsules. 13. Microcapsule according to any one of claims 10 to 12, characterized in that its wall has been modified either by a layer of polymer deposited on the surface of the 21 microcapsule, either by adding a radical initiator to the aqueous phase and/or the oily phase, or by adding a water-soluble acrylate capable of modifying the surface state of the microcapsules to the aqueous phase.
EP21810754.8A 2020-11-18 2021-11-18 Method for preparing biodegradable microcapsules and microcapsules obtained in this manner Pending EP4247540A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2011829A FR3116212B1 (en) 2020-11-18 2020-11-18 METHOD FOR PREPARING BIODEGRADABLE MICROCAPSULES AND MICROCAPSULES THUS OBTAINED
PCT/IB2021/060689 WO2022107032A1 (en) 2020-11-18 2021-11-18 Method for preparing biodegradable microcapsules and microcapsules obtained in this manner

Publications (1)

Publication Number Publication Date
EP4247540A1 true EP4247540A1 (en) 2023-09-27

Family

ID=75953887

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21810754.8A Pending EP4247540A1 (en) 2020-11-18 2021-11-18 Method for preparing biodegradable microcapsules and microcapsules obtained in this manner

Country Status (6)

Country Link
US (1) US20240016751A1 (en)
EP (1) EP4247540A1 (en)
AU (1) AU2021382412A1 (en)
BR (1) BR112023009288A2 (en)
FR (1) FR3116212B1 (en)
WO (1) WO2022107032A1 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2318700A1 (en) 1999-09-17 2001-03-17 Katsuyuki Fujita Thermochromic microencapsulated pigments
DE10139790A1 (en) 2001-08-14 2003-03-06 Henkel Kgaa Microcapsules, process for their preparation and their use
US20070142263A1 (en) 2005-12-15 2007-06-21 Stahl Katherine D Color changing cleansing composition
DK2242774T3 (en) 2008-02-15 2013-03-18 Catalyse Self-repairing composition, self-repairing materials, self-repairing methods and applications
US20110269657A1 (en) * 2010-04-28 2011-11-03 Jiten Odhavji Dihora Delivery particles
EP2620211A3 (en) 2012-01-24 2015-08-19 Takasago International Corporation New microcapsules
FR2986324A1 (en) 2012-01-30 2013-08-02 Gem Innov RESPECT INDICATOR OF A TEMPERATURE RANGE
JP2022532256A (en) * 2019-05-16 2022-07-13 ジェム イノヴ Method for preparing biodegradable microcapsules and microcapsules obtained by this method

Also Published As

Publication number Publication date
FR3116212B1 (en) 2022-12-30
BR112023009288A2 (en) 2023-10-24
WO2022107032A1 (en) 2022-05-27
US20240016751A1 (en) 2024-01-18
AU2021382412A1 (en) 2023-06-08
FR3116212A1 (en) 2022-05-20

Similar Documents

Publication Publication Date Title
EP3969166A1 (en) Method for preparing biodegradable microcapsules and microcapsules obtained in this manner
EP3548529B1 (en) Process for preparing microcapsules of controlled size comprising a photopolymerization step
FR3116213A1 (en) METHOD FOR THE PREPARATION OF BIODEGRADABLE MICROCAPSULES AND USE OF THE MICROCAPSULES THUS OBTAINED
FR3066116A1 (en) PROCESS FOR PREPARING BIODEGRADABLE CAPSULES AND CAPSULES OBTAINED
EP2935457B1 (en) Active ingredient microparticles
EP3697527A1 (en) Method for preparing capsules sensitive to ph or uv radiation and capsules obtained therefrom
WO2021023922A1 (en) Method for manufacturing microcapsules containing a lipophilic active ingredient, microcapsules prepared by said method and the use thereof
WO2018172360A1 (en) Method for preparing capsules comprising at least one water-soluble or hydrophilic substance and capsules obtained therefrom
EP4247540A1 (en) Method for preparing biodegradable microcapsules and microcapsules obtained in this manner
FR3059665B1 (en) PROCESS FOR THE PREPARATION OF MICROCAPSULES AND MICROPARTICLES OF CONTROLLED SIZE
EP1487569B1 (en) Process for making biocompatible composite capsules
AU2021382412A9 (en) Method for preparing biodegradable microcapsules and microcapsules obtained in this manner
FR3095965A1 (en) PROCESS FOR PREPARATION OF BIODEGRADABLE MICROCAPSULES AND MICROCAPSULES THUS OBTAINED
EP3259054B1 (en) Polymeric microparticles

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230619

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)