EP4237188A1 - Nickel-based alloy for manufacturing pipeline tubes - Google Patents

Nickel-based alloy for manufacturing pipeline tubes

Info

Publication number
EP4237188A1
EP4237188A1 EP20803941.2A EP20803941A EP4237188A1 EP 4237188 A1 EP4237188 A1 EP 4237188A1 EP 20803941 A EP20803941 A EP 20803941A EP 4237188 A1 EP4237188 A1 EP 4237188A1
Authority
EP
European Patent Office
Prior art keywords
alloy
welding
tube
wire
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20803941.2A
Other languages
German (de)
French (fr)
Inventor
Pierre-Louis Reydet
Fanny JOUVENCEAU
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aperam SA
Original Assignee
Aperam SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aperam SA filed Critical Aperam SA
Publication of EP4237188A1 publication Critical patent/EP4237188A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K10/00Welding or cutting by means of a plasma
    • B23K10/02Plasma welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K10/00Welding or cutting by means of a plasma
    • B23K10/02Plasma welding
    • B23K10/027Welding for purposes other than joining, e.g. build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • B23K15/0086Welding welding for purposes other than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • B23K15/0093Welding characterised by the properties of the materials to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/144Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor the fluid stream containing particles, e.g. powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1462Nozzles; Features related to nozzles
    • B23K26/1464Supply to, or discharge from, nozzles of media, e.g. gas, powder, wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • B23K31/027Making tubes with soldering or welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3033Ni as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/368Selection of non-metallic compositions of core materials either alone or conjoint with selection of soldering or welding materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/0026Arc welding or cutting specially adapted for particular articles or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/025Seam welding; Backing means; Inserts for rectilinear seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/025Seam welding; Backing means; Inserts for rectilinear seams
    • B23K9/0253Seam welding; Backing means; Inserts for rectilinear seams for the longitudinal seam of tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/028Seam welding; Backing means; Inserts for curved planar seams
    • B23K9/0282Seam welding; Backing means; Inserts for curved planar seams for welding tube sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • B32B15/015Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium the said other metal being copper or nickel or an alloy thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0836Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with electric or magnetic field or induction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/06Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/10Pipe-lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2251/00Treating composite or clad material
    • C21D2251/02Clad material

Definitions

  • the present invention relates to a nickel-based alloy intended for use in particular in the field of petrochemistry and the extraction of petroleum products, and more particularly in the context of the manufacture of pipeline tubes for the transport of gas or oil.
  • S-Lay technology the sections of tube, typically 9 m or 12 m long, are manufactured on land in units called “spoolbase”, then transported to sea on ships to be butt-welded. end horizontally on a barge. The pose is called 'S' to recall the shape taken by the tube before touching the seabed. This technology is suitable for depths of less than 2000 m.
  • J-Lay technology This technology is more recent and adapted to deep waters (2000 m to 4000 m).
  • the pipe sections are welded together at sea on a vertical barge (at a slight angle) and form a ‘J’ shape before touching the seabed.
  • R-Lay technology The most recent, it is dedicated to small diameter tubes and shallow waters. The line of tubes is entirely welded on land, then rolled up on a wheel to be transported to sea before being unrolled there by means of specific barges. This technology is the most efficient.
  • the pipe sections used are typically manufactured in the workshop by rolling steel sheets and then longitudinally welding the edges of these sheets using the process MIG/MAG with a steel filler wire, the composition of which is chosen according to the grade of the sheets.
  • the wall thickness of these tube sections is typically around 25 mm and their diameter is between 25 cm and 130 cm.
  • the tube sections are manufactured by billet extrusion.
  • the tube sections, as well as the tubes obtained by orbital welding of these tube sections, in this case have no longitudinal weld (“seamless tube”).
  • the mechanical resistance of the tube sections specified according to the grade of steel is recalled below, according to API Specification 5L, for steel grades X56, X60, X65, X70 or X80 likely to be used for the manufacture of these pipe sections.
  • the steel grade corresponds to the elastic limit of the sheets, in ksi units.
  • the tube sections include a longitudinal weld
  • the inner surface of the tube sections is coated with a coating layer by resurfacing by welding by means of a filler wire.
  • This operation of The purpose of the coating is to ensure the corrosion resistance of the tube during the transport of more or less corrosive petroleum products.
  • the interior coating is typically made of Inconel ® 625 alloy.
  • Inconel ® 625 alloy has the following composition, by weight:
  • the Inconel ® 625 alloy is defined in Table 1 of the AWS A5.14/A5.14M: 2018 standard (Specification for Nickel and Nickel-Alloy Bare Welding Electrodes and Rods), entitled “Chemical composition requirements for Nickel and Nickel-Alloy Electrodes and Rods” under the AWS classification reference ERNiCrMo-3 (UNS number N06625).
  • the pipe sections are transported on a barge and butt-welded by orbital welding as they are laid by one of the techniques mentioned above.
  • the butt welds (orbital) made between the pipe sections must withstand the bending stresses of the line during laying and its own weight before touching the seabed.
  • the mechanical strength of the orbital welds is therefore of primary importance in order to avoid the deformation of the welds during the installation phases.
  • the aim is to obtain orbital welds with a mechanical strength greater than or equal to that of the base metal, that is to say the steel of the tube section.
  • the base metal that is to say the steel of the tube section.
  • localized corrosion means corrosion likely to develop pitting mechanisms.
  • An object of the invention is therefore to overcome the above drawbacks and to provide an alloy capable of being used as a filler material for the manufacture of pipeline tubes intended for the transport of oil or gas and suitable for laying in the open sea at great depths, and in particular up to a depth of about 3000 m, at high rates, in particular of the order of 2 km/day.
  • the aim is to obtain, at a minimum: an elastic limit Rpo,2 greater than or equal to 500 MPa and a KCV resilience greater than or equal to 100 J/cm 2 , and advantageously an elastic limit Rpo,2 greater than or equal to 550 MPa and/or a KCV resilience greater than or equal to 120 J/cm 2 .
  • tubes as pipelines for the transport of oil or gas requires good resistance to corrosion of the filler material, as well as good weldability.
  • localized corrosion resistance and weldability greater than or equal to those of the Inconel ® 625 alloy are sought.
  • the subject of the invention is an alloy having the following composition, by weight:
  • P ⁇ 0.005% optionally, 0.0010% S rare earths S 0.015%, the silicon content being less than or equal to 0.25% in the presence of rare earths at a content of between 0.0010% and 0.015%, the remainder being nickel and unavoidable impurities resulting from the production, the nickel content being greater than or equal to 54%.
  • the alloy according to the invention may also comprise one or more of the following characteristics, taken individually or in any technically possible combination(s): - the iron content is less than or equal to 0.5%;
  • the rare earths are chosen from yttrium, cerium and lanthanum and mixtures of these elements;
  • the rare earths are chosen from yttrium or a mixture of cerium and lanthanum.
  • the invention also relates to a coated part comprising a substrate made of a base material and a coating made of an alloy according to any one of claims 1 to 4, the base material being a metallic material, preferably a carbon steel. carbon, and for example a steel X56, X60, X65, X70.
  • the coated part is a section of tube.
  • the invention also relates to a filler wire made of an alloy as described above.
  • the invention also relates to a process for manufacturing the filler wire described above, comprising the following steps:
  • the invention also relates to a welded assembly comprising at least two parts of parts, each made of a base material, the parts of parts being linked together by a weld bead obtained from the filler wire as described below.
  • the base material being chosen from an iron-nickel alloy of the Fe-9Ni type, a nickel-based alloy of the C-276, C-4 or 22 type and a carbon steel, for example an X56, X60 steel , X65 or X70.
  • the welded assembly according to the invention may also include one or more of the following characteristics, taken separately or in any technically possible combination(s):
  • the welded assembly forms a section of tube comprising a sheet folded in the shape of a tube, the longitudinal edges of which constitute the parts of the part linked together by the weld bead;
  • the tube section is provided with a coating made of the alloy as described above, on at least part, and preferably all, of its inner surface;
  • the welded assembly forms a tube comprising at least two tube sections, the tube sections constituting the part parts, and the weld bead extending along the circumference of the tube, the tube sections preferably being tube sections as described above.
  • the invention also relates to a method of manufacturing a welded assembly comprising the welding together of the two parts of the parts by means of the filler wire as described above, the welding being in particular arc welding.
  • the manufacturing process of the welded assembly may also include one or more of the following characteristics, taken individually or in any technically possible combination(s):
  • the welding step is a step of welding together the longitudinal edges of the sheet, the weld preferably being a longitudinal butt weld;
  • the method further comprises, before the welding step, the following successive steps:
  • the welding step being a step of welding together two longitudinal ends facing the first and second tube sections, the welding preferably being an orbital butt welding.
  • the invention also relates to a part or part of a part made of an alloy as described above, said part or part of a part being obtained by additive manufacturing.
  • This additive manufacturing process uses, in particular, as filler material, a filler wire made from the alloy as described above and/or a powder made from the alloy as described above. .
  • the additive manufacturing process is, for example, an additive manufacturing process using an electric arc, a laser beam and/or an electron beam as an energy source to achieve the melting of the filler material.
  • the additive manufacturing process is an arc-wire, laser-wire, electron beam-wire process or a hybrid additive manufacturing process combining arc-wire and laser-powder or arc-wire and Laser-wire.
  • the invention also relates to a process for manufacturing a part or part of a part comprising a step of manufacturing said part or part of a part by a metal additive manufacturing process using, as filler material, a wire of contribution made in the alloy as described above and/or a powder made in the alloy as described above.
  • the additive manufacturing process is, for example, an additive manufacturing process using an electric arc, a laser beam and/or an electron beam as an energy source to achieve the melting of the filler material.
  • the additive manufacturing process is an arc-wire, laser-wire, electron beam-wire process or a hybrid additive manufacturing process combining arc-wire and laser-powder or arc-wire and Laser-wire.
  • the invention also relates to a use of the filler wire as described above:
  • the base material being an iron-nickel alloy of the Fe-9Ni type, a nickel-based alloy of the C-276 type , C-4 or 22, or a carbon steel, and in particular an X56, X60, X65 or X70 steel; and or
  • the base material preferably being a carbon steel, and for example an X56, X60, X65 or X70 steel; and or
  • the invention also relates to a metal powder made from an alloy as described above.
  • the invention also relates to a process for manufacturing the metal powder produced in an alloy as described above.
  • FIG. 1 is a schematic sectional view of a welded assembly according to the invention
  • - Figure 2 is a schematic perspective view of a tube section according to the invention
  • - Figure 3 is a schematic top view of a sheet used during the implementation of the method of manufacturing a tube section;
  • FIG. 4 is a schematic perspective view of a tube according to the invention.
  • FIG. 5 is a schematic perspective view of a part coated according to the invention.
  • FIG. 6 is a schematic perspective view of a part obtained by additive manufacturing according to the invention.
  • the alloy according to the invention has the following composition, by weight:
  • P ⁇ 0.005% optionally, 0.0010% S rare earths S 0.015%, the silicon content being less than or equal to 0.25% in the presence of rare earths at a content of between 0.0010% and 0.015%, the remainder being nickel and unavoidable impurities resulting from the production, the nickel content being greater than or equal to 54%.
  • unavoidable impurities resulting from the production we mean elements which are present in the raw materials used to produce the alloy or which come from the apparatus used for its production, and for example from the refractories of the furnaces. These residual elements have no metallurgical effect on the alloy.
  • the nickel content greater than or equal to 54% by weight ensures good ductility of the matrix and good resistance to corrosion under stress.
  • chromium provides good resistance to generalized corrosion and improves the mechanical properties of the alloy.
  • the inventors have observed that the resistance to generalized corrosion is insufficient when the chromium content is less than 16.5% by weight.
  • a chromium content higher than 25.0% by weight results in a precipitation of the a-phase, associated with a loss of ductility and an increased sensitivity to hot cracking, and thus results in degraded mechanical properties of the chromium. 'alloy.
  • the chromium content is greater than or equal to 17.0% and less than or equal to 23.0%.
  • molybdenum improves resistance to localized corrosion.
  • molybdenum considerably improves the mechanical properties.
  • the inventors have found that, for molybdenum contents of less than 11.0% by weight, the resistance to localized corrosion and the mechanical properties are insufficient, while a molybdenum content greater than 18% results in a precipitation of the phases resulting in loss of ductility and increased susceptibility to hot cracking.
  • the molybdenum content is greater than or equal to 11.5% and less than or equal to 16.5%.
  • the tungsten content is between 2.0% and 7.0% by weight. Present at these levels, tungsten also improves resistance to localized corrosion. In addition, it improves the mechanical properties. The inventors have observed that, for tungsten contents of less than 2.0%, the resistance to localized corrosion is insufficient. On the other hand, a tungsten content greater than 7.0% results in precipitation of undesirable phases, resulting in loss of ductility and increased susceptibility to hot cracking.
  • the iron content is less than or equal to 1.0% by weight.
  • the addition of iron deteriorates resistance to generalized corrosion.
  • An iron content less than or equal to 1.0% by weight allows the production of the alloy by means of scrap materials containing a residual iron content, which makes it possible to reduce the production cost.
  • At a content greater than 1.0% by weight it also promotes the precipitation of undesirable phases, resulting in a loss of ductility and an increased sensitivity to hot cracking.
  • the iron content in the alloy is less than or equal to 0.5% by weight.
  • the sum of the titanium and tantalum contents is less than or equal to 0.80% by weight.
  • titanium and tantalum considerably improve the mechanical properties, but their low solubility in Ni-Cr alloys generates precipitations of undesirable phases. Also, their contents must be limited to low concentrations. However, they contribute to the deoxidation of the alloy during production. The inventors have observed that, when Ti + Ta greater than 0.80% by weight, the precipitation of undesirable phases is observed, resulting in a loss of ductility and an increased sensitivity to hot cracking.
  • Mo + W - 0.5 x (Cr+Fe) + 30% by weight The inventors have found that compliance with this relationship makes it possible to obtain satisfactory ductility, resulting in particular in a fracture energy KCV S 100J/cm 2 , as well as good weldability, resulting in a total length of cracks less or equal to 20 mm.
  • the fracture energy KCV is expressed in J/cm 2 . It reflects the resilience of the piece. It is for example determined by resilience tests carried out in accordance with standard NF EN ISO 148-1 (January 2011) at ambient temperature.
  • the length of the cracks is in particular determined by Varestraint tests according to the European standard FD CEN ISO/TR 17641-3 (November 2005) under 3.2% plastic deformation.
  • silicon and aluminum favor deoxidation and manganese favor desulphurization during the elaboration of the alloy.
  • the calcium and magnesium contents in the alloy are each limited to 0.005% by weight so as not to degrade the weldability.
  • the calcium and magnesium contents are limited so as not to degrade the quality of the weld beads and in particular the formation of surface slags producing arc and liquid bath instabilities.
  • the niobium content is less than or equal to 0.01% by weight.
  • the niobium content in the alloy is limited so as not to degrade the resistance to hot cracking.
  • niobium segregates strongly in the interdendritic spaces and promotes the precipitation of undesirable phases.
  • the alloy also contains carbon and nitrogen in contents of between 0.001 and 0.05% by weight.
  • the carbon is controlled in order to facilitate deoxidation during the elaboration of the alloy.
  • carbon and nitrogen also provide refinement microstructures by the precipitation of carbonitrides of the Ti-(C, N) type if they are associated with the addition of titanium.
  • the S and P contents are limited as much as possible. They are respectively less than or equal to 0.003% by weight and 0.005% by weight in the alloy described above.
  • the alloy comprises rare earths at a content of between 0.0010 and 0.015% by weight.
  • Rare earths trap sulfur and residual oxygen. They improve resistance to hot cracking when welding a base metal containing residual S+O contents higher than those of the welding wire.
  • at a content higher than 0.015% they favor the precipitation of low melting point eutectic phases, in particular in the presence of silicon, which results in a loss of ductility and an increased sensitivity to hot cracking.
  • the rare earths are preferably chosen from yttrium, cerium and lanthanum, or from mixtures of these elements.
  • the rare earths consist of yttrium.
  • the alloy comprises between 0.0010 and 0.015% by weight of yttrium.
  • the rare earths consist of a mixture of cerium and lanthanum.
  • the content of Ce + La in the alloy is between 0.0010 and 0.015% by weight.
  • the silicon content is limited to 0.25% by weight, and preferably to 0.20% by weight. In this case, the silicon content is therefore between 0.01 and 0.25% by weight, and preferably between 0.01 and 0.20% by weight. Indeed, silicon promotes the formation of phases containing rare earths, which reduces the availability of rare earths to trap residual sulfur and oxygen.
  • the alloy according to the invention has a yield strength Rpo,2 of between 500 MPa and 600 MPa and a KCV resilience greater than or equal to 100 J/cm 2 , which makes it possible to obtain ductile welds having an overmatching of the mechanical properties compared to a base material made of X56, X60, X65 or X70 steel.
  • steel grades X56, X60, X65, X70 or X80 are defined in the document "API Specification 5L" of the American Petroleum Institute, 45th edition of December 2012.
  • the alloy according to the invention has:
  • the alloy according to the invention is therefore particularly suitable for use as a filler material for the manufacture of pipeline tubes intended for the transport of oil or gas and suitable for laying on the high seas. at great depths, and in particular down to a depth of around 3000 m, at high rates, in particular of the order of 2 km/day.
  • This alloy can therefore be used advantageously as a filler material for carrying out the longitudinal and/or orbital welds of pipeline tubes made of X56, X60, X65 or X70 steel, and intended to be laid at significant depths, going for example up to 3000 m deep and for high laying rates.
  • the alloy according to the invention can be produced by any suitable method known to those skilled in the art.
  • starting materials are placed in an electric arc furnace. These starting materials are chosen so as to obtain an alloy containing less than 1.0% by weight of iron. These are in particular new materials. Then, these starting materials are subjected to melting in the electric arc furnace, then ladle refining (VOD) is carried out by usual methods, in order to obtain:
  • the invention also relates to a filler wire made from an alloy having a composition as described above.
  • a filler wire is in particular suitable for use in the context of TIG or plasma welding processes with filler wire or the MIG/MAG welding process.
  • the base material being in particular an iron-nickel alloy of the Fe-9Ni type, that is to say containing nickel with a content of between 5% and 10% by weight, or a nickel-based alloy of the C-276, C-4 or 22 type, or a carbon steel, and in particular an X56, X60, X65 or X70; and or
  • a coating in particular on parts or parts of parts made of a base material, the base material being a carbon steel, and in particular an X56, X60, X65 or X70 steel.
  • Alloy C-276 is defined in Table 1 of AWS A5.14/A5.14M: 2018 (Specification for Nickel and Nickel-Alloy Bare Welding Electrodes and Rods), titled “Chemical composition requirements for Nickel and Nickel-Alloy Electrodes and Rods” under the AWS classification reference ERNiCrMo-4 (UNS number N10276).
  • Alloy C-4 is defined in Table 1 of AWS A5.14/A5.14M:2018 (Specification for Nickel and Nickel-Alloy Bare Welding Electrodes and Rods), entitled “Chemical composition requirements for Nickel and Nickel-Alloy Electrodes and Rods” under the AWS classification reference ERNiCrMo-7 (UNS number N06455).
  • Alloy 22 is defined in Table 1 of AWS A5.14/A5.14M: 2018 (Specification for Nickel and Nickel-Alloy Bare Welding Electrodes and Rods), entitled “Chemical composition requirements for Nickel and Nickel-Alloy Electrodes and Rods” under the AWS classification reference ERNiCrMo-10 (UNS number N06022).
  • the parts or parts of parts are in particular tube sections, tubes and/or sheets or parts of sheets made from the base material.
  • the filler wire is for example also intended to be used as a filler wire in the context of a metal additive manufacturing process.
  • the additive manufacturing process is, for example, an additive manufacturing process using an electric arc, a laser beam and/or an electron beam as an energy source to achieve fusion of the filler wire.
  • the additive manufacturing process is in particular a Directed Energy Deposition additive manufacturing process.
  • the filler material is deposited, in particular by a nozzle, and immediately fused by concentrated thermal energy, in particular a laser beam, an electron beam and/or an electric arc.
  • the additive manufacturing process is an arc-wire process (“WAAM” or “Wire arc additive manufacturing”), Laser-wire, electron beam-wire (“Electron Beam Free Form Fabrication”) or “Electron beam additive manufacturing” in English) or a hybrid additive manufacturing process combining arc-wire and Laser-powder or arc-wire and Laser-wire technologies
  • the powder used has the same composition as the wire.
  • Such a powder whose particle size after sieving is between 20 ⁇ m and 150 ⁇ m, is for example obtained from the filler wire according to the invention, by means of plasma atomization technology.
  • the filler wire used to manufacture the powder has a diameter of approximately 3 mm.
  • the particle size of the powders is determined in particular by the following measurement method. Powder batches are separated into multiple powder size distributions by means of ultrasonically vibrating stainless steel sieves. The analysis of the distribution of the sizes of the powders resulting from the sievings is carried out according to the standard ASTM B214-07. Sieving makes it possible to obtain 5 size classes: ⁇ 20pm - 20pm to 45pm - 45pm to 75pm - 75pm to 105pm - >105pm.
  • Plasma atomization technology for making a powder from a wire is known per se, and therefore is not described in more detail.
  • the parts or parts of parts are intended in particular for the aeronautics, transport or energy market. They constitute, for example, casings, frames, tubes with complex shapes, valves, fixing lugs, or parts of parts having particular functions.
  • a part of the part constitutes a heat exchanger element comprising, for example, channels for the circulation of a fluid formed by additive manufacturing on a support part, the support part being for example made of a different material that of the heat exchanger element.
  • the invention also relates to a method of manufacturing a filler wire made of the alloy as described above.
  • This method comprises, in a first step, the supply of a semi-finished product produced in this alloy.
  • the alloy is either cast in ingots, or cast directly in the form of billets, in particular by means of continuous casting, in particular rotary casting.
  • the semi-finished products obtained at the end of this step are therefore advantageously ingots or billets, and have for example a diameter of between 130 and 230 mm, and more particularly equal to approximately 150 mm.
  • the semi-finished products are transformed by hot transformation to form an intermediate yarn.
  • the semi-finished products that is to say in particular the ingots or billets, are heated, in particular in a gas oven, to a temperature of between 1180° C and 1220°C.
  • This semi-finished product of reduced section is in particular between 10 meters and 20 meters.
  • the reduced-section semi-finished products are then further hot-processed, at a temperature of between 1050 and 1150°C, to obtain the intermediate wire.
  • the intermediate wire may in particular be a machine wire. It has for example a diameter of between 5 mm and 21 mm, and in particular approximately equal to 5.5 mm.
  • the intermediate wire is produced by hot rolling on a wire mill.
  • the intermediate wire is then subjected to annealing in a pool, after heat treatment in a gas oven, at a temperature of between 1150° C. and 1220° C. for a period of between 60 minutes and 120 minutes.
  • the intermediate wire is then pickled, then wound in the form of a coil.
  • the intermediate wire thus obtained is drawn by means of a drawing installation of known type to obtain the filler wire.
  • This filler wire has a smaller diameter than the starting wire. Its diameter is in particular between 0.5 mm and 3.5 mm. It is advantageously between 0.8 mm and 2.4 mm.
  • the drawing step comprises, depending on the final diameter to be reached, one or more drawing passes, with, preferably, annealing between two successive drawing passes.
  • This annealing is for example carried out by scrolling under a reducing atmosphere at a temperature of the order of 1150°C.
  • the drawing step is preferably followed by cleaning the surface of the drawn wire, then by winding the wire.
  • the drawing passes are carried out cold.
  • the invention also relates to a welded assembly 1 comprising at least two part parts 3, made of a base metal, linked together by a cord solder 5 obtained from the filler wire as described above.
  • a welded assembly is represented schematically in FIG.
  • the degree of dilution of the wire during welding is for example between 1% and 10%, and in particular approximately equal to 5%.
  • the base metal is in particular a carbon steel, such as an X56, X60, X65 or X70 steel or an iron-nickel alloy of the Fe-9%Ni type, that is to say comprising a nickel content of between 5 and 10% by weight, or a nickel-based alloy of type C-276, C-4 or 22.
  • a carbon steel such as an X56, X60, X65 or X70 steel or an iron-nickel alloy of the Fe-9%Ni type, that is to say comprising a nickel content of between 5 and 10% by weight, or a nickel-based alloy of type C-276, C-4 or 22.
  • the invention also relates to a welding process for welding together at least two parts of parts 3 made of the base metal defined above so as to produce a welded assembly 5 as illustrated in FIG.
  • a filler wire is provided as previously described. Parts of parts 12 made of the base metal which it is desired to weld together by means of the welding process are also provided.
  • the parts of parts 12 are then welded together using the filler wire as welding filler wire. During this step, a butt weld is preferably made.
  • the welding step can include one or more welding passes. Conventionally, it includes a first welding pass called root pass, followed by one or more additional welding passes, called filling passes. All the welding passes are carried out using as filler wire the filler wire according to the invention, as described above. This limits the dilution of this filler wire to the dilution by the molten base metal resulting from the welding.
  • the degree of dilution of the wire during welding is for example between 1% and 10%, and in particular approximately equal to 5%.
  • the welding is for example carried out by arc welding, for example by plasma welding with filler wire, by MIG ("Metal Inert Gas” in English) welding or by MIG/MAG ("Metal active gas” in English) welding. ).
  • the welded assembly 1 is a section of tube 7 comprising a sheet metal 9 folded into the shape of a tube, the longitudinal edges 12 of which are linked together by a weld bead 15 obtained at from the wire contribution as defined above.
  • the part parts 3 include the longitudinal edges 12 of the sheet 9.
  • the wall of the tube section 5 has for example a thickness of between 3 mm and 60 mm.
  • the tube section 5 is intended in particular for the transport of corrosive products, in particular gas or oil. It is in particular intended to form part of a pipeline, in particular installed on the seabed, and in particular at a depth of up to 3000 m.
  • the invention also relates to a method of manufacturing such a section of tube 5.
  • the method includes supplying a sheet 9 made from the base metal.
  • a sheet 9 is shown in Figure 3. It extends in a longitudinal direction L and has longitudinal edges 12 substantially parallel to the longitudinal direction L. It has for example a thickness of between 3 mm and 60 mm.
  • the method further comprises a step consisting in folding this sheet 9 so as to bring the two longitudinal edges 12 facing each other, followed by a step consisting in welding together the two longitudinal edges 12 facing each other using the welding process defined previously.
  • the part parts 3 described within the framework of the welding process comprise the longitudinal edges 12 of the sheet 9.
  • the weld made during this step is a longitudinal weld. Preferably, it is a butt weld.
  • a section of tube 7 is obtained, as illustrated in FIG. 2, in which the sheet 9 is folded into the shape of a tube, and the longitudinal edges 12 of the sheet 9 are bonded together. by a weld bead 15 obtained from the filler wire as defined above.
  • the welded assembly is a tube 20 and the part parts 3 are sections of tube 7 linked together by a weld bead 22 obtained from the filler wire as defined previously.
  • the weld bead 22 extends along the circumference of the tube 20 so as to connect the tube sections 7 together.
  • the weld is in particular a butt weld, preferably an orbital weld.
  • orbital weld we mean a weld made by rotating the welding tool welding, namely in particular the welding torches, with respect to the tube sections 7 to be welded.
  • the wall of the tube 20 has for example a thickness of between 3 mm and 60 mm.
  • the tube sections 7 are tube sections as described previously.
  • the parts of parts 3 are sections of tube not comprising any longitudinal weld, and obtained for example by extrusion of billets.
  • the tube 20 is in particular intended for the transport of corrosive products, in particular gas or oil. It is in particular intended to form part of a pipeline, in particular installed on the seabed, and in particular at a depth of up to 3000 m.
  • the invention also relates to a method of manufacturing a tube 20 as described above.
  • Each tube section 5 is substantially cylindrical with an axis M, and has two longitudinal ends 24, spaced apart in the direction of the axis M.
  • the two sections of tube 7 are then positioned so that their longitudinal ends 24 are arranged facing each other in the direction of the axis M of these sections of tube, then the longitudinal ends 24 facing the two sections are welded together.
  • tube 7 by means of the welding process as defined above.
  • the part parts 3 defined within the framework of the welding process comprise the longitudinal ends 24 of the tube sections 7.
  • a butt weld is made between the longitudinal ends 24 facing the tube sections 7.
  • the weld is preferably an orbital weld.
  • the welding step comprises, prior to joining together the tube sections 7, a step of machining chamfers at the ends 24 of the tube sections 7 to be welded together.
  • the welding step is performed a number of times equal to the number of tube sections 7 to be welded to form the tube 20 minus one.
  • the tube sections 7 are tube sections 7 as described previously.
  • this method can be carried out with any type of section of tube whose longitudinal ends are made of the base metal, whatever the process for obtaining the tube section.
  • this method is implemented on tube sections not comprising any longitudinal weld, and obtained in particular by extrusion of billets.
  • This method is in particular implemented on a barge, this barge being for example located at the place of installation of the tube 20.
  • This tube 20 comprises at least two successive tube sections 7 assembled together by a weld bead 22 obtained from the filler wire such as previously defined.
  • the invention also relates to a coated part 26 as represented in FIG. 5 comprising a substrate 28 made of a base material coated with a coating 30 made of an alloy as described above.
  • the base material is metallic material.
  • the base material is in particular a carbon steel.
  • the base material is an X56, X60 or X65 or X70 steel.
  • the coating 30 is in particular applied to the substrate 28 by a process of hardfacing by welding by means of a filler wire having the composition described above.
  • the coating 30 in particular has a thickness of between 2 mm and 20 mm.
  • Such a coating 30 improves the corrosion resistance of the coated part 26, in particular in the presence of corrosive products, such as petroleum products.
  • the coated part 26 is in particular a coated section of tube 7, the coating 30 being formed on the inside wall of this section of tube 7, and covering in particular the inside wall of the section of tube 7 over its entire surface, including the weld bead 12 when it exists.
  • the invention also relates to a method for manufacturing a coated part 26 as described above, comprising the supply of a substrate 28 made of the base material, followed by the application of a coating 30 on a surface of this substrate by a process of surfacing by welding by means of a filler wire having the composition described above.
  • the manufacturing method comprises in particular a step of manufacturing a section of tube 7 by implementing the method described above, followed by a step application of a coating 30 on an inner surface of this section of tube 7 by a process of hardfacing by welding by means of a filler wire having the composition described above.
  • the coating 30 improves the corrosion resistance of the tube section 7, for example during the transport of more or less corrosive petroleum products.
  • the tube 20 described above comprises two sections of tube 7 coated with a coating 30 as described above, linked together by a weld bead 22.
  • the invention also relates to a method of manufacturing a part 40 as shown schematically in Figure 6, made of an alloy as described above, comprising:
  • the additive manufacturing process is for example an additive manufacturing process using an electric arc, a laser beam and/or an electron beam as an energy source to achieve the melting of the filler material.
  • the additive manufacturing process is in particular a Directed Energy Deposition additive manufacturing process.
  • the filler material is deposited, in particular by a nozzle, and immediately fused by concentrated thermal energy, in particular a laser beam, an electron beam and/or an electric arc.
  • the additive manufacturing process is an arc-wire, laser-wire, electron-beam-wire process (“Electron Beam Free Form Fabrication” or “Electron beam additive manufacturing”) or a hybrid additive manufacturing combining arc-wire and Laser-powder or arc-wire and Laser-wire technologies.
  • the powder and the filler wire are made in the alloy as described below. above.
  • the process also comprises, prior to the manufacture of the part 40, a step of supplying a powder made from the alloy as described above.
  • This powder whose particle size after sieving is between 20 ⁇ m and 150 ⁇ m, is for example manufactured by atomization plasma from a wire made of an alloy as described above, the wire in particular having a diameter of approximately 3 mm.
  • the plasma atomization process is known per se, and is therefore not described in detail.
  • the invention also relates to a part 40 or part of a part made of an alloy as described above obtained by metal additive manufacturing.
  • This metal additive manufacturing process uses in particular, as filler material, a filler wire made from the alloy as described above and/or a powder made from the alloy as described above. .
  • the additive manufacturing process is for example an additive manufacturing process using an electric arc, a laser beam and/or an electron beam as an energy source to achieve the melting of the filler material.
  • the additive manufacturing process is in particular a Directed Energy Deposition additive manufacturing process.
  • the filler material is deposited, in particular by a nozzle, and immediately fused by concentrated thermal energy, in particular a laser beam, an electron beam and/or an electric arc.
  • the additive manufacturing process is an arc-wire, laser-wire, electron-beam-wire process (“Electron Beam Free Form Fabrication” or “Electron beam additive manufacturing”) or a hybrid additive manufacturing combining arc-wire and Laser-powder or arc-wire and Laser-wire technologies.
  • the powder and the filler wire are made in the alloy as described below. above.
  • a part or part of a part obtained by a metal additive manufacturing process such as part 40, is raw from solidification. It therefore has a typical solidification microstructure of the nickel alloy considered, such a microstructure typically comprising columnar dendrites which grow by epitaxy on each other and whose orientation depends on the width and height of the metal wall fabricated . Furthermore, a part obtained by an additive manufacturing process has, due to its additive manufacturing process, a succession of superimposed solidification strata. Each stratum, obtained by solidification of deposited drops of molten metal, recasts the skin of the previous stratum in order to generate metallurgical continuity, and consequently heats the rest of the lower strata. The reheating temperature is lower the farther the stratum in question is from the zone undergoing melting and solidification. This particular microstructure is observable by metallographic observation on metallographic sections of the parts.
  • a part 40 or part of a part obtained by a metal additive manufacturing process can thus be distinguished from parts obtained by other processes, and in particular from a part obtained by conventional metallurgy which produces a recrystallized structure with homogeneous grains.
  • the parts 40 or parts of parts are intended in particular for the aeronautics, transport or energy market. They constitute, for example, casings, frames, tubes with complex shapes, valves, fixing lugs, or parts of parts having particular functions.
  • a part of the part constitutes a heat exchanger element comprising, for example, channels for the circulation of a fluid formed by additive manufacturing on a support part, the support part being for example made of a different material that of the heat exchanger element.
  • the inventors carried out laboratory castings to obtain ingots of alloys having compositions as defined above, as well as comparative alloys, having compositions different from the composition described above. above.
  • these strips produced adjoining fusion lines, front and back, using a TIG torch in order to develop solidification structures in the thickness of the strip comparable to those obtained by TIG or MIG welding, in undiluted condition, and taken, from the molten zones, tensile and impact test specimens.
  • the surface fraction of precipitated phases is determined by image analysis on images of the largets obtained with a scanning electron microscope (SEM). Indeed, the precipitated phases correspond to the white areas on these images, and are detected by image processing software, which detects the white areas by means of a gray level analysis and then determines the surface fraction occupied by these white areas.
  • SEM scanning electron microscope
  • the inventors carried out potentiometric tests to test the resistance to localized corrosion of the alloys. To this end, they measured the pitting potential V in LiCI medium at 11.9 mol.l'1 at a pH of 5.4 and at a temperature of 30°C and compared this pitting potential with that of the Inconel ® 625 (Vi ncO nei 625/SCE ⁇ 120 mV), where SCE is a reference potential with respect to the saturated calomel electrode.
  • the Al content is between 0.01 and 0.35%
  • the N content is between 0.001 and 0.05%
  • the Mg and Ca contents are less than or equal to 0.005%
  • the P content is less than or equal to 0.005%.
  • the alloy does not contain niobium.
  • compositions are indicated in percentage by weight.
  • alloys A1 to A28 in Table 1 developed a pitting potential V compared to the reference potential compared to the saturated calomel electrode greater than or equal to 150 mV. These alloys therefore have better resistance to localized corrosion than the Inconel ® 625 alloy.
  • an elastic limit Rpo,2 greater than or equal to 500 MPa
  • the total length of the cracks is representative of the weldability of the alloy.
  • the total length of cracks for the Inconel ® 625 alloy being equal to 20 mm, a total length of cracks less than or equal to 20 mm corresponds to a weldability greater than or equal to the weldability of the Inconel ® 625 alloy, and is therefore satisfactory for the applications considered.
  • the elastic limit Rpo,2 is less than or equal to 500 MPa in the case of the comparative examples A1, A7, A18, A24, while the KCV resilience is insufficient and/or the crack length is too high in the case of comparative examples A5, A6, A12, A13, A17, A22, A23, A27, A28. It is noted that, within the framework of these counter-examples, the relation - 0.5 x (Cr+Fe) + 25% S Mo+W S - 0.5 x (Cr+Fe) + 30% is not respected .
  • the alloys comprising iron at a content greater than 1.0% exhibit degraded ductility, as well as increased sensitivity to hot cracking.
  • a surface fraction of precipitated phases Fs greater than 1.5% results in a KCV resilience of less than 100 J/cm 2 and/or a crack length greater than 20 mm.
  • the inventors also carried out a second series of tests, under the same conditions as mentioned with regard to the first series of tests, but with bars made from alloys having the compositions summarized in Table 3. Furthermore, the results tests carried out on these strips are shown in Table 4.
  • the Al content is between 0.01 and 0.35%
  • the N content is between 0.001 and 0.05%
  • the Mg and Ca contents are less than or equal to 0.005%
  • the P content is less than or equal to 0.005%.
  • the alloy does not contain niobium.
  • compositions are indicated in percentage by weight.
  • alloys B1 to B28 in Table 3 developed a pitting potential V relative to the reference potential relative to the saturated calomel electrode greater than or equal to 150 mV. These alloys therefore have better resistance to localized corrosion than the Inconel ® 625 alloy.
  • the elastic limit Rpo,2 is less than or equal to 500 MPa in the case of comparative examples B1, B7, B18, B24, while the resilience KCV is insufficient in the case of comparative examples B5, B6, B12 , B13, B17, B22, B23, B27, B28. It is noted that, within the framework of these counter-examples, the relation - 0.5 x (Cr+Fe) + 25% S Mo+W ⁇ - 0.5 x (Cr+Fe) + 30% is not respected.
  • the weldability and the resilience are degraded in the case where the alloy contains iron at a content greater than 1.0%.
  • rare earths are particularly advantageous when the base metal to be welded has higher sulfur and/or oxygen contents than the filler wire. Indeed, the inventors have observed that the rare earths contribute to the deoxidation and/or to the desulfurization of the liquid bath during the welding operation, and thus to the improvement of the resistance to hot cracking.
  • the alloy according to the invention has a yield strength Rpo,2 greater than or equal to 500 MPa and a KCV resilience greater than or equal to 100 J/cm 2 , which makes it possible to obtain an overmatching of the mechanical properties with respect to a base metal having a yield strength Rpo,2 of less than 500 MPa such as alloys X56, X 60, X65 and X70. Thus, the characteristics of the welds can be ignored for the dimensioning of the welded assemblies made in such alloys as base materials.
  • the alloy according to the invention is therefore particularly suitable for use as a filler material for the manufacture of pipeline tubes intended for the transport of oil or gas and suitable for laying on the high seas. at great depths, and in particular down to a depth of around 3000 m, at high rates, in particular of the order of 2 km/day.
  • the alloy according to the invention can also be used advantageously in the context of parts as described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Arc Welding In General (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Powder Metallurgy (AREA)

Abstract

The invention relates to an alloy having the following composition by weight: 16.5% ≤ Cr ≤ 25.0%; 11.0% ≤ Mo ≤ 18.0%; 2.0% ≤ W ≤ 7.0%; Fe ≤ 1.0%; Mo+W ≤ - 0.5 x (Cr+Fe) + 30%; Mo+W ≥ - 0.5 x (Cr+Fe) + 25%; Ti+Ta ≤ 0.80%; 0.01% ≤ Si ≤ 0.75%; 0.01% ≤ Al ≤ 0.35%; 0.01% ≤ Mn ≤ 0.35%; Ca ≤ 0.005%; Mg ≤ 0.005%; Nb ≤ 0.01%; 0.001% ≤ C ≤ 0.05%; 0.001% ≤ N ≤ 0.05%; S ≤ 0.003%; P ≤ 0.005%; optionally 0.0010% ≤ rare earths ≤ 0.015%, the silicon content being less than or equal to 0.25% in the presence of rare earths in an amount between 0.0010% and 0.015%, the balance being nickel and inevitable impurities resulting from the processing, the nickel content being greater than or equal to 54%.

Description

ALLIAGE A BASE DE NICKEL POUR LA FABRICATION DE TUBES DE PIPELINENICKEL-BASED ALLOY FOR MAKING PIPELINE TUBES
La présente invention concerne un alliage à base de nickel destiné à être utilisé notamment dans le domaine de la pétrochimie et de l’extraction de produits pétroliers, et plus particulièrement dans le cadre de la fabrication de tubes de pipeline pour le transport de gaz ou de pétrole. The present invention relates to a nickel-based alloy intended for use in particular in the field of petrochemistry and the extraction of petroleum products, and more particularly in the context of the manufacture of pipeline tubes for the transport of gas or oil.
L’exploitation du gaz et du pétrole nécessite la pose de pipelines en mer. Pour des raisons de productivité et de rentabilité économique, on souhaite poser ces pipelines à une vitesse de pose d’environ 2 km/jour. Il existe actuellement trois technologies permettant de respecter ces contraintes de productivité: The exploitation of gas and oil requires the laying of pipelines at sea. For reasons of productivity and economic profitability, it is desired to lay these pipelines at a laying speed of approximately 2 km/day. There are currently three technologies available to meet these productivity constraints:
• Technologie S-Lay : les tronçons de tube, de longueur typiquement égale à 9 m ou 12 m, sont fabriqués à terre au sein d’unités appelées « spoolbase », puis transportés en mer sur des navires pour être soudés bout-à-bout à l’horizontale sur une barge. La pose est dite en ‘S’ pour rappeler la forme prise par le tube avant de toucher le fond marin. Cette technologie est adaptée aux fonds inférieurs à 2000 m. • S-Lay technology: the sections of tube, typically 9 m or 12 m long, are manufactured on land in units called "spoolbase", then transported to sea on ships to be butt-welded. end horizontally on a barge. The pose is called 'S' to recall the shape taken by the tube before touching the seabed. This technology is suitable for depths of less than 2000 m.
• Technologie J-Lay : Cette technologie est plus récente et adaptée aux eaux profondes (2000 m à 4000 m). Les tronçons de tube sont soudés entre eux en mer sur une barge à la verticale (avec un léger angle) et présentent une forme en ‘J’ avant de toucher le fond marin. • J-Lay technology: This technology is more recent and adapted to deep waters (2000 m to 4000 m). The pipe sections are welded together at sea on a vertical barge (at a slight angle) and form a ‘J’ shape before touching the seabed.
• Technologie R-Lay : La plus récente, elle est dédiée aux tubes de faible diamètre et aux eaux peu profondes. La ligne de tubes est intégralement soudée à terre, puis enroulée sur une roue pour être transportée en mer avant d’y être déroulée au moyen de barges spécifiques. Cette technologie est la plus performante. • R-Lay technology: The most recent, it is dedicated to small diameter tubes and shallow waters. The line of tubes is entirely welded on land, then rolled up on a wheel to be transported to sea before being unrolled there by means of specific barges. This technology is the most efficient.
Ces techniques de pose imposent des contraintes mécaniques sur les tubes, et en particulier sur les soudures orbitales entre tronçons de tube, en particulier sous l’effet de la flexion du tube durant la pose et sous l’effet de son poids propre avant de toucher le fond marin. Les tubes, et en particulier les soudures, doivent donc être conçus de sorte à résister à ces contraintes pour éviter la déformation des tubes pendant les phases de pose. These laying techniques impose mechanical stresses on the pipes, and in particular on the orbital welds between pipe sections, in particular under the effect of the bending of the pipe during laying and under the effect of its own weight before touching the seabed. The tubes, and in particular the welds, must therefore be designed in such a way as to resist these stresses in order to avoid deformation of the tubes during the laying phases.
Aux contraintes en termes de vitesse de pose, s’ajoute également une nécessaire augmentation des profondeurs de pose afin d’aller chercher les gisements encore disponibles, ces profondeurs de pose pouvant aller jusqu’à environ 2500 m à 3000 m de profondeur. Cette augmentation de la profondeur de pose augmente les contraintes mécaniques exercées sur les tubes, et impose donc l’utilisation d’aciers au carbone présentant des propriétés mécaniques de plus en plus élevées. In addition to the constraints in terms of laying speed, there is also a necessary increase in laying depths in order to seek the deposits still available, these laying depths being able to go up to approximately 2500 m to 3000 m deep. This increase in the laying depth increases the mechanical stresses exerted on the tubes, and therefore requires the use of carbon steels with increasingly high mechanical properties.
Les tronçons de tube utilisés sont typiquement fabriqués en atelier par roulage de tôles en acier puis soudage longitudinal des bords de ces tôles au moyen du procédé MIG/MAG avec un fil d’apport en acier, dont la composition est choisie en fonction du grade des tôles. L’épaisseur de paroi de ces tronçons de tube est typiquement de l’ordre de 25 mm et leur diamètre est compris entre 25 cm et 130 cm. The pipe sections used are typically manufactured in the workshop by rolling steel sheets and then longitudinally welding the edges of these sheets using the process MIG/MAG with a steel filler wire, the composition of which is chosen according to the grade of the sheets. The wall thickness of these tube sections is typically around 25 mm and their diameter is between 25 cm and 130 cm.
En variante, et en fonction de l’application, les tronçons de tube sont fabriqués par extrusion de billettes. Les tronçons de tube, ainsi que les tubes obtenus par soudage orbital de ces tronçons de tube, sont dans ce cas dépourvus de soudure longitudinale (« seamless tube » en anglais). Alternatively, and depending on the application, the tube sections are manufactured by billet extrusion. The tube sections, as well as the tubes obtained by orbital welding of these tube sections, in this case have no longitudinal weld (“seamless tube”).
La résistance mécanique des tronçons de tube spécifiée en fonction du grade de l’acier est rappelée ci-dessous, selon l’API Specification 5L, pour les nuances d’acier X56, X60, X65, X70 ou X80 susceptibles d’être utilisées pour la fabrication de ces tronçons de tube. Le grade de l’acier correspond à la limite élastique des tôles, en unité ksi. The mechanical resistance of the tube sections specified according to the grade of steel is recalled below, according to API Specification 5L, for steel grades X56, X60, X65, X70 or X80 likely to be used for the manufacture of these pipe sections. The steel grade corresponds to the elastic limit of the sheets, in ksi units.
Les nuances d’acier X56, X60, X65, X70 ou X80 sont définies dans le document « API Specification 5L » de l’American Petroleum Institute, 45ème édition de décembre 2012. Steel grades X56, X60, X65, X70 or X80 are defined in the document "API Specification 5L" of the American Petroleum Institute, 45th edition of December 2012.
Dans le cas où les tronçons de tube comprennent une soudure longitudinale, on cherche, lors de la fabrication des tronçons de tube, à obtenir des soudures dont les propriétés mécaniques sont supérieures ou égales à celles de l’acier de la tôle de base («overmatching») de façon à pouvoir dimensionner les tronçons de tube, et par exemple définir l’épaisseur des tronçons de tube et le grade de l’acier utilisé, en fonction des conditions de pose (S, J, R) et du type d’exploitation de la ligne uniquement sans être contraint de tenir compte des soudures. In the case where the tube sections include a longitudinal weld, it is sought, during the manufacture of the tube sections, to obtain welds whose mechanical properties are greater than or equal to those of the steel of the base sheet (" overmatching") so as to be able to size the sections of tube, and for example define the thickness of the sections of tube and the grade of steel used, according to the laying conditions (S, J, R) and the type of operation of the line only without being forced to take welds into account.
Dans le cas où les tronçons de tube sont fabriqués sans soudure longitudinale, par exemple par extrusion de billettes (technologie « seamless »), il est possible de s’affranchir des spécifications demandées aux soudures longitudinales («overmatching»). In the case where the pipe sections are manufactured without longitudinal welding, for example by extrusion of billets (“seamless” technology), it is possible to dispense with the specifications required for longitudinal welds (“overmatching”).
Après fabrication des tronçons de tube, la surface intérieure des tronçons de tube, y compris les soudures longitudinales éventuelles, est revêtue d’une couche de revêtement par rechargement par soudage au moyen d’un fil d’apport. Cette opération de revêtement a pour but d’assurer la tenue à la corrosion du tube pendant le transport des produits pétroliers plus ou moins corrosifs. Le revêtement intérieur est typiquement réalisé en alliage Inconel ® 625. L’alliage Inconel ® 625 présente la composition suivante, en poids : After manufacture of the tube sections, the inner surface of the tube sections, including any longitudinal welds, is coated with a coating layer by resurfacing by welding by means of a filler wire. This operation of The purpose of the coating is to ensure the corrosion resistance of the tube during the transport of more or less corrosive petroleum products. The interior coating is typically made of Inconel ® 625 alloy. Inconel ® 625 alloy has the following composition, by weight:
Cr : 20,0-23,0% Cr: 20.0-23.0%
Fe < 5,0% Fe < 5.0%
Mo : 8,0-10,0% MB: 8.0-10.0%
Nb+Ta : 3,15-4,15% Nb+Ta: 3.15-4.15%
C S 0,10% C S 0.10%
Mn S 0,50% Min S 0.50%
Si S 0,50% If S 0.50%
P S 0,002% PS 0.002%
S S 0,015% S S 0.015%
Al S 0,40% Al S 0.40%
Ti S 0,40% Ti S 0.40%
Autres éléments S 0,5%, le reste étant du nickel et des impuretés inévitables résultant de l’élaboration, avec Ni > 58%. Other elements S 0.5%, the rest being nickel and unavoidable impurities resulting from the elaboration, with Ni > 58%.
L’alliage Inconel ® 625 est défini au Tableau 1 de la norme AWS A5.14/A5.14M : 2018 (Specification for Nickel and Nickel-Alloy Bare Welding Electrodes and Rods), intitulé « Chemical composition requirements for Nickel and Nickel-Alloy Electrodes and Rods » sous la référence dans la classification AWS ERNiCrMo-3 (numéro UNS N06625). The Inconel ® 625 alloy is defined in Table 1 of the AWS A5.14/A5.14M: 2018 standard (Specification for Nickel and Nickel-Alloy Bare Welding Electrodes and Rods), entitled "Chemical composition requirements for Nickel and Nickel-Alloy Electrodes and Rods” under the AWS classification reference ERNiCrMo-3 (UNS number N06625).
Une fois fabriqués, les tronçons de tube sont transportés sur une barge et soudés en bout-à-bout par soudage orbital au fur et à mesure de la pose par l’une des techniques mentionnées ci-dessus. Once manufactured, the pipe sections are transported on a barge and butt-welded by orbital welding as they are laid by one of the techniques mentioned above.
Quelle que soit la technique de pose utilisée, les soudures bout-à-bout (orbitales) réalisées entre les tronçons de tube doivent supporter les contraintes de flexion de la ligne durant la pose et son poids propre avant de toucher le fond marin. La résistance mécanique des soudures orbitales est donc de première importance de façon à éviter la déformation des soudures durant les phases de pose. Whatever the laying technique used, the butt welds (orbital) made between the pipe sections must withstand the bending stresses of the line during laying and its own weight before touching the seabed. The mechanical strength of the orbital welds is therefore of primary importance in order to avoid the deformation of the welds during the installation phases.
D’une manière générale, on recherche les propriétés suivantes pour les soudures orbitales entre tronçons de tube : In general, the following properties are sought for orbital welds between pipe sections:
- Overmatching : on cherche à obtenir des soudures orbitales présentant une résistance mécanique supérieure ou égale à celle du métal de base, c’est-à-dire de l’acier du tronçon de tube. Comme évoqué ci-dessus par rapport aux soudures longitudinales des tronçons de tube, cet overmatching permet de dimensionner les tubes, et en particulier de définir l’épaisseur du tube et le grade de l’acier utilisé, en fonction des conditions de pose (S, J, R) et du type d’exploitation de la ligne sans être contraint de tenir compte des soudures. - Overmatching: the aim is to obtain orbital welds with a mechanical strength greater than or equal to that of the base metal, that is to say the steel of the tube section. As mentioned above with respect to the longitudinal welds of the tube sections, this overmatching makes it possible to size the tubes, and in particular to define the thickness of the tube and the grade of steel used, depending on the laying conditions (S, J, R) and the type of operation of the line without being forced to take welds into account.
- Une tenue à la corrosion localisée supérieure ou égale à celle du revêtement du tronçon de tube, côté intérieur, afin de pouvoir dimensionner les tubes par rapport aux contraintes en termes de tenue à la corrosion localisée sans tenir compte de l’existence des soudures orbitales. - Resistance to localized corrosion greater than or equal to that of the coating of the tube section, on the inside, in order to be able to size the tubes in relation to the constraints in terms of resistance to localized corrosion without taking into account the existence of orbital welds .
Dans l’ensemble de la description, on entend par corrosion localisée une corrosion susceptible de développer des mécanismes de piqûre. Throughout the description, localized corrosion means corrosion likely to develop pitting mechanisms.
Dans le but de répondre à l’ensemble des contraintes mentionnées ci-dessus, on a proposé de réaliser des soudures orbitales dans lesquelles la passe de racine, au niveau du revêtement, est réalisée au moyen d’un fil d’apport en alliage Inconel ® 625, et de terminer la soudure par des passes de remplissage en acier d’un grade équivalent au métal de base. Cette technique de soudage garantit de bonnes propriétés mécaniques car elle assure une certaine continuité des matériaux utilisés. En revanche, elle pose d’importants problèmes de fissuration à chaud, et donc de soudabilité, liés à la dilution de l’alliage Inconel ® 625. Une telle solution n’est donc pas entièrement satisfaisante. En particulier, les fissures apparaissant pendant le soudage doivent être réparées, ce qui engendre un surcoût important. En outre, si elles ne sont pas réparées, ces fissures risquent de générer la rupture des tubes en fonctionnement. In order to meet all the constraints mentioned above, it has been proposed to produce orbital welds in which the root pass, at the level of the coating, is carried out by means of an Inconel alloy filler wire. ® 625, and to finish the weld with steel filler passes of a grade equivalent to the base metal. This welding technique guarantees good mechanical properties because it ensures a certain continuity of the materials used. On the other hand, it poses significant problems of hot cracking, and therefore of weldability, linked to the dilution of the Inconel ® 625 alloy. Such a solution is therefore not entirely satisfactory. In particular, the cracks appearing during welding must be repaired, which generates a significant additional cost. In addition, if they are not repaired, these cracks risk causing the tubes to break in operation.
On a également proposé de réaliser l’intégralité de la soudure au moyen d’un seul fil en alliage Inconel ® 625. Cette solution de soudage est de fait économique. En outre, elle ne génère aucun problème de fissuration à chaud, et conduit à des tenues à la corrosion comparables à celles du revêtement. Aussi, elle est largement utilisée pour souder les tubes jusqu’au grade X56 voire X60. Cependant celle-ci ne convient plus pour les grades d’acier supérieurs (X65, X70 et X80). Or, les contraintes mentionnées ci- dessus, en particulier en termes de vitesse et de profondeur de pose, imposent de plus en plus l’utilisation d’aciers de grades supérieurs au grade X60, et notamment d’acier de grade X65, voire X70. It has also been proposed to carry out the entire weld using a single Inconel ® 625 alloy wire. This welding solution is therefore economical. In addition, it generates no hot cracking problem, and leads to corrosion resistance comparable to that of the coating. Also, it is widely used to weld tubes up to grade X56 or even X60. However, this is no longer suitable for higher grades of steel (X65, X70 and X80). However, the constraints mentioned above, in particular in terms of speed and depth of laying, increasingly require the use of steels of grades higher than grade X60, and in particular steel of grade X65, or even X70 .
Un but de l’invention est donc de surmonter les inconvénients ci-dessus et de fournir un alliage susceptible d’être utilisé en tant que matériau d’apport pour la fabrication de tubes de pipeline destinés au transport de pétrole ou de gaz et adaptés pour la pose en haute mer à des profondeurs élevées, et en particulier jusqu’à environ 3000 m de profondeur, à des cadences élevées, en particulier de l’ordre de 2 km/jour. An object of the invention is therefore to overcome the above drawbacks and to provide an alloy capable of being used as a filler material for the manufacture of pipeline tubes intended for the transport of oil or gas and suitable for laying in the open sea at great depths, and in particular up to a depth of about 3000 m, at high rates, in particular of the order of 2 km/day.
La pose des tubes à des profondeurs pouvant aller jusqu’à environ 3000 m de profondeur, ainsi que les cadences élevées de pose, imposent l’utilisation d’un acier présentant des propriétés mécaniques élevées. De préférence, en ce qui concerne les propriétés mécaniques des assemblages soudés, on cherche à obtenir, au minimum : une limite d’élasticité Rpo,2 supérieure ou égale à 500 MPa et une résilience KCV supérieure ou égale à 100 J/cm2, et avantageusement une limite d’élasticité Rpo,2 supérieure ou égale à 550 MPa et/ou une résilience KCV supérieure ou égale à 120 J/cm2. The laying of the tubes at depths that can go up to about 3000 m deep, as well as the high laying rates, require the use of a steel with high mechanical properties. Preferably, with regard to the mechanical properties of the welded assemblies, the aim is to obtain, at a minimum: an elastic limit Rpo,2 greater than or equal to 500 MPa and a KCV resilience greater than or equal to 100 J/cm 2 , and advantageously an elastic limit Rpo,2 greater than or equal to 550 MPa and/or a KCV resilience greater than or equal to 120 J/cm 2 .
Par ailleurs, l’utilisation des tubes en tant que pipelines pour le transport de pétrole ou de gaz impose une bonne tenue à la corrosion du matériau d’apport, ainsi qu’une bonne soudabilité. En particulier, on recherche une tenue à la corrosion localisée et une soudabilité supérieures ou égales à celles de l’alliage Inconel ® 625. In addition, the use of tubes as pipelines for the transport of oil or gas requires good resistance to corrosion of the filler material, as well as good weldability. In particular, localized corrosion resistance and weldability greater than or equal to those of the Inconel ® 625 alloy are sought.
A cet effet, l’invention a pour objet un alliage présentant la composition suivante, en poids : To this end, the subject of the invention is an alloy having the following composition, by weight:
16,5% Cr <S 25,0% 16.5% Cr<S 25.0%
11 ,0% Mo 18,0% 11.0% MB 18.0%
2,0% S W S 7,0% 2.0% S W S 7.0%
Fe S 1 ,0% FeS 1.0%
Mo+W S - 0,5 x (Cr+Fe) + 30% Mo+W S - 0.5x (Cr+Fe) + 30%
Mo+W > - 0,5 x (Cr+Fe) + 25% Mo+W > - 0.5x (Cr+Fe) + 25%
Ti+Ta 0,80% Ti+Ta 0.80%
0,01 % < Si < 0,75% 0.01% < If < 0.75%
0,01 % < Al < 0,35% 0.01% < Al < 0.35%
0,01% < Mn < 0,35% 0.01% < Mn < 0.35%
Ca < 0,005% Ca < 0.005%
Mg < 0,005% Mg<0.005%
Nb < 0,01% Count < 0.01%
0,001% < C < 0,05% 0.001%<C<0.05%
0,001% < N < 0,05% 0.001% < N < 0.05%
S < 0,003% S<0.003%
P < 0,005% optionnellement, 0,0010% S terres rares S 0,015%, la teneur en silicium étant inférieure ou égale à 0,25% en présence de terres rares à une teneur comprise entre 0,0010% et 0,015%, le reste étant du nickel et des impuretés inévitables résultant de l’élaboration, la teneur en nickel étant supérieure ou égale à 54%.P < 0.005% optionally, 0.0010% S rare earths S 0.015%, the silicon content being less than or equal to 0.25% in the presence of rare earths at a content of between 0.0010% and 0.015%, the remainder being nickel and unavoidable impurities resulting from the production, the nickel content being greater than or equal to 54%.
L’alliage selon l’invention peut également comprendre l’une ou plusieurs des caractéristiques suivantes, prises isolément ou selon toute(s) combinaison(s) techniquement possible : - la teneur en fer est inférieure ou égale à 0,5% ; The alloy according to the invention may also comprise one or more of the following characteristics, taken individually or in any technically possible combination(s): - the iron content is less than or equal to 0.5%;
- les terres rares sont choisies parmi l’yttrium, le cérium et le lanthane et les mélanges de ces éléments ; et - the rare earths are chosen from yttrium, cerium and lanthanum and mixtures of these elements; and
- les terres rares sont choisies parmi l’yttrium ou un mélange de cérium et de lanthane. - the rare earths are chosen from yttrium or a mixture of cerium and lanthanum.
L’invention concerne également une pièce revêtue comprenant un substrat réalisé dans un matériau de base et un revêtement, réalisé dans un alliage selon l’une quelconque des revendications 1 à 4, le matériau de base étant un matériau métallique, de préférence un acier au carbone, et par exemple un acier X56, X60, X65, X70. The invention also relates to a coated part comprising a substrate made of a base material and a coating made of an alloy according to any one of claims 1 to 4, the base material being a metallic material, preferably a carbon steel. carbon, and for example a steel X56, X60, X65, X70.
Selon un exemple particulier la pièce revêtue est un tronçon de tube. According to a particular example, the coated part is a section of tube.
L’invention concerne également un fil d’apport réalisé dans un alliage tel que décrit ci-dessus. The invention also relates to a filler wire made of an alloy as described above.
L’invention concerne également un procédé de fabrication du fil d’apport décrit ci- dessus, comprenant les étapes suivantes : The invention also relates to a process for manufacturing the filler wire described above, comprising the following steps:
- fourniture d’un demi-produit réalisé dans un alliage tel que décrit ci-dessus ;- supply of a semi-finished product made from an alloy as described above;
- transformation à chaud de ce demi-produit pour former un fil intermédiaire ; et- hot transformation of this semi-finished product to form an intermediate yarn; and
- transformation du fil intermédiaire en fil d’apport, de diamètre inférieur à celui du fil intermédiaire, ladite transformation comprenant une étape de tréfilage. - transformation of the intermediate wire into filler wire, of smaller diameter than that of the intermediate wire, said transformation comprising a drawing step.
L’invention concerne également un assemblage soudé comprenant au moins deux parties de pièces, réalisées chacune dans un matériau de base, les parties de pièces étant liées entre elles par un cordon de soudure obtenu à partir du fil d’apport tel que décrit ci-dessus, le matériau de base étant choisi parmi un alliage fer-nickel de type Fe- 9Ni, un alliage à base de nickel de type C-276, C-4 ou 22 et un acier au carbone, par exemple un acier X56, X60, X65 ou X70. The invention also relates to a welded assembly comprising at least two parts of parts, each made of a base material, the parts of parts being linked together by a weld bead obtained from the filler wire as described below. above, the base material being chosen from an iron-nickel alloy of the Fe-9Ni type, a nickel-based alloy of the C-276, C-4 or 22 type and a carbon steel, for example an X56, X60 steel , X65 or X70.
L’assemblage soudé selon l’invention peut également comprendre l’une ou plusieurs des caractéristiques suivantes, prises isolément ou selon toute(s) combinaison(s) techniquement possible : The welded assembly according to the invention may also include one or more of the following characteristics, taken separately or in any technically possible combination(s):
- l’assemblage soudé forme un tronçon de tube comprenant une tôle repliée en forme de tube, dont les bords longitudinaux constituent les parties de pièce liées entre elles par le cordon de soudure ; - the welded assembly forms a section of tube comprising a sheet folded in the shape of a tube, the longitudinal edges of which constitute the parts of the part linked together by the weld bead;
- le tronçon de tube est muni d’un revêtement réalisé dans l’alliage tel que décrit ci- dessus, sur au moins une partie, et de préférence l’intégralité, de sa surface intérieure ; et - the tube section is provided with a coating made of the alloy as described above, on at least part, and preferably all, of its inner surface; and
- l’assemblage soudé forme un tube comprenant au moins deux tronçons de tube, les tronçons de tube constituant les parties de pièce, et le cordon de soudure s’étendant le long de la circonférence du tube, les tronçons de tube étant de préférence des tronçons de tube tel que décrit ci-dessus. - the welded assembly forms a tube comprising at least two tube sections, the tube sections constituting the part parts, and the weld bead extending along the circumference of the tube, the tube sections preferably being tube sections as described above.
L’invention concerne également un procédé de fabrication d’un assemblage soudé comprenant le soudage entre elles des deux parties de pièces au moyen du fil d’apport tel que décrit ci-dessus, le soudage étant en particulier un soudage à l’arc. The invention also relates to a method of manufacturing a welded assembly comprising the welding together of the two parts of the parts by means of the filler wire as described above, the welding being in particular arc welding.
Le procédé de fabrication de l’assemblage soudé peut également comprendre l’une ou plusieurs des caractéristiques suivantes, prises isolément ou selon toute(s) combinaison(s) techniquement possible : The manufacturing process of the welded assembly may also include one or more of the following characteristics, taken individually or in any technically possible combination(s):
- l’étape de soudage est une étape de soudage entre eux des bords longitudinaux de la tôle, la soudure étant de préférence une soudure longitudinale bout à bout ; et - the welding step is a step of welding together the longitudinal edges of the sheet, the weld preferably being a longitudinal butt weld; and
- le procédé comprend en outre, avant l’étape de soudage, les étapes successives suivantes : - the method further comprises, before the welding step, the following successive steps:
- fourniture d’un premier tronçon de tube et d’un deuxième tronçon de tube s’étendant chacun suivant un axe longitudinal, et réalisés dans le matériau de base ; - supply of a first section of tube and a second section of tube each extending along a longitudinal axis, and made of the base material;
- positionnement des premier et deuxième tronçons de tube de telle sorte qu’une extrémité longitudinale du premier tronçon de tube soit disposée en regard d’une extrémité longitudinale du deuxième tronçon de tube selon l’axe longitudinal des premier et deuxième tronçons de tube ; et l’étape de soudage étant une étape de soudage entre elles de deux extrémités longitudinales en regard des premier et deuxième tronçons de tube, le soudage étant de préférence un soudage bout à bout orbital. - Positioning of the first and second tube sections such that a longitudinal end of the first tube section is arranged opposite a longitudinal end of the second tube section along the longitudinal axis of the first and second tube sections; and the welding step being a step of welding together two longitudinal ends facing the first and second tube sections, the welding preferably being an orbital butt welding.
L’invention concerne également une pièce ou partie de pièce réalisée dans un alliage tel que décrit ci-dessus, ladite pièce ou partie de pièce étant obtenue par fabrication additive. The invention also relates to a part or part of a part made of an alloy as described above, said part or part of a part being obtained by additive manufacturing.
Ce procédé de fabrication additive utilise, en particulier, en tant que matériau d’apport, un fil d’apport réalisé dans l’alliage tel que décrit ci-dessus et/ou une poudre réalisée dans l’alliage tel que décrit ci-dessus. This additive manufacturing process uses, in particular, as filler material, a filler wire made from the alloy as described above and/or a powder made from the alloy as described above. .
Le procédé de fabrication additive est par exemple un procédé de fabrication additive utilisant un arc électrique, un faisceau laser et/ou un faisceau d’électrons comme source d’énergie pour réaliser la fusion du matériau d’apport. The additive manufacturing process is, for example, an additive manufacturing process using an electric arc, a laser beam and/or an electron beam as an energy source to achieve the melting of the filler material.
A titre d’exemple, le procédé de fabrication additive est un procédé arc-fil, Laser-fil, faisceau d’électrons-fil ou un procédé de fabrication additive hybride combinant les technologies arc-fil et Laser-poudre ou arc-fil et Laser-fil. L’invention concerne également un procédé de fabrication d’une pièce ou partie de pièce comprenant une étape de fabrication de ladite pièce ou partie de pièce par un procédé de fabrication additive métallique utilisant, en tant que matériau d’apport, un fil d’apport réalisé dans l’alliage tel que décrit ci-dessus et/ou une poudre réalisée dans l’alliage tel que décrit ci-dessus. By way of example, the additive manufacturing process is an arc-wire, laser-wire, electron beam-wire process or a hybrid additive manufacturing process combining arc-wire and laser-powder or arc-wire and Laser-wire. The invention also relates to a process for manufacturing a part or part of a part comprising a step of manufacturing said part or part of a part by a metal additive manufacturing process using, as filler material, a wire of contribution made in the alloy as described above and/or a powder made in the alloy as described above.
Le procédé de fabrication additive est par exemple un procédé de fabrication additive utilisant un arc électrique, un faisceau laser et/ou un faisceau d’électrons comme source d’énergie pour réaliser la fusion du matériau d’apport. The additive manufacturing process is, for example, an additive manufacturing process using an electric arc, a laser beam and/or an electron beam as an energy source to achieve the melting of the filler material.
A titre d’exemple, le procédé de fabrication additive est un procédé arc-fil, Laser-fil, faisceau d’électrons-fil ou un procédé de fabrication additive hybride combinant les technologies arc-fil et Laser-poudre ou arc-fil et Laser-fil. By way of example, the additive manufacturing process is an arc-wire, laser-wire, electron beam-wire process or a hybrid additive manufacturing process combining arc-wire and laser-powder or arc-wire and Laser-wire.
L’invention concerne également une utilisation du fil d’apport tel que décrit ci- dessus : The invention also relates to a use of the filler wire as described above:
- comme fil d’apport de soudage pour souder entre elles deux parties de pièces réalisées dans un matériau de base, le matériau de base étant un alliage fer-nickel de type Fe-9Ni, un alliage à base de nickel de type C-276, C-4 ou 22, ou un acier au carbone, et en particulier un acier X56, X60, X65 ou X70 ; et/ou - as a welding filler wire for welding together two parts of parts made of a base material, the base material being an iron-nickel alloy of the Fe-9Ni type, a nickel-based alloy of the C-276 type , C-4 or 22, or a carbon steel, and in particular an X56, X60, X65 or X70 steel; and or
- comme fil de rechargement pour réaliser un revêtement sur des pièces ou parties de pièces réalisées dans un matériau de base métallique, le matériau de base étant de préférence un acier au carbone, et par exemple un acier X56, X60, X65 ou X70 ; et/ou - As a hardfacing wire for producing a coating on parts or parts of parts made of a metallic base material, the base material preferably being a carbon steel, and for example an X56, X60, X65 or X70 steel; and or
- comme fil d’apport dans le cadre d’un procédé de fabrication additive métallique. - as filler wire in a metal additive manufacturing process.
L’invention concerne également une poudre métallique réalisée dans un alliage tel que décrit ci-dessus. The invention also relates to a metal powder made from an alloy as described above.
L’invention concerne également un procédé de fabrication de la poudre métallique réalisée dans un alliage tel que décrit ci-dessus. The invention also relates to a process for manufacturing the metal powder produced in an alloy as described above.
L’invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d’exemple, et faite en référence aux dessins annexés, parmi lesquels : The invention will be better understood on reading the following description, given solely by way of example, and made with reference to the appended drawings, among which:
- la figure 1 est une vue schématique en section d’un assemblage soudé selon l’invention ; - Figure 1 is a schematic sectional view of a welded assembly according to the invention;
- la figure 2 est une vue schématique en perspective d’un tronçon de tube selon l’invention ; - la figure 3 est une vue schématique de dessus d’une tôle utilisée lors de la mise en oeuvre du procédé de fabrication d’un tronçon de tube ; - Figure 2 is a schematic perspective view of a tube section according to the invention; - Figure 3 is a schematic top view of a sheet used during the implementation of the method of manufacturing a tube section;
- la figure 4 est une vue schématique en perspective d’un tube selon l’invention ;- Figure 4 is a schematic perspective view of a tube according to the invention;
- la figure 5 est une vue schématique en perspective d’une pièce revêtue selon l’invention ; et - Figure 5 is a schematic perspective view of a part coated according to the invention; and
- la figure 6 est une vue schématique en perspective d’une pièce obtenue par fabrication additive selon l’invention. - Figure 6 is a schematic perspective view of a part obtained by additive manufacturing according to the invention.
Dans la suite de la description, toutes les teneurs sont exprimées en pourcentage en poids. In the rest of the description, all the contents are expressed in percentage by weight.
L’alliage selon l’invention présente la composition suivante, en poids : The alloy according to the invention has the following composition, by weight:
16,5% Cr <S 25,0% 16.5% Cr<S 25.0%
11 ,0% S Mo 18,0% 11.0% S Mo 18.0%
2,0% S W S 7,0% 2.0% S W S 7.0%
Fe S 1 ,0% FeS 1.0%
Mo+W S - 0,5 x (Cr+Fe) + 30% Mo+W S - 0.5x (Cr+Fe) + 30%
Mo+W - 0,5 x (Cr+Fe) + 25% Mo+W - 0.5x (Cr+Fe) + 25%
Ti+Ta 0,80% Ti+Ta 0.80%
0,01 % < Si < 0,75% 0.01% < If < 0.75%
0,01 % < Al < 0,35% 0.01% < Al < 0.35%
0,01% < Mn < 0,35% 0.01% < Mn < 0.35%
Ca < 0,005% Ca < 0.005%
Mg < 0,005% Mg<0.005%
Nb < 0,01% Count < 0.01%
0,001% < C < 0,05% 0.001%<C<0.05%
0,001% < N < 0,05% 0.001% < N < 0.05%
S < 0,003% S<0.003%
P < 0,005% optionnellement, 0,0010% S terres rares S 0,015%, la teneur en silicium étant inférieure ou égale à 0,25% en présence de terres rares à une teneur comprise entre 0,0010% et 0,015%, le reste étant du nickel et des impuretés inévitables résultant de l’élaboration, la teneur en nickel étant supérieure ou égale à 54%. P < 0.005% optionally, 0.0010% S rare earths S 0.015%, the silicon content being less than or equal to 0.25% in the presence of rare earths at a content of between 0.0010% and 0.015%, the remainder being nickel and unavoidable impurities resulting from the production, the nickel content being greater than or equal to 54%.
Par impuretés inévitables résultant de l’élaboration, on entend des éléments qui sont présents dans les matières premières utilisées pour élaborer l’alliage ou qui proviennent des appareils utilisés pour son élaboration, et par exemple des réfractaires des fours. Ces éléments résiduels n’ont pas d’effet métallurgique sur l’alliage. Dans cet alliage, la teneur en nickel supérieure ou égale à 54% en poids assure une bonne ductilité de la matrice et une bonne tenue à la corrosion sous contrainte. By unavoidable impurities resulting from the production, we mean elements which are present in the raw materials used to produce the alloy or which come from the apparatus used for its production, and for example from the refractories of the furnaces. These residual elements have no metallurgical effect on the alloy. In this alloy, the nickel content greater than or equal to 54% by weight ensures good ductility of the matrix and good resistance to corrosion under stress.
A une teneur comprise entre 16,5% et 25,0% en poids, le chrome assure une bonne tenue à la corrosion généralisée et améliore les propriétés mécaniques de l’alliage. En particulier, les inventeurs ont constaté que la tenue à la corrosion généralisée est insuffisante lorsque la teneur en chrome est inférieure à 16,5% en poids. Par ailleurs, une teneur en chrome supérieure à 25,0% en poids résulte en une précipitation de la phase a, associée à une perte de ductilité et une sensibilité accrue à la fissuration à chaud, et résulte ainsi en des propriétés mécaniques dégradées de l’alliage. At a content of between 16.5% and 25.0% by weight, chromium provides good resistance to generalized corrosion and improves the mechanical properties of the alloy. In particular, the inventors have observed that the resistance to generalized corrosion is insufficient when the chromium content is less than 16.5% by weight. On the other hand, a chromium content higher than 25.0% by weight results in a precipitation of the a-phase, associated with a loss of ductility and an increased sensitivity to hot cracking, and thus results in degraded mechanical properties of the chromium. 'alloy.
De préférence, la teneur en chrome est supérieure ou égale à 17,0% et inférieure ou égale à 23,0%. Preferably, the chromium content is greater than or equal to 17.0% and less than or equal to 23.0%.
Présent à des teneurs comprises entre 11 ,0% et 18,0% en poids, le molybdène améliore la résistance à la corrosion localisée. Present at contents of between 11.0% and 18.0% by weight, molybdenum improves resistance to localized corrosion.
Par ailleurs, le molybdène améliore considérablement les propriétés mécaniques. Les inventeurs ont constaté que, pour des teneurs en molybdène inférieures à 11 ,0% en poids, la tenue à la corrosion localisée et les propriétés mécaniques sont insuffisantes, tandis qu’une teneur en molybdène supérieure à 18% résulte en une précipitation des phases indésirables, résultant en une perte de ductilité et en une sensibilité accrue à la fissuration à chaud. Furthermore, molybdenum considerably improves the mechanical properties. The inventors have found that, for molybdenum contents of less than 11.0% by weight, the resistance to localized corrosion and the mechanical properties are insufficient, while a molybdenum content greater than 18% results in a precipitation of the phases resulting in loss of ductility and increased susceptibility to hot cracking.
De préférence, la teneur en molybdène est supérieure ou égale à 11 ,5% et inférieure ou égale à 16,5%. Preferably, the molybdenum content is greater than or equal to 11.5% and less than or equal to 16.5%.
La teneur en tungstène est comprise entre 2,0% et 7,0% en poids. Présent à ces teneurs, le tungstène améliore également la tenue à la corrosion localisée. En outre, il améliore les propriétés mécaniques. Les inventeurs ont constaté que, pour des teneurs en tungstène inférieures à 2,0%, la tenue à la corrosion localisée est insuffisante. Par ailleurs, une teneur en tungstène supérieure à 7,0% résulte en une précipitation des phases indésirables, résultant en une perte de ductilité et en une sensibilité accrue à la fissuration à chaud. The tungsten content is between 2.0% and 7.0% by weight. Present at these levels, tungsten also improves resistance to localized corrosion. In addition, it improves the mechanical properties. The inventors have observed that, for tungsten contents of less than 2.0%, the resistance to localized corrosion is insufficient. On the other hand, a tungsten content greater than 7.0% results in precipitation of undesirable phases, resulting in loss of ductility and increased susceptibility to hot cracking.
La teneur en fer est inférieure ou égale à 1 ,0% en poids. L’ajout de fer dégrade la tenue à la corrosion généralisée. Une teneur en fer inférieure ou égale à 1 ,0% en poids permet l’élaboration de l’alliage au moyen de chutes de matières contenant une teneur résiduelle en fer, ce qui permet de réduire le coût d’élaboration. A une teneur supérieure à 1 ,0% en poids, il favorise également la précipitation de phases indésirables, résultant en une perte de ductilité et en une sensibilité accrue à la fissuration à chaud. The iron content is less than or equal to 1.0% by weight. The addition of iron deteriorates resistance to generalized corrosion. An iron content less than or equal to 1.0% by weight allows the production of the alloy by means of scrap materials containing a residual iron content, which makes it possible to reduce the production cost. At a content greater than 1.0% by weight, it also promotes the precipitation of undesirable phases, resulting in a loss of ductility and an increased sensitivity to hot cracking.
De préférence, la teneur en fer dans l’alliage est inférieure ou égale à 0,5% en poids. La somme des teneurs en titane et en tantale est inférieure ou égale à 0,80% en poids. Présents aux teneurs revendiquées, le titane et le tantale améliorent considérablement les propriétés mécaniques, mais leur faible solubilité dans les alliages Ni-Cr génère des précipitations de phases indésirables. Aussi, leurs teneurs doivent être limitées à de faibles concentrations. Cependant, ils contribuent à la désoxydation de l’alliage durant l’élaboration. Les inventeurs ont constaté que, lorsque Ti + Ta supérieur à 0,80% en poids, on observe la précipitation de phases indésirables, résultant en une perte de ductilité et en une sensibilité accrue à la fissuration à chaud. Preferably, the iron content in the alloy is less than or equal to 0.5% by weight. The sum of the titanium and tantalum contents is less than or equal to 0.80% by weight. Present at the claimed contents, titanium and tantalum considerably improve the mechanical properties, but their low solubility in Ni-Cr alloys generates precipitations of undesirable phases. Also, their contents must be limited to low concentrations. However, they contribute to the deoxidation of the alloy during production. The inventors have observed that, when Ti + Ta greater than 0.80% by weight, the precipitation of undesirable phases is observed, resulting in a loss of ductility and an increased sensitivity to hot cracking.
Conformément à l’invention, Mo + W - 0,5 x (Cr+Fe) + 30% en poids. Les inventeurs ont constaté que le respect de cette relation permet d’obtenir une ductilité satisfaisante, se traduisant en particulier par une énergie de rupture KCV S 100J/cm2, ainsi qu’une bonne soudabilité, se traduisant par une longueur totale de fissures inférieure ou égale à 20 mm. According to the invention, Mo + W - 0.5 x (Cr+Fe) + 30% by weight. The inventors have found that compliance with this relationship makes it possible to obtain satisfactory ductility, resulting in particular in a fracture energy KCV S 100J/cm 2 , as well as good weldability, resulting in a total length of cracks less or equal to 20 mm.
L’énergie de rupture KCV est exprimée en J/cm2. Elle traduit la résilience de la pièce. Elle est par exemple déterminée par des essais de résilience réalisés conformément à la norme NF EN ISO 148-1 (Janvier 2011) à température ambiante. The fracture energy KCV is expressed in J/cm 2 . It reflects the resilience of the piece. It is for example determined by resilience tests carried out in accordance with standard NF EN ISO 148-1 (January 2011) at ambient temperature.
La longueur de fissures est en particulier déterminée par des essais Varestraint suivant la norme européenne FD CEN ISO/TR 17641-3 (Novembre 2005) sous 3,2% de déformation plastique. The length of the cracks is in particular determined by Varestraint tests according to the European standard FD CEN ISO/TR 17641-3 (November 2005) under 3.2% plastic deformation.
En outre, Mo + W > - 0,5 x (Cr+Fe) + 25% en poids. Les inventeurs ont constaté que le respect de cette relation permet d’obtenir une résistance mécanique satisfaisante, et en particulier une limite d’élasticité Rpo, 2 supérieure ou égale à 500 MPa. Further, Mo + W > - 0.5 x (Cr+Fe) + 25 wt%. The inventors have observed that compliance with this relationship makes it possible to obtain satisfactory mechanical strength, and in particular an elastic limit Rpo, 2 greater than or equal to 500 MPa.
Aux teneurs mentionnées ci-dessus, le silicium et l’aluminium favorisent la désoxydation et le manganèse favorise la désulfuration pendant l’élaboration de l’alliage. At the contents mentioned above, silicon and aluminum favor deoxidation and manganese favor desulphurization during the elaboration of the alloy.
Les teneurs en calcium et en magnésium dans l’alliage sont limitées chacune à 0,005% en poids afin de ne pas dégrader la soudabilité. En particulier, les teneurs en calcium et en magnésium sont limitées afin de ne pas dégrader la qualité des cordons de soudure et notamment la formation de laitiers en surface produisant des instabilités d’arc et du bain liquide. The calcium and magnesium contents in the alloy are each limited to 0.005% by weight so as not to degrade the weldability. In particular, the calcium and magnesium contents are limited so as not to degrade the quality of the weld beads and in particular the formation of surface slags producing arc and liquid bath instabilities.
La teneur en niobium est inférieure ou égale à 0,01% en poids. La teneur en niobium dans l’alliage est limitée afin de ne pas dégrader la tenue à la fissuration à chaud. En particulier, le niobium ségrégé fortement dans les espaces interdendritiques et favorise la précipitation des phases indésirables. The niobium content is less than or equal to 0.01% by weight. The niobium content in the alloy is limited so as not to degrade the resistance to hot cracking. In particular, niobium segregates strongly in the interdendritic spaces and promotes the precipitation of undesirable phases.
L’alliage contient en outre du carbone et de l’azote à des teneurs comprises entre 0,001 et 0,05% en poids. Le carbone est contrôlé afin de faciliter la désoxydation durant l’élaboration de l’alliage. En outre le carbone et l’azote assurent également l’affinement des microstructures par la précipitation de carbonitrures de type Ti-(C, N) s’ils sont associés à l’ajout de titane. The alloy also contains carbon and nitrogen in contents of between 0.001 and 0.05% by weight. The carbon is controlled in order to facilitate deoxidation during the elaboration of the alloy. In addition carbon and nitrogen also provide refinement microstructures by the precipitation of carbonitrides of the Ti-(C, N) type if they are associated with the addition of titanium.
Pour améliorer la tenue à la fissuration à chaud, les teneurs en S et P sont limitées autant que possible. Elles sont respectivement inférieures ou égales à 0,003% en poids et à 0,005% en poids dans l’alliage décrit ci-dessus. To improve the resistance to hot cracking, the S and P contents are limited as much as possible. They are respectively less than or equal to 0.003% by weight and 0.005% by weight in the alloy described above.
Optionnellement, l’alliage comprend des terres rares à une teneur comprise entre 0,0010 et 0,015% en poids. Les terres rares piègent le soufre et l’oxygène résiduel. Elles améliorent la tenue à la fissuration à chaud lors du soudage d’un métal de base contenant des teneurs résiduelles en S+O plus élevées que celles du fil soudure. Cependant, à une teneur supérieure à 0,015%, elles favorisent la précipitation de phases eutectiques à bas point de fusion, notamment en présence de silicium, ce qui résulte en une perte de ductilité et en une sensibilité accrue à la fissuration à chaud. Optionally, the alloy comprises rare earths at a content of between 0.0010 and 0.015% by weight. Rare earths trap sulfur and residual oxygen. They improve resistance to hot cracking when welding a base metal containing residual S+O contents higher than those of the welding wire. However, at a content higher than 0.015%, they favor the precipitation of low melting point eutectic phases, in particular in the presence of silicon, which results in a loss of ductility and an increased sensitivity to hot cracking.
Les terres rares sont de préférence choisies parmi l’yttrium, le cérium et le lanthane, ou parmi les mélanges de ces éléments. The rare earths are preferably chosen from yttrium, cerium and lanthanum, or from mixtures of these elements.
Selon un exemple, les terres rares consistent en de l’yttrium. Dans ce cas, l’alliage comprend entre 0,0010 et 0,015% en poids d’yttrium. According to one example, the rare earths consist of yttrium. In this case, the alloy comprises between 0.0010 and 0.015% by weight of yttrium.
Selon une variante, les terres rares consistent en un mélange de cérium et de lanthane. Dans ce cas, la teneur en Ce + La dans l’alliage est comprise entre 0,0010 et 0,015% en poids. According to a variant, the rare earths consist of a mixture of cerium and lanthanum. In this case, the content of Ce + La in the alloy is between 0.0010 and 0.015% by weight.
En présence de terres rares à une teneur comprise entre 0,0010 et 0,015% en poids, la teneur en silicium est limitée à 0,25% en poids, et de préférence à 0,20% en poids. Dans ce cas, la teneur en silicium est donc comprise entre 0,01 et 0,25% en poids, et de préférence entre 0,01 et 0,20% en poids. En effet, le silicium favorise la formation de phases contenant des terres rares, ce qui réduit la disponibilité des terres rares pour piéger le soufre et l’oxygène résiduel. In the presence of rare earths at a content of between 0.0010 and 0.015% by weight, the silicon content is limited to 0.25% by weight, and preferably to 0.20% by weight. In this case, the silicon content is therefore between 0.01 and 0.25% by weight, and preferably between 0.01 and 0.20% by weight. Indeed, silicon promotes the formation of phases containing rare earths, which reduces the availability of rare earths to trap residual sulfur and oxygen.
L’alliage selon l’invention présente une limite d’élasticité Rpo,2 comprise entre 500 MPa et 600 MPa et une résilience KCV supérieure ou égale à 100 J/cm2, ce qui permet d’obtenir des soudures ductiles présentant un overmatching des propriétés mécaniques par rapport à un matériau de base réalisé en acier X56, X60, X65 ou X70. The alloy according to the invention has a yield strength Rpo,2 of between 500 MPa and 600 MPa and a KCV resilience greater than or equal to 100 J/cm 2 , which makes it possible to obtain ductile welds having an overmatching of the mechanical properties compared to a base material made of X56, X60, X65 or X70 steel.
Comme précisé ci-dessus, les nuances d’acier X56, X60, X65, X70 ou X80 sont définies dans le document « API Specification 5L » de l’American Petroleum Institute, 45ème édition de décembre 2012. As specified above, steel grades X56, X60, X65, X70 or X80 are defined in the document "API Specification 5L" of the American Petroleum Institute, 45th edition of December 2012.
Par ailleurs, l’alliage selon l’invention présente : Furthermore, the alloy according to the invention has:
- une bonne tenue à la corrosion, et en particulier une tenue à la corrosion localisée supérieure ou égale à celle de l’alliage Inconel ® 625 comparatif ; - good resistance to corrosion, and in particular resistance to localized corrosion greater than or equal to that of the comparative Inconel ® 625 alloy;
- une soudabilité supérieure ou égale à celle de l’alliage Inconel ® 625 comparatif. Ainsi, les caractéristiques des soudures longitudinales et/ou orbitales peuvent être ignorées pour le dimensionnement d’assemblages soudés prévus pour présenter une limite d’élasticité Rpo,2 supérieure ou égale à 500 MPa et une résilience KCV supérieure ou égale à 100 J/cm2, et comprenant notamment les aciers X56, X60, X65 et X70 en tant que matériaux de base. - a weldability greater than or equal to that of the comparative Inconel ® 625 alloy. Thus, the characteristics of longitudinal and/or orbital welds can be ignored for the design of welded assemblies intended to present an Rpo,2 yield strength greater than or equal to 500 MPa and a KCV resilience greater than or equal to 100 J/cm 2 , and comprising in particular steels X56, X60, X65 and X70 as base materials.
Compte tenu de ses propriétés, l’alliage selon l’invention est donc particulièrement adapté pour être utilisé en tant que matériau d’apport pour la fabrication de tubes de pipeline destinés au transport de pétrole ou de gaz et adaptés pour la pose en haute mer à des profondeurs élevées, et en particulier jusqu’à environ 3000 m de profondeur, à des cadences élevées, en particulier de l’ordre de 2 km/jour. Given its properties, the alloy according to the invention is therefore particularly suitable for use as a filler material for the manufacture of pipeline tubes intended for the transport of oil or gas and suitable for laying on the high seas. at great depths, and in particular down to a depth of around 3000 m, at high rates, in particular of the order of 2 km/day.
Cet alliage peut donc être utilisé de manière avantageuse en tant que matériau d’apport pour réaliser les soudures longitudinales et/ou orbitales de tubes de pipelines réalisés en acier X56, X60, X65 ou X70, et destinés à être posés à des profondeurs importantes, allant par exemple jusqu’à 3000 m de profondeur et pour des cadences de pose élevées. This alloy can therefore be used advantageously as a filler material for carrying out the longitudinal and/or orbital welds of pipeline tubes made of X56, X60, X65 or X70 steel, and intended to be laid at significant depths, going for example up to 3000 m deep and for high laying rates.
Compte tenu de ses bonnes propriétés de résistance à la corrosion, il peut également être utilisé pour réaliser le revêtement intérieur prévu pour améliorer la résistance à la corrosion de tels tubes. Given its good corrosion resistance properties, it can also be used to produce the internal coating intended to improve the corrosion resistance of such tubes.
L’alliage selon l’invention peut être élaboré par toute méthode adaptée connue de l’homme du métier. The alloy according to the invention can be produced by any suitable method known to those skilled in the art.
A titre d’exemple, dans une première étape, on enfourne des matières de départ dans un four électrique à arc. Ces matières de départ sont choisies de sorte à obtenir un alliage contenant moins de 1 ,0% en poids de fer. Il s’agit en particulier de matières neuves. Ensuite, on soumet ces matières de départ à une fusion dans le four électrique à arc, puis on réalise un affinage en poche (VOD) par des méthodes habituelles, afin d’obtenir : For example, in a first step, starting materials are placed in an electric arc furnace. These starting materials are chosen so as to obtain an alloy containing less than 1.0% by weight of iron. These are in particular new materials. Then, these starting materials are subjected to melting in the electric arc furnace, then ladle refining (VOD) is carried out by usual methods, in order to obtain:
- une décarburation par soufflage d’oxygène et pompage sous vide (de l’ordre de quelques mbar) ; - decarburization by oxygen blowing and vacuum pumping (of the order of a few mbar);
- une désoxydation et désulfuration sous laitier à base de chaux ; et - deoxidation and desulfurization under lime-based slag; and
- un réglage des éléments réducteurs tels que Ti et Al. - adjustment of reducing elements such as Ti and Al.
L’invention concerne également un fil d’apport réalisé dans un alliage présentant une composition telle que décrite ci-dessus. Un tel fil d’apport est notamment adapté pour être utilisé dans le cadre de procédés de soudage TIG ou Plasma avec fil d’apport ou du procédé de soudage MIG/MAG. The invention also relates to a filler wire made from an alloy having a composition as described above. Such a filler wire is in particular suitable for use in the context of TIG or plasma welding processes with filler wire or the MIG/MAG welding process.
Il est par exemple destiné à être utilisé : It is for example intended to be used:
- comme fil d’apport de soudage pour souder entre elles deux parties de pièces réalisées dans un matériau de base, le matériau de base étant en particulier un alliage fer-nickel de type Fe-9Ni, c’est-à-dire contenant du nickel à une teneur comprise entre 5% et 10% en poids, ou un alliage à base de nickel de type C-276, C-4 ou 22, ou un acier au carbone, et en particulier un acier X56, X60, X65 ou X70 ; et/ou - as a welding filler wire for welding together two parts of parts made of a base material, the base material being in particular an iron-nickel alloy of the Fe-9Ni type, that is to say containing nickel with a content of between 5% and 10% by weight, or a nickel-based alloy of the C-276, C-4 or 22 type, or a carbon steel, and in particular an X56, X60, X65 or X70; and or
- comme fil de rechargement, pour réaliser un revêtement, en particulier sur des pièces ou parties de pièces réalisées dans un matériau de base, le matériau de base étant un acier au carbone, et en particulier un acier X56, X60, X65 ou X70. - as a hardfacing wire, to produce a coating, in particular on parts or parts of parts made of a base material, the base material being a carbon steel, and in particular an X56, X60, X65 or X70 steel.
L’alliage C-276 est défini au Tableau 1 de la norme AWS A5.14/A5.14M : 2018 (Specification for Nickel and Nickel-Alloy Bare Welding Electrodes and Rods), intitulé « Chemical composition requirements for Nickel and Nickel-Alloy Electrodes and Rods » sous la référence dans la classification AWS ERNiCrMo-4 (numéro UNS N10276). Alloy C-276 is defined in Table 1 of AWS A5.14/A5.14M: 2018 (Specification for Nickel and Nickel-Alloy Bare Welding Electrodes and Rods), titled “Chemical composition requirements for Nickel and Nickel-Alloy Electrodes and Rods” under the AWS classification reference ERNiCrMo-4 (UNS number N10276).
L’alliage C-4 est défini au Tableau 1 de la norme AWS A5.14/A5.14M :2018 (Specification for Nickel and Nickel-Alloy Bare Welding Electrodes and Rods), intitulé « Chemical composition requirements for Nickel and Nickel-Alloy Electrodes and Rods » sous la référence dans la classification AWS ERNiCrMo-7 (numéro UNS N06455). Alloy C-4 is defined in Table 1 of AWS A5.14/A5.14M:2018 (Specification for Nickel and Nickel-Alloy Bare Welding Electrodes and Rods), entitled “Chemical composition requirements for Nickel and Nickel-Alloy Electrodes and Rods” under the AWS classification reference ERNiCrMo-7 (UNS number N06455).
L’alliage 22 est défini au Tableau 1 de la norme AWS A5.14/A5.14M : 2018 (Specification for Nickel and Nickel-Alloy Bare Welding Electrodes and Rods), intitulé « Chemical composition requirements for Nickel and Nickel-Alloy Electrodes and Rods » sous la référence dans la classification AWS ERNiCrMo-10 (numéro UNS N06022). Alloy 22 is defined in Table 1 of AWS A5.14/A5.14M: 2018 (Specification for Nickel and Nickel-Alloy Bare Welding Electrodes and Rods), entitled "Chemical composition requirements for Nickel and Nickel-Alloy Electrodes and Rods” under the AWS classification reference ERNiCrMo-10 (UNS number N06022).
Les pièces ou parties de pièces sont notamment des tronçons de tube, des tubes et/ou des tôles ou parties de tôles réalisées dans le matériau de base. The parts or parts of parts are in particular tube sections, tubes and/or sheets or parts of sheets made from the base material.
Le fil d’apport est par exemple également destiné à être utilisé comme fil d’apport dans le cadre d’un procédé de fabrication additive métallique. The filler wire is for example also intended to be used as a filler wire in the context of a metal additive manufacturing process.
Le procédé de fabrication additive est par exemple un procédé de fabrication additive utilisant un arc électrique, un faisceau laser et/ou un faisceau d’électrons en tant que source d’énergie pour réaliser la fusion du fil d’apport. The additive manufacturing process is, for example, an additive manufacturing process using an electric arc, a laser beam and/or an electron beam as an energy source to achieve fusion of the filler wire.
Le procédé de fabrication additive est en particulier un procédé de fabrication additive par dépôt sous énergie dirigée (« Directed Energy Deposition » en anglais). Au cours de ce procédé, le matériau d’apport est déposé, notamment par une buse, et immédiatement fusionné par une énergie thermique concentrée, en particulier un faisceau laser, un faisceau d’électrons et/ou un arc électrique. A titre d’exemple, le procédé de fabrication additive est un procédé arc-fil (« WAAM » ou « Wire arc additive manufacturing » en anglais), Laser-fil, faisceau d’électrons-fil (« Electron Beam Free Form Fabrication » ou « Electron beam additive manufacturing » en anglais) ou un procédé de fabrication additive hybride combinant les technologies arc-fil et Laser-poudre ou arc-fil et Laser-fiL The additive manufacturing process is in particular a Directed Energy Deposition additive manufacturing process. During this process, the filler material is deposited, in particular by a nozzle, and immediately fused by concentrated thermal energy, in particular a laser beam, an electron beam and/or an electric arc. By way of example, the additive manufacturing process is an arc-wire process (“WAAM” or “Wire arc additive manufacturing”), Laser-wire, electron beam-wire (“Electron Beam Free Form Fabrication”) or “Electron beam additive manufacturing” in English) or a hybrid additive manufacturing process combining arc-wire and Laser-powder or arc-wire and Laser-wire technologies
Dans le cas d’un procédé hybride arc-fil et Laser-poudre, la poudre utilisée présente la même composition que le fil. In the case of a hybrid arc-wire and Laser-powder process, the powder used has the same composition as the wire.
Une telle poudre, dont la granulométrie après tamisage est comprise entre 20pm et 150pm, est par exemple obtenue à partir du fil d’apport selon l’invention, au moyen d’une technologie d’atomisation plasma. De préférence, le fil d’apport utilisé pour fabriquer la poudre présente un diamètre d’environ 3 mm. Such a powder, whose particle size after sieving is between 20 μm and 150 μm, is for example obtained from the filler wire according to the invention, by means of plasma atomization technology. Preferably, the filler wire used to manufacture the powder has a diameter of approximately 3 mm.
La granulométrie des poudres est en particulier déterminée par la méthode de mesure suivante. Les lots de poudres sont séparés en plusieurs distributions de tailles de poudres au moyen de tamis en acier inoxydable à vibration ultrasonique. L'analyse de la distribution des tailles de poudres issues des tamisages est réalisée selon la norme ASTM B214-07. Le tamisage permet d'obtenir 5 classes de tailles : < 20pm - 20pm à 45pm - 45pm à 75pm - 75pm à 105pm - >105pm. The particle size of the powders is determined in particular by the following measurement method. Powder batches are separated into multiple powder size distributions by means of ultrasonically vibrating stainless steel sieves. The analysis of the distribution of the sizes of the powders resulting from the sievings is carried out according to the standard ASTM B214-07. Sieving makes it possible to obtain 5 size classes: < 20pm - 20pm to 45pm - 45pm to 75pm - 75pm to 105pm - >105pm.
La technologie d’atomisation plasma pour fabriquer une poudre à partir d’un fil est connue en soi, et n’est donc pas décrite plus en détail. Plasma atomization technology for making a powder from a wire is known per se, and therefore is not described in more detail.
Les pièces ou parties de pièces sont destinées notamment au marché de l’aéronautique, du transport ou de l’énergie. Elles constituent, par exemple, des carters, des cadres, des tubes à formes complexes, des vannes, des pattes de fixation, ou des parties de pièces présentant des fonctions particulières. A titre d’exemple, une telle partie de pièce constitue un élément échangeur de chaleur comprenant par exemple des canaux de circulation d’un fluide formé par fabrication additive sur une pièce de support, la pièce de support étant par exemple réalisée dans un matériau différent de celui de l’élément échangeur de chaleur. The parts or parts of parts are intended in particular for the aeronautics, transport or energy market. They constitute, for example, casings, frames, tubes with complex shapes, valves, fixing lugs, or parts of parts having particular functions. By way of example, such a part of the part constitutes a heat exchanger element comprising, for example, channels for the circulation of a fluid formed by additive manufacturing on a support part, the support part being for example made of a different material that of the heat exchanger element.
L’invention concerne également un procédé de fabrication d’un fil d’apport réalisé dans l’alliage tel que décrit ci-dessus. The invention also relates to a method of manufacturing a filler wire made of the alloy as described above.
Ce procédé comprend, dans une première étape, la fourniture d’un demi-produit réalisé dans cet alliage. A cet effet, l’alliage est soit coulé en lingots, soit coulé directement sous forme de billettes, notamment au moyen d’une coulée continue, en particulier rotative. Les demi-produits obtenus à l’issue de cette étape sont donc avantageusement des lingots ou des billettes, et présentent par exemple un diamètre compris entre 130 et 230 mm, et plus particulièrement égal à environ 150 mm. Ensuite, on transforme les demi-produits par transformation à chaud pour former un fil intermédiaire. This method comprises, in a first step, the supply of a semi-finished product produced in this alloy. For this purpose, the alloy is either cast in ingots, or cast directly in the form of billets, in particular by means of continuous casting, in particular rotary casting. The semi-finished products obtained at the end of this step are therefore advantageously ingots or billets, and have for example a diameter of between 130 and 230 mm, and more particularly equal to approximately 150 mm. Then, the semi-finished products are transformed by hot transformation to form an intermediate yarn.
En particulier, au cours de cette étape de transformation à chaud, les demi- produits, c’est-à-dire notamment les lingots ou billettes, sont réchauffés, en particulier en four à gaz, jusqu’à une température comprise entre 1180°C et 1220°C. In particular, during this hot transformation step, the semi-finished products, that is to say in particular the ingots or billets, are heated, in particular in a gas oven, to a temperature of between 1180° C and 1220°C.
Ils sont ensuite soumis à un ébauchage à chaud de façon à réduire leur section, en leur conférant, par exemple, une section carrée, d’environ 100 mm à 200 mm de côté. On obtient ainsi un demi-produit de section réduite. La longueur de ce demi-produit de section réduite est notamment comprise entre 10 mètres et 20 mètres. They are then subjected to hot roughing so as to reduce their section, giving them, for example, a square section, of approximately 100 mm to 200 mm on each side. A semi-finished product of reduced section is thus obtained. The length of this semi-finished product of reduced section is in particular between 10 meters and 20 meters.
Les demi-produits de section réduite sont ensuite à nouveau transformés à chaud, à une température comprise entre 1050 et 1150°C, pour obtenir le fil intermédiaire. Le fil intermédiaire peut être en particulier un fil machine. Il présente par exemple un diamètre compris entre 5 mm et 21 mm, et en particulier environ égal à 5,5 mm. Avantageusement, au cours de cette étape, le fil intermédiaire est produit par laminage à chaud sur un train à fil. The reduced-section semi-finished products are then further hot-processed, at a temperature of between 1050 and 1150°C, to obtain the intermediate wire. The intermediate wire may in particular be a machine wire. It has for example a diameter of between 5 mm and 21 mm, and in particular approximately equal to 5.5 mm. Advantageously, during this step, the intermediate wire is produced by hot rolling on a wire mill.
Optionnellement, le fil intermédiaire est ensuite soumis à une hypertrempe en piscine, après un traitement thermique dans un four à gaz, à une température comprise entre 1150°C et 1220°C pendant une durée comprise entre 60 minutes et 120 minutes. Optionally, the intermediate wire is then subjected to annealing in a pool, after heat treatment in a gas oven, at a temperature of between 1150° C. and 1220° C. for a period of between 60 minutes and 120 minutes.
Le fil intermédiaire est ensuite décapé, puis enroulé sous forme de bobine. The intermediate wire is then pickled, then wound in the form of a coil.
Optionnellement, le fil intermédiaire ainsi obtenu est tréfilé au moyen d’une installation de tréfilage de type connu pour obtenir le fil d’apport. Ce fil d’apport présente un diamètre inférieur à celui du fil de départ. Son diamètre est notamment compris entre 0,5 mm et 3,5 mm. Il est avantageusement compris entre 0,8 mm et 2,4 mm. Optionally, the intermediate wire thus obtained is drawn by means of a drawing installation of known type to obtain the filler wire. This filler wire has a smaller diameter than the starting wire. Its diameter is in particular between 0.5 mm and 3.5 mm. It is advantageously between 0.8 mm and 2.4 mm.
L’étape de tréfilage comprend, en fonction du diamètre final à atteindre, une ou plusieurs passes de tréfilage, avec, de préférence, un recuit entre deux passes de tréfilage successives. Ce recuit est par exemple réalisé au défilé sous atmosphère réductrice à une température de l’ordre de 1150°C. The drawing step comprises, depending on the final diameter to be reached, one or more drawing passes, with, preferably, annealing between two successive drawing passes. This annealing is for example carried out by scrolling under a reducing atmosphere at a temperature of the order of 1150°C.
L’étape de tréfilage est, de préférence, suivie d’un nettoyage de la surface du fil tréfilé, puis d’un bobinage du fil. The drawing step is preferably followed by cleaning the surface of the drawn wire, then by winding the wire.
Les passes de tréfilage sont réalisées à froid. The drawing passes are carried out cold.
Toutes autres méthodes d’élaboration de l’alliage selon l’invention et de fabrication de produits finis réalisés en cet alliage connues de l’homme du métier peuvent être utilisées à cet effet. All other methods for producing the alloy according to the invention and for manufacturing finished products made of this alloy known to those skilled in the art can be used for this purpose.
L’invention concerne également un assemblage soudé 1 comprenant au moins deux parties de pièces 3, réalisées dans un métal de base, liées entre elles par un cordon de soudure 5 obtenu à partir du fil d’apport tel que décrit précédemment. Un tel assemblage soudé est représenté schématiquement sur la figure 1 . The invention also relates to a welded assembly 1 comprising at least two part parts 3, made of a base metal, linked together by a cord solder 5 obtained from the filler wire as described above. Such a welded assembly is represented schematically in FIG.
Le taux de dilution du fil lors du soudage est par exemple compris entre 1% et 10%, et notamment environ égal à 5%. The degree of dilution of the wire during welding is for example between 1% and 10%, and in particular approximately equal to 5%.
Il doit être entendu que dans tout le texte par « parties de pièces » soudées entre elles, on comprend aussi bien le cas où ces parties soudées entre elles appartiennent à deux pièces initialement séparées que le cas où ces parties sont deux parties d’une même pièce repliée sur elle-même, par exemple les deux bords longitudinaux d’une tôle que l’on soude pour constituer un tube. It should be understood that throughout the text by "parts of parts" welded together, we understand both the case where these parts welded together belong to two initially separate parts and the case where these parts are two parts of the same part folded back on itself, for example the two longitudinal edges of a sheet which are welded to form a tube.
Le métal de base est notamment un acier au carbone, tel qu’un acier X56, X60, X65 ou X70 ou un alliage fer-nickel de type Fe-9%Ni, c’est-à-dire comprenant une teneur en nickel comprise entre 5 et 10% en poids, ou un alliage à base de nickel de type C-276, C-4 ou 22. The base metal is in particular a carbon steel, such as an X56, X60, X65 or X70 steel or an iron-nickel alloy of the Fe-9%Ni type, that is to say comprising a nickel content of between 5 and 10% by weight, or a nickel-based alloy of type C-276, C-4 or 22.
L’invention a également pour objet un procédé de soudage pour souder entre elles au moins deux parties de pièces 3 réalisées dans le métal de base défini précédemment de manière à réaliser un assemblage soudé 5 tel qu’illustré sur la figure 1 . The invention also relates to a welding process for welding together at least two parts of parts 3 made of the base metal defined above so as to produce a welded assembly 5 as illustrated in FIG.
Dans un premier temps, on fournit un fil d’apport tel qu’il a été décrit précédemment. On fournit également des parties de pièces 12 réalisées dans le métal de base que l’on souhaite souder entre elles au moyen du procédé de soudage. First, a filler wire is provided as previously described. Parts of parts 12 made of the base metal which it is desired to weld together by means of the welding process are also provided.
On soude ensuite entre elles les parties de pièces 12 en utilisant le fil d’apport comme fil d’apport de soudage. Au cours de cette étape, on réalise de préférence une soudure bout à bout. The parts of parts 12 are then welded together using the filler wire as welding filler wire. During this step, a butt weld is preferably made.
L’étape de soudage peut comprendre une ou plusieurs passes de soudure. Classiquement, elle comprend une première passe de soudure appelée passe de fond, suivie d’une ou plusieurs passes de soudure additionnelles, appelées passes de remplissage. Toutes les passes de soudure sont réalisées en utilisant comme fil d’apport le fil d’apport selon l’invention, tel qu’il a été décrit précédemment. On limite ainsi la dilution de ce fil d’apport à la dilution par le métal de base fondu résultant du soudage. The welding step can include one or more welding passes. Conventionally, it includes a first welding pass called root pass, followed by one or more additional welding passes, called filling passes. All the welding passes are carried out using as filler wire the filler wire according to the invention, as described above. This limits the dilution of this filler wire to the dilution by the molten base metal resulting from the welding.
Le taux de dilution du fil lors du soudage est par exemple compris entre 1% et 10%, et notamment environ égal à 5%. The degree of dilution of the wire during welding is for example between 1% and 10%, and in particular approximately equal to 5%.
Le soudage est par exemple réalisé par soudage à l’arc, par exemple par soudage plasma avec fil d’apport, par soudage MIG (« Metal Inert Gas » en anglais) ou par soudage MIG/MAG (« Metal active gas » en anglais). The welding is for example carried out by arc welding, for example by plasma welding with filler wire, by MIG ("Metal Inert Gas" in English) welding or by MIG/MAG ("Metal active gas" in English) welding. ).
Selon un mode de réalisation, représenté sur la figure 2, l’assemblage soudé 1 est un tronçon de tube 7 comprenant une tôle 9 repliée en forme de tube, dont les bords longitudinaux 12 sont liés entre eux par un cordon de soudure 15 obtenu à partir du fil d’apport tel que défini précédemment. Dans ce cas, les parties de pièces 3 comprennent les bords longitudinaux 12 de la tôle 9. According to one embodiment, shown in Figure 2, the welded assembly 1 is a section of tube 7 comprising a sheet metal 9 folded into the shape of a tube, the longitudinal edges 12 of which are linked together by a weld bead 15 obtained at from the wire contribution as defined above. In this case, the part parts 3 include the longitudinal edges 12 of the sheet 9.
La paroi du tronçon de tube 5 présente par exemple une épaisseur comprise entre 3 mm et 60 mm. The wall of the tube section 5 has for example a thickness of between 3 mm and 60 mm.
Le tronçon de tube 5 est notamment destiné au transport de produits corrosifs, en particulier de gaz ou de pétrole. Il est en particulier prévu pour former une partie d’un pipeline, notamment installé sur les fonds marins, et en particulier à une profondeur pouvant aller jusqu’à 3000 m. The tube section 5 is intended in particular for the transport of corrosive products, in particular gas or oil. It is in particular intended to form part of a pipeline, in particular installed on the seabed, and in particular at a depth of up to 3000 m.
L’invention a également pour objet un procédé de fabrication d’un tel tronçon de tube 5. The invention also relates to a method of manufacturing such a section of tube 5.
Le procédé comprend la fourniture d’une tôle 9 réalisée dans le métal de base. Une telle tôle 9 est représentée sur la figure 3. Elle s’étend selon une direction longitudinale L et présente des bords longitudinaux 12 sensiblement parallèles à la direction longitudinale L. Elle présente par exemple une épaisseur comprise entre 3 mm et 60 mm. The method includes supplying a sheet 9 made from the base metal. Such a sheet 9 is shown in Figure 3. It extends in a longitudinal direction L and has longitudinal edges 12 substantially parallel to the longitudinal direction L. It has for example a thickness of between 3 mm and 60 mm.
Le procédé comprend en outre une étape consistant à replier cette tôle 9 de manière à amener les deux bords longitudinaux 12 en regard, suivie d’une étape consistant à souder entre eux les deux bords longitudinaux 12 en regard en utilisant le procédé de soudage défini précédemment. Dans ce cas, les parties de pièces 3 décrites dans le cadre du procédé de soudage comprennent les bords longitudinaux 12 de la tôle 9. The method further comprises a step consisting in folding this sheet 9 so as to bring the two longitudinal edges 12 facing each other, followed by a step consisting in welding together the two longitudinal edges 12 facing each other using the welding process defined previously. . In this case, the part parts 3 described within the framework of the welding process comprise the longitudinal edges 12 of the sheet 9.
La soudure réalisée au cours de cette étape est une soudure longitudinale. De préférence, il s’agit d’une soudure bout à bout. The weld made during this step is a longitudinal weld. Preferably, it is a butt weld.
A l’issue de ce procédé, on obtient un tronçon de tube 7, tel qu’illustré sur la figure 2, dans lequel la tôle 9 est repliée en forme de tube, et les bords longitudinaux 12 de la tôle 9 sont liés entre eux par un cordon de soudure 15 obtenu à partir du fil d’apport tel que défini précédemment. At the end of this process, a section of tube 7 is obtained, as illustrated in FIG. 2, in which the sheet 9 is folded into the shape of a tube, and the longitudinal edges 12 of the sheet 9 are bonded together. by a weld bead 15 obtained from the filler wire as defined above.
Selon un autre mode de réalisation, représenté sur la figure 4, l’assemblage soudé est un tube 20 et les parties de pièces 3 sont des tronçons de tube 7 liés entre eux par un cordon de soudure 22 obtenu à partir du fil d’apport tel que défini précédemment. Dans ce mode de réalisation, le cordon de soudure 22 s’étend le long de la circonférence du tube 20 de sorte à relier entre eux les tronçons de tube 7. According to another embodiment, represented in FIG. 4, the welded assembly is a tube 20 and the part parts 3 are sections of tube 7 linked together by a weld bead 22 obtained from the filler wire as defined previously. In this embodiment, the weld bead 22 extends along the circumference of the tube 20 so as to connect the tube sections 7 together.
La soudure est en particulier une soudure bout à bout, de préférence une soudure orbitale. Par soudure orbitale, on entend une soudure réalisée en faisant tourner l’outil de soudage, à savoir en particulier les torches de soudage, par rapport aux tronçons de tube 7 à souder. The weld is in particular a butt weld, preferably an orbital weld. By orbital weld, we mean a weld made by rotating the welding tool welding, namely in particular the welding torches, with respect to the tube sections 7 to be welded.
La paroi du tube 20 présente par exemple une épaisseur comprise entre 3 mm et 60 mm. The wall of the tube 20 has for example a thickness of between 3 mm and 60 mm.
Selon un mode de réalisation, les tronçons de tube 7 sont des tronçons de tube tels que décrits précédemment. According to one embodiment, the tube sections 7 are tube sections as described previously.
Selon une variante, les parties de pièces 3 sont des tronçons de tube ne comprenant pas de soudure longitudinale, et obtenus par exemple par extrusion de billettes. According to a variant, the parts of parts 3 are sections of tube not comprising any longitudinal weld, and obtained for example by extrusion of billets.
Le tube 20 est notamment destiné au transport de produits corrosifs, en particulier de gaz ou de pétrole. Il est en particulier prévu pour former une partie d’un pipeline, notamment installé sur les fonds marins, et en particulier à une profondeur pouvant aller jusqu’à 3000 m. The tube 20 is in particular intended for the transport of corrosive products, in particular gas or oil. It is in particular intended to form part of a pipeline, in particular installed on the seabed, and in particular at a depth of up to 3000 m.
Ainsi, l’invention a également pour objet un procédé de fabrication d’un tube 20 tel que décrit ci-dessus. Thus, the invention also relates to a method of manufacturing a tube 20 as described above.
Au cours de ce procédé, on fournit au moins deux tronçons de tube 7. Chaque tronçon de tube 5 est sensiblement cylindrique d’axe M, et présente deux extrémités longitudinales 24, espacées entre elles selon la direction de l’axe M. During this process, at least two tube sections 7 are provided. Each tube section 5 is substantially cylindrical with an axis M, and has two longitudinal ends 24, spaced apart in the direction of the axis M.
On positionne alors les deux tronçons de tube 7 de manière à ce que leurs extrémités longitudinales 24 soient disposées en regard selon la direction de l’axe M de ces tronçons de tube, puis on soude entre elles les extrémités longitudinales 24 en regard des deux tronçons de tube 7 au moyen du procédé de soudage tel que défini précédemment. Dans ce cas, les parties de pièces 3 définies dans le cadre du procédé de soudage comprennent les extrémités longitudinales 24 des tronçons de tube 7. The two sections of tube 7 are then positioned so that their longitudinal ends 24 are arranged facing each other in the direction of the axis M of these sections of tube, then the longitudinal ends 24 facing the two sections are welded together. tube 7 by means of the welding process as defined above. In this case, the part parts 3 defined within the framework of the welding process comprise the longitudinal ends 24 of the tube sections 7.
Avantageusement, on réalise lors de cette étape une soudure bout à bout entre les extrémités longitudinales 24 en regard des tronçons de tube 7. La soudure est de préférence une soudure orbitale. Advantageously, during this step, a butt weld is made between the longitudinal ends 24 facing the tube sections 7. The weld is preferably an orbital weld.
De préférence, l’étape de soudage comprend, préalablement à la solidarisation entre eux des tronçons de tube 7, une étape d’usinage de chanfreins aux extrémités 24 des tronçons de tube 7 à souder entre elles. Preferably, the welding step comprises, prior to joining together the tube sections 7, a step of machining chamfers at the ends 24 of the tube sections 7 to be welded together.
L’étape de soudage est réalisée un nombre de fois égal au nombre de tronçons de tube 7 à souder pour former le tube 20 diminué de un. The welding step is performed a number of times equal to the number of tube sections 7 to be welded to form the tube 20 minus one.
Selon un mode de réalisation, les tronçons de tube 7 sont des tronçons de tube 7 tels que décrits précédemment. According to one embodiment, the tube sections 7 are tube sections 7 as described previously.
En variante, ce procédé peut être réalisé avec tout type de tronçon de tube dont les extrémités longitudinales sont réalisées dans le métal de base, quel que soit le procédé d’obtention du tronçon de tube. En particulier, ce procédé est mis en oeuvre sur des tronçons de tube ne comprenant pas de soudure longitudinale, et obtenus en particulier par extrusion de billettes. As a variant, this method can be carried out with any type of section of tube whose longitudinal ends are made of the base metal, whatever the process for obtaining the tube section. In particular, this method is implemented on tube sections not comprising any longitudinal weld, and obtained in particular by extrusion of billets.
Ce procédé est en particulier mis en oeuvre sur une barge, cette barge étant par exemple localisée sur le lieu de mise en place du tube 20. This method is in particular implemented on a barge, this barge being for example located at the place of installation of the tube 20.
A l’issue de cette ou de ces étapes de soudage, on obtient le tube 20. Ce tube 20 comprend au moins deux tronçons de tube 7 successifs assemblés entre eux par un cordon de soudure 22 obtenu à partir du fil d’apport tel que défini précédemment. At the end of this or these welding steps, the tube 20 is obtained. This tube 20 comprises at least two successive tube sections 7 assembled together by a weld bead 22 obtained from the filler wire such as previously defined.
L’invention concerne également une pièce revêtue 26 telle que représentée sur la figure 5 comprenant un substrat 28 réalisé dans un matériau de base revêtu d’un revêtement 30 réalisé dans un alliage tel que décrit ci-dessus. Le matériau de base est un matériau métallique. The invention also relates to a coated part 26 as represented in FIG. 5 comprising a substrate 28 made of a base material coated with a coating 30 made of an alloy as described above. The base material is metallic material.
Le matériau de base est notamment un acier au carbone. De préférence, le matériau de base est un acier X56, X60 ou X65 ou X70. The base material is in particular a carbon steel. Preferably, the base material is an X56, X60 or X65 or X70 steel.
Le revêtement 30 est en particulier appliqué sur le substrat 28 par un procédé de rechargement par soudage au moyen d’un fil d’apport présentant la composition décrite ci-dessus. The coating 30 is in particular applied to the substrate 28 by a process of hardfacing by welding by means of a filler wire having the composition described above.
Le revêtement 30 présente en particulier une épaisseur comprise entre 2 mm et 20 mm. The coating 30 in particular has a thickness of between 2 mm and 20 mm.
Un tel revêtement 30 améliore la tenue à la corrosion de la pièce revêtue 26, en particulier en présence de produits corrosifs, tels que des produits pétroliers. Such a coating 30 improves the corrosion resistance of the coated part 26, in particular in the presence of corrosive products, such as petroleum products.
La pièce revêtue 26 est en particulier un tronçon de tube 7 revêtu, le revêtement 30 étant formé sur la paroi intérieure de ce tronçon de tube 7, et recouvrant en particulier la paroi intérieure du tronçon de tube 7 sur toute sa surface, y compris le cordon de soudure 12 lorsqu’il existe. The coated part 26 is in particular a coated section of tube 7, the coating 30 being formed on the inside wall of this section of tube 7, and covering in particular the inside wall of the section of tube 7 over its entire surface, including the weld bead 12 when it exists.
L’invention a également pour objet un procédé de fabrication d’une pièce revêtue 26 telle que décrite ci-dessus, comprenant la fourniture d’un substrat 28 réalisé dans le matériau de base, suivie de l’application d’un revêtement 30 sur une surface de ce substrat par un procédé de rechargement par soudage au moyen d’un fil d’apport présentant la composition décrite ci-dessus. The invention also relates to a method for manufacturing a coated part 26 as described above, comprising the supply of a substrate 28 made of the base material, followed by the application of a coating 30 on a surface of this substrate by a process of surfacing by welding by means of a filler wire having the composition described above.
Dans le cas où la pièce revêtue 26 est un tronçon de tube 7 revêtu, le procédé de fabrication comprend en particulier une étape de fabrication d’un tronçon de tube 7 par mise en oeuvre du procédé décrit ci-dessus, suivie d’une étape d’application d’un revêtement 30 sur une surface intérieure de ce tronçon de tube 7 par un procédé de rechargement par soudage au moyen d’un fil d’apport présentant la composition décrite ci-dessus. In the case where the coated part 26 is a section of coated tube 7, the manufacturing method comprises in particular a step of manufacturing a section of tube 7 by implementing the method described above, followed by a step application of a coating 30 on an inner surface of this section of tube 7 by a process of hardfacing by welding by means of a filler wire having the composition described above.
Le revêtement 30 améliore la tenue à la corrosion du tronçon de tube 7, par exemple pendant le transport de produits pétroliers plus ou moins corrosifs. The coating 30 improves the corrosion resistance of the tube section 7, for example during the transport of more or less corrosive petroleum products.
Selon un mode de réalisation particulier, le tube 20 décrit ci-dessus comprend deux tronçons de tube 7 revêtus d’un revêtement 30 tel que décrit ci-dessus, liés entre eux par un cordon de soudure 22. According to a particular embodiment, the tube 20 described above comprises two sections of tube 7 coated with a coating 30 as described above, linked together by a weld bead 22.
L’invention concerne également un procédé de fabrication d’une pièce 40 telle que représentée schématiquement sur la figure 6, réalisée dans un alliage tel que décrit ci- dessus, comprenant : The invention also relates to a method of manufacturing a part 40 as shown schematically in Figure 6, made of an alloy as described above, comprising:
- la fourniture d’un fil d’apport réalisé dans cet alliage ; et - the supply of a filler wire made from this alloy; and
- la fabrication de la pièce 40 par un procédé de fabrication additive métallique utilisant, en tant que matériau d’apport, un fil d’apport réalisé dans l’alliage tel que décrit ci-dessus et/ou une poudre réalisée dans l’alliage tel que décrit ci-dessus. - the manufacture of the part 40 by a metal additive manufacturing process using, as filler material, a filler wire made from the alloy as described above and/or a powder made from the alloy as described above.
Le procédé de fabrication additive est par exemple un procédé de fabrication additive utilisant un arc électrique, un faisceau laser et/ou un faisceau d’électrons en tant que source d’énergie pour réaliser la fusion du matériau d’apport. The additive manufacturing process is for example an additive manufacturing process using an electric arc, a laser beam and/or an electron beam as an energy source to achieve the melting of the filler material.
Le procédé de fabrication additive est en particulier un procédé de fabrication additive par dépôt sous énergie dirigée (« Directed Energy Deposition » en anglais). Au cours de ce procédé, le matériau d’apport est déposé, notamment par une buse, et immédiatement fusionné par une énergie thermique concentrée, en particulier un faisceau laser, un faisceau d’électrons et/ou un arc électrique. The additive manufacturing process is in particular a Directed Energy Deposition additive manufacturing process. During this process, the filler material is deposited, in particular by a nozzle, and immediately fused by concentrated thermal energy, in particular a laser beam, an electron beam and/or an electric arc.
A titre d’exemple, le procédé de fabrication additive est un procédé arc-fil, Laser-fil, faisceau d’électrons-fil (« Electron Beam Free Form Fabrication » ou « Electron beam additive manufacturing » en anglais) ou un procédé de fabrication additive hybride combinant les technologies arc-fil et Laser-poudre ou arc-fil et Laser-fil. By way of example, the additive manufacturing process is an arc-wire, laser-wire, electron-beam-wire process (“Electron Beam Free Form Fabrication” or “Electron beam additive manufacturing”) or a hybrid additive manufacturing combining arc-wire and Laser-powder or arc-wire and Laser-wire technologies.
Dans le cas où un procédé de fabrication additive hybride combinant les technologies arc-fil et Laser-poudre ou arc-fil et Laser-fil est utilisé, la poudre et le fil d’apport sont réalisés dans l’alliage tel que décrit ci-dessus. In the case where a hybrid additive manufacturing process combining arc-wire and Laser-powder or arc-wire and Laser-wire technologies is used, the powder and the filler wire are made in the alloy as described below. above.
Les procédés de fabrication additive mentionnés ci-dessus sont connus en soi, et ne sont donc pas décrits en détail. The additive manufacturing processes mentioned above are known per se, and are therefore not described in detail.
Dans le cas où le matériau d’apport comprend une poudre, en particulier dans le cadre du procédé hybride arc-fil et Laser-poudre, le procédé comprend également, préalablement à la fabrication de la pièce 40, une étape de fourniture d’une poudre réalisée dans l’alliage tel que décrit ci-dessus. Cette poudre, dont la granulométrie après tamisage est comprise entre 20pm et 150pm, est par exemple fabriquée par atomisation plasma à partir d’un fil réalisé dans un alliage tel que décrit ci-dessus, le fil présentant en particulier un diamètre d’environ 3 mm. In the case where the filler material comprises a powder, in particular within the framework of the hybrid arc-wire and laser-powder process, the process also comprises, prior to the manufacture of the part 40, a step of supplying a powder made from the alloy as described above. This powder, whose particle size after sieving is between 20 μm and 150 μm, is for example manufactured by atomization plasma from a wire made of an alloy as described above, the wire in particular having a diameter of approximately 3 mm.
Le procédé d’atomisation plasma est connu en soi, et n’est donc pas décrit en détail. The plasma atomization process is known per se, and is therefore not described in detail.
L’invention concerne également une pièce 40 ou une partie de pièce réalisée dans un alliage tel que décrit ci-dessus obtenue par fabrication additive métallique. The invention also relates to a part 40 or part of a part made of an alloy as described above obtained by metal additive manufacturing.
Ce procédé de fabrication additive métallique utilise en particulier, en tant que matériau d’apport, un fil d’apport réalisé dans l’alliage tel que décrit ci-dessus et/ou une poudre réalisée dans l’alliage tel que décrit ci-dessus. This metal additive manufacturing process uses in particular, as filler material, a filler wire made from the alloy as described above and/or a powder made from the alloy as described above. .
Le procédé de fabrication additive est par exemple un procédé de fabrication additive utilisant un arc électrique, un faisceau laser et/ou un faisceau d’électrons en tant que source d’énergie pour réaliser la fusion du matériau d’apport. The additive manufacturing process is for example an additive manufacturing process using an electric arc, a laser beam and/or an electron beam as an energy source to achieve the melting of the filler material.
Le procédé de fabrication additive est en particulier un procédé de fabrication additive par dépôt sous énergie dirigée (« Directed Energy Deposition » en anglais). Au cours de ce procédé, le matériau d’apport est déposé, notamment par une buse, et immédiatement fusionné par une énergie thermique concentrée, en particulier un faisceau laser, un faisceau d’électrons et/ou un arc électrique. The additive manufacturing process is in particular a Directed Energy Deposition additive manufacturing process. During this process, the filler material is deposited, in particular by a nozzle, and immediately fused by concentrated thermal energy, in particular a laser beam, an electron beam and/or an electric arc.
A titre d’exemple, le procédé de fabrication additive est un procédé arc-fil, Laser-fil, faisceau d’électrons-fil (« Electron Beam Free Form Fabrication » ou « Electron beam additive manufacturing » en anglais) ou un procédé de fabrication additive hybride combinant les technologies arc-fil et Laser-poudre ou arc-fil et Laser-fil. By way of example, the additive manufacturing process is an arc-wire, laser-wire, electron-beam-wire process (“Electron Beam Free Form Fabrication” or “Electron beam additive manufacturing”) or a hybrid additive manufacturing combining arc-wire and Laser-powder or arc-wire and Laser-wire technologies.
Dans le cas où un procédé de fabrication additive hybride combinant les technologies arc-fil et Laser-poudre ou arc-fil et Laser-fil est utilisé, la poudre et le fil d’apport sont réalisés dans l’alliage tel que décrit ci-dessus. In the case where a hybrid additive manufacturing process combining arc-wire and Laser-powder or arc-wire and Laser-wire technologies is used, the powder and the filler wire are made in the alloy as described below. above.
Une pièce ou partie de pièce obtenue par un procédé de fabrication additive métallique, telle que la pièce 40, est brute de solidification. Elle présente donc une microstructure de solidification typique de l’alliage de nickel considéré, une telle microstructure comprenant typiquement des dendrites colonnaires qui croissent par épitaxie les unes sur les autres et dont l’orientation dépend de la largeur et de la hauteur du mur métallique fabriqué. Par ailleurs, une pièce obtenue par un procédé de fabrication additive présente, du fait de son procédé de fabrication additif, une succession de strates de solidification superposées. Chaque strate, obtenue par solidification de gouttes de métal en fusion déposées, refond la peau de la strate précédente afin de générer une continuité métallurgique, et par suite réchauffe le reste des strates inférieures. La température de réchauffage est d’autant plus faible que la strate en question est éloignée de la zone en cours de fusion et solidification. Cette microstructure particulière est observable par observation métallographique sur des coupes métallographiques des pièces. A part or part of a part obtained by a metal additive manufacturing process, such as part 40, is raw from solidification. It therefore has a typical solidification microstructure of the nickel alloy considered, such a microstructure typically comprising columnar dendrites which grow by epitaxy on each other and whose orientation depends on the width and height of the metal wall fabricated . Furthermore, a part obtained by an additive manufacturing process has, due to its additive manufacturing process, a succession of superimposed solidification strata. Each stratum, obtained by solidification of deposited drops of molten metal, recasts the skin of the previous stratum in order to generate metallurgical continuity, and consequently heats the rest of the lower strata. The reheating temperature is lower the farther the stratum in question is from the zone undergoing melting and solidification. This particular microstructure is observable by metallographic observation on metallographic sections of the parts.
Une pièce 40 ou partie de pièce obtenue par un procédé de fabrication additive métallique peut ainsi être distinguée de pièces obtenues par d’autres procédés, et notamment d’une pièce obtenue par métallurgie conventionnelle qui produit une structure recristallisée à grains homogènes. A part 40 or part of a part obtained by a metal additive manufacturing process can thus be distinguished from parts obtained by other processes, and in particular from a part obtained by conventional metallurgy which produces a recrystallized structure with homogeneous grains.
Les pièces 40 ou parties de pièces sont destinées notamment au marché de l’aéronautique, du transport ou de l’énergie. Elles constituent, par exemple, des carters, des cadres, des tubes à formes complexes, des vannes, des pattes de fixation, ou des parties de pièces présentant des fonctions particulières. A titre d’exemple, une telle partie de pièce constitue un élément échangeur de chaleur comprenant par exemple des canaux de circulation d’un fluide formé par fabrication additive sur une pièce de support, la pièce de support étant par exemple réalisée dans un matériau différent de celui de l’élément échangeur de chaleur. The parts 40 or parts of parts are intended in particular for the aeronautics, transport or energy market. They constitute, for example, casings, frames, tubes with complex shapes, valves, fixing lugs, or parts of parts having particular functions. By way of example, such a part of the part constitutes a heat exchanger element comprising, for example, channels for the circulation of a fluid formed by additive manufacturing on a support part, the support part being for example made of a different material that of the heat exchanger element.
Essais Trials
Dans une première série d’essais, les inventeurs ont réalisé des coulées de laboratoire pour obtenir des lingots d’alliages présentant des compositions telles que définies ci-dessus, ainsi que d’alliages comparatifs, présentant des compositions différentes de la composition décrite ci-dessus. In a first series of tests, the inventors carried out laboratory castings to obtain ingots of alloys having compositions as defined above, as well as comparative alloys, having compositions different from the composition described above. above.
Ces alliages ont été élaborés sous vide, et les lingots ainsi obtenus ont été transformés à chaud par laminage pour obtenir des largets de dimensions 10x50x300 mm. These alloys were produced under vacuum, and the ingots thus obtained were hot transformed by rolling to obtain strips of dimensions 10x50x300 mm.
Les compositions d’alliage de chacun des largets testés sont exposées dans le Tableau 1 ci-après. The alloy compositions of each of the bars tested are set out in Table 1 below.
Les inventeurs ont ensuite réalisé les essais suivants sur les largets ainsi obtenus.The inventors then carried out the following tests on the bars thus obtained.
Sur certains de ces largets, ils ont réalisé des lignes de fusion jointives, recto et verso, au moyen d’une torche TIG afin de développer des structures de solidification dans l’épaisseur du larget comparables à celles obtenues par soudage TIG ou MIG, en condition hors dilution, et prélevé, dans les zones fondues, des éprouvettes de traction et de résilience. On some of these strips, they produced adjoining fusion lines, front and back, using a TIG torch in order to develop solidification structures in the thickness of the strip comparable to those obtained by TIG or MIG welding, in undiluted condition, and taken, from the molten zones, tensile and impact test specimens.
Ils ont ensuite réalisé : They then realized:
- des essais mécaniques par traction plane à température ambiante (20°C) pour mesurer la limite élastique à 0,2% d’allongement Rpo,2 à 20°C sur les éprouvettes de traction décrites ci-dessus, conformément à la norme NE EN ISO 6892-1 (Décembre 2019). Les résultats de ces essais sont résumés dans la colonne intitulée « Rpo,2» du Tableau 2 ci-après. - mechanical tests by plane traction at ambient temperature (20°C) to measure the elastic limit at 0.2% elongation Rpo,2 at 20°C on the tensile specimens described above, in accordance with the NE standard EN ISO 6892-1 (December 2019). The results of these tests are summarized in the column entitled "Rpo,2" of Table 2 below.
- des essais de résilience à température ambiante (20°C) sur les éprouvettes de résilience décrites ci-dessus avec mesure de l’énergie de rupture par choc (notée KCV), conformément à la norme NF EN ISO 148-1 (Janvier 2011 ). L’énergie de rupture est exprimée en J/cm2. Elle traduit la résilience de la pièce. Les résultats de ces tests sont résumés dans la colonne intitulée « KCV» du Tableau 2 ci-après. - resilience tests at room temperature (20°C) on the resilience specimens described above with measurement of the impact fracture energy (denoted KCV), in accordance with standard NF EN ISO 148-1 (January 2011 ). The fracture energy is expressed in J/cm 2 . It reflects the resilience of the piece. The results of these tests are summarized in the column entitled "KCV" of Table 2 below.
Ils ont également mesuré, dans les zones fondues des largets, la fraction surfacique de phases précipitées durant la solidification du métal fondu sous le passage de la torche TIG. La fraction surfacique de phases précipitées est déterminée par analyse d’image sur des images des largets obtenues au microscope électronique à balayage (MEB). En effet, les phases précipitées correspondent aux zones blanches sur ces images, et sont détectées par un logiciel de traitement d’image, qui détecte les zones blanches au moyen d’une analyse par niveaux de gris et détermine ensuite la fraction surfacique occupée par ces zones blanches. Les résultats de ces mesures sont résumés dans la colonne intitulée « Fs» du Tableau 2 ci-après. They also measured, in the molten zones of the bars, the surface fraction of phases precipitated during the solidification of the molten metal under the passage of the TIG torch. The surface fraction of precipitated phases is determined by image analysis on images of the largets obtained with a scanning electron microscope (SEM). Indeed, the precipitated phases correspond to the white areas on these images, and are detected by image processing software, which detects the white areas by means of a gray level analysis and then determines the surface fraction occupied by these white areas. The results of these measurements are summarized in the column entitled "Fs" of Table 2 below.
Les inventeurs ont également réalisé, sur les largets non soumis à des lignes de fusion jointives, des essais Varestraint suivant la norme européenne FD CEN ISO/TR 17641 -3 (Novembre 2005) sous 3,2% de déformation plastique afin d’évaluer leur tenue à la fissuration à chaud avec mesure de la longueur totale de fissures développées durant l’essai. Les résultats de ces tests sont résumés dans la colonne intitulée « Létale Fissures» du Tableau 2 ci-après. The inventors also carried out, on the strips not subjected to contiguous fusion lines, Varestraint tests according to the European standard FD CEN ISO/TR 17641 -3 (November 2005) under 3.2% plastic deformation in order to evaluate their resistance to hot cracking with measurement of the total length of cracks developed during the test. The results of these tests are summarized in the column headed "Lethal Cracks" in Table 2 below.
Enfin, les inventeurs ont réalisé des essais potentiométriques pour tester la tenue à la corrosion localisée des alliages. A cet effet, ils ont mesuré le potentiel de piqûre V en milieu LiCI à 11 ,9 mol.l’1 à un pH de 5,4 et à une température de 30°C et comparé ce potentiel de piqûre avec celui de l’Inconel ® 625 (VincOnei 625/SCE < 120 mV), où SCE est un potentiel de référence par rapport à l’électrode au calomel saturée. Finally, the inventors carried out potentiometric tests to test the resistance to localized corrosion of the alloys. To this end, they measured the pitting potential V in LiCI medium at 11.9 mol.l'1 at a pH of 5.4 and at a temperature of 30°C and compared this pitting potential with that of the Inconel ® 625 (Vi ncO nei 625/SCE < 120 mV), where SCE is a reference potential with respect to the saturated calomel electrode.
Dans les Tableaux 1 et 2 ci-dessous, les essais qui ne sont pas selon l’invention sont soulignés. In Tables 1 and 2 below, assays which are not according to the invention are underlined.
Tableau 1 : Composition des alliages de la première série d’essais Table 1: Composition of the alloys of the first series of tests
Dans les alliages du Tableau 1 , la teneur en Al est comprise entre 0,01 et 0,35%, la teneur en N est comprise entre 0,001 et 0,05%, les teneurs en Mg et Ca sont inférieures ou égales à 0,005% et la teneur en P est inférieure ou égale à 0,005%. Par ailleurs, l’alliage ne contient pas de niobium. In the alloys of Table 1, the Al content is between 0.01 and 0.35%, the N content is between 0.001 and 0.05%, the Mg and Ca contents are less than or equal to 0.005% and the P content is less than or equal to 0.005%. In addition, the alloy does not contain niobium.
Pour tous les alliages du Tableau 1 , le reste est du nickel, ainsi que des impuretés résultant de l’élaboration. For all alloys in Table 1, the balance is nickel, plus impurities resulting from smelting.
Par ailleurs, toutes les compositions sont indiquées en pourcentage en poids. Furthermore, all the compositions are indicated in percentage by weight.
Tableau 1 Table 1
Par ailleurs, au cours des essais potentiométriques, les alliages A1 à A28 du Tableau 1 ont développé un potentiel de piqûre V par rapport au potentiel de référence par rapport à l’électrode au calomel saturée supérieur ou égal à 150 mV. Ces alliages présentent donc une meilleure tenue à la corrosion localisée que l’alliage Inconel ® 625. Furthermore, during potentiometric tests, alloys A1 to A28 in Table 1 developed a pitting potential V compared to the reference potential compared to the saturated calomel electrode greater than or equal to 150 mV. These alloys therefore have better resistance to localized corrosion than the Inconel ® 625 alloy.
Comme cela a été indiqué ci-dessus, on recherche de préférence les propriétés suivantes, en combinaison : - une limite d’élasticité Rpo,2 supérieure ou égale à 500 MPa ; As indicated above, the following properties are preferably sought, in combination: - an elastic limit Rpo,2 greater than or equal to 500 MPa;
- une résilience KCV supérieure ou égale à 100 J/cm2 ; - a KCV resilience greater than or equal to 100 J/cm 2 ;
- une longueur totale de fissures inférieure ou égale à 20 mm ; - a total length of cracks less than or equal to 20 mm;
- une fraction surfacique de phases précipitées Fs inférieure ou égale à 1 ,5% ; - a surface fraction of precipitated phases Fs less than or equal to 1.5%;
- une tenue à la corrosion localisée supérieure ou égale à celle de l’alliage Inconel ® 625. Parmi ces paramètres, la longueur totale de fissures est représentative de la soudabilité de l’alliage. La longueur totale de fissures pour l’alliage Inconel ® 625 étant égale à 20 mm, une longueur totale de fissures inférieure ou égale à 20 mm correspond à une soudabilité supérieure ou égale à la soudabilité de l’alliage Inconel ® 625, et est donc satisfaisante pour les applications considérées. - resistance to localized corrosion greater than or equal to that of the Inconel ® 625 alloy. Among these parameters, the total length of the cracks is representative of the weldability of the alloy. The total length of cracks for the Inconel ® 625 alloy being equal to 20 mm, a total length of cracks less than or equal to 20 mm corresponds to a weldability greater than or equal to the weldability of the Inconel ® 625 alloy, and is therefore satisfactory for the applications considered.
Ces propriétés sont obtenues dans le cas des exemples A2 à A4, A8 à A11 , A14 à A16, A19 à A21 , A25 et A26, qui correspondent à des alliages présentant la composition telle que décrite ci-dessus. These properties are obtained in the case of examples A2 to A4, A8 to A11, A14 to A16, A19 to A21, A25 and A26, which correspond to alloys having the composition as described above.
Au contraire, la limite d’élasticité Rpo,2 est inférieure ou égale à 500 MPa dans le cas des exemples comparatifs A1 , A7, A18, A24, tandis que la résilience KCV est insuffisante et/ou la longueur de fissures est trop élevée dans le cas des exemples comparatifs A5, A6, A12, A13, A17, A22, A23, A27, A28. On note que, dans le cadre de ces contre-exemples, la relation - 0,5 x (Cr+Fe) + 25% S Mo+W S - 0,5 x (Cr+Fe) + 30% n’est pas respectée. On the contrary, the elastic limit Rpo,2 is less than or equal to 500 MPa in the case of the comparative examples A1, A7, A18, A24, while the KCV resilience is insufficient and/or the crack length is too high in the case of comparative examples A5, A6, A12, A13, A17, A22, A23, A27, A28. It is noted that, within the framework of these counter-examples, the relation - 0.5 x (Cr+Fe) + 25% S Mo+W S - 0.5 x (Cr+Fe) + 30% is not respected .
Par ailleurs, comme le montrent les exemples comparatifs A6, A13, A17, A23 et A28, les alliages comprenant du fer à une teneur supérieure à 1 ,0% présentent une ductilité dégradée, ainsi qu’une sensibilité accrue à la fissuration à chaud. Moreover, as comparative examples A6, A13, A17, A23 and A28 show, the alloys comprising iron at a content greater than 1.0% exhibit degraded ductility, as well as increased sensitivity to hot cracking.
D’une manière générale, les inventeurs ont constaté qu’une fraction surfacique de phases précipitées Fs supérieure à 1 ,5% se traduit par une résilience KCV inférieure à 100 J/cm2 et/ou une longueur de fissures supérieure à 20 mm. In general, the inventors have observed that a surface fraction of precipitated phases Fs greater than 1.5% results in a KCV resilience of less than 100 J/cm 2 and/or a crack length greater than 20 mm.
Les inventeurs ont également réalisé une deuxième série d’essais, dans les mêmes conditions qu’évoquées en regard de la première série d’essais, mais avec des largets réalisés dans des alliages présentant les compositions résumées au Tableau 3. Par ailleurs, les résultats des essais réalisés sur ces largets sont indiqués au Tableau 4. The inventors also carried out a second series of tests, under the same conditions as mentioned with regard to the first series of tests, but with bars made from alloys having the compositions summarized in Table 3. Furthermore, the results tests carried out on these strips are shown in Table 4.
Tableau 3 : Composition des alliages de la deuxième série d’essais Table 3: Composition of the alloys of the second series of tests
Dans les alliages du Tableau 3, la teneur en Al est comprise entre 0,01 et 0,35%, la teneur en N est comprise entre 0,001 et 0,05%, les teneurs en Mg et Ca sont inférieures ou égales à 0,005% et la teneur en P est inférieure ou égale à 0,005%. Par ailleurs, l’alliage ne contient pas de niobium. In the alloys of Table 3, the Al content is between 0.01 and 0.35%, the N content is between 0.001 and 0.05%, the Mg and Ca contents are less than or equal to 0.005% and the P content is less than or equal to 0.005%. In addition, the alloy does not contain niobium.
Pour tous les alliages du Tableau 3, le reste est du nickel, ainsi que des impuretés résultant de l’élaboration. For all alloys in Table 3, the balance is nickel, plus impurities resulting from smelting.
Par ailleurs, toutes les compositions sont indiquées en pourcentage en poids. Furthermore, all the compositions are indicated in percentage by weight.
Tableau 4 : Résultats des essais effectués sur les largets réalisés dans les alliages duTable 4: Results of the tests carried out on the bars made from the alloys of
Tableau 3 Table 3
Par ailleurs, au cours des essais potentiométriques, les alliages B1 à B28 du Tableau 3 ont développé un potentiel de piqûre V par rapport au potentiel de référence par rapport à l’électrode au calomel saturée supérieur ou égal à 150 mV. Ces alliages présentent donc une meilleure tenue à la corrosion localisée que l’alliage Inconel ® 625. Furthermore, during potentiometric tests, alloys B1 to B28 in Table 3 developed a pitting potential V relative to the reference potential relative to the saturated calomel electrode greater than or equal to 150 mV. These alloys therefore have better resistance to localized corrosion than the Inconel ® 625 alloy.
On constate donc que les propriétés recherchées en termes de limite d’élasticité, résilience, soudabilité, fraction surfacique de phases précipitées et tenue à la corrosion localisée sont obtenues dans le cas des exemples B2 à B4, B8 à B11 , B14 à B16, B19 à B21 , B25 et B26, qui correspondent à des alliages présentant la composition telle que décrite ci-dessus. It can therefore be seen that the properties sought in terms of yield strength, resilience, weldability, surface fraction of precipitated phases and resistance to localized corrosion are obtained in the case of examples B2 to B4, B8 to B11, B14 to B16, B19 to B21, B25 and B26, which correspond to alloys having the composition as described above.
Les autres résultats confirment les conclusions tirées du Tableau 2. The other results confirm the conclusions drawn from Table 2.
En particulier, la limite d’élasticité Rpo,2 est inférieure ou égale à 500 MPa dans le cas des exemples comparatifs B1 , B7, B18, B24, tandis que la résilience KCV est insuffisante dans le cas des exemples comparatifs B5, B6, B12, B13, B17, B22, B23, B27, B28. On note que, dans le cadre de ces contre-exemples, la relation - 0,5 x (Cr+Fe) + 25% S Mo+W < - 0,5 x (Cr+Fe) + 30% n’est pas respectée. In particular, the elastic limit Rpo,2 is less than or equal to 500 MPa in the case of comparative examples B1, B7, B18, B24, while the resilience KCV is insufficient in the case of comparative examples B5, B6, B12 , B13, B17, B22, B23, B27, B28. It is noted that, within the framework of these counter-examples, the relation - 0.5 x (Cr+Fe) + 25% S Mo+W < - 0.5 x (Cr+Fe) + 30% is not respected.
Par ailleurs, la soudabilité et la résilience sont dégradées dans le cas où l’alliage contient du fer à une teneur supérieure à 1 ,0%. In addition, the weldability and the resilience are degraded in the case where the alloy contains iron at a content greater than 1.0%.
En outre, en comparant les résultats des Tableaux 2 et 4, on constate que l’ajout de terres rares améliore donc la tenue à la fissuration à chaud de l’alliage. In addition, by comparing the results of Tables 2 and 4, it can be seen that the addition of rare earths therefore improves the hot cracking resistance of the alloy.
L’ajout de terres rares est particulièrement avantageux lorsque le métal de base à souder présente des teneurs en soufre et/ou en oxygène plus élevées que le fil d’apport. En effet, les inventeurs ont constaté que les terres rares contribuent à la désoxydation et/ou à la désulfuration du bain liquide durant l’opération de soudage, et ainsi à l’amélioration de la tenue à la fissuration à chaud. The addition of rare earths is particularly advantageous when the base metal to be welded has higher sulfur and/or oxygen contents than the filler wire. Indeed, the inventors have observed that the rare earths contribute to the deoxidation and/or to the desulfurization of the liquid bath during the welding operation, and thus to the improvement of the resistance to hot cracking.
L’alliage selon l’invention présente une limite d’élasticité Rpo,2 supérieure ou égale à 500 MPa et une résilience KCV supérieure ou égale à 100 J/cm2, ce qui permet d’obtenir un overmatching des propriétés mécaniques par rapport à un métal de base présentant une limite d’élasticité Rpo,2 inférieure à 500 MPa tels que les alliages X56, X 60, X65 et X70. Ainsi, les caractéristiques des soudures peuvent être ignorées pour le dimensionnement des assemblages soudés réalisés dans de tels alliages en tant que matériaux de base. The alloy according to the invention has a yield strength Rpo,2 greater than or equal to 500 MPa and a KCV resilience greater than or equal to 100 J/cm 2 , which makes it possible to obtain an overmatching of the mechanical properties with respect to a base metal having a yield strength Rpo,2 of less than 500 MPa such as alloys X56, X 60, X65 and X70. Thus, the characteristics of the welds can be ignored for the dimensioning of the welded assemblies made in such alloys as base materials.
Par ailleurs, il présente : Furthermore, it presents:
- une tenue à la corrosion supérieure ou égale à celle de l’alliage Inconel ® 625 comparatif ; - corrosion resistance greater than or equal to that of the comparative Inconel ® 625 alloy;
- une soudabilité supérieure ou égale à celle de l’alliage Inconel ® 625 comparatif.- a weldability greater than or equal to that of the comparative Inconel ® 625 alloy.
Compte tenu de ses propriétés, l’alliage selon l’invention est donc particulièrement adapté pour être utilisé en tant que matériau d’apport pour la fabrication de tubes de pipeline destinés au transport de pétrole ou de gaz et adaptés pour la pose en haute mer à des profondeurs élevées, et en particulier jusqu’à environ 3000 m de profondeur, à des cadences élevées, en particulier de l’ordre de 2 km/jour. Given its properties, the alloy according to the invention is therefore particularly suitable for use as a filler material for the manufacture of pipeline tubes intended for the transport of oil or gas and suitable for laying on the high seas. at great depths, and in particular down to a depth of around 3000 m, at high rates, in particular of the order of 2 km/day.
Compte tenu de ses bonnes propriétés, l’alliage selon l’invention peut également être utilisé de manière avantageuse dans le cadre de pièces telles que décrites ci-dessus. Given its good properties, the alloy according to the invention can also be used advantageously in the context of parts as described above.

Claims

REVENDICATIONS Alliage présentant la composition suivante, en poids : CLAIMS Alloy having the following composition, by weight:
16,5% £ Cr £ 25,0% 16.5% £Cr£ 25.0%
11 ,0% £ Mo £ 18,0% 11.0% £ Mo £ 18.0%
2,0% £ W £ 7,0% £2.0%W£7.0%
Fe £ 1 ,0% Fe£1.0%
Mo+W £ - 0,5 x (Cr+Fe) + 30% Mo+W £ - 0.5x (Cr+Fe) + 30%
Mo+W - 0,5 x (Cr+Fe) + 25% Mo+W - 0.5x (Cr+Fe) + 25%
Ti+Ta £ 0,80% Ti+Ta£ 0.80%
0,01 % £ Si £ 0,75% 0.01% £ If £ 0.75%
0,01 % £ Al £ 0,35% 0.01% £ Al £ 0.35%
0,01% £ Mn £ 0,35% 0.01% £ Mn £ 0.35%
Ca £ 0,005% Ca£0.005%
Mg £ 0,005% Mg£0.005%
Nb £ 0,01% #£0.01%
0,001% £ C £ 0,05% 0.001% C££0.05%
0,001% £ N £ 0,05% 0.001% £N£0.05%
S £ 0,003% S£0.003%
P £ 0,005% optionnellement, 0,0010% £ terres rares £ 0,015%, la teneur en silicium étant inférieure ou égale à 0,25% en présence de terres rares à une teneur comprise entre 0,0010% et 0,015%, le reste étant du nickel et des impuretés inévitables résultant de l’élaboration, la teneur en nickel étant supérieure ou égale à 54%. Alliage selon la revendication 1 , dans lequel la teneur en fer est inférieure ou égale à 0,5%. Alliage selon la revendication 1 ou 2, dans lequel les terres rares sont choisies parmi l’yttrium, le cérium et le lanthane et les mélanges de ces éléments. Alliage selon la revendication 3, dans lequel les terres rares sont choisies parmi l’yttrium ou un mélange de cérium et de lanthane. Pièce revêtue (26) comprenant un substrat (28) réalisé dans un matériau de base et un revêtement (30), réalisé dans un alliage selon l’une quelconque des revendications 1 à 4, le matériau de base étant un matériau métallique, de préférence un acier au carbone, et par exemple un acier X56, X60, X65, X70. Pièce revêtue selon la revendication 5, la pièce revêtue (26) étant un tronçon de tube (7). Fil d’apport réalisé dans un alliage présentant une composition selon l’une quelconque des revendications 1 à 4. Procédé de fabrication d’un fil d’apport selon la revendication 7, le procédé comprenant les étapes suivantes : P £ 0.005% optionally, 0.0010% £ rare earths £ 0.015%, the silicon content being less than or equal to 0.25% in the presence of rare earths at a content between 0.0010% and 0.015%, the remainder being nickel and unavoidable impurities resulting from the production, the nickel content being greater than or equal to 54%. Alloy according to Claim 1, in which the iron content is less than or equal to 0.5%. Alloy according to Claim 1 or 2, in which the rare earths are chosen from yttrium, cerium and lanthanum and mixtures of these elements. Alloy according to Claim 3, in which the rare earths are chosen from yttrium or a mixture of cerium and lanthanum. Coated part (26) comprising a substrate (28) made of a base material and a coating (30), made of an alloy according to any one of claims 1 to 4, the base material being a metallic material, preferably a carbon steel, and for example an X56, X60, X65, X70 steel. Coated part according to claim 5, the coated part (26) being a section of tube (7). Filler wire made from an alloy having a composition according to any one of Claims 1 to 4. Process for manufacturing a filler wire according to Claim 7, the process comprising the following steps:
- fourniture d’un demi-produit réalisé dans un alliage selon l’une quelconque des revendications 1 à 4 ; - supply of a semi-finished product made of an alloy according to any one of claims 1 to 4;
- transformation à chaud de ce demi-produit pour former un fil intermédiaire ; et - hot transformation of this semi-finished product to form an intermediate wire; and
- transformation du fil intermédiaire en fil d’apport, de diamètre inférieur à celui du fil intermédiaire, ladite transformation comprenant une étape de tréfilage. Assemblage soudé (1 ; 7 ; 20) comprenant au moins deux parties de pièces (3 ; 12 ; 7), réalisées chacune dans un matériau de base, les parties de pièces (3 ; 12 ; 7) étant liées entre elles par un cordon de soudure (5 ; 15 ; 22) obtenu à partir du fil d’apport selon la revendication 7, le matériau de base étant choisi parmi un alliage fer-nickel de type Fe-9Ni, un alliage à base de nickel de type C-276, C-4 ou 22 et un acier au carbone, par exemple un acier X56, X60, X65 ou X70. Assemblage soudé selon la revendication 9, ledit assemblage soudé formant un tronçon de tube (7) comprenant une tôle repliée en forme de tube, dont les bords longitudinaux (12) constituent les parties de pièces (3) liées entre elles par le cordon de soudure (15). Assemblage soudé selon la revendication 10, le tronçon de tube (7) étant muni d’un revêtement (30) réalisé dans l’alliage selon l’une quelconque des revendications 1 à 4, sur au moins une partie, et de préférence l’intégralité, de sa surface intérieure. Assemblage soudé selon la revendication 9, ledit assemblage soudé formant un tube (20) comprenant au moins deux tronçons de tube (7), les tronçons de tube (7) constituant les parties de pièces (3), et le cordon de soudure (22) s’étendant le long de la circonférence du tube (20), les tronçons de tube (7) étant de préférence des tronçons de tube (7) selon l’une des revendications 10 ou 11. Procédé de fabrication d’un assemblage soudé (1 ; 7 ; 20) selon l’une quelconque des revendications 9 à 12, comprenant le soudage entre elles des deux parties de pièces (3 ; 12, 7) au moyen du fil d’apport selon la revendication 7, le soudage étant en particulier un soudage à l’arc. Procédé de fabrication d’un assemblage soudé (7) selon la revendication 10 ou 11 , dans lequel l’étape de soudage est une étape de soudage entre eux des bords longitudinaux (12) de la tôle (9), la soudure étant de préférence une soudure longitudinale bout à bout. Procédé de fabrication d’un assemblage soudé (20) selon la revendication 12, comprenant, avant l’étape de soudage, les étapes successives suivantes : - transformation of the intermediate wire into filler wire, of diameter smaller than that of the intermediate wire, said transformation comprising a drawing step. Welded assembly (1; 7; 20) comprising at least two part parts (3; 12; 7), each made of a basic material, the part parts (3; 12; 7) being linked together by a cord solder (5; 15; 22) obtained from the filler wire according to claim 7, the base material being chosen from an iron-nickel alloy of the Fe-9Ni type, a nickel-based alloy of the C- type 276, C-4 or 22 and a carbon steel, for example an X56, X60, X65 or X70 steel. Welded assembly according to claim 9, said welded assembly forming a section of tube (7) comprising a folded sheet in the form of a tube, the longitudinal edges (12) of which constitute the parts of parts (3) joined together by the weld bead (15). Welded assembly according to Claim 10, the tube section (7) being provided with a coating (30) made of the alloy according to any one of Claims 1 to 4, over at least one part, and preferably the entirety, of its inner surface. Welded assembly according to claim 9, said welded assembly forming a tube (20) comprising at least two tube sections (7), the tube sections (7) constituting the part parts (3), and the weld bead (22 ) extending along the circumference of the tube (20), the tube sections (7) preferably being tube sections (7) according to one of claims 10 or 11. Method of manufacturing a welded assembly (1; 7; 20) according to any one of Claims 9 to 12, comprising the welding together of the two parts of the parts (3; 12, 7) by means of the filler wire according to Claim 7, the welding being in particular arc welding. Method of manufacturing a welded assembly (7) according to claim 10 or 11, in which the welding step is a step of welding together the longitudinal edges (12) of the sheet (9), the welding preferably being a longitudinal butt weld. Method of manufacturing a welded assembly (20) according to claim 12, comprising, before the welding step, the following successive steps:
- fourniture d’un premier tronçon de tube (7) et d’un deuxième tronçon de tube (7) s’étendant chacun suivant un axe longitudinal (M), et réalisés dans le matériau de base ; - supply of a first tube section (7) and a second tube section (7) each extending along a longitudinal axis (M), and made of the base material;
- positionnement des premier et deuxième tronçons de tube (7) de telle sorte qu’une extrémité longitudinale (24) du premier tronçon de tube (7) soit disposée en regard d’une extrémité longitudinale (24) du deuxième tronçon de tube (7) selon l’axe longitudinal (M) des premier et deuxième tronçons de tube (7) ; et dans lequel l’étape de soudage est une étape de soudage entre elles de deux extrémités longitudinales (24) en regard des premier et deuxième tronçons de tube (7), le soudage étant de préférence un soudage bout à bout orbital. - positioning of the first and second tube sections (7) such that a longitudinal end (24) of the first tube section (7) is arranged opposite a longitudinal end (24) of the second tube section (7 ) along the longitudinal axis (M) of the first and second tube sections (7); and in which the step of welding is a step of welding together two longitudinal ends (24) facing the first and second pipe sections (7), the welding preferably being orbital butt welding.
16. Pièce ou partie de pièce réalisée dans un alliage selon l’une quelconque des revendications 1 à 4, ladite pièce ou partie de pièce étant obtenue par fabrication additive métallique. 16. Part or part of part made of an alloy according to any one of claims 1 to 4, said part or part of part being obtained by metal additive manufacturing.
17. Procédé de fabrication d’une pièce ou d’une partie de pièce, comprenant une étape de fabrication de ladite pièce ou partie de pièce par un procédé de fabrication additive métallique utilisant, en tant que matériau d’apport, un fil d’apport réalisé dans l’alliage selon l’une quelconque des revendications 1 à 4 et/ou une poudre réalisée dans l’alliage selon l’une quelconque des revendications 1 à 4. 17. A method of manufacturing a part or part of a part, comprising a step of manufacturing said part or part of a part by a metal additive manufacturing process using, as filler material, a wire of filler made from the alloy according to any one of claims 1 to 4 and/or a powder made from the alloy according to any one of claims 1 to 4.
18. Utilisation du fil d’apport selon la revendication 7 : 18. Use of filler wire according to claim 7:
- comme fil d’apport de soudage pour souder entre elles deux parties de pièces réalisées dans un matériau de base, le matériau de base étant un alliage fer-nickel de type Fe-9Ni, un alliage à base de nickel de type C-276, C-4 ou 22, ou un acier au carbone, et par exemple un acier X56, X60, X65 ou X70 ; et/ou - as a welding filler wire for welding together two parts of parts made of a base material, the base material being an iron-nickel alloy of the Fe-9Ni type, a nickel-based alloy of the C-276 type , C-4 or 22, or a carbon steel, and for example an X56, X60, X65 or X70 steel; and or
- comme fil de rechargement pour réaliser un revêtement sur des pièces ou parties de pièces réalisées dans un matériau de base, le matériau de base étant un matériau métallique, de préférence un acier au carbone, et par exemple un acier X56, X60, X65 ou X70 ; et/ou - as a hardfacing wire for producing a coating on parts or parts of parts made of a base material, the base material being a metallic material, preferably a carbon steel, and for example an X56, X60, X65 or X70; and or
- comme fil d’apport dans le cadre d’un procédé de fabrication additive métallique. - as filler wire in a metal additive manufacturing process.
19. Poudre métallique réalisée dans un alliage selon l’une quelconque des revendications 1 à 4. 19. Metal powder made from an alloy according to any one of claims 1 to 4.
20. Procédé de fabrication d’une poudre métallique selon la revendication 19, ledit procédé comprenant une étape de fourniture d’un fil d’apport selon la revendication 7, ainsi qu’une étape d’atomisation plasma de ce fil d’apport pour obtenir la poudre métallique. 20. A method of manufacturing a metal powder according to claim 19, said method comprising a step of supplying a filler wire according to claim 7, as well as a step of plasma atomizing this filler wire to get the metal powder.
EP20803941.2A 2020-10-30 2020-10-30 Nickel-based alloy for manufacturing pipeline tubes Pending EP4237188A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2020/060223 WO2022090781A1 (en) 2020-10-30 2020-10-30 Nickel-based alloy for manufacturing pipeline tubes

Publications (1)

Publication Number Publication Date
EP4237188A1 true EP4237188A1 (en) 2023-09-06

Family

ID=73198376

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20803941.2A Pending EP4237188A1 (en) 2020-10-30 2020-10-30 Nickel-based alloy for manufacturing pipeline tubes

Country Status (7)

Country Link
EP (1) EP4237188A1 (en)
JP (1) JP2023553255A (en)
KR (1) KR20230098270A (en)
CN (1) CN116615293A (en)
CA (1) CA3196465A1 (en)
MX (1) MX2023005043A (en)
WO (1) WO2022090781A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010150585A (en) * 2008-12-24 2010-07-08 Toshiba Corp Ni-based alloy for casting part of steam turbine excellent in high-temperature strength, castability and weldability, turbine casing of steam turbine, valve casing of steam turbine, nozzle box of steam turbine, and pipe of steam turbine
ES2763348T3 (en) * 2013-02-01 2020-05-28 Aperam Fe-36Ni Alloy Welding Wire
KR102179607B1 (en) * 2016-09-12 2020-11-17 제이에프이 스틸 가부시키가이샤 Clad welded pipe or tube and method of producing same
CN109689239B (en) * 2016-09-12 2020-08-28 杰富意钢铁株式会社 Electric resistance welded clad steel pipe and method for manufacturing same
CN109514046A (en) * 2018-12-17 2019-03-26 陕西化建工程有限责任公司 A kind of Ni-based separation layer equipment mouth of band and heat resisting steel pipeline butt welding process

Also Published As

Publication number Publication date
JP2023553255A (en) 2023-12-21
CA3196465A1 (en) 2022-05-05
MX2023005043A (en) 2023-05-17
CN116615293A (en) 2023-08-18
WO2022090781A1 (en) 2022-05-05
KR20230098270A (en) 2023-07-03

Similar Documents

Publication Publication Date Title
Lee et al. Joint properties of friction stir welded AZ31B–H24 magnesium alloy
EP0867520B1 (en) Welded high-strength steel structures and methods of manufacturing the same
CA2623146C (en) Method for making a steel part of multiphase microstructure
EP1488018B1 (en) Al-mg alloy products for a welded construction
WO2013014481A1 (en) Hot-formed previously welded steel part with very high mechanical resistance, and production method
CN102465287B (en) Manufacture method for laser cladded composite pipe with three layers of metals
KR102244939B1 (en) Control of metal carbide/nitride deposits in molten weldments
WO2018025063A1 (en) Method for manufacturing a steel part, including the addition of a molten metal to a supporting part, and part thus obtained
CN103874558A (en) Welded steel pipe with excellent welding heat-affected zone toughness, and process for producing same
EP2855080A1 (en) Method for welding two edges of one or more steel parts to each other including a heat treatment step after the welding step: penstock obtained with such a method
Joshani et al. Evaluation of dissimilar 7075 aluminum/AISI 304 stainless steel joints using friction stir welding
Manh et al. Successful joining of ultra-thin AA3003 aluminum alloy sheets by the novel GTAW process
EP2951328B1 (en) Welding wire for fe-36ni alloy
Chu et al. Microstructure and mechanical properties of Cu/steel dissimilar joints
Singh et al. High cycle fatigue performance of cold metal transfer (CMT) brazed C-Mn-440 steel joints
FR2623818A1 (en) NICKEL ALLOY WITH HIGH MOLYBDEN CONTENT
US20220063019A1 (en) Improvements in the welding of pipes
EP4237188A1 (en) Nickel-based alloy for manufacturing pipeline tubes
JP2008215181A (en) Turbine rotor
JPH0623553A (en) Manufacture of welded steel tube
CH619491A5 (en)
WO2021099697A1 (en) Solid metallic component and method for producing same
Chen Refill friction stir spot welding of dissimilar alloys
Lin et al. Effects of the MIG weld-brazing parameter on the lap-joint performance of aluminum alloy to galvanized steel sheet
Girinath et al. Investigation on the Effect of Torch Angle on the Formability of AA5052 CMT Weldments

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230428

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20240417