EP4225693A1 - Hydrogen storage by means of derivatives of compounds of renewable origin - Google Patents

Hydrogen storage by means of derivatives of compounds of renewable origin

Info

Publication number
EP4225693A1
EP4225693A1 EP21802392.7A EP21802392A EP4225693A1 EP 4225693 A1 EP4225693 A1 EP 4225693A1 EP 21802392 A EP21802392 A EP 21802392A EP 4225693 A1 EP4225693 A1 EP 4225693A1
Authority
EP
European Patent Office
Prior art keywords
hydrogen
formulation
use according
cas
derivatives
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21802392.7A
Other languages
German (de)
French (fr)
Inventor
Jean-Luc Dubois
Bernard Monguillon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Arkema France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France SA filed Critical Arkema France SA
Publication of EP4225693A1 publication Critical patent/EP4225693A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0015Organic compounds; Solutions thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the present invention relates to the field of storage and transport of energy sources and more particularly that of the storage and transport of hydrogen as an energy source, and in particular that of organic compounds capable of storing and transporting hydrogen. 'hydrogen.
  • the fixation of hydrogen is generally carried out during a stage of hydrogenation of the support molecule.
  • the hydrogenated support molecule “stores” the fixed hydrogen and this so-called “hydrogenated” molecule can be stored and/or transported.
  • the fixed hydrogen can then be released, most often near the place of consumption, in a stage of dehydrogenation of the hydrogenated support molecule.
  • Carrier molecules are now the subject of numerous studies and are now better known by the acronym LOHC for "Liquid Organic Hydrogen Carrier" in English, that is to say "Organic Liquid Carrier of Hydrogen”.
  • toluene which can be hydrogenated to methylcyclohexane and then dehydrogenated.
  • One of the problems encountered with this molecule is its relatively low boiling point (110.6°C at atmospheric pressure, certainly higher than that of the hydrogenated form, methylcyclohexane: 100.85°C), which can lead to production of hydrogen containing traces of toluene and/or methylcyclohexane, which may be difficult to get rid of.
  • LOHCs known today are aromatic fluids with two or three rings, represented in particular by benzyltoluene (BT) and/or dibenzyltoluene (DBT) and which have already been the subject of numerous studies and patent applications, such as patent EP2925669, for example, which describes the technology and operations for the hydrogenation and dehydrogenation of these fluids for the storage and release of hydrogen.
  • BT benzyltoluene
  • DBT dibenzyltoluene
  • Still other LOHC compounds are being studied and examples are presented in the article by Pàivi et al. ⁇ Journal of Power Sources, 396, (2016), 803-823).
  • the hydrogen resulting from this LOHC technology finds uses in very many fields, such as for example in fuel cells, in industrial processes, or even as fuel for means of transport (train, boats , trucks, motor cars). Any impurity potentially harmful to the environment and present in the hydrogen resulting from the dehydrogenation reaction, whether total or partial, of the LOHC molecule, even in trace amounts, could have a negative impact both on the hydrogenation/dehydrogenation process in terms of yield, on the quality of the products manufactured or even on the yields in the end uses of the hydrogen produced by this technique.
  • the LOHC compounds known and under development today and listed above are compounds derived from products of fossil origin or synthesized from products of fossil origin.
  • the LOHCs known today such as toluene, benzene, and their di- or tri-merized derivatives, such as benzyltoluene (BT) and dibenzyltoluene (DBT), as well as aromatics possibly carrying heteroatoms, in particular derivatives of indole and derivatives of carbazole, are all products derived from petroleum, some of which may have a certain toxicity, or even be harmful vis-à-vis the environment.
  • they are of non-renewable origin and may be subject to the vagaries of price variations in crude oil costs.
  • a first object of the present invention is the use of a liquid formulation at room temperature comprising at least one terpene derivative for fixing and releasing hydrogen in at least one hydrogenation/dehydrogenation cycle of said formulation .
  • terpene derivative within the meaning of the present invention, is meant a product of renewable origin comprising at least one hydrocarbon ring comprising 6 carbon atoms and capable of being hydrogenated and/or dehydrogenated.
  • the invention uses products of renewable origin as starting materials.
  • the carbon in a product of renewable origin comes from the photosynthesis of plants and therefore from atmospheric CO2.
  • biocarbon indicates that the carbon is of renewable origin and comes from a biomaterial, as indicated below. Biocarbon content and biomaterial content are expressions denoting the same value.
  • a material of renewable origin also called biomaterial, is an organic material in which the carbon comes from CO2 fixed recently (on a human scale) by photosynthesis from the atmosphere. On land, this CO2 is captured or fixed by plants. At sea, CO2 is captured or fixed by bacteria, cyanobacteria, algae or plankton carrying out photosynthesis.
  • a biomaterial (100% carbon of natural origin) has a 14 C/ 12 C isotopic ratio greater than 10' 12 , typically of the order of 1.2 x 10' 12 , whereas a fossil material has a zero ratio.
  • the 14 C isotope is formed in the atmosphere and is then integrated by photosynthesis, according to a time scale of a few decades at most. The half-life of 14 C is 5730 years. So the materials resulting from photosynthesis, namely plants in general, necessarily have a maximum content of 14 C isotope. Beyond 50,000 years, the 14 C content becomes difficult to detect.
  • the determination of the biomaterial content or biocarbon content is determined by applying the standards ASTM D 6866 (ASTM D 6866-06) and ASTM D 7026 (ASTM D 7026-04).
  • ASTM D 6866 is about "Determining the Biobased Content of Natural Range Materials Using Radiocarbon and Isotope Ratio Mass Spectrometry Analysis”
  • ASTM D 7026 is about "Sampling and Reporting of Results for Determination of Biobased Content of Materials via Carbon Isotope Analysis”.
  • the second standard refers in its first paragraph to the first.
  • the first standard describes a test for measuring the 14 C/ 12 C ratio of a sample and compares it with the 14 C/ 12 C ratio of a reference sample of 100% renewable origin, to give a relative percentage carbon of renewable origin in the sample.
  • the standard is based on the same concepts as 14 C dating, but without applying the dating equations.
  • the ratio thus calculated is designated as the “pMC” (gercent IModern Carbon). If the material to be analyzed is a mixture of biomaterial and fossil material (without radioactive isotope), then the pMC value obtained is directly correlated to the quantity of biomaterial present in the sample.
  • the reference value used for the 14 C dating is a value dating from the 1950s. This year was chosen because of the existence of nuclear tests in the atmosphere which introduced large quantities of isotopes into the atmosphere after this date. The 1950 reference corresponds to a pMC value of 100. Taking into account thermonuclear tests, the current value to be used is around 107.5 (which corresponds to a correction factor of 0.93). The radioactive carbon signature of a modern plant is therefore 107.5. A signature of 54 pMC and 99 pMC therefore correspond to a quantity of biomaterial in the sample of 50% and 93%, respectively.
  • the ASTM D 6866 standard offers three techniques for measuring the 14 C isotope content:
  • this technique consists of counting "beta" particles resulting from the disintegration of 14 C; the beta radiation from a sample of known mass (known number of C atoms) is measured for a certain time; this "radioactivity" is proportional to the number of 14 C atoms, which can thus be determined; the 14 C present in the sample emits beta radiation, which, in contact with the scintillating liquid (scintillator), gives rise to photons; these photons have different energies (between 0 and 156 keV) and form what is called a 14 C spectrum; according to two variants of this method, the analysis relates either to the CO2 previously produced by the carbonaceous sample in a appropriate absorbent solution, or on benzene after prior conversion of the carbonaceous sample to benzene.
  • the ASTM D 6866 standard therefore gives two methods A and C, based on this LSC method;
  • the terpene derivatives that can be used in the context of the present invention come at least in part from biomaterial and therefore have a biomaterial content of at least 1%. This content is advantageously higher, in particular by at least 20%, better still by at least 40%, advantageously by at least 50%, or even up to 100%.
  • the terpene compounds that can be used in the context of the present invention can therefore comprise 100% bio-carbon or, on the contrary, result from a mixture or from reaction products with one or more other compounds of fossil origin.
  • formulations comprising at least one terpene derivative in which the ratio (number of carbon atoms of renewable origin/total number of carbon atoms) is greater than or equal to 20%, preferably greater than or equal to 30%, preferably greater than or equal to 40%, and most preferably greater than or equal to 50%.
  • terpene derivative an organic compound comprising at least one carbon skeleton of formula (1): in which each "C” represents a carbon atom, bonded to at least one other carbon atom, the total number of carbon atoms being 10, said carbon skeleton of formula (1) not showing the carbon atom(s) hydrogen and/or other substituents, nor any unsaturation(s) in the form of double(s) or triple(s) bond(s) or any other fused ring(s) (s) and/or condensed.
  • the possible substituents can be chosen from:
  • a saturated or unsaturated, linear, branched or cyclic hydrocarbon radical comprising from 1 to 30 carbon atoms, optionally including one or more heteroatom(s) chosen from oxygen, sulfur and nitrogen,
  • halogen atom chosen from fluorine, chlorine, bromine and iodine
  • R and R' each represent, independently of each other, a linear saturated or unsaturated hydrocarbon chain branched or cyclic, containing from 1 to 10 carbon atoms.
  • the skeleton of formula (1) can appear in any type of molecule and in particular the molecules carrying one or more fused and/or condensed rings.
  • the skeleton of formula (1) also called “with a limonene structure” in the rest of this description, can also appear, among others and by way of non-limiting examples, in the forms of skeletons of structure (1 ') and (1") following: skeletons of formula (1′) and (1′′) also referred to respectively as “with carene structure” and “with pinene structure” in the rest of this presentation.
  • Terpene derivatives with a carene structure or with a pinene structure are not, however, preferred for the use according to the present invention, although they are not excluded therefrom.
  • Other compounds of renewable origin comprising the skeleton of formula (1) defined above, also comprise one or more other fused or condensed ring(s), optionally bearing heteroatom(s), forming for example ether, amine and other functions, these functions possibly being intramolecular.
  • the terpene derivatives which may advantageously be present in the formulation as such or by chemical reaction between two or more of them and/ or with other molecules of renewable origin or not, as indicated below, can in particular be chosen from:
  • terpinenes including a-terpinene, 0-terpinene, y-terpinene
  • terpinolenes including their mono-hydroxylated and di-hydroxylated forms
  • - pinenes including a-pinene (CAS 7785-26-4) and 0-pinene (CAS 127-91-3), as well as their hydroxylated derivatives, such as borneol,
  • cadalanes (4,7-dimethyl-1-propan-2-yl-perhydronaphthalene), cadinenes (4,7-dimethyl-1-propan-2-yl-1,2,4a,5,8,8a- hexahydronaphthalene, CAS 29350-73-0), including their a-, P-, y-, 5- and E-stereoisomers
  • cannabinol and its derivatives such as tetrahydrocannabinol, cannabidiol, cannabitriol,
  • Such products are mostly present in products of natural origin, in particular in plants, whether terrestrial, marine, or even underwater, in particular in trees, conifers, flowers, leaves, wood, fruits, and others, from which they can be extracted by any means known per se, and using known or adapted procedures and available in the scientific literature, the patent literature or even on the Internet.
  • Examples of plants comprising the terpene derivatives that can be used in the context of the present invention include, by way of illustration but not limitation, sage, rosemary, lavender, pepper, cloves, hemp, cannabis , camphor, hops, cinnamon, basil, oregano, citrus fruits (lemon, orange, citron), mint, peppermint, juniper, juniper cade, ginger, ginseng, bay leaf, lemongrass, mango, dill, parsley, thyme, watercress, monarda, savory, marjoram, dittam, eucalyptus, tea tree, cumin, rosemary, mugwort , absinthe, and others...
  • terpene derivative(s) it may be useful or even advantageous to carry out one or more purification operations of the terpene derivative(s), according to any well-known methods of those skilled in the art, in particular to avoid contamination of the hydrogen which will be produced during the dehydrogenation of said terpene derivative, to avoid the passivation of the catalysts during the hydrogenation and dehydrogenation operations, to improve the yields of the reactions of hydrogenations and dehydrogenations, to increase the lifetime (number of hydrogenation and dehydrogenation reaction cycles) of the terpene derivative or mixtures of terpene derivatives used as LOHC.
  • terpene derivatives as they have been defined above are known and easily available commercially, for example from actors in the agricultural and wood industries and their derivatives, or prepared by metabolic pathways in microorganisms, or even more simply from known operating modes available in the scientific literature, the patent literature or even on the Internet.
  • LOHC molecules are often characterized by their Theoretical Gravimetric Storage Capacity (CSGT).
  • CSGT Theoretical Gravimetric Storage Capacity
  • methyl-1-/so-propyl-4-cyclohexane can theoretically be completely dehydrogenated to pa/'a-/so-propenyltoluene by releasing 8 hydrogen atoms, as illustrated below. below:
  • the starting terpene derivative is cymene which has been completely hydrogenated and then theoretically completely dehydrogenated by releasing 8 atoms of hydrogen. It will therefore be indicated in the context of the present invention that cymene has a CSGT of 5.71%.
  • the terpene derivatives can be used as LOHC compounds, that is to say be subjected to one or more, and preferably several, hydrogenation / dehydrogenation cycles, these reactions of hydrogenation and dehydrogenation can be carried out, indifferently and independently of each other, in a total or partial manner, according to the wishes of the operator, and/or according to the molecules used, and/or according to the operating conditions used work.
  • the terpene derivatives that can be used in the context of the present invention have a CSGT strictly greater than 0, preferably greater than or equal to 1%, better still greater than or equal to 2% , more preferably greater than or equal to 3%, advantageously greater than or equal to 4%, and very advantageously greater than or equal to 5%.
  • the terpene derivatives may react chemically with each other and/or with other molecules of renewable or non-renewable origin, for example molecules derived from petrochemicals, in particular aromatic compounds derived from petrochemicals, such as benzene, toluene, xylenes, benzene/toluene/xylene mixtures better known under the names of BTX, polyethylbenzene residues better known under the name PEBR, as well as their mixtures in all proportions, to cite only the most common.
  • molecules derived from petrochemicals in particular aromatic compounds derived from petrochemicals, such as benzene, toluene, xylenes, benzene/toluene/xylene mixtures better known under the names of BTX, polyethylbenzene residues better known under the name PEBR, as well as their mixtures in all proportions, to cite only the most common.
  • terpene derivatives having (in their theoretically totally dehydrogenated form) at least 2 rings with 6 peaks, preferably at least two carbon rings with 6 peaks, more preferably at least least two aromatic rings with 6 carbon atoms.
  • the invention thus relates to the use of a liquid formulation at ambient temperature, in its partially or totally dehydrogenated form, as well as in its partially or totally hydrogenated form, comprising one or more terpene derivatives such as they come from be defined for the fixation and release of hydrogen in at least one hydrogenation/dehydrogenation cycle, partial or total, of said formulation.
  • the formulation usable in the context of the present invention may also comprise one or more other LOHCs known to those skilled in the art, such as for example chosen from toluene, benzyltoluene (BT), dibenzyltoluene (DBT) and mixtures thereof in all proportions.
  • LOHCs known to those skilled in the art, such as for example chosen from toluene, benzyltoluene (BT), dibenzyltoluene (DBT) and mixtures thereof in all proportions.
  • the formulation usable in the present invention may also comprise one or more additive(s) and/or filler(s) also well known to those skilled in the art, and by example, and in a non-limiting way, chosen from antioxidants, passivators, pour point depressants, decomposition inhibitors, colorants, flavors, and the like, as well as mixtures of one or more of them in all proportions.
  • the formulation only comprises hydrogenatable/dehydrogenatable compounds (partially or totally), in particular the formulation consists of LOHC molecules , without other added products of additive or filler types.
  • the formulation may however contain impurities, preferably in trace form, in particular inherent in the origin of the LOHC molecule used and/or its preparation process.
  • the formulation has a boiling point above 150° C. at atmospheric pressure, preferably above 180° C. at atmospheric pressure, and a melting point below 40 °C, preferably less than 30°C, more preferably less than 20°C, better still less than 15°C, and most preferably, a melting point less than 10°C, and advantageously strictly less at 0°C.
  • the formulation used in the present invention has a kinematic viscosity at 20° C. (measured according to standard DIN 51562) of between 0.1 mm 2 s -1 and 500 mm 2 s'. 1 , preferably between 0.5 mm 2 s -1 and 300 mm 2 s -1 and preferably between 1 mm 2 s -1 and 200 mm 2 s′ 1 .
  • the flash point of the formulation comprising at least one terpene derivative according to the invention has a flash point greater than 10° C., preferably greater than 20° C. measured according to standard N F EN 22-592.
  • the formulation and in particular each of the elements which compose it, has a decomposition temperature greater than 250° C., and advantageously does not decompose at more than 0, 1% by weight, when said formulation is maintained at a temperature of 300° C. for 4 hours, at atmospheric pressure.
  • This precaution makes it possible to envisage a maximum rate of reuse of the LOHC formulation which is intended to be the subject of as many hydrogenation/dehydrogenation cycles as possible, for example at least 50 times, advantageously at least 100 times, more preferably at least 250 times, thereby allowing storage and transport of hydrogen with said formulation.
  • the hydrogenation/dehydrogenation cycles are most often carried out according to methods that are now well known.
  • the dehydrogenation reaction can be carried out according to any known method, by applying one or more of the conditions following operating conditions, operating conditions which are listed below by way of non-limiting examples:
  • reaction temperature generally between 200°C and 350°C, preferably between 250°C and 330°C, more preferably between 280°C and 320°C, more preferably between 280°C and 330°C and totally preferably between 280°C and 320°C,
  • reaction pressure generally between 0.001 MPa and 0.3 MPa, and preferably between 0.01 MPa and 0.2 MPa, and more preferably the reaction pressure is atmospheric pressure
  • the reaction is most often and advantageously carried out in the presence of at least one dehydrogenation catalyst well known to those skilled in the art.
  • dehydrogenation catalyst well known to those skilled in the art.
  • the catalysts that can be used for said partial dehydrogenation reaction mention may be made, by way of non-limiting examples, of heterogeneous catalysts containing at least one metal on a support.
  • Said metal is chosen from among the metals of columns 3 to 12 of the periodic table of the elements of ULCPA, that is to say from among the transition metals of said periodic table.
  • the metal is chosen from the metals from columns 5 to 11, more preferably from columns 5 to 10 of the periodic table of the elements of ULCPA.
  • the metals of these catalysts are most often chosen from iron, cobalt, copper, titanium, molybdenum, manganese, nickel, platinum and palladium and mixtures thereof.
  • the metals are chosen from copper, molybdenum, platinum, palladium, and mixtures of two or more of them in all proportions.
  • the catalyst support can be of any type well known to those skilled in the art and is advantageously chosen from porous supports, more advantageously from porous refractory supports.
  • supports include alumina, silica, zirconia, magnesia, beryllium oxide, chromium oxide, titanium oxide, thorium oxide, ceramic, carbon such as carbon black, graphite and activated carbon, and combinations thereof.
  • specific and preferred examples of support which can be used in the process of the present invention, mention may be made of amorphous silico-aluminates, crystalline silico-aluminates (zeolites) and supports based on silica-titanium oxide.
  • the hydrogenation reaction can also be carried out for its part according to any method well known to those skilled in the art on a formulation comprising at least one terpene derivative as defined above.
  • the hydrogenation reaction is generally carried out at a temperature between 100°C and 200°C, and preferably between 120°C and 180°C and even more preferably between 140°C and 160°C.
  • the pressure used for this reaction is generally between 0.1 MPa and 5 MPa, preferably between 0.5 MPa and 4 MPa, and even more preferably between 1 MPa and 3 MPa.
  • the hydrogenation reaction is carried out in the presence of a catalyst, and more particularly of a hydrogenation catalyst well known to those skilled in the art, and advantageously chosen from, by way of examples non-limiting heterogeneous catalysts containing supported metals.
  • Said metal is chosen from among the metals of columns 3 to 12 of the periodic table of elements of ULCPA, that is to say from among the transition metals of said periodic table.
  • the metal is chosen from the metals from columns 5 to 11, more preferably from columns 5 to 10 of the periodic table of the elements of ULCPA.
  • the metals of these hydrogenation catalysts are most often chosen from iron, cobalt, copper, titanium, molybdenum, manganese, nickel, platinum and palladium and their mixtures.
  • the metals are chosen from copper, molybdenum, platinum, palladium, and mixtures of two or more of them in all proportions.
  • the catalyst support can be of any type well known to those skilled in the art and is advantageously chosen from porous supports, more advantageously from porous refractory supports.
  • supports include alumina, silica, zirconia, magnesia, beryllium oxide, chromium oxide, titanium oxide, thorium oxide, ceramic, carbon such as carbon black, graphite and activated carbon, and combinations thereof.
  • specific and preferred examples of support which can be used in the process of the present invention, mention may be made of amorphous silico-aluminates, crystalline silico-aluminates (zeolites) and supports based on silica-titanium oxide.
  • the hydrogenation reaction is carried out on a totally or partially dehydrogenated formulation, for example at least partially dehydrogenated, in one or more hydrogenation/dehydrogenation cycles.
  • the hydrogenation reaction can be partial or total, and preferably the hydrogenation reaction is complete in one or more hydrogenation/dehydrogenation cycles, that is to say that all of the double bonds present in the LOHC formulation capable of being hydrogenated are fully hydrogenated.
  • the present invention relates to a hydrogenation/dehydrogenation cycle comprising a partial or total dehydrogenation reaction of an LOHC formulation as it has just been defined and at least one partial or total hydrogenation reaction of said organic liquid.
  • the boiling temperature of said LOHC formulation is higher than the temperature required for the dehydrogenation step, in order to obtain the purest possible hydrogen in gaseous form. .
  • the formulations for transporting hydrogen are particularly well suited because of their stability, which allows reuse in a large number of hydrogenation cycles. / dehydrogenation for transporting and handling hydrogen from the steam cracking of petroleum products, fatal hydrogen from chemical reactions such as salt electrolysis or hydrogen from water electrolysis.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

The present invention relates to the use of a formulation at that is liquid at room temperature and comprises at least one terpene derivative, for binding and releasing hydrogen in at least one hydrogenation/dehydrogenation cycle of said formulation. The invention also relates to the use of said formulation for transporting and handling hydrogen derived from the steam cracking of petroleum products, by-product hydrogen derived from a chemical reaction, such as the electrolysis of salt, or hydrogen derived from the electrolysis of water.

Description

STOCKAGE D’HYDROGÈNE AU MOYEN DE DÉRIVÉS DE COMPOSÉS D’ORIGINE RENOUVELABLE STORAGE OF HYDROGEN USING DERIVATIVES OF COMPOUNDS OF RENEWABLE ORIGIN
[0001] La présente invention concerne le domaine du stockage et le transport de source d’énergie et plus particulièrement celui du stockage et du transport d’hydrogène comme source d’énergie, et notamment celui des composés organiques aptes à stocker et transporter de l’hydrogène. The present invention relates to the field of storage and transport of energy sources and more particularly that of the storage and transport of hydrogen as an energy source, and in particular that of organic compounds capable of storing and transporting hydrogen. 'hydrogen.
[0002] Le stockage et le transport d’hydrogène au moyen de composés organiques est une technologie récente qui fait l’objet depuis quelques années de publications dans la littérature scientifique et de dépôts de demandes de brevets. Le principe consiste à fixer de l'hydrogène sur une molécule support, laquelle molécule support étant de préférence et le plus souvent liquide à température ambiante, à la fois lorsqu’elle a fixé l’hydrogène (forme hydrogénée) et lorsqu’elle a libéré l’hydrogène (forme déshydrogénée). [0002] The storage and transport of hydrogen by means of organic compounds is a recent technology which has for some years been the subject of publications in the scientific literature and the filing of patent applications. The principle consists in fixing hydrogen on a support molecule, which support molecule being preferably and most often liquid at room temperature, both when it has fixed the hydrogen (hydrogenated form) and when it has released hydrogen (dehydrogenated form).
[0003] La fixation d’hydrogène est généralement réalisée lors d’une étape d'hydrogénation de la molécule support. La molécule support ainsi hydrogénée « stocke » l’hydrogène fixé et cette molécule dite « hydrogénée » peut être stockée et/ou transportée. L’hydrogène fixé peut ensuite être libéré, le plus souvent à proximité du lieu de consommation, dans une étape de déshydrogénation de la molécule support hydrogénée. [0004] Des molécules supports font aujourd’hui l’objet de nombreuses études et sont maintenant plus connus sous l’acronyme LOHC pour « Liquid Organic Hydrogen Carrier » en langue anglaise, c’est-à-dire « Liquide Organique Transporteur d’Hydrogène ». [0003] The fixation of hydrogen is generally carried out during a stage of hydrogenation of the support molecule. The hydrogenated support molecule “stores” the fixed hydrogen and this so-called “hydrogenated” molecule can be stored and/or transported. The fixed hydrogen can then be released, most often near the place of consumption, in a stage of dehydrogenation of the hydrogenated support molecule. [0004] Carrier molecules are now the subject of numerous studies and are now better known by the acronym LOHC for "Liquid Organic Hydrogen Carrier" in English, that is to say "Organic Liquid Carrier of Hydrogen”.
[0005] Parmi les LOHC les plus étudiés aujourd’hui, on peut citer le toluène, qui peut être hydrogéné en méthylcyclohexane puis déshydrogéné. Un des problèmes rencontrés avec cette molécule est son point d’ébullition relativement bas (110,6 °C à pression atmosphérique, certes plus élevé que celui de la forme hydrogénée, le méthylcyclohexane : 100,85 °C), ce qui peut conduire à une production d’hydrogène contenant des traces de toluène et/ou de méthylcyclohexane, dont il peut être difficile de s’affranchir. [0005] Among the most studied LOHCs today, mention may be made of toluene, which can be hydrogenated to methylcyclohexane and then dehydrogenated. One of the problems encountered with this molecule is its relatively low boiling point (110.6°C at atmospheric pressure, certainly higher than that of the hydrogenated form, methylcyclohexane: 100.85°C), which can lead to production of hydrogen containing traces of toluene and/or methylcyclohexane, which may be difficult to get rid of.
[0006] Les traces de composés organiques dans l’hydrogène libéré lors de la réaction de déshydrogénation peuvent poser un réel problème selon les applications envisagées et les domaines d’application où l’hydrogène est utilisé. Dans le cas du couple toluène/méthylcyclohexane, les traces de composés organiques peuvent ainsi provenir aussi bien du toluène (molécule sous forme hydrogénée) que du méthylcyclohexane (molécule sous forme déshydrogénée), mais aussi de tous leurs intermédiaires partiellement hydrogénés ou déshydrogénés. [0007] D’autres LOHC connus aujourd’hui sont les fluides aromatiques à deux ou trois noyaux, représentés notamment par le benzyltoluène (BT) et/ou le dibenzyltoluène (DBT) et qui ont déjà fait l'objet de nombreuses études et de demandes de brevets, comme par exemple le brevet EP2925669 qui décrit la technologie et les opérations d’hydrogénation et de déshydrogénation de ces fluides pour le stockage et la libération d’hydrogène. D’autres composés LOHC encore sont à l’étude et des exemples sont présentés dans l’article de Pàivi et coll. {Journal of Power Sources, 396, (2018), 803-823). [0006] Traces of organic compounds in the hydrogen released during the dehydrogenation reaction can pose a real problem depending on the applications envisaged and the fields of application where the hydrogen is used. In the case of the toluene/methylcyclohexane couple, the traces of organic compounds can thus come both from toluene (molecule in hydrogenated form) and from methylcyclohexane (molecule in dehydrogenated form), but also from all their partially hydrogenated or dehydrogenated intermediates. [0007] Other LOHCs known today are aromatic fluids with two or three rings, represented in particular by benzyltoluene (BT) and/or dibenzyltoluene (DBT) and which have already been the subject of numerous studies and patent applications, such as patent EP2925669, for example, which describes the technology and operations for the hydrogenation and dehydrogenation of these fluids for the storage and release of hydrogen. Still other LOHC compounds are being studied and examples are presented in the article by Pàivi et al. {Journal of Power Sources, 396, (2018), 803-823).
[0008] Au-delà de la performance instantanée des étapes d'hydrogénation et de déshydrogénation, l'enchaînement des cycles et le maintien des performances (rendement de fixation/libération d'hydrogène) ainsi que la qualité de l’hydrogène obtenu lors de l’étape de déshydrogénation sont des points clés pour l'aspect économique de cette technologie. [0008] Beyond the instantaneous performance of the hydrogenation and dehydrogenation steps, the sequence of cycles and the maintenance of performance (yield of hydrogen fixation/release) as well as the quality of the hydrogen obtained during the dehydrogenation step are key points for the economic aspect of this technology.
[0009] En effet, l’hydrogène issu de cette technologie LOHC trouve des utilisations dans de très nombreux domaines, comme par exemple dans des piles à combustibles, dans des procédés industriels, ou encore comme carburant pour les moyens de transport (train, bateaux, camions, voitures automobiles). Toute impureté potentiellement néfaste à l’environnement et présente dans l’hydrogène issu de la réaction de déshydrogénation, qu’elle soit totale ou partielle, de la molécule LOHC, même à l’état de traces, pourrait avoir un impact négatif tant sur le procédé hydrogénation/déshydrogénation en termes de rendement, sur la qualité des produits fabriqués ou encore sur les rendements dans les utilisations finales de l’hydrogène produit par cette technique. [0009] Indeed, the hydrogen resulting from this LOHC technology finds uses in very many fields, such as for example in fuel cells, in industrial processes, or even as fuel for means of transport (train, boats , trucks, motor cars). Any impurity potentially harmful to the environment and present in the hydrogen resulting from the dehydrogenation reaction, whether total or partial, of the LOHC molecule, even in trace amounts, could have a negative impact both on the hydrogenation/dehydrogenation process in terms of yield, on the quality of the products manufactured or even on the yields in the end uses of the hydrogen produced by this technique.
[0010] Or, les composés LOHC connus et en cours de développement aujourd’hui et listés plus haut sont des composés issus de produits d’origine fossile ou synthétisés à partir de produits d’origine fossile. En effet, les LOHC connus aujourd’hui, tels le toluène, le benzène, et leurs dérivés di- ou tri-mérisés, tels le benzyltoluène (BT) et le dibenzyltoluène (DBT), ainsi que les aromatiques éventuellement porteurs d’hétéroatomes, en particuliers des dérivés de l’indole et des dérivés de carbazole, sont tous des produits dérivés du pétrole dont certains peuvent présenter une certaine toxicité, voire être néfaste vis-à-vis de l’environnement. En outre ils sont d’origine non renouvelable et peuvent être soumis aux aléas des variations de prix des coûts du pétrole brut. [0010] However, the LOHC compounds known and under development today and listed above are compounds derived from products of fossil origin or synthesized from products of fossil origin. Indeed, the LOHCs known today, such as toluene, benzene, and their di- or tri-merized derivatives, such as benzyltoluene (BT) and dibenzyltoluene (DBT), as well as aromatics possibly carrying heteroatoms, in particular derivatives of indole and derivatives of carbazole, are all products derived from petroleum, some of which may have a certain toxicity, or even be harmful vis-à-vis the environment. In addition, they are of non-renewable origin and may be subject to the vagaries of price variations in crude oil costs.
[0011] Il reste par conséquent un besoin pour des molécules LOHC plus respectueuses de l’environnement présentant des capacités de transport d’hydrogène au moins équivalentes à celles des molécules LOHC d’origine non renouvelable. Un autre objectif est de proposer des molécules LOHC plus respectueuses de l’environnement et compatibles avec les réactions d’hydrogénation et de déshydrogénation permettant le transport d’hydrogène de manière efficace et dans des conditions sûres. [0012] Il a été découvert de manière étonnante que les objectifs précités peuvent être résolus en totalité ou au moins en partie grâce à la présente invention. D’autres objectifs encore pourront apparaître dans la description de la présente invention qui suit. [0011]There therefore remains a need for LOHC molecules that are more respectful of the environment having hydrogen transport capacities at least equivalent to those of LOHC molecules of non-renewable origin. Another objective is to provide LOHC molecules that are more environmentally friendly and compatible with hydrogenation and dehydrogenation reactions allowing the transport of hydrogen efficiently and under safe conditions. [0012] It has surprisingly been found that the aforementioned objectives can be solved in whole or at least in part by means of the present invention. Still other objectives may appear in the description of the present invention which follows.
[0013] En effet, les inventeurs ont maintenant découvert que certains produits d’origine naturelle, dits encore d’origine renouvelable, peuvent avantageusement être utilisés, directement ou indirectement (c’est-à-dire après éventuelle modification chimique), dans des formulations LOHC. Ces produits d’origine naturelle présentent en effet l’avantage de ne pas être issus du pétrole, de ne pas dépendre des fluctuations de prix du pétrole brut, et de présenter au moins une structure moléculaire susceptible d’être hydrogénée puis déshydrogénée dans les mêmes conditions que les molécules LOHC issues du pétrole et connues aujourd’hui. [0013] Indeed, the inventors have now discovered that certain products of natural origin, also said to be of renewable origin, can advantageously be used, directly or indirectly (that is to say after possible chemical modification), in LOHC formulations. These products of natural origin have the advantage of not being derived from petroleum, of not depending on crude oil price fluctuations, and of having at least one molecular structure capable of being hydrogenated and then dehydrogenated in the same conditions than the LOHC molecules derived from petroleum and known today.
[0014] Ainsi, un premier objet de la présente invention est l’utilisation d’une formulation liquide à température ambiante comprenant au moins un dérivé terpénique pour la fixation et la libération d’hydrogène dans au moins un cycle hydrogénation/déshydrogénation de ladite formulation. Thus, a first object of the present invention is the use of a liquid formulation at room temperature comprising at least one terpene derivative for fixing and releasing hydrogen in at least one hydrogenation/dehydrogenation cycle of said formulation .
[0015] Par « dérivé terpénique » au sens de la présente invention, on entend un produit d’origine renouvelable comportant au moins un cycle hydrocarboné comportant 6 atomes de carbone et apte à être hydrogéné et/ou déshydrogéné. By "terpene derivative" within the meaning of the present invention, is meant a product of renewable origin comprising at least one hydrocarbon ring comprising 6 carbon atoms and capable of being hydrogenated and/or dehydrogenated.
[0016] L'invention utilise les produits d'origine renouvelable comme produits de départ. Le carbone d'un produit d’origine renouvelable provient de la photosynthèse des plantes et donc du CO2 atmosphérique. Le terme de "biocarbone" indique que le carbone est d'origine renouvelable et provient d'un biomatériau, comme indiqué ci-après. La teneur en biocarbone et la teneur en biomatériau sont des expressions désignant la même valeur. The invention uses products of renewable origin as starting materials. The carbon in a product of renewable origin comes from the photosynthesis of plants and therefore from atmospheric CO2. The term "biocarbon" indicates that the carbon is of renewable origin and comes from a biomaterial, as indicated below. Biocarbon content and biomaterial content are expressions denoting the same value.
[0017] Un matériau d'origine renouvelable, appelé aussi biomatériau, est un matériau organique dans lequel le carbone provient de CO2 fixé récemment (à l'échelle humaine) par photosynthèse à partir de l'atmosphère. Sur terre, ce CO2 est capté ou fixé par les plantes. En mer, le CO2 est capté ou fixé par des bactéries, des cyanobactéries, des algues ou du plancton procédant à une photosynthèse. [0017] A material of renewable origin, also called biomaterial, is an organic material in which the carbon comes from CO2 fixed recently (on a human scale) by photosynthesis from the atmosphere. On land, this CO2 is captured or fixed by plants. At sea, CO2 is captured or fixed by bacteria, cyanobacteria, algae or plankton carrying out photosynthesis.
[0018] Un biomatériau (100% de carbone origine naturelle) présente un ratio isotopique 14C/12C supérieur à 10'12, typiquement de l'ordre de 1 ,2 x 10'12, tandis qu'un matériau fossile a un ratio nul. En effet, l'isotope 14C se forme dans l'atmosphère et est ensuite intégré par photosynthèse, selon une échelle de temps de quelques dizaines d'années au plus. La demi-vie du 14C est de 5730 ans. Donc les matériaux issus de la photosynthèse, à savoir les végétaux de manière générale, ont nécessairement une teneur maximale en isotope 14C. Au-delà de 50 000 ans, la teneur en 14C devient difficilement détectable. [0019] La détermination de la teneur en biomatériau ou teneur en biocarbone est déterminée en application des normes ASTM D 6866 (ASTM D 6866-06) et ASTM D 7026 (ASTM D 7026-04). La norme ASTM D 6866 a pour objet "Determining the Biobased Content of Natural Range Materials Using Radiocarbon and Isotope Ratio Mass Spectrometry Analysis", tandis que la norme ASTM D 7026 a pour objet "Sampling and Reporting of Results for Determination of Biobased Content of Materials via Carbon Isotope Analysis". La seconde norme renvoie dans son premier paragraphe à la première. [0018] A biomaterial (100% carbon of natural origin) has a 14 C/ 12 C isotopic ratio greater than 10' 12 , typically of the order of 1.2 x 10' 12 , whereas a fossil material has a zero ratio. Indeed, the 14 C isotope is formed in the atmosphere and is then integrated by photosynthesis, according to a time scale of a few decades at most. The half-life of 14 C is 5730 years. So the materials resulting from photosynthesis, namely plants in general, necessarily have a maximum content of 14 C isotope. Beyond 50,000 years, the 14 C content becomes difficult to detect. The determination of the biomaterial content or biocarbon content is determined by applying the standards ASTM D 6866 (ASTM D 6866-06) and ASTM D 7026 (ASTM D 7026-04). ASTM D 6866 is about "Determining the Biobased Content of Natural Range Materials Using Radiocarbon and Isotope Ratio Mass Spectrometry Analysis", while ASTM D 7026 is about "Sampling and Reporting of Results for Determination of Biobased Content of Materials via Carbon Isotope Analysis". The second standard refers in its first paragraph to the first.
[0020] La première norme décrit un test de mesure du ratio 14C/12C d’un échantillon et le compare avec le ratio 14C/12C d’un échantillon référence d’origine 100% renouvelable, pour donner un pourcentage relatif de carbone d’origine renouvelable dans l’échantillon. La norme est basée sur les mêmes concepts que la datation au 14C, mais sans faire application des équations de datation. The first standard describes a test for measuring the 14 C/ 12 C ratio of a sample and compares it with the 14 C/ 12 C ratio of a reference sample of 100% renewable origin, to give a relative percentage carbon of renewable origin in the sample. The standard is based on the same concepts as 14 C dating, but without applying the dating equations.
[0021] Le ratio ainsi calculé est désigné comme le "pMC" (gercent IModern Carbon). Si le matériau à analyser est un mélange de biomatériau et de matériau fossile (sans isotope radioactif), alors la valeur de pMC obtenu est directement corrélée à la quantité de biomatériau présent dans l'échantillon. La valeur de référence utilisée pour la datation au 14C est une valeur datant des années 1950. Cette année a été choisie en raison de l'existence d'essais nucléaires dans l'atmosphère qui ont introduit des grandes quantités d'isotopes dans l'atmosphère après cette date. La référence 1950 correspond à une valeur pMC de 100. Compte tenu des essais thermonucléaires, la valeur actuelle à retenir est d'environ 107.5 (ce qui correspond à un facteur de correction de 0.93). La signature en carbone radioactif d'un végétal actuel est donc de 107.5. Une signature de 54 pMC et de 99 pMC correspondent donc à une quantité de biomatériau dans l'échantillon de 50% et de 93%, respectivement. [0021] The ratio thus calculated is designated as the “pMC” (gercent IModern Carbon). If the material to be analyzed is a mixture of biomaterial and fossil material (without radioactive isotope), then the pMC value obtained is directly correlated to the quantity of biomaterial present in the sample. The reference value used for the 14 C dating is a value dating from the 1950s. This year was chosen because of the existence of nuclear tests in the atmosphere which introduced large quantities of isotopes into the atmosphere after this date. The 1950 reference corresponds to a pMC value of 100. Taking into account thermonuclear tests, the current value to be used is around 107.5 (which corresponds to a correction factor of 0.93). The radioactive carbon signature of a modern plant is therefore 107.5. A signature of 54 pMC and 99 pMC therefore correspond to a quantity of biomaterial in the sample of 50% and 93%, respectively.
[0022] La norme ASTM D 6866 propose trois techniques de mesure de la teneur en isotope 14C : The ASTM D 6866 standard offers three techniques for measuring the 14 C isotope content:
- LSC (Liquid Scintillation Counting) spectrométrie à scintillation liquide : cette technique consiste à compter des particules "bêta" issues de la désintégration du 14C ; on mesure le rayonnement bêta issu d'un échantillon de masse connue (nombre d'atomes C connu) pendant un certain temps ; cette "radioactivité" est proportionnelle au nombre d'atomes de 14C, que l'on peut ainsi déterminer ; le 14C présent dans l'échantillon émet des rayonnements bêta, qui, au contact du liquide scintillant (scintillateur), donnent naissance à des photons ; ces photons ont des énergies différentes (comprises entre 0 et 156 keV) et forment ce que l'on appelle un spectre de 14C ; selon deux variantes de cette méthode, l’analyse porte soit sur le CO2 préalablement produit par l’échantillon carboné dans une solution absorbante appropriée, soit sur le benzène après conversion préalable de l’échantillon carboné en benzène. La norme ASTM D 6866 donne donc deux méthodes A et C, basées sur cette méthode LSC ; - LSC (Liquid Scintillation Counting) liquid scintillation spectrometry: this technique consists of counting "beta" particles resulting from the disintegration of 14 C; the beta radiation from a sample of known mass (known number of C atoms) is measured for a certain time; this "radioactivity" is proportional to the number of 14 C atoms, which can thus be determined; the 14 C present in the sample emits beta radiation, which, in contact with the scintillating liquid (scintillator), gives rise to photons; these photons have different energies (between 0 and 156 keV) and form what is called a 14 C spectrum; according to two variants of this method, the analysis relates either to the CO2 previously produced by the carbonaceous sample in a appropriate absorbent solution, or on benzene after prior conversion of the carbonaceous sample to benzene. The ASTM D 6866 standard therefore gives two methods A and C, based on this LSC method;
- AMS/IRMS (Accelerated Mass Spectrometry couplé avec Isotope Radio Mass Spectrometry) : dans cette technique, basée sur la spectrométrie de masse, l'échantillon est réduit en graphite ou en CO2 gazeux, puis analysé dans un spectromètre de masse ; cette technique utilise un accélérateur et un spectromètre de masse pour séparer les ions 14C des 12C et donc déterminer le rapport des deux isotopes. - AMS/IRMS (Accelerated Mass Spectrometry coupled with Isotope Radio Mass Spectrometry): in this technique, based on mass spectrometry, the sample is reduced to graphite or CO2 gas, then analyzed in a mass spectrometer; this technique uses an accelerator and a mass spectrometer to separate the 14 C ions from the 12 C and thus determine the ratio of the two isotopes.
[0023] Les dérivés terpéniques utilisables dans le cadre de la présente invention proviennent au moins en partie de biomatériau et présentent donc une teneur en biomatériau d'au moins 1%. Cette teneur est avantageusement plus élevée, notamment d’au moins 20%, mieux encore d’au moins 40%, avantageusement d’au moins 50%, voire jusqu’à 100%. Les composés terpéniques utilisables dans le cadre de la présente invention peuvent donc comprendre 100% de bio-carbone ou au contraire résulter d'un mélange ou de produits de réaction(s) avec un ou plusieurs autres composés d’origine fossile. The terpene derivatives that can be used in the context of the present invention come at least in part from biomaterial and therefore have a biomaterial content of at least 1%. This content is advantageously higher, in particular by at least 20%, better still by at least 40%, advantageously by at least 50%, or even up to 100%. The terpene compounds that can be used in the context of the present invention can therefore comprise 100% bio-carbon or, on the contrary, result from a mixture or from reaction products with one or more other compounds of fossil origin.
[0024] Pour les besoins de la présente invention, on préfère les formulations comprenant au moins un dérivé terpénique dans lesquelles le ratio (nombre d’atomes de carbone d’origine renouvelable/nombre total d’atomes de carbone) est supérieur ou égal à 20%, de préférence supérieur ou égal à 30%, de préférence supérieur ou égal à 40%, et de manière tout à fait préférée supérieur ou égal à 50%. For the purposes of the present invention, formulations comprising at least one terpene derivative in which the ratio (number of carbon atoms of renewable origin/total number of carbon atoms) is greater than or equal to 20%, preferably greater than or equal to 30%, preferably greater than or equal to 40%, and most preferably greater than or equal to 50%.
[0025] Plus précisément, et selon un mode de réalisation de la présente invention, par dérivé terpénique, on entend un composé organique comprenant au moins un squelette carboné de formule (1 ) : dans lequel chaque « C » représente un atome de carbone, lié à au moins un autre atome de carbone, le nombre total d’atome de carbone étant 10, ledit squelette carboné de formule (1 ) ne faisant pas apparaître le ou les atomes d’hydrogène et/ou autres substituants, ni la ou les éventuelle(s) insaturation(s) sous forme de double(s) ou triple(s) liaison(s) ou éventuel(s) autre(s) cycle(s) fusionné(s) et/ou condensé(s). [0026] Les substituants possibles peuvent être choisi parmi : More specifically, and according to one embodiment of the present invention, by terpene derivative is meant an organic compound comprising at least one carbon skeleton of formula (1): in which each "C" represents a carbon atom, bonded to at least one other carbon atom, the total number of carbon atoms being 10, said carbon skeleton of formula (1) not showing the carbon atom(s) hydrogen and/or other substituents, nor any unsaturation(s) in the form of double(s) or triple(s) bond(s) or any other fused ring(s) (s) and/or condensed. The possible substituents can be chosen from:
- un radical hydrocarboné saturé ou insaturé, linéaire, ramifié ou cyclique, comportant de 1 à 30 atomes de carbone, incluant éventuellement un ou plusieurs hétéroatome(s) choisi(s) parmi oxygène, soufre et azote, - a saturated or unsaturated, linear, branched or cyclic hydrocarbon radical, comprising from 1 to 30 carbon atoms, optionally including one or more heteroatom(s) chosen from oxygen, sulfur and nitrogen,
- un atome d’halogène choisi parmi fluor, chlore, brome, et iode, et - a halogen atom chosen from fluorine, chlorine, bromine and iodine, and
- un radical -OH, -OR, -NH2, -NHR, -NRR’, -SH, -SR, où R et R’ représente chacun, indépendamment l’un de l’autre une chaîne hydrocarbonée, saturée ou insaturée, linéaire ramifiée ou cyclique, comportant de 1 à 10 atomes de carbone. - an -OH, -OR, -NH2, -NHR, -NRR', -SH, -SR radical, where R and R' each represent, independently of each other, a linear saturated or unsaturated hydrocarbon chain branched or cyclic, containing from 1 to 10 carbon atoms.
[0027] Comme indiqué précédemment, le squelette de formule (1 ) peut apparaître dans tout type de molécule et notamment les molécules porteuses d’un ou plusieurs cycles fusionnés et/ou condensés. Ainsi le squelette de formule (1 ), encore dit « à structure limonène » dans la suite de la présente description, peut également figurer, entre autres et à titre d’exemples non limitatifs, sous les formes de squelettes de structure (1 ’) et (1") suivantes : squelettes de formule (1 ’) et (1") encore dits respectivement « à structure carène » et « à structure pinène » dans la suite du présent exposé. As indicated above, the skeleton of formula (1) can appear in any type of molecule and in particular the molecules carrying one or more fused and/or condensed rings. Thus the skeleton of formula (1), also called "with a limonene structure" in the rest of this description, can also appear, among others and by way of non-limiting examples, in the forms of skeletons of structure (1 ') and (1") following: skeletons of formula (1′) and (1″) also referred to respectively as “with carene structure” and “with pinene structure” in the rest of this presentation.
[0028] Les dérivés terpéniques à structure carène ou à structure pinène ne sont toutefois pas préférés pour l’utilisation selon la présente invention, bien qu’ils n’en soient pas exclus. [0029] D’autres composés d’origine renouvelable comportant le squelette de formule (1 ) définie précédemment, comportent en outre un ou plusieurs autres cycle(s) fusionné(s) ou condensés, éventuellement porteurs d’hétéroatome(s), formant par exemple des fonctions éthers, amines, et autres, ces fonctions pouvant être intramoléculaires. Terpene derivatives with a carene structure or with a pinene structure are not, however, preferred for the use according to the present invention, although they are not excluded therefrom. Other compounds of renewable origin comprising the skeleton of formula (1) defined above, also comprise one or more other fused or condensed ring(s), optionally bearing heteroatom(s), forming for example ether, amine and other functions, these functions possibly being intramolecular.
[0030] À titre d’exemples illustratifs, et sans apporter une quelconque limitation à l’invention, les dérivés terpéniques qui peuvent être avantageusement présents dans la formulation en tant que tels ou par réaction chimique entre deux ou plusieurs d’entre eux et/ou avec d’autres molécules d’origine renouvelable ou non, comme indiqué plus loin, peuvent notamment être choisis parmi : By way of illustrative examples, and without making any limitation to the invention, the terpene derivatives which may advantageously be present in the formulation as such or by chemical reaction between two or more of them and/ or with other molecules of renewable origin or not, as indicated below, can in particular be chosen from:
- le limonène, y compris ses formes énantiomères et son racémique (1-méthyl-4-(1- méthylvinyl)cyclohexène, CAS 7705-14-8, 138-86-3 ; 5989-27-5 ;5989-54-8), - limonene, including its enantiomeric forms and its racemate (1-methyl-4-(1- methylvinyl)cyclohexene, CAS 7705-14-8, 138-86-3; 5989-27-5;5989-54-8),
- les terpinènes (y compris a-terpinène, 0-terpinéne, y-terpinène), et les terpinolènes, y compris leurs formes mono-hydroxylées et di-hydroxylées, - terpinenes (including a-terpinene, 0-terpinene, y-terpinene), and terpinolenes, including their mono-hydroxylated and di-hydroxylated forms,
- le para-cymène (CAS 99-87-6), et ses dérivés hydroxylés le carvacrol et le thymol,- para-cymene (CAS 99-87-6), and its hydroxylated derivatives carvacrol and thymol,
- l’eucalyptol ou cinéol (à fonction éther cyclique intramoléculaire), - eucalyptol or cineol (with intramolecular cyclic ether function),
- les pinènes, comprenant a-pinène (CAS 7785-26-4) et 0-pinène (CAS 127-91-3), ainsi que leurs dérivés hydroxylés, tels le bornéol, - pinenes, including a-pinene (CAS 7785-26-4) and 0-pinene (CAS 127-91-3), as well as their hydroxylated derivatives, such as borneol,
- les carènes (3,7,7-triméthylbicyclo[4,1 ,0]heptène) et notamment le A3-carène (CAS 13466-78-9), - carenes (3,7,7-trimethylbicyclo[4,1,0]heptene) and in particular A 3 -carene (CAS 13466-78-9),
- les cadalanes (4,7-dimethyl-1-propan-2-yl-perhydronaphthalene), les cadinènes (4,7- dimethyl-1-propan-2-yl-1 ,2,4a,5,8,8a-hexahydronaphthalène, CAS 29350-73-0), y compris leurs stéréoisomères a-, P-, y-, 5- et E-- cadalanes (4,7-dimethyl-1-propan-2-yl-perhydronaphthalene), cadinenes (4,7-dimethyl-1-propan-2-yl-1,2,4a,5,8,8a- hexahydronaphthalene, CAS 29350-73-0), including their a-, P-, y-, 5- and E-stereoisomers
- le cannabinol et ses dérivés tels le tétrahydrocannabinol, le cannabidiol, le cannabitriol,- cannabinol and its derivatives such as tetrahydrocannabinol, cannabidiol, cannabitriol,
- et autres, ainsi que les mélanges de deux ou plusieurs d’entre eux. - and others, as well as mixtures of two or more of them.
[0031] De tels produits sont pour la plupart présents dans les produits d’origine naturelle, en particuliers dans les végétaux, qu’ils soient terrestres, marins, voire sous-marins, en particulier dans les arbres, conifères, fleurs, feuilles, bois, fruits, et autres, d’où ils peuvent être extraits par tous moyens connus en soi, et à partir de modes opératoires connus ou adaptés et disponibles dans la littérature scientifique, la littérature brevets ou encore sur l’internet. [0031] Such products are mostly present in products of natural origin, in particular in plants, whether terrestrial, marine, or even underwater, in particular in trees, conifers, flowers, leaves, wood, fruits, and others, from which they can be extracted by any means known per se, and using known or adapted procedures and available in the scientific literature, the patent literature or even on the Internet.
[0032] Des exemples de végétaux comprenant les dérivés terpéniques utilisables dans le cadre de la présente invention comprennent, de manière illustrative mais non limitative, la sauge, le romarin, la lavande, le poivre, le clou de girofle, le chanvre, le cannabis, le camphre, le houblon, la cannelle, le basilic, l’origan, les agrumes (citron, orange, cédrat), la menthe, la menthe poivrée, le genièvre, le genévrier cade, le gingembre, le ginseng, le laurier, la citronnelle, la mangue, l’aneth, le persil, le thym, le cresson, la monarde, la sarriette, la marjolaine, le dictame, l’eucalyptus, l’arbre à thé, le cumin, le romarin, l’armoise, l’absinthe, et autres... [0032] Examples of plants comprising the terpene derivatives that can be used in the context of the present invention include, by way of illustration but not limitation, sage, rosemary, lavender, pepper, cloves, hemp, cannabis , camphor, hops, cinnamon, basil, oregano, citrus fruits (lemon, orange, citron), mint, peppermint, juniper, juniper cade, ginger, ginseng, bay leaf, lemongrass, mango, dill, parsley, thyme, watercress, monarda, savory, marjoram, dittam, eucalyptus, tea tree, cumin, rosemary, mugwort , absinthe, and others...
[0033] Pour les besoins de la présente invention, il est bien entendu possible d’utiliser un seul dérivé terpénique ou encore des mélanges de deux, trois, quatre voire plus, dérivés terpéniques tels qu’ils viennent d’être définis, en toutes proportions et avec divers degrés d’hydrogénation, c’est-à-dire totalement ou partiellement hydrogénés et/ou totalement ou partiellement déshydrogénés. For the purposes of the present invention, it is of course possible to use a single terpene derivative or even mixtures of two, three, four or even more terpene derivatives as they have just been defined, in all proportions and with varying degrees of hydrogenation, i.e. totally or partially hydrogenated and/or totally or partially dehydrogenated.
[0034] Enfin il peut être utile voire avantageux de procéder à une ou plusieurs opérations de purifications du ou des dérivés terpéniques, selon toutes méthodes bien connues de l’homme du métier, notamment pour éviter une contamination de l’hydrogène qui sera produit lors de la déshydrogénation dudit dérivé terpénique, pour éviter la passivation des catalyseurs lors des opérations d’hydrogénations et de déshydrogénations, pour améliorer les rendements des réactions d’hydrogénations et de déshydrogénations, pour augmenter la durée de vie (nombre de cycles des réactions d’hydrogénations et de déshydrogénations) du dérivé terpénique ou mélanges de dérivés terpéniques utilisés comme LOHC. Finally, it may be useful or even advantageous to carry out one or more purification operations of the terpene derivative(s), according to any well-known methods of those skilled in the art, in particular to avoid contamination of the hydrogen which will be produced during the dehydrogenation of said terpene derivative, to avoid the passivation of the catalysts during the hydrogenation and dehydrogenation operations, to improve the yields of the reactions of hydrogenations and dehydrogenations, to increase the lifetime (number of hydrogenation and dehydrogenation reaction cycles) of the terpene derivative or mixtures of terpene derivatives used as LOHC.
[0035] Les dérivés terpéniques tels qu’ils ont été définis plus haut sont connus et aisément disponibles dans le commerce, par exemple auprès des acteurs des filières agricoles et du bois et de leurs dérivés, ou préparés par des voies métaboliques dans des microorganismes, ou encore plus simplement à partir de modes opératoires connus et disponibles dans la littérature scientifique, la littérature brevets ou encore sur l’internet. The terpene derivatives as they have been defined above are known and easily available commercially, for example from actors in the agricultural and wood industries and their derivatives, or prepared by metabolic pathways in microorganisms, or even more simply from known operating modes available in the scientific literature, the patent literature or even on the Internet.
[0036] Les molécules dites LOHC sont souvent caractérisées par leur Capacité de Stockage Gravimétrique Théorique (CSGT). La capacité de stockage gravimétrique théorique d'un système d'absorption d'hydrogène (couple LOHC+/LOHC-) dans lequel l'hydrogène est stocké dans la masse de la matière, est calculé à partir du rapport entre la masse d'hydrogène stockée dans le composé, par rapport à la masse de l'hôte y compris l'hydrogène (LOHC+) de sorte que la capacité en % en poids, CSGT, est donnée par la formule suivante : The so-called LOHC molecules are often characterized by their Theoretical Gravimetric Storage Capacity (CSGT). The theoretical gravimetric storage capacity of a hydrogen absorption system (LOHC+/LOHC- couple) in which the hydrogen is stored in the mass of the material, is calculated from the ratio between the mass of hydrogen stored in the compound, relative to the mass of the host including hydrogen (LOHC+) so that the capacity in % by weight, CSGT, is given by the following formula:
(masse molaire d’hydrogène libérable) (molar mass of releasable hydrogen)
CSGT = - - - — — - — — - - - - - — - x 100CSGT = - - - — — - — — - - - - - — - x 100
(masse molaire de 1 hôte sous sa forme totalement hydrogenee) (molar mass of 1 host in its fully hydrogenated form)
[0037] À titre d’exemple, le méthyl-1-/so-propyl-4-cyclohexane peut-être théoriquement totalement déshydrogéné en pa/'a-/so-propényltoluène en libérant 8 atomes d’hydrogène, comme illustré ci-dessous : For example, methyl-1-/so-propyl-4-cyclohexane can theoretically be completely dehydrogenated to pa/'a-/so-propenyltoluene by releasing 8 hydrogen atoms, as illustrated below. below:
[0038] Ainsi la capacité de stockage gravimétrique théorique CGST du système méthyl- 1-/so-propyl-4-cyclohexane / pa/-a-/so-propényltoluène est égale à : Thus the theoretical gravimetric storage capacity CGST of the methyl-1-/so-propyl-4-cyclohexane/pa/-a-/so-propenyltoluene system is equal to:
8 CSGT = - x 100 = 5,71% 8 CSGT = - x 100 = 5.71%
140 140
[0039] Dans l’exemple ci-dessus, le dérivé terpénique de départ est le cymène qui a été totalement hydrogéné puis théoriquement totalement déshydrogéné en libérant 8 atomes d’hydrogène. On indiquera donc dans le cadre de la présente invention que le cymène présente une CSGT de 5,71%. In the example above, the starting terpene derivative is cymene which has been completely hydrogenated and then theoretically completely dehydrogenated by releasing 8 atoms of hydrogen. It will therefore be indicated in the context of the present invention that cymene has a CSGT of 5.71%.
[0040] Dans la présente invention, il doit être compris que les dérivés terpéniques peuvent être utilisés comme composés LOHC, c’est-à-dire être soumis à un ou plusieurs, et de préférence plusieurs, cycles hydrogénation/déshydrognéation, ces réactions d’hydrogénation et de déshydrogénation pouvant être conduites, indifféremment et indépendamment les unes des autres, de manière totale ou de manière partielle, selon le souhait de l’opérateur, et/ou selon les molécules utilisées, et/ou selon les conditions opératoires mises en oeuvre. In the present invention, it should be understood that the terpene derivatives can be used as LOHC compounds, that is to say be subjected to one or more, and preferably several, hydrogenation / dehydrogenation cycles, these reactions of hydrogenation and dehydrogenation can be carried out, indifferently and independently of each other, in a total or partial manner, according to the wishes of the operator, and/or according to the molecules used, and/or according to the operating conditions used work.
[0041] Selon un mode de réalisation préféré de l’invention, les dérivés terpéniques utilisables dans le cadre de la présente invention présentent une CSGT strictement supérieur à 0, de préférence supérieur ou égal à 1%, mieux encore supérieur ou égal à 2%, de manière encore préférée supérieur ou égal à 3%, avantageusement supérieur ou égal à 4%, et très avantageusement supérieur ou égal à 5%. According to a preferred embodiment of the invention, the terpene derivatives that can be used in the context of the present invention have a CSGT strictly greater than 0, preferably greater than or equal to 1%, better still greater than or equal to 2% , more preferably greater than or equal to 3%, advantageously greater than or equal to 4%, and very advantageously greater than or equal to 5%.
[0042] Dans certains cas, et selon un mode de réalisation de la présente invention, il peut être avantageux de modifier, par exemple augmenter, la CSGT des LOHC, et plus avantageusement tout en maintenant un ratio de carbone d’origine renouvelable supérieur ou égal à 20%, comme indiqué précédemment. On peut dès lors envisager de faire réagir chimiquement les dérivés terpéniques entre eux et/ou avec d’autres molécules d’origine renouvelable ou non, par exemple des molécules issues de la pétrochimie, notamment des composés aromatiques issus de la pétrochimie, tels que le benzène, le toluène, les xylènes, les mélanges benzène/toluène/xylène plus connus sous le noms de BTX, les résidus de polyéthylbenzène plus connus sous la dénomination PEBR, ainsi que leurs mélanges en toutes proportions, pour ne citer que les plus courants. In some cases, and according to one embodiment of the present invention, it may be advantageous to modify, for example increase, the CSGT of the LOHCs, and more advantageously while maintaining a higher carbon ratio of renewable origin or equal to 20%, as previously indicated. It is therefore possible to envisage causing the terpene derivatives to react chemically with each other and/or with other molecules of renewable or non-renewable origin, for example molecules derived from petrochemicals, in particular aromatic compounds derived from petrochemicals, such as benzene, toluene, xylenes, benzene/toluene/xylene mixtures better known under the names of BTX, polyethylbenzene residues better known under the name PEBR, as well as their mixtures in all proportions, to cite only the most common.
[0043] À titre d’exemple, il est ainsi possible de réaliser des couplages à partir de dérivés halogénés, en particulier chlorés ou hydroxylés, selon les modes opératoires bien connus de l’homme du métier et notamment ceux décrits dans le brevet DE2840272 A1 , dans la publication de Maria Sol Marques da Silva et coll., « Reactive Polymers », 25, (1995), 55- 61 , ou encore plus récemment dans l’article par Taiga Yurino et coll., « European Journal of Organic Chemistry », (2020), 2020(15), 2225-2232. [0044] Ainsi, un exemple de couplage peut être réalisé entre le cymène et le chlorure de benzyle pour conduire à un nouveau dérivé terpénique LOHC de CSGT égal à 5,9 % : [0043] For example, it is thus possible to produce couplings from halogenated derivatives, in particular chlorinated or hydroxylated derivatives, according to procedures well known to those skilled in the art and in particular those described in patent DE2840272 A1 , in the publication by Maria Sol Marques da Silva et al., “Reactive Polymers”, 25, (1995), 55-61, or even more recently in the article by Taiga Yurino et al., “European Journal of Organic Chemistry », (2020), 2020(15), 2225-2232. Thus, an example of coupling can be carried out between cymene and benzyl chloride to lead to a new terpene derivative LOHC of CSGT equal to 5.9%:
CSGT = 5,9 % CSGT = 5.9%
[0045] Selon un autre un exemple, il est possible de réaliser un couplage entre le cymène et le chlorure de tolyle pour conduire à un autre nouveau dérivé terpénique LOHC, dont le CSGT présente la même valeur de 5,9 % : According to another example, it is possible to carry out a coupling between cymene and tolyl chloride to lead to another new terpene derivative LOHC, whose CSGT has the same value of 5.9%:
CSGT = 5,9 % CSGT = 5.9%
[0046] Dans un mode de réalisation de la présente invention, on préfère les dérivés terpéniques présentant (dans leur forme théoriquement totalement déshydrogénée) au moins 2 cycles à 6 sommets, de préférence au moins deux cycles carbonés à 6 sommets, de préférence encore au moins deux cycles aromatiques à 6 atomes de carbone. In one embodiment of the present invention, preference is given to terpene derivatives having (in their theoretically totally dehydrogenated form) at least 2 rings with 6 peaks, preferably at least two carbon rings with 6 peaks, more preferably at least least two aromatic rings with 6 carbon atoms.
[0047] L’ invention concerne ainsi l’utilisation d’une formulation liquide à température ambiante, dans sa forme partiellement ou totalement déshydrogénée, comme dans sa forme partiellement ou totalement hydrogénée, comprenant un ou plusieurs dérivés terpéniques tels qu’ils viennent d’être définis pour la fixation et la libération d’hydrogène dans au moins un cycle hydrogénation/déshydrogénation, partielle ou totale, de ladite formulation. [0047] The invention thus relates to the use of a liquid formulation at ambient temperature, in its partially or totally dehydrogenated form, as well as in its partially or totally hydrogenated form, comprising one or more terpene derivatives such as they come from be defined for the fixation and release of hydrogen in at least one hydrogenation/dehydrogenation cycle, partial or total, of said formulation.
[0048] La formulation utilisable dans le cadre de la présente invention peut en outre comprendre un ou plusieurs autres LOHC connus de l’homme du métier, tels que par exemple choisis parmi le toluène, le benzyltoluène (BT), le dibenzyltoluène (DBT) et leurs mélanges en toutes proportions. The formulation usable in the context of the present invention may also comprise one or more other LOHCs known to those skilled in the art, such as for example chosen from toluene, benzyltoluene (BT), dibenzyltoluene (DBT) and mixtures thereof in all proportions.
[0049] La formulation utilisable dans la présente invention peut en outre comprendre un ou plusieurs additif(s) et/ou charge(s) également bien connus de l’homme du métier, et par exemple, et de manière non limitative, choisis parmi les antioxydants, les passivateurs, les abaisseurs de point d’écoulement, les inhibiteurs de décomposition, les colorants, arômes, et autre, ainsi que les mélanges de un ou plusieurs d’entre eux en toutes proportions. The formulation usable in the present invention may also comprise one or more additive(s) and/or filler(s) also well known to those skilled in the art, and by example, and in a non-limiting way, chosen from antioxidants, passivators, pour point depressants, decomposition inhibitors, colorants, flavors, and the like, as well as mixtures of one or more of them in all proportions.
[0050] Selon un autre mode de réalisation, et selon les besoins notamment en termes de pureté d’hydrogène à libérer, la formulation ne comprend que des composés hydrogénables/déshydrogénables (partiellement ou totalement), en particulier la formulation est constituée de molécules LOHC, sans autres produits ajoutés de types additifs ou charges. La formulation peut cependant contenir des impuretés, de préférence à l’état de trace, notamment inhérentes à l’origine de la molécule LOHC utilisée et/ou de son procédé de préparation. According to another embodiment, and according to the needs, in particular in terms of the purity of hydrogen to be released, the formulation only comprises hydrogenatable/dehydrogenatable compounds (partially or totally), in particular the formulation consists of LOHC molecules , without other added products of additive or filler types. The formulation may however contain impurities, preferably in trace form, in particular inherent in the origin of the LOHC molecule used and/or its preparation process.
[0051] Selon un mode de réalisation préféré de la présente invention, la formulation présente une température d’ébullition supérieure à 150°C à pression atmosphérique, de préférence supérieure à 180°C à pression atmosphérique, et un point de fusion inférieur à 40°C, de préférence inférieur à 30°C, de préférence encore inférieur à 20°C, mieux encore inférieur à 15°C, et de manière tout à fait préférée, un point de fusion inférieur à 10°C, et avantageusement strictement inférieur à 0°C. According to a preferred embodiment of the present invention, the formulation has a boiling point above 150° C. at atmospheric pressure, preferably above 180° C. at atmospheric pressure, and a melting point below 40 °C, preferably less than 30°C, more preferably less than 20°C, better still less than 15°C, and most preferably, a melting point less than 10°C, and advantageously strictly less at 0°C.
[0052] Selon un autre mode de réalisation, la formulation utilisée dans la présente invention présente une viscosité cinématique à 20°C (mesurée selon la norme DI N 51562) comprise entre 0,1 mm2 s-1 et 500 mm2 s’1, de préférence entre 0,5 mm2 s-1 et 300 mm2 s-1 et de préférence entre 1 mm2 s-1 et 200 mm2 s’1. According to another embodiment, the formulation used in the present invention has a kinematic viscosity at 20° C. (measured according to standard DIN 51562) of between 0.1 mm 2 s -1 and 500 mm 2 s'. 1 , preferably between 0.5 mm 2 s -1 and 300 mm 2 s -1 and preferably between 1 mm 2 s -1 and 200 mm 2 s′ 1 .
[0053] Selon encore un autre mode de réalisation, le point éclair de la formulation comprenant au moins un dérivé terpénique selon l’invention présente un point éclair supérieur à 10°C, de préférence supérieur à 20°C mesuré selon la norme N F EN 22-592. According to yet another embodiment, the flash point of the formulation comprising at least one terpene derivative according to the invention has a flash point greater than 10° C., preferably greater than 20° C. measured according to standard N F EN 22-592.
[0054] Dans un mode de réalisation tout particulièrement préféré de l’invention, la formulation, et notamment chacun des éléments qui la compose, présente une température de décomposition supérieure à 250°C, et avantageusement ne se décompose pas à plus de 0,1 % poids, lorsque ladite formulation est maintenue à une température de 300°C pendant 4 heures, à pression atmosphérique. Cette précaution permet d’envisager un taux de réutilisation maximal de la formulation LOHC qui est destinée à faire l’objet d’un nombre de cycles hydrogénation/déshydrogénation le plus important possible, par exemple au moins 50 fois, avantageusement au moins 100 fois, plus avantageusement au moins 250 fois, permettant ainsi le stockage et le transport d’hydrogène avec ladite formulation. In a very particularly preferred embodiment of the invention, the formulation, and in particular each of the elements which compose it, has a decomposition temperature greater than 250° C., and advantageously does not decompose at more than 0, 1% by weight, when said formulation is maintained at a temperature of 300° C. for 4 hours, at atmospheric pressure. This precaution makes it possible to envisage a maximum rate of reuse of the LOHC formulation which is intended to be the subject of as many hydrogenation/dehydrogenation cycles as possible, for example at least 50 times, advantageously at least 100 times, more preferably at least 250 times, thereby allowing storage and transport of hydrogen with said formulation.
[0055] Les cycles hydrogénation/déshydrogénation sont réalisés le plus souvent selon les méthodes maintenant bien connues. En particulier, la réaction de déshydrogénation peut être effectuée selon toute méthode connue, en appliquant une ou plusieurs des conditions opératoires suivantes, conditions opératoires qui sont listées ci-dessous à titre d’exemples non limitatifs : The hydrogenation/dehydrogenation cycles are most often carried out according to methods that are now well known. In particular, the dehydrogenation reaction can be carried out according to any known method, by applying one or more of the conditions following operating conditions, operating conditions which are listed below by way of non-limiting examples:
- la température de réaction généralement comprise entre 200°C et 350°C, de préférence entre 250°C et 330°C, de préférence encore entre 280°C et 320 °C, plus préférentiellement entre 280°C et 330°C et de manière totalement préférée entre 280°C et 320°C, - the reaction temperature generally between 200°C and 350°C, preferably between 250°C and 330°C, more preferably between 280°C and 320°C, more preferably between 280°C and 330°C and totally preferably between 280°C and 320°C,
- la pression de réaction généralement comprise entre 0,001 MPa et 0,3 MPa, et de manière préférée entre 0,01 MPa et 0,2 MPa, et de préférence encore la pression de réaction est la pression atmosphérique, - the reaction pressure generally between 0.001 MPa and 0.3 MPa, and preferably between 0.01 MPa and 0.2 MPa, and more preferably the reaction pressure is atmospheric pressure,
- alimentation du réacteur de déshydrogénation avec une pression partielle d’hydrogène,- supply of the dehydrogenation reactor with a partial pressure of hydrogen,
- arrêt de la réaction avant déshydrogénation totale du ou des composés à déshydrogéner. [0056] La réaction est le plus souvent et avantageusement conduite en présence d’au moins un catalyseur de déshydrogénation bien connu de l’homme du métier. Parmi les catalyseurs utilisables pour ladite réaction de déshydrogénation partielle, on peut citer, à titre d’exemples non limitatifs, les catalyseurs hétérogènes contenant au moins un métal sur support. Ledit métal est choisi parmi les métaux des colonnes 3 à 12 du tableau périodique des éléments de l'UlCPA, c'est-à-dire parmi les métaux de transition dudit tableau périodique. Dans un mode de réalisation préféré, le métal est choisi parmi les métaux des colonnes 5 à 11 , plus préférentiellement des colonnes 5 à 10 du tableau périodique des éléments de l'UlCPA. - stopping the reaction before total dehydrogenation of the compound(s) to be dehydrogenated. The reaction is most often and advantageously carried out in the presence of at least one dehydrogenation catalyst well known to those skilled in the art. Among the catalysts that can be used for said partial dehydrogenation reaction, mention may be made, by way of non-limiting examples, of heterogeneous catalysts containing at least one metal on a support. Said metal is chosen from among the metals of columns 3 to 12 of the periodic table of the elements of ULCPA, that is to say from among the transition metals of said periodic table. In a preferred embodiment, the metal is chosen from the metals from columns 5 to 11, more preferably from columns 5 to 10 of the periodic table of the elements of ULCPA.
[0057] Les métaux de ces catalyseurs sont le plus souvent choisis parmi fer, cobalt, cuivre, titane, molybdène, manganèse, nickel, platine et palladium et leurs mélanges. De manière préférée, les métaux sont choisis parmi cuivre, molybdène, platine, palladium, et les mélanges de deux ou plusieurs d’entre eux en toutes proportions. The metals of these catalysts are most often chosen from iron, cobalt, copper, titanium, molybdenum, manganese, nickel, platinum and palladium and mixtures thereof. Preferably, the metals are chosen from copper, molybdenum, platinum, palladium, and mixtures of two or more of them in all proportions.
[0058] Le support du catalyseur peut être de tout type bien connu de l’homme du métier et est avantageusement choisi parmi les supports poreux, plus avantageusement parmi les supports poreux réfractaires. Des exemples non limitatifs de supports comprennent l'alumine, la silice, la zircone, la magnésie, l'oxyde de béryllium, l'oxyde de chrome, l'oxyde de titane, l'oxyde de thorium, la céramique, le carbone tel que le noir de carbone, le graphite et le charbon activé, ainsi que leurs combinaisons. Parmi les exemples spécifiques et préférés de support utilisable dans le procédé de la présente invention, on peut citer les silico-aluminates amorphes, les silico-aluminates cristallins (zéolithes) et les supports à base d'oxyde de silice-titane. The catalyst support can be of any type well known to those skilled in the art and is advantageously chosen from porous supports, more advantageously from porous refractory supports. Non-limiting examples of supports include alumina, silica, zirconia, magnesia, beryllium oxide, chromium oxide, titanium oxide, thorium oxide, ceramic, carbon such as carbon black, graphite and activated carbon, and combinations thereof. Among the specific and preferred examples of support which can be used in the process of the present invention, mention may be made of amorphous silico-aluminates, crystalline silico-aluminates (zeolites) and supports based on silica-titanium oxide.
[0059] La réaction d’hydrogénation peut également être effectuée quant à elle selon toute méthode bien connue de l’homme du métier sur une formulation comprenant au moins un dérivé terpénique tel que défini précédemment. [0060] La réaction d’hydrogénation est généralement conduite à une température comprise entre 100°C et 200°C, et de préférence entre 120°C et 180°C et de manière encore préférée de 140°C à 160°C. La pression mise en oeuvre pour cette réaction est généralement comprise entre 0,1 MPa et 5 MPa, de manière préférée entre 0,5 MPa et 4 MPa, et de manière encore préférée entre 1 MPa et 3 MPa. The hydrogenation reaction can also be carried out for its part according to any method well known to those skilled in the art on a formulation comprising at least one terpene derivative as defined above. The hydrogenation reaction is generally carried out at a temperature between 100°C and 200°C, and preferably between 120°C and 180°C and even more preferably between 140°C and 160°C. The pressure used for this reaction is generally between 0.1 MPa and 5 MPa, preferably between 0.5 MPa and 4 MPa, and even more preferably between 1 MPa and 3 MPa.
[0061] Le plus souvent, la réaction d’hydrogénation est conduite en présence d’un catalyseur, et plus particulièrement d’un catalyseur d’hydrogénation bien connu de l’homme du métier, et avantageusement choisi parmi, à titre d’exemples non limitatifs, les catalyseurs hétérogènes contenant des métaux sur support. Ledit métal est choisi parmi les métaux des colonnes 3 à 12 du tableau périodique des éléments de l'UlCPA, c'est-à- dire parmi les métaux de transition dudit tableau périodique. Dans un mode de réalisation préféré, le métal est choisi parmi les métaux des colonnes 5 à 11 , plus préférentiellement des colonnes 5 à 10 du tableau périodique des éléments de l'UlCPA. Most often, the hydrogenation reaction is carried out in the presence of a catalyst, and more particularly of a hydrogenation catalyst well known to those skilled in the art, and advantageously chosen from, by way of examples non-limiting heterogeneous catalysts containing supported metals. Said metal is chosen from among the metals of columns 3 to 12 of the periodic table of elements of ULCPA, that is to say from among the transition metals of said periodic table. In a preferred embodiment, the metal is chosen from the metals from columns 5 to 11, more preferably from columns 5 to 10 of the periodic table of the elements of ULCPA.
[0062] Les métaux de ces catalyseurs d’hydrogénation sont le plus souvent choisis parmi fer, cobalt, cuivre, titane, molybdène, manganèse, nickel, platine et palladium et leurs mélanges. De manière préférée, les métaux sont choisis parmi cuivre, molybdène, platine, palladium, et les mélanges de deux ou plusieurs d’entre eux en toutes proportions. The metals of these hydrogenation catalysts are most often chosen from iron, cobalt, copper, titanium, molybdenum, manganese, nickel, platinum and palladium and their mixtures. Preferably, the metals are chosen from copper, molybdenum, platinum, palladium, and mixtures of two or more of them in all proportions.
[0063] Le support du catalyseur peut être de tout type bien connu de l’homme du métier et est avantageusement choisi parmi les supports poreux, plus avantageusement parmi les supports poreux réfractaires. Des exemples non limitatifs de supports comprennent l'alumine, la silice, la zircone, la magnésie, l'oxyde de béryllium, l'oxyde de chrome, l'oxyde de titane, l'oxyde de thorium, la céramique, le carbone tel que le noir de carbone, le graphite et le charbon activé, ainsi que leurs combinaisons. Parmi les exemples spécifiques et préférés de support utilisable dans le procédé de la présente invention, on peut citer les silico-aluminates amorphes, les silico-aluminates cristallins (zéolithes) et les supports à base d'oxyde de silice-titane. The catalyst support can be of any type well known to those skilled in the art and is advantageously chosen from porous supports, more advantageously from porous refractory supports. Non-limiting examples of supports include alumina, silica, zirconia, magnesia, beryllium oxide, chromium oxide, titanium oxide, thorium oxide, ceramic, carbon such as carbon black, graphite and activated carbon, and combinations thereof. Among the specific and preferred examples of support which can be used in the process of the present invention, mention may be made of amorphous silico-aluminates, crystalline silico-aluminates (zeolites) and supports based on silica-titanium oxide.
[0064] Selon un mode de réalisation préféré, la réaction d’hydrogénation est mise en oeuvre sur une formulation totalement ou partiellement déshydrogénée, par exemple au moins partiellement déshydrogénée, dans un ou plusieurs cycles hydrogénation / déshydrogénation. According to a preferred embodiment, the hydrogenation reaction is carried out on a totally or partially dehydrogenated formulation, for example at least partially dehydrogenated, in one or more hydrogenation/dehydrogenation cycles.
[0065] De manière similaire, la réaction d’hydrogénation peut être partielle ou totale, et de préférence la réaction d’hydrogénation est totale dans un ou plusieurs cycles hydrogénation/déshydrogénation, c’est-à-dire que la totalité des doubles liaisons présentes dans la formulation LOHC susceptibles d’être hydrogénées sont totalement hydrogénées. [0066] Selon un autre aspect, la présente invention concerne un cycle hydrogénation/déshydrogénation comprenant une réaction de déshydrogénation partielle ou totale d’une formulation LOHC telle qu’elle vient d’être définie et au moins une réaction partielle ou totale d’hydrogénation dudit liquide organique. [0067] Selon un aspect tout particulièrement préféré de l’invention, la température d’ébullition de ladite formulation LOHC est supérieure à la température requise pour l’étape de déshydrogénation, ceci afin d’obtenir un hydrogène sous forme gazeuse le plus pur possible. Similarly, the hydrogenation reaction can be partial or total, and preferably the hydrogenation reaction is complete in one or more hydrogenation/dehydrogenation cycles, that is to say that all of the double bonds present in the LOHC formulation capable of being hydrogenated are fully hydrogenated. According to another aspect, the present invention relates to a hydrogenation/dehydrogenation cycle comprising a partial or total dehydrogenation reaction of an LOHC formulation as it has just been defined and at least one partial or total hydrogenation reaction of said organic liquid. According to a very particularly preferred aspect of the invention, the boiling temperature of said LOHC formulation is higher than the temperature required for the dehydrogenation step, in order to obtain the purest possible hydrogen in gaseous form. .
[0068] Dans l’application LOHC, les formulations pour le transport d’hydrogène dont l’utilisation sont l’objet de la présente invention sont tout particulièrement bien adaptées en raison de leur stabilité qui permet une réutilisation dans une grand nombre de cycles hydrogénation / déshydrogénation pour le transport et la manipulation d’hydrogène issu du vapocraquage de produits pétroliers, d’hydrogène fatal issu de réaction chimique tel que l’électrolyse de sel ou d’hydrogène issu de l’électrolyse de l’eau. In the LOHC application, the formulations for transporting hydrogen, the use of which is the subject of the present invention, are particularly well suited because of their stability, which allows reuse in a large number of hydrogenation cycles. / dehydrogenation for transporting and handling hydrogen from the steam cracking of petroleum products, fatal hydrogen from chemical reactions such as salt electrolysis or hydrogen from water electrolysis.

Claims

REVENDICATIONS
1. Utilisation d’une formulation liquide à température ambiante comprenant au moins un dérivé terpénique, pour la fixation et la libération d’hydrogène dans au moins un cycle hydrogénation/déshydrogénation de ladite formulation. 1. Use of a liquid formulation at room temperature comprising at least one terpene derivative, for fixing and releasing hydrogen in at least one hydrogenation/dehydrogenation cycle of said formulation.
2. Utilisation selon la revendication 1 , dans laquelle le dérivé terpénique est un produit d’origine renouvelable comportant au moins un cycle hydrocarboné comportant 6 atomes de carbone et apte à être hydrogéné et/ou déshydrogéné. 2. Use according to claim 1, in which the terpene derivative is a product of renewable origin comprising at least one hydrocarbon cycle comprising 6 carbon atoms and capable of being hydrogenated and/or dehydrogenated.
3. Utilisation selon la revendication 1 ou la revendication 2, dans laquelle le dérivé terpénique est un composé organique comprenant au moins un squelette carboné de formule (1 ) : dans lequel chaque « C » représente un atome de carbone, lié à au moins un autre atome de carbone, le nombre total d’atome de carbone du squelette de formule (1 ) étant 10, ledit squelette carboné de formule (1) ne faisant pas apparaître le ou les atomes d’hydrogène et/ou autres substituants, ni la ou les éventuelle(s) insaturation(s) sous forme de double(s) ou triple(s) liaison(s) ou éventuel(s) autre(s) cycle(s) fusionné(s) et/ou condensé(s). 3. Use according to claim 1 or claim 2, in which the terpene derivative is an organic compound comprising at least one carbon skeleton of formula (1): in which each "C" represents a carbon atom, bonded to at least one other carbon atom, the total number of carbon atoms of the skeleton of formula (1) being 10, said carbon skeleton of formula (1) not forming not appear the hydrogen atom(s) and/or other substituents, nor the possible unsaturation(s) in the form of double(s) or triple(s) bond(s) or possible other(s) s) fused and/or condensed ring(s).
4. Utilisation selon l’une quelconque des revendications précédentes dans laquelle le dérivé terpénique présent dans la formulation en tant que tel ou par réaction chimique entre deux ou plusieurs d’entre eux et/ou avec d’autres molécules d’origine renouvelable ou non, est choisi parmi : 4. Use according to any one of the preceding claims, in which the terpene derivative present in the formulation as such or by chemical reaction between two or more of them and/or with other molecules of renewable origin or not , is chosen from:
- le limonène, y compris ses formes énantiomères et son racémique (1-méthyl-4-(1- méthylvinyl)cyclohexène, CAS 7705-14-8, 138-86-3 ; 5989-27-5 ;5989-54-8), - limonene, including its enantiomeric forms and its racemate (1-methyl-4-(1-methylvinyl)cyclohexene, CAS 7705-14-8, 138-86-3; 5989-27-5; 5989-54-8 ),
- les terpinènes (y compris a-terpinène, p-terpinène, y-terpinène), et les terpinolènes, y compris leurs formes mono-hydroxylées et di-hydroxylées, - le para-cymène (CAS 99-87-6), et ses dérivés hydroxylés le carvacrol et le thymol,- terpinenes (including a-terpinene, p-terpinene, y-terpinene), and terpinolenes, including their mono-hydroxylated and di-hydroxylated forms, - para-cymene (CAS 99-87-6), and its hydroxylated derivatives carvacrol and thymol,
- l’eucalyptol ou cinéol, - eucalyptol or cineol,
- les pinènes, comprenant a-pinène (CAS 7785-26-4) et p-pinène (CAS 127-91-3), ainsi que leurs dérivés hydroxylés, - pinenes, including a-pinene (CAS 7785-26-4) and p-pinene (CAS 127-91-3), as well as their hydroxylated derivatives,
- les carènes (3,7,7-triméthylbicyclo[4,1 ,0]heptène) et notamment le A3-carène (CAS 13466-78-9), - carenes (3,7,7-trimethylbicyclo[4,1,0]heptene) and in particular A 3 -carene (CAS 13466-78-9),
- les cadalanes (4,7-dimethyl-1-propan-2-yl-perhydronaphthalene), les cadinènes (4,7- dimethyl-1-propan-2-yl-1 ,2,4a,5,8,8a-hexahydronaphthalène, CAS 29350-73-0), y compris leurs stéréoisomères a-, P-, y-, 5- et E-- cadalanes (4,7-dimethyl-1-propan-2-yl-perhydronaphthalene), cadinenes (4,7-dimethyl-1-propan-2-yl-1,2,4a,5,8,8a- hexahydronaphthalene, CAS 29350-73-0), including their a-, P-, y-, 5- and E-stereoisomers
- le cannabinol et ses dérivés tels le tétrahydrocannabinol, le cannabidiol, le cannabitriol,- cannabinol and its derivatives such as tetrahydrocannabinol, cannabidiol, cannabitriol,
- et autres, ainsi que les mélanges de deux ou plusieurs d’entre eux. - and others, as well as mixtures of two or more of them.
5. Utilisation selon l’une quelconque des revendications précédentes, dans laquelle le dérivé terpénique provient de végétaux terrestres, marins, sous-marins, et en particulier des arbres, conifères, fleurs, feuilles, bois, fruits, et autres. 5. Use according to any one of the preceding claims, in which the terpene derivative comes from terrestrial, marine, underwater plants, and in particular trees, conifers, flowers, leaves, wood, fruits, and others.
6. Utilisation selon l’une quelconque des revendications précédentes, dans laquelle le dérivé terpénique provient de végétaux choisi parmi la sauge, le romarin, la lavande, le poivre, le clou de girofle, le chanvre, le cannabis, le camphre, le houblon, la cannelle, le basilic, l’origan, les agrumes (citron, orange, cédrat), la menthe, la menthe poivrée, le genièvre, le genévrier cade, le gingembre, le ginseng, le laurier, la citronnelle, la mangue, l’aneth, le persil, le thym, le cresson, la monarde, la sarriette, la marjolaine, le dictame, l’eucalyptus, l’arbre à thé, le cumin, le romarin, l’armoise, l’absinthe, et autres... 6. Use according to any one of the preceding claims, in which the terpene derivative comes from plants chosen from sage, rosemary, lavender, pepper, cloves, hemp, cannabis, camphor, hops , cinnamon, basil, oregano, citrus fruits (lemon, orange, citron), mint, peppermint, juniper, juniper cade, ginger, ginseng, bay leaf, lemongrass, mango, dill, parsley, thyme, watercress, monarda, savory, marjoram, dittam, eucalyptus, tea tree, cumin, rosemary, mugwort, wormwood, and others...
7. Utilisation selon l’une quelconque des revendications précédentes, dans laquelle la formulation comprend en outre un ou plusieurs autres LOHC, choisis de préférence parmi le toluène, le benzyltoluène (BT), le dibenzyltoluène (DBT) et leurs mélanges en toutes proportions. 7. Use according to any one of the preceding claims, in which the formulation also comprises one or more other LOHCs, preferably chosen from toluene, benzyltoluene (BT), dibenzyltoluene (DBT) and their mixtures in all proportions.
8. Utilisation selon l’une quelconque des revendications précédentes, dans laquelle la formulation présente une température d’ébullition supérieure à 150°C à pression atmosphérique, et un point de fusion inférieur à 40°C, de préférence inférieur à 30°C, de préférence encore inférieur à 20°C, mieux encore inférieur à 15°C, et de manière tout à fait préférée, un point de fusion inférieur à 10°C, et avantageusement strictement inférieur à 0°C. — 17 — 8. Use according to any one of the preceding claims, in which the formulation has a boiling point above 150°C at atmospheric pressure, and a melting point below 40°C, preferably below 30°C, preferably even lower than 20°C, better still lower than 15°C, and most preferably, a melting point lower than 10°C, and advantageously strictly lower than 0°C. — 17 —
9. Utilisation selon l’une quelconque des revendications précédentes, dans laquelle la formulation présente une viscosité cinématique à 20°C (mesurée selon la norme DIN 51562) comprise entre 0,1 mm2 s'1 et 500 mm2 s’1, de préférence entre 0,5 mm2 s'1 et 300 mm2 s'1 et de préférence entre 1 mm2 s'1 et 200 mm2 s’1. 9. Use according to any one of the preceding claims, in which the formulation has a kinematic viscosity at 20° C. (measured according to the DIN 51562 standard) of between 0.1 mm 2 s' 1 and 500 mm 2 s' 1 , preferably between 0.5 mm 2 s' 1 and 300 mm 2 s' 1 and preferably between 1 mm 2 s' 1 and 200 mm 2 s' 1 .
10. Utilisation selon l’une quelconque des revendications précédentes, pour le transport et la manipulation d’hydrogène issu du vapocraquage de produits pétroliers, d’hydrogène fatal issu de réaction chimique tel que l’électrolyse de sel ou d’hydrogène issu de l’électrolyse de l’eau. 10. Use according to any one of the preceding claims, for the transport and handling of hydrogen from the steam cracking of petroleum products, fatal hydrogen from chemical reactions such as the electrolysis of salt or hydrogen from the electrolysis of water.
EP21802392.7A 2020-10-08 2021-10-07 Hydrogen storage by means of derivatives of compounds of renewable origin Pending EP4225693A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2010281A FR3115030B1 (en) 2020-10-08 2020-10-08 HYDROGEN STORAGE USING DERIVATIVES OF COMPOUNDS OF RENEWABLE ORIGIN
PCT/FR2021/051739 WO2022074337A1 (en) 2020-10-08 2021-10-07 Hydrogen storage by means of derivatives of compounds of renewable origin

Publications (1)

Publication Number Publication Date
EP4225693A1 true EP4225693A1 (en) 2023-08-16

Family

ID=73793430

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21802392.7A Pending EP4225693A1 (en) 2020-10-08 2021-10-07 Hydrogen storage by means of derivatives of compounds of renewable origin

Country Status (5)

Country Link
US (1) US20230227306A1 (en)
EP (1) EP4225693A1 (en)
JP (1) JP2023544667A (en)
FR (1) FR3115030B1 (en)
WO (1) WO2022074337A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3505116A (en) * 1963-05-13 1970-04-07 Mobil Oil Corp Fuel cell and method of operation
US4197417A (en) 1977-09-28 1980-04-08 Imperial Chemical Industries Limited Process for the manufacture of o-benzyl toluenes
DE102012221809A1 (en) 2012-11-28 2014-05-28 Bayerische Motoren Werke Aktiengesellschaft Liquid compounds and processes for their use as hydrogen storage

Also Published As

Publication number Publication date
US20230227306A1 (en) 2023-07-20
FR3115030A1 (en) 2022-04-15
JP2023544667A (en) 2023-10-25
FR3115030B1 (en) 2023-12-22
WO2022074337A1 (en) 2022-04-14

Similar Documents

Publication Publication Date Title
EP2349558B1 (en) Process of catalytic hydrogenation of carbon disulphide to methyl mercaptan
EP0910469A1 (en) Method of metathesis of alcanes and catalyst
EP0647472A1 (en) Composition of matter as Raney catalyst for hydrogenating halonitroaromatic compound and process using the same
FR2944275A1 (en) PROCESS FOR THE PRODUCTION OF FLUOROAPATITE, FLUOROAPATITE AND ADSORPTION APPARATUS
EP1699736B1 (en) Method for dissolving carbon nanotubes and the use thereof
WO2022074336A1 (en) Hydrogen storage by means of liquid organic compounds
FR2920320A1 (en) PROCESS FOR THE PRODUCTION OF FLUORAPATITE, FLUORAPATITE AND ADSORPTION APPARATUS
EP1138665A1 (en) Continuous hydrogenation of aromatic nitro compounds using a catalyst with low aluminium content
EP4225693A1 (en) Hydrogen storage by means of derivatives of compounds of renewable origin
WO2021176170A1 (en) Partial dehydrogenation of organic liquids
EP2717993B1 (en) Use of a kmgf3 compound for trapping metals in the form of fluorides and/or oxyfluorides in a gaseous or a liquid phase
Zhai et al. Polymeric fullerene oxide films produced by decomposition of hexanitro [60] fullerene
EP2203405A1 (en) Method for recovering fluorocarboxylic acids
WO2023067190A1 (en) Mixtures of liquid organic hydrogen carriers, uses thereof for transporting and storing hydrogen, and hydrogen generation methods using same
Kimura et al. Is the 21 micron feature observed in some post-AGB stars caused by the interaction between Ti atoms and fullerenes?
EP1292557A1 (en) Methods for etherifying glycerol, and catalysts for implementing said methods
FR2655330A1 (en) PREPARATION OF HYDROCARBONS CONTAINING ONE OR MORE HETERO-ATOM (S).
FR3112339A1 (en) PROCESS FOR IMPROVING THE QUALITY OF HYDROGEN-BEARING ORGANIC LIQUIDS
WO2023006956A1 (en) New liquid organic hydrogen carriers, uses thereof for transporting and storing hydrogen, and methods for generating hydrogen using same
WO1999006338A1 (en) Method for oxidising substituted hydrocarbon derivatives
CA2267609A1 (en) Photochemical sulfochlorination process for gaseous alkanes
WO2023126539A1 (en) Method for monitoring the conversion state of a liquid organic hydrogen carrier
CA3180419A1 (en) Purification of aromatic liquids
EP4259573A1 (en) Liquid formulation for hydrogen storage
WO2009050410A2 (en) Carbene and co2 adducts and use thereof for co2 extraction

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221103

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAV Requested validation state of the european patent: fee paid

Extension state: TN

Effective date: 20221103

Extension state: MA

Effective date: 20221103