EP4222799A1 - Method for managing heat in a vehicle fuel cell system - Google Patents

Method for managing heat in a vehicle fuel cell system

Info

Publication number
EP4222799A1
EP4222799A1 EP21786130.1A EP21786130A EP4222799A1 EP 4222799 A1 EP4222799 A1 EP 4222799A1 EP 21786130 A EP21786130 A EP 21786130A EP 4222799 A1 EP4222799 A1 EP 4222799A1
Authority
EP
European Patent Office
Prior art keywords
cartridges
ammonia
occupying
transfer fluid
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21786130.1A
Other languages
German (de)
French (fr)
Inventor
Jurgen Dedeurwaerder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Plastic Omnium Advanced Innovation and Research SA
Original Assignee
Plastic Omnium Advanced Innovation and Research SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Plastic Omnium Advanced Innovation and Research SA filed Critical Plastic Omnium Advanced Innovation and Research SA
Publication of EP4222799A1 publication Critical patent/EP4222799A1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04208Cartridges, cryogenic media or cryogenic reservoirs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04216Reactant storage and supply, e.g. means for feeding, pipes characterised by the choice for a specific material, e.g. carbon, hydride, absorbent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the invention relates to thermal management on board a vehicle. More particularly, the invention relates to a fuel cell power supply system for a vehicle and to a method for thermal management of such a system.
  • a motor vehicle comprises drive means, powered by a source of energy, which make it possible to set the vehicle in motion.
  • a source of energy which make it possible to set the vehicle in motion.
  • One of the most common power sources includes an internal combustion engine that runs on fuel. However, the combustion of fuel produces carbon dioxide which pollutes the atmosphere, so it may be preferable to use less polluting energy sources.
  • a fuel cell to replace the internal combustion engine, for example a hydrogen cell.
  • the hydrogen in the form of dihydrogen, is oxidized by the fuel cell which then produces electricity, to supply the drive means, and heat.
  • Hydrogen can be stored as ammonia gas absorbed in or adsorbed on a salt in storage cartridges. This is a safe method of storing hydrogen. The ammonia must therefore be desorbed from the salt and then be cracked in order to form dihydrogen which can then be supplied to the fuel cell.
  • absorb and desorb will be used to designate respectively the storage and the release of gaseous ammonia on or from a salt, whether this storage takes place by absorption or adsorption.
  • a so-called “low temperature” battery works best when it is at a temperature generally between 60°C and 80°C. It is therefore necessary to evacuate the heat generated by the oxidation of dihydrogen so that the temperature of the cell does not exceed this value too much.
  • Document WO2011107279 proposes using part of the heat generated by the fuel cell to supply the desorption of ammonia in the storage cartridges, this desorption reaction being endothermic. This makes it possible to have, in addition to the radiator, another source of evacuation of the heat generated by the battery. However, this may still not be enough to keep the battery temperature at optimum operating temperature.
  • the aim of the invention is in particular to remedy this problem by making it possible to evacuate even more heat from the battery, in particular during a phase of intense use of the latter.
  • thermo management method in an electrical power supply system for a vehicle, the system comprising:
  • a cell cooling circuit in which a heat transfer fluid circulates, comprising branches supplying each of the cartridges, and
  • a radiator capable of cooling the heat transfer fluid, in which, at least one of the cartridges occupying an active state in which it releases gaseous ammonia into the injection circuit and at least one of the cartridges occupying a passive state in which it does not release gaseous ammonia into the injection circuit, at least one of the following steps is implemented: a) the ammonia pressure is increased inside at least one of the cartridges occupying the state active, b) circulating the heat transfer fluid leaving the stack in at least one of the cartridges occupying the passive state, c) increasing the ammonia desorption rate in one of the cartridges occupying the active state, part of the desorbed ammonia being stored in one of the other cartridges, preferably in one of the cartridges occupying the passive state.
  • Step a) makes it possible to shift the thermodynamic equilibrium in the cartridge.
  • the temperature in the cartridge is increased by causing it to absorb more heat, which has the effect of increasing, indirectly therefore, the ammonia pressure in the cartridge.
  • Step b) makes it possible to store heat in at least one of the cartridges occupying the passive state without thereby switching it to the active state.
  • Step c) makes it possible to create an excess of ammonia in at least one of the cartridges occupying the active state, relative to the instantaneous consumption of the stack, and therefore an excess of heat consumption for the cartridge concerned.
  • steps a), b) and c) are implemented.
  • step d) consisting in decreasing the power of the battery is implemented.
  • step a) the pressure is increased in at least one of the cartridges occupying the active state to a value greater than 3 bar, preferably greater than 4 bar, preferably greater than 5 bar.
  • thermodynamic equilibrium temperature in the cartridge makes it possible to significantly increase the thermodynamic equilibrium temperature in the cartridge.
  • an increase in pressure from 2 bar to 5 bar shifts the equilibrium temperature from about 45°C to 65°C.
  • the cartridges each comprise a calcium chloride matrix capable of absorbing and desorbing ammonia.
  • This salt effectively stores ammonia.
  • the matrix may be in the form of a salt of general formula M a (NH 3 ) nX z , in which M is one or more cations chosen from alkali metals such as Li, Na, K or Cs, alkaline earth metals such as Mg, Ca or Sr, and/or transition metals such as V, Cr, Mn, Fe, Co, Ni, Cu or Zn or their combinations such as NaAl, KAI, K 2 Zn, CsCu or K 2 Fe, X is one or more anions chosen from fluoride, chloride, bromide, iodide, nitrate ions, thiocyanate, sulphate, molybdate and phosphate, a is the number of cations per molecule of salt, z is the number of anions per salt molecule and n is the coordination number, ranging from 2 to 12.
  • M is one or more cations chosen from alkali metals such as Li, Na, K or Cs, alkaline earth metals such as
  • the injection circuit comprises an ammonia cracking module, capable of transforming the ammonia into a gaseous mixture comprising dinitrogen, dihydrogen and ammonia, and, if necessary, a purification module, capable of reduce the ammonia content of the gas mixture.
  • an ammonia cracking module capable of transforming the ammonia into a gaseous mixture comprising dinitrogen, dihydrogen and ammonia
  • a purification module capable of reduce the ammonia content of the gas mixture.
  • the method is implemented on board a vehicle.
  • a cell cooling circuit in which a heat transfer fluid circulates, comprising branches supplying each of the cartridges,
  • control unit capable of implementing a thermal management method as described above.
  • Figure 1 is a diagram illustrating a vehicle power supply system according to a first embodiment of the invention.
  • FIG. 2 is a diagram illustrating a vehicle power supply system according to a second embodiment of the invention.
  • FIG. 1 an electrical power supply system 2 for a vehicle 4 according to a first embodiment of the invention.
  • the power system 2 includes a fuel cell 6 of the hydrogen type. More specifically, it may be a cell of the type commonly designated "AMFC", acronym for the Anglo-Saxon terms Alkaline Membrane Fuel Cell, or “PEMFC”, acronym for the Anglo-Saxon terms “Proton Exchange Membrane Fuel Cell”. Since these types of battery are known from the state of the art, their operation will not be described in detail in what follows.
  • AMFC Anglo-Saxon terms Alkaline Membrane Fuel Cell
  • PEMFC acronym for the Anglo-Saxon terms “Proton Exchange Membrane Fuel Cell
  • the cell 6 is arranged to be supplied with dihydrogen with a view to oxidizing it in order to produce electrical energy, which is transmitted to drive means (not shown) of the vehicle 4.
  • This oxidation reaction being exothermic, it also generates heat which raises the temperature of the battery 6 when it operates.
  • the power supply system 2 comprises a cooling circuit 8 of the stack.
  • This cooling circuit 8 comprises a conduit, in which a heat transfer fluid flows, which passes into contact with the battery 6 so that the heat transfer fluid can exchange heat with the battery 6.
  • the latter has an optimum temperature of use, here of the order of 70° C., at which it reaches maximum efficiency.
  • the cooling circuit 8 comprises temperature sensors 10 located upstream and downstream of the cell 6 by considering the direction of circulation of the heat transfer fluid in the cooling circuit 8.
  • the circulation of the heat transfer fluid in the cooling circuit 8 is allowed by means of a pump 12 located at the outlet of the cell 6.
  • the direction of circulation of the heat transfer fluid in the cooling circuit 8 is represented by arrows in FIG.
  • the supply system 2 comprises a radiator 14 through which the cooling circuit 8 passes.
  • the radiator 14 is exposed to the ambient air, so that the heat transfer fluid passing through the radiator 14 can exchange heat with the air. ambient to cool the heat transfer fluid.
  • the supply system 2 comprises several storage cartridges 16 each comprising a matrix 18 allowing the storage of gaseous ammonia, which is a precursor of dihydrogen.
  • the ammonia is absorbed in the matrix 18 and can also be adsorbed on the matrix 18.
  • the matrix 18 can consist of a salt, for example calcium chloride. This salt is particularly suitable since one molecule of calcium chloride can form a bond with eight molecules of ammonia.
  • the power supply system 2 comprises an injection circuit 20 connecting an output of each of the cartridges 16 to an input of the battery 6.
  • the injection circuit 20 has the function of passing the ammonia from the cartridges 16 to the stack 6.
  • the injection circuit 20 comprises a temperature sensor 10 capable of measuring the temperature of the ammonia and a non-return valve 21.
  • the non-return valves 21 allow the cartridges 16 having an ammonia pressure greater than the ammonia pressure at the inlet of the injection circuit 20 to desorb ammonia and inject it into the injection circuit 20 .
  • the injection circuit 20 comprises a metering unit 22 which makes it possible to meter the quantity of ammonia which is conveyed in the direction of the cell 6.
  • a pressure sensor 24 is placed at an inlet of the metering unit 22 in order to measure the pressure of the ammonia entering the dosing unit 22.
  • the injection circuit 20 comprises a cracking module 26, located downstream of the metering unit 22 considering the direction of circulation of the ammonia in the injection circuit 20, in which the cracking reaction of ammonia. This reaction makes it possible to produce, from ammonia, a gaseous mixture comprising dinitrogen, dihydrogen and ammonia.
  • the injection circuit 20 comprises a purification module 28, located downstream of the cracking module 26 considering the direction of circulation of the ammonia in the injection circuit 20, capable of reducing the ammonia content of the gaseous mixture.
  • This purification step is critical in particular in the case where the cell is of the “PEMFC” type, this type of cell requiring a supply of particularly pure dihydrogen.
  • the gaseous mixture is supplied to the cell 6 for the oxidation of the dihydrogen.
  • the cooling circuit 8 comprises a three-way valve 30 fed by the outlet of the pump 12.
  • the heat transfer fluid leaving the pump 12 is partly directed towards the radiator 14.
  • the other part of the heat transfer fluid is directed towards branches 32 supplying each of the cartridges 16.
  • the branches 32 are arranged so that the cartridges 16 are mounted in parallel.
  • An all-or-nothing valve 34 is provided in each of the branches 32 supplying the cartridges 16, so as to be able to control at any time the cartridges 16 through which the heat transfer fluid must pass.
  • the heat transfer fluid leaving the cartridges 16 is directed by the cooling circuit 8 towards the radiator 14.
  • the power supply system 2 comprises a control unit 36 capable of controlling the operation of the elements of the power supply system.
  • the battery 6 allows the production of approximately 100 kW of electrical power. It has a yield of around 50%, so that it consumes 200 kW of chemical power and additionally produces 100 kW of thermal power in the form of heat. In order to achieve this chemical power, it is necessary to feed the cell with a mass flow of 10.75 g/s of ammonia (which corresponds to a molar flow of 0.63 mol/s). To this end, some of the cartridges 16 occupy an active state in which they release gaseous ammonia into the injection circuit 20, while the remaining cartridges 16 occupy a passive state in which they do not release gaseous ammonia into the injection circuit 16.
  • the radiator 14 may not be able to dissipate all of the thermal power to be evacuated.
  • the vehicle 4 may be required to request greater electrical power from the battery 6, which is accompanied by greater thermal power to be dissipated.
  • the control unit 36 implements at least one of the following operations: a) The ammonia pressure inside at least one is increased. least one of the cartridges 16 occupying the active state. This makes it possible to shift the thermodynamic equilibrium in the cartridge or cartridges concerned. By doing so, the temperature necessary to reach equilibrium is increased, and therefore the heat requirements of this cartridge. In the present case, an increase in pressure from 2 bar to 5 bar (in absolute value) shifts the equilibrium temperature from about 45°C to 65°C. It is thus understood that the cartridge or cartridges concerned need to absorb more heat, emitted by the battery, to maintain this balance.
  • FIG. 2 a power supply system 2 'for a vehicle 4 according to a second embodiment of the invention. Elements similar to those of the first embodiment bear identical reference numerals.
  • the second embodiment of the invention differs from that of the first embodiment in that the injection circuit 20 comprises, in the direction opposite to the metering unit 22, a recycling circuit 38 whose opening and closing is ensured by an all-or-nothing valve 34 arranged in parallel with the cartridges 16 and controlled by the control unit 36. Downstream of this valve, the recycling circuit 38 comprises a reinsertion branch 40 in each of the cartridges 16, each reinsertion branch 40 comprising a non-return valve 21 arranged to prevent ammonia from leaving the cartridges 16 through the reinsertion branches 40.
  • System 2' operates in the same way as the system according to the first embodiment. In addition, it allows the implementation of another operation in order to increase the thermal power consumed by the system: c) the ammonia desorption rate is increased in one of the cartridges 16 occupying the active state, a part desorbed ammonia being stored in one of the cartridges 16 occupying the passive state. The excess ammonia thus desorbed passes into the recycling circuit 38 and, by pressure difference, enters the cartridges 16 occupying the passive state through non-return valves 21 of the corresponding reinsertion branches 40.
  • Operations a) and b), and possibly d), can be implemented simultaneously with operation c) to increase the quantity of thermal power used by the system 2′.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Fuel Cell (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

Disclosed is a method for managing heat in a vehicle power supply system (2) that comprises: - a hydrogen fuel cell, - a plurality of cartridges (16) for storing ammonia, - a circuit (20) for injecting each cartridge (16) into the fuel cell (6), - a circuit (8) for cooling the fuel cell, the circuit containing a heat transfer fluid, and - a heat sink (14), at least one of the cartridges (16) being active and at least one of the cartridges (16) being passive. According to the method, at least one of the following steps is implemented: a) increasing the ammonia pressure inside at least one of the active cartridges, b) circulating, in at least one of the passive cartridges (16), the heat transfer fluid leaving the fuel cell (6), c) increasing the speed of ammonia desorption in one of the active cartridges (16), a portion of the desorbed ammonia being stored in one of the passive cartridges (16).

Description

Description Description
Titre de l’invention : Procédé de gestion thermique d’un système à pile à combustible de véhicule Title of the invention: Process for thermal management of a vehicle fuel cell system
L’invention concerne la gestion thermique à bord d’un véhicule. Plus particulièrement, l’invention concerne un système d’alimentation électrique à pile à combustible pour véhicule et un procédé de gestion thermique d’un tel système. The invention relates to thermal management on board a vehicle. More particularly, the invention relates to a fuel cell power supply system for a vehicle and to a method for thermal management of such a system.
Un véhicule automobile comprend des moyens d’entrainement, alimentés par une source d’énergie, qui permettent de mettre le véhicule en mouvement. Une des sources d’énergie les plus répandues comprend un moteur à combustion interne fonctionnant avec du carburant. Cependant, la combustion du carburant produit du dioxyde de carbone qui pollue l’atmosphère, si bien qu’il peut être préférable d’employer des sources d’énergie moins polluantes. A motor vehicle comprises drive means, powered by a source of energy, which make it possible to set the vehicle in motion. One of the most common power sources includes an internal combustion engine that runs on fuel. However, the combustion of fuel produces carbon dioxide which pollutes the atmosphere, so it may be preferable to use less polluting energy sources.
Il est connu d’utiliser une pile à combustible pour remplacer le moteur à combustion interne, par exemple une pile à hydrogène. L’hydrogène, sous forme de dihydrogène, est oxydé par la pile qui produit alors de l’électricité, pour alimenter les moyens d’entrainement, et de la chaleur. L’hydrogène peut être stocké sous forme d’ammoniac gazeux absorbé dans ou adsorbé sur un sel dans des cartouches de stockage. Il s’agit d’une méthode sûre de stockage d’hydrogène. L’ammoniac doit donc être désorbé du sel puis être craqué afin de former du dihydrogène qui peut alors être fourni à la pile.It is known to use a fuel cell to replace the internal combustion engine, for example a hydrogen cell. The hydrogen, in the form of dihydrogen, is oxidized by the fuel cell which then produces electricity, to supply the drive means, and heat. Hydrogen can be stored as ammonia gas absorbed in or adsorbed on a salt in storage cartridges. This is a safe method of storing hydrogen. The ammonia must therefore be desorbed from the salt and then be cracked in order to form dihydrogen which can then be supplied to the fuel cell.
Pour des raisons de concision, dans le contexte de la description de la présente invention, on utilisera les termes absorber et désorber pour désigner respectivement le stockage et la libération de l'ammoniac gazeux sur ou à partir d'un sel, que ce stockage intervienne par absorption ou adsorption. For reasons of brevity, in the context of the description of the present invention, the terms absorb and desorb will be used to designate respectively the storage and the release of gaseous ammonia on or from a salt, whether this storage takes place by absorption or adsorption.
Une pile dite « à basse température » présente un fonctionnement optimal lorsqu’elle est à une température généralement comprise entre 60°C et 80°C. Il est donc nécessaire d’évacuer la chaleur générée par l’oxydation du dihydrogène afin que la température de la pile n’excède pas trop cette valeur. A so-called “low temperature” battery works best when it is at a temperature generally between 60°C and 80°C. It is therefore necessary to evacuate the heat generated by the oxidation of dihydrogen so that the temperature of the cell does not exceed this value too much.
A cet effet, il est connu de faire passer un fluide refroidissant au contact de la pile afin d’en absorber de la chaleur, celle-ci étant dissipée par l’air ambient au moyen d’un radiateur. Néanmoins, cette solution peut ne pas suffire pour maintenir la pile à la température de fonctionnement optimal. En effet, si la température de l’air ambient est elle-même élevée, par exemple en été et/ou dans des pays présentant un climat chaud, la différence de température entre l’air ambiant et la pile fait que le radiateur ne peut pas dissiper une quantité suffisamment importante de chaleur pour maintenir la pile à sa température de fonctionnement optimal. En outre, pendant des phases ou la pile doit délivrer une quantité plus importante d’énergie électrique, donc pendant lesquelles elle génère plus de chaleur, le radiateur peut également être insuffisant pour dissiper cet excès de chaleur. To this end, it is known to pass a cooling fluid in contact with the cell in order to absorb heat therefrom, the latter being dissipated by the ambient air by means of a radiator. However, this solution may not be sufficient to maintain the battery at the optimum operating temperature. Indeed, if the temperature of the ambient air is itself high, for example in summer and/or in countries with a hot climate, the temperature difference between the ambient air and the battery means that the radiator cannot not dissipate a large enough amount of heat to keep the battery at its optimum operating temperature. In addition, during phases where the battery must deliver a greater quantity of electrical energy, therefore during which it generates more heat, the radiator may also be insufficient to dissipate this excess heat.
Le document WO2011107279 propose d’utiliser une partie de la chaleur générée par la pile pour alimenter la désorption de l’ammoniac dans les cartouches de stockage, cette réaction de désorption étant endothermique. Cela permet de disposer, en plus du radiateur, d’une autre source d’évacuation de la chaleur générée par la pile. Cependant, cela peut ne toujours pas suffire pour maintenir la température de la pile à la température de fonctionnement optimal. Document WO2011107279 proposes using part of the heat generated by the fuel cell to supply the desorption of ammonia in the storage cartridges, this desorption reaction being endothermic. This makes it possible to have, in addition to the radiator, another source of evacuation of the heat generated by the battery. However, this may still not be enough to keep the battery temperature at optimum operating temperature.
L'invention a notamment pour but de remédier à ce problème en permettant d’évacuer davantage encore de chaleur de la pile, notamment lors d’une phase d’utilisation intense de celle-ci. The aim of the invention is in particular to remedy this problem by making it possible to evacuate even more heat from the battery, in particular during a phase of intense use of the latter.
A cet effet, on prévoit selon l’invention un procédé de gestion thermique dans un système d’alimentation électrique pour véhicule, le système comprenant : To this end, provision is made according to the invention for a thermal management method in an electrical power supply system for a vehicle, the system comprising:
- une pile à combustible apte à être alimentée en dihydrogène, - a fuel cell capable of being supplied with dihydrogen,
- plusieurs cartouches de stockage d’ammoniac sous forme absorbée dans une matrice, - several ammonia storage cartridges in absorbed form in a matrix,
- un circuit d’injection reliant une sortie de chacune des cartouches à une entrée de la pile, - an injection circuit connecting an output of each of the cartridges to an input of the stack,
- un circuit de refroidissement de la pile, dans lequel circule un fluide caloporteur, comportant des branches alimentant chacune des cartouches, et - a cell cooling circuit, in which a heat transfer fluid circulates, comprising branches supplying each of the cartridges, and
- un radiateur apte à refroidir le fluide caloporteur, dans lequel, au moins une des cartouches occupant un état actif dans lequel elle relâche de l’ammoniac gazeux dans le circuit d’injection et au moins une des cartouches occupant un état passif dans lequel elle ne relâche pas d’ammoniac gazeux dans le circuit d’injection, on met en œuvre au moins l’une des étapes suivantes : a) on augmente la pression en ammoniac à l’intérieur d’au moins une des cartouches occupant l’état actif, b) on fait circuler le fluide caloporteur sortant de la pile dans au moins une des cartouches occupant l’état passif, c) on augmente la vitesse de désorption d’ammoniac dans une des cartouches occupant l’état actif, une partie de l’ammoniac désorbé étant stocké dans une des autres cartouches, de préférence dans une des cartouches occupant l’état passif. - a radiator capable of cooling the heat transfer fluid, in which, at least one of the cartridges occupying an active state in which it releases gaseous ammonia into the injection circuit and at least one of the cartridges occupying a passive state in which it does not release gaseous ammonia into the injection circuit, at least one of the following steps is implemented: a) the ammonia pressure is increased inside at least one of the cartridges occupying the state active, b) circulating the heat transfer fluid leaving the stack in at least one of the cartridges occupying the passive state, c) increasing the ammonia desorption rate in one of the cartridges occupying the active state, part of the desorbed ammonia being stored in one of the other cartridges, preferably in one of the cartridges occupying the passive state.
Ainsi, on peut créer temporairement des besoins en chaleur au sein des cartouches de stockage de l'ammoniac. L’étape a) permet de déplacer l’équilibre thermodynamique dans la cartouche. En autorisant une augmentation de pression d’ammoniac dans la cartouche, on peut augmenter la température nécessaire pour atteindre l’équilibre, et donc les besoins en chaleur de cette cartouche. En d’autres termes, on augmente la température dans la cartouche en la faisant absorber plus de chaleur, ce qui a pour incidence d’augmenter, indirectement donc, la pression en ammoniac dans la cartouche. L’étape b) permet de stocker de la chaleur dans au moins une des cartouches occupant l’état passif sans pour autant la faire basculer à l’état actif. L’étape c) permet de créer un excédent d’ammoniac dans au moins une des cartouches occupant l’état actif, par rapport à la consommation instantanée de la pile, et donc un excédent de consommation de chaleur pour la cartouche concernée. Thus, heat requirements can be temporarily created within the ammonia storage cartridges. Step a) makes it possible to shift the thermodynamic equilibrium in the cartridge. By allowing an increase in ammonia pressure in the cartridge, we can increase the temperature necessary to reach equilibrium, and therefore the heat requirements of this cartridge. In other words, the temperature in the cartridge is increased by causing it to absorb more heat, which has the effect of increasing, indirectly therefore, the ammonia pressure in the cartridge. Step b) makes it possible to store heat in at least one of the cartridges occupying the passive state without thereby switching it to the active state. Step c) makes it possible to create an excess of ammonia in at least one of the cartridges occupying the active state, relative to the instantaneous consumption of the stack, and therefore an excess of heat consumption for the cartridge concerned.
Chacune de ces étapes permet de temporairement augmenter la chaleur consommée par les cartouches et donc de diminuer la chaleur générée par la pile qu’il est nécessaire d’éliminer au moyen du radiateur pour que la pile reste à température proche de la température d’utilisation optimale. Each of these steps makes it possible to temporarily increase the heat consumed by the cartridges and therefore to reduce the heat generated by the battery, which must be eliminated by means of the radiator so that the battery remains at a temperature close to the temperature of use. optimal.
Avantageusement, on met en œuvre au moins deux des étapes a), b) et c). Advantageously, at least two of steps a), b) and c) are implemented.
Avantageusement, on met en œuvre les trois étapes a), b) et c). Advantageously, the three steps a), b) and c) are implemented.
On peut ainsi augmenter davantage encore la quantité de chaleur émise par la pile qui est consommée par le système. Cela rend en outre possible de moduler agilement la quantité d’énergie thermique qui est consommée par les cartouches. It is thus possible to further increase the quantity of heat emitted by the cell which is consumed by the system. This also makes it possible to nimbly modulate the amount of thermal energy that is consumed by the cartridges.
Dans un mode de réalisation spécifique, on met en œuvre l’étape d) consistant à diminuer la puissance de la pile. In a specific embodiment, step d) consisting in decreasing the power of the battery is implemented.
Avantageusement, dans l’étape a), on augmente la pression dans au moins une des cartouches occupant l’état actif à une valeur supérieure à 3 bar, de préférence supérieure à 4 bar, préférentiellement supérieure à 5 bar. Advantageously, in step a), the pressure is increased in at least one of the cartridges occupying the active state to a value greater than 3 bar, preferably greater than 4 bar, preferably greater than 5 bar.
Une telle augmentation de pression permet d’augmenter significativement la température d’équilibre thermodynamique dans la cartouche. Par exemple, dans le cas d’une matrice en chlorure de calcium, une augmentation de la pression de 2 bar à 5 bar déplace la température d’équilibre d’environ 45 °C à 65 °C. Such an increase in pressure makes it possible to significantly increase the thermodynamic equilibrium temperature in the cartridge. For example, in the case of a calcium chloride matrix, an increase in pressure from 2 bar to 5 bar shifts the equilibrium temperature from about 45°C to 65°C.
Avantageusement, les cartouches comprennent chacune une matrice en chlorure de calcium apte à absorber et désorber l’ammoniac. Advantageously, the cartridges each comprise a calcium chloride matrix capable of absorbing and desorbing ammonia.
Ce sel permet de stocker efficacement l’ammoniac. This salt effectively stores ammonia.
De manière plus générale, la matrice peut se présenter sous la forme d’un sel de formule générale Ma(NH3)nXz, dans laquelle M est un ou plusieurs cations choisis parmi les métaux alcalins tels que Li, Na, K ou Cs, les métaux alcalino-terreux tels que Mg, Ca ou Sr, et/ou des métaux de transition tels que V, Cr, Mn, Fe, Co, Ni, Cu ou Zn ou leurs combinaisons telles que NaAl, KAI, K2Zn, CsCu ou K2Fe, X est un ou plusieurs anions choisis parmi le fluorure, le chlorure, le bromure, l’iodure , les ions nitrate, le thiocyanate, le sulfate, le molybdate et le phosphate, a est le nombre de cations par molécule de sel, z est le nombre d'anions par molécule de sel et n est le nombre de coordination, compris entre 2 et 12. More generally, the matrix may be in the form of a salt of general formula M a (NH 3 ) nX z , in which M is one or more cations chosen from alkali metals such as Li, Na, K or Cs, alkaline earth metals such as Mg, Ca or Sr, and/or transition metals such as V, Cr, Mn, Fe, Co, Ni, Cu or Zn or their combinations such as NaAl, KAI, K 2 Zn, CsCu or K 2 Fe, X is one or more anions chosen from fluoride, chloride, bromide, iodide, nitrate ions, thiocyanate, sulphate, molybdate and phosphate, a is the number of cations per molecule of salt, z is the number of anions per salt molecule and n is the coordination number, ranging from 2 to 12.
Avantageusement, le circuit d’injection comprend un module de craquage d’ammoniac, apte à transformer l’ammoniac en un mélange gazeux comprenant du diazote, du dihydrogène et de l’ammoniac, et, si nécessaire, un module de purification, apte à réduire la teneur en ammoniac du mélange gazeux. Advantageously, the injection circuit comprises an ammonia cracking module, capable of transforming the ammonia into a gaseous mixture comprising dinitrogen, dihydrogen and ammonia, and, if necessary, a purification module, capable of reduce the ammonia content of the gas mixture.
Il est ainsi possible d’alimenter la pile avec un mélange gazeux particulièrement pur en dihydrogène. Cela permet notamment de rendre l’invention applicable aux piles du type « PEMFC », sigle pour les termes anglo-saxons « Proton Exchange Membrane Fuel Cell », qui ont besoin d’un niveau élevé de pureté en hydrogène pour fonctionner.It is thus possible to supply the cell with a gaseous mixture that is particularly pure in dihydrogen. This makes it possible in particular to make the invention applicable to batteries of the “PEMFC” type, acronym for the Anglo-Saxon terms “Proton Exchange Membrane Fuel Cell”, which need a high level of hydrogen purity to operate.
Avantageusement, le procédé est mis en œuvre à bord d’un véhicule. Advantageously, the method is implemented on board a vehicle.
On prévoit également selon l’invention un système d’alimentation électrique pour véhicule, comprenant : Provision is also made according to the invention for an electrical power supply system for a vehicle, comprising:
- une pile à combustible apte à être alimentée en dihydrogène, - a fuel cell capable of being supplied with dihydrogen,
- plusieurs cartouches de stockage d’ammoniac sous forme absorbée dans une matrice, - several ammonia storage cartridges in absorbed form in a matrix,
- un circuit d’injection reliant une sortie de chacune des cartouches à une entrée de la pile, - an injection circuit connecting an output of each of the cartridges to an input of the stack,
- un circuit de refroidissement de la pile, dans lequel circule un fluide caloporteur, comportant des branches alimentant chacune des cartouches, - a cell cooling circuit, in which a heat transfer fluid circulates, comprising branches supplying each of the cartridges,
- un radiateur apte à refroidir le fluide caloporteur, et - a radiator capable of cooling the heat transfer fluid, and
- une unité de commande apte à mettre en œuvre un procédé de gestion thermique tel que décrit dans ce qui précède. - A control unit capable of implementing a thermal management method as described above.
On prévoit aussi selon l’invention un véhicule automobile comprenant un système d’alimentation tel que décrit dans ce qui précède. There is also provided according to the invention a motor vehicle comprising a supply system as described in the foregoing.
Brève description des figures Brief description of figures
L'invention va maintenant être présentée à l’appui de la description qui va suivre donnée uniquement à titre d'exemple et faite en se référant aux dessins annexés dans lesquels : The invention will now be presented in support of the following description given solely by way of example and made with reference to the appended drawings in which:
[Fig. 1] la figure 1 est un schéma illustrant un système d’alimentation électrique pour véhicule selon un premier mode de réalisation de l’invention, et [Fig. 1] Figure 1 is a diagram illustrating a vehicle power supply system according to a first embodiment of the invention, and
[Fig. 2] la figure 2 est un schéma illustrant un système d’alimentation électrique pour véhicule selon un deuxième mode de réalisation de l’invention. [Fig. 2] Figure 2 is a diagram illustrating a vehicle power supply system according to a second embodiment of the invention.
Description détaillée On a représenté en figure 1 un système d’alimentation électrique 2 pour un véhicule 4 selon un premier mode de réalisation de l’invention. detailed description There is shown in Figure 1 an electrical power supply system 2 for a vehicle 4 according to a first embodiment of the invention.
Le système d’alimentation 2 comprend une pile à combustible 6 du type à hydrogène. Plus spécifiquement, il peut s’agir d’une pile du type communément désigné « AMFC », sigle pour les termes anglo-saxons Alkaline Membrane Fuel Cell, ou « PEMFC », sigle pour les termes anglo-saxons « Proton Exchange Membrane Fuel Cell ». Ces types de pile étant connues de l’état de la technique, leur fonctionnement ne sera pas décrit en détails dans ce qui suit. The power system 2 includes a fuel cell 6 of the hydrogen type. More specifically, it may be a cell of the type commonly designated "AMFC", acronym for the Anglo-Saxon terms Alkaline Membrane Fuel Cell, or "PEMFC", acronym for the Anglo-Saxon terms "Proton Exchange Membrane Fuel Cell ". Since these types of battery are known from the state of the art, their operation will not be described in detail in what follows.
La pile 6 est agencée pour être alimentée en dihydrogène en vue de l’oxyder afin de produire de l’énergie électrique, qui est transmise à des moyens d’entrainement (non représentés) du véhicule 4. Cette réaction d’oxydation étant exothermique, elle génère également de la chaleur qui fait monter la température de la pile 6 lorsqu’elle fonctionne.The cell 6 is arranged to be supplied with dihydrogen with a view to oxidizing it in order to produce electrical energy, which is transmitted to drive means (not shown) of the vehicle 4. This oxidation reaction being exothermic, it also generates heat which raises the temperature of the battery 6 when it operates.
Afin de refroidir la pile 6, le système d’alimentation 2 comprend un circuit de refroidissement 8 de la pile. Ce circuit de refroidissement 8 comprend un conduit, dans lequel s’écoule un fluide caloporteur, qui passe au contact de la pile 6 de sorte que le fluide caloporteur peut échanger de la chaleur avec la pile 6. Cette dernière présente une température optimale d’utilisation, ici de l’ordre de 70°C, à laquelle elle atteint un rendement maximal. Afin de surveiller la température de la pile 6, le circuit de refroidissement 8 comprend des capteurs de température 10 situés en amont et en aval de la pile 6 en considérant le sens de circulation du fluide caloporteur dans le circuit de refroidissement 8. La circulation du fluide caloporteur dans le circuit de refroidissement 8 est permise au moyen d’une pompe 12 située à la sortie de la pile 6. Le sens de circulation du fluide caloporteur dans le circuit de refroidissement 8 est représenté par des flèches sur la figure 1 . In order to cool the stack 6, the power supply system 2 comprises a cooling circuit 8 of the stack. This cooling circuit 8 comprises a conduit, in which a heat transfer fluid flows, which passes into contact with the battery 6 so that the heat transfer fluid can exchange heat with the battery 6. The latter has an optimum temperature of use, here of the order of 70° C., at which it reaches maximum efficiency. In order to monitor the temperature of the cell 6, the cooling circuit 8 comprises temperature sensors 10 located upstream and downstream of the cell 6 by considering the direction of circulation of the heat transfer fluid in the cooling circuit 8. The circulation of the heat transfer fluid in the cooling circuit 8 is allowed by means of a pump 12 located at the outlet of the cell 6. The direction of circulation of the heat transfer fluid in the cooling circuit 8 is represented by arrows in FIG.
Le système d’alimentation 2 comprend un radiateur 14 à travers lequel passe le circuit de refroidissement 8. Le radiateur 14 est exposé à l’air ambiant, si bien que le fluide caloporteur traversant le radiateur 14 peut échanger de la chaleur avec l’air ambiant afin de refroidir le fluide caloporteur. The supply system 2 comprises a radiator 14 through which the cooling circuit 8 passes. The radiator 14 is exposed to the ambient air, so that the heat transfer fluid passing through the radiator 14 can exchange heat with the air. ambient to cool the heat transfer fluid.
Le système d’alimentation 2 comprend plusieurs cartouches de stockage 16 comprenant chacune une matrice 18 permettant le stockage d’ammoniac gazeux, qui est un précurseur de dihydrogène. L’ammoniac est absorbé dans la matrice 18 et peut également être adsorbée sur la matrice 18. A cet effet, la matrice 18 peut être constituée d’un sel, par exemple du chlorure de calcium. Ce sel est particulièrement adapté dans la mesure où une molécule de chlorure de calcium peut former une liaison avec huit molécules d’ammoniac. The supply system 2 comprises several storage cartridges 16 each comprising a matrix 18 allowing the storage of gaseous ammonia, which is a precursor of dihydrogen. The ammonia is absorbed in the matrix 18 and can also be adsorbed on the matrix 18. For this purpose, the matrix 18 can consist of a salt, for example calcium chloride. This salt is particularly suitable since one molecule of calcium chloride can form a bond with eight molecules of ammonia.
Le système d’alimentation 2 comprend un circuit d’injection 20 reliant une sortie de chacune des cartouches 16 à une entrée de la pile 6. Le circuit d’injection 20 a pour fonction de faire transiter l’ammoniac des cartouches 16 vers la pile 6. A la sortie de chaque cartouche 16, le circuit d’injection 20 comprend un capteur de température 10 apte à mesurer la température de l’ammoniac et une valve anti-retour 21. Les valves anti-retour 21 permettent aux cartouches 16 présentant une pression en ammoniac supérieure la pression en ammoniac à l’entrée du circuit d’injection 20 de désorber de l’ammoniac et de l’injecter dans le circuit d’injection 20. The power supply system 2 comprises an injection circuit 20 connecting an output of each of the cartridges 16 to an input of the battery 6. The injection circuit 20 has the function of passing the ammonia from the cartridges 16 to the stack 6. At the outlet of each cartridge 16, the injection circuit 20 comprises a temperature sensor 10 capable of measuring the temperature of the ammonia and a non-return valve 21. The non-return valves 21 allow the cartridges 16 having an ammonia pressure greater than the ammonia pressure at the inlet of the injection circuit 20 to desorb ammonia and inject it into the injection circuit 20 .
Le circuit d’injection 20 comprend une unité de dosage 22 qui permet de doser la quantité d’ammoniac qui est acheminée en direction de la pile 6. Un capteur de pression 24 est placé à une entrée de l’unité de dosage 22 afin de mesurer la pression de l’ammoniac entrant dans l’unité de dosage 22. The injection circuit 20 comprises a metering unit 22 which makes it possible to meter the quantity of ammonia which is conveyed in the direction of the cell 6. A pressure sensor 24 is placed at an inlet of the metering unit 22 in order to measure the pressure of the ammonia entering the dosing unit 22.
Le circuit d’injection 20 comprend un module de craquage 26, situé en aval de l’unité de dosage 22 en considérant le sens de circulation de l’ammoniac dans le circuit d’injection 20, dans laquelle se déroule la réaction de craquage de l’ammoniac. Cette réaction permet de produire, à partir de l’ammoniac, un mélange gazeux comprenant du diazote, du dihydrogène et de l’ammoniac. The injection circuit 20 comprises a cracking module 26, located downstream of the metering unit 22 considering the direction of circulation of the ammonia in the injection circuit 20, in which the cracking reaction of ammonia. This reaction makes it possible to produce, from ammonia, a gaseous mixture comprising dinitrogen, dihydrogen and ammonia.
Le circuit d’injection 20 comprend un module de purification 28, situé en aval du module de craquage 26 en considérant le sens de circulation de l’ammoniac dans le circuit d’injection 20, apte à réduire la teneur en ammoniac du mélange gazeux. Cette étape de purification est critique notamment dans le cas où la pile est du type « PEMFC », ce type de pile nécessitant une alimentation en dihydrogène particulièrement pur. A la sortie du module de purification 28, le mélange gazeux est fourni à la pile 6 en vue de l’oxydation du dihydrogène. The injection circuit 20 comprises a purification module 28, located downstream of the cracking module 26 considering the direction of circulation of the ammonia in the injection circuit 20, capable of reducing the ammonia content of the gaseous mixture. This purification step is critical in particular in the case where the cell is of the “PEMFC” type, this type of cell requiring a supply of particularly pure dihydrogen. At the outlet of the purification module 28, the gaseous mixture is supplied to the cell 6 for the oxidation of the dihydrogen.
Le circuit de refroidissement 8 comprend une vanne à trois voies 30 alimentée par la sortie de la pompe 12. Le fluide caloporteur sortant de la pompe 12 est en partie dirigée en direction du radiateur 14. L’autre partie du fluide caloporteur est dirigée en direction de branches 32 alimentant chacune des cartouches 16. Les branches 32 sont agencées de sorte que les cartouches 16 sont montées en parallèle. Une valve tout-ou-rien 34 est ménagée dans chacune des branches 32 alimentant les cartouches 16, de manière à pouvoir contrôler à tout instant les cartouches 16 par lesquelles le fluide caloporteur doit transiter. Le fluide caloporteur sortant des cartouches 16 est dirigé par le circuit de refroidissement 8 en direction du radiateur 14. The cooling circuit 8 comprises a three-way valve 30 fed by the outlet of the pump 12. The heat transfer fluid leaving the pump 12 is partly directed towards the radiator 14. The other part of the heat transfer fluid is directed towards branches 32 supplying each of the cartridges 16. The branches 32 are arranged so that the cartridges 16 are mounted in parallel. An all-or-nothing valve 34 is provided in each of the branches 32 supplying the cartridges 16, so as to be able to control at any time the cartridges 16 through which the heat transfer fluid must pass. The heat transfer fluid leaving the cartridges 16 is directed by the cooling circuit 8 towards the radiator 14.
Le système d’alimentation 2 comprend une unité de commande 36 apte à commander le fonctionnement des éléments du système d’alimentation. The power supply system 2 comprises a control unit 36 capable of controlling the operation of the elements of the power supply system.
On va maintenant décrire un procédé de gestion thermique du système d’alimentation 2 qui est mis en œuvre à bord du véhicule par l’unité de commande 36. We will now describe a process for thermal management of the power supply system 2 which is implemented on board the vehicle by the control unit 36.
Dans une phase de fonctionnement nominal, la pile 6 permet la production d’environ 100 kW de puissance électrique. Elle présente un rendement qui est de l’ordre de 50%, si bien qu’elle consomme 200 kW de puissance chimique et produit en outre 100 kW de puissance thermique sous la forme de chaleur. Afin d’atteindre cette puissance chimique, il est nécessaire d’alimenter la pile avec un débit massique de 10,75 g/s d’ammoniac (ce qui correspond à un débit molaire de 0,63 mol/s). A cette fin, certaines des cartouches 16 occupent un état actif dans lequel elles relâchent de l’ammoniac gazeux dans le circuit d’injection 20, tandis que les cartouches 16 restantes occupent un état passif dans lequel elles ne relâchent pas d’ammoniac gazeux dans le circuit d’injection 16. La désorption de cette quantité d’ammoniac par seconde nécessite la consommation de 26 kW de puissance thermique par la ou les cartouches 16. Il reste donc 74 kW de puissance thermique à évacuer, notamment par le radiateur 14, afin d’éviter une hausse de température de la pile 6, qui pourrait alors dépasser sa température d’utilisation optimale. In a nominal operating phase, the battery 6 allows the production of approximately 100 kW of electrical power. It has a yield of around 50%, so that it consumes 200 kW of chemical power and additionally produces 100 kW of thermal power in the form of heat. In order to achieve this chemical power, it is necessary to feed the cell with a mass flow of 10.75 g/s of ammonia (which corresponds to a molar flow of 0.63 mol/s). To this end, some of the cartridges 16 occupy an active state in which they release gaseous ammonia into the injection circuit 20, while the remaining cartridges 16 occupy a passive state in which they do not release gaseous ammonia into the injection circuit 16. The desorption of this quantity of ammonia per second requires the consumption of 26 kW of thermal power by the cartridge(s) 16. There therefore remains 74 kW of thermal power to be evacuated, in particular by the radiator 14, in order to avoid a rise in temperature of the battery 6, which could then exceed its optimum operating temperature.
En fonction de la température de l’air ambiant, le radiateur 14 peut ne pas être en mesure de dissiper l’intégralité de la puissance thermique à évacuer. En outre, le véhicule 4 peut être amené à demander à la pile 6 une plus grande puissance électrique, ce qui s’accompagne d’une plus grande puissance thermique à dissiper. Depending on the temperature of the ambient air, the radiator 14 may not be able to dissipate all of the thermal power to be evacuated. In addition, the vehicle 4 may be required to request greater electrical power from the battery 6, which is accompanied by greater thermal power to be dissipated.
Afin d’augmenter temporairement la puissance thermique dissipée par le système d’alimentation 2, l’unité de commande 36 met en œuvre au moins l’une des opérations suivantes : a) On augmente la pression en ammoniac à l’intérieur d’au moins une des cartouches 16 occupant l’état actif. Cela permet de déplacer l’équilibre thermodynamique dans la ou les cartouches concernées. Ce faisant, on augmente la température nécessaire pour atteindre l’équilibre, et donc les besoins en chaleur de cette cartouche. Dans le cas présent, une augmentation de la pression de 2 bar à 5 bar (en valeur absolue) déplace la température d’équilibre d’environ 45 °C à 65 °C. On comprend ainsi que la ou les cartouches concernées ont besoin d’absorber plus de chaleur, émise par la pile, pour maintenir cet équilibre. b) On fait circuler le fluide caloporteur sortant de la pile 6 dans au moins une des cartouches 16 occupant l’état passif. La température dans la ou les cartouches concernées doit alors être surveillées car elle ne doit pas dépasser une température de seuil qui rendrait la ou les cartouches actives, c’est-à-dire que de l’ammoniac commencerait à se désorber dans ces cartouches pour alimenter le circuit d’injection 20. Néanmoins, avant d’atteindre cette température de seuil, la cartouche peut absorber une certaine quantité d’énergie thermique. d) Quand cela est possible, on peut diminuer la puissance électrique produite par la pile 6. Cela a pour conséquence de diminuer la puissance thermique produite par la pile 6, et donc également la puissance thermique que doit dissiper le radiateur 14, et le reste de puissance thermique à dissiper qui ne peut pas être dissipé par le radiateur 14.In order to temporarily increase the thermal power dissipated by the supply system 2, the control unit 36 implements at least one of the following operations: a) The ammonia pressure inside at least one is increased. least one of the cartridges 16 occupying the active state. This makes it possible to shift the thermodynamic equilibrium in the cartridge or cartridges concerned. By doing so, the temperature necessary to reach equilibrium is increased, and therefore the heat requirements of this cartridge. In the present case, an increase in pressure from 2 bar to 5 bar (in absolute value) shifts the equilibrium temperature from about 45°C to 65°C. It is thus understood that the cartridge or cartridges concerned need to absorb more heat, emitted by the battery, to maintain this balance. b) The heat transfer fluid leaving the stack 6 is circulated in at least one of the cartridges 16 occupying the passive state. The temperature in the cartridge(s) concerned must then be monitored because it must not exceed a threshold temperature which would make the cartridge(s) active, i.e. ammonia would begin to be desorbed in these cartridges to supply the injection circuit 20. However, before reaching this threshold temperature, the cartridge can absorb a certain amount of thermal energy. d) When possible, the electrical power produced by battery 6 can be reduced. This has the effect of reducing the thermal power produced by the battery 6, and therefore also the thermal power that the radiator 14 must dissipate, and the rest of the thermal power to be dissipated which cannot be dissipated by the radiator 14.
En fonction de la puissance thermique qui ne peut pas être dissipée par le radiateur 14, on peut choisir de mettre en œuvre une ou deux des opérations parmi les opérations a) et b), et éventuellement d) si elle est permise. En outre, ces opérations peuvent être mises en œuvre pendant des périodes différentes. On comprend ainsi que l’invention permet une gestion agile de la dissipation de la puissance thermique générée par la pile 6. Depending on the thermal power which cannot be dissipated by the radiator 14, one can choose to implement one or two of the operations among operations a) and b), and possibly d) if it is permitted. Moreover, these operations can be implemented during different periods. It is thus understood that the invention allows agile management of the dissipation of the thermal power generated by the battery 6.
On a représenté en figure 2 un système d’alimentation électrique 2’ pour un véhicule 4 selon un deuxième mode de réalisation de l’invention. Les éléments similaires à ceux du premier mode de réalisation portent des références numériques identiques. There is shown in Figure 2 a power supply system 2 'for a vehicle 4 according to a second embodiment of the invention. Elements similar to those of the first embodiment bear identical reference numerals.
Le deuxième mode de réalisation de l’invention diffère de celui du premier mode en ce que le circuit d’injection 20 comprend, en direction opposée à l’unité de dosage 22, un circuit de recyclage 38 dont l’ouverture et la fermeture est assurée par une valve tout- ou-rien 34 agencée en parallèle des cartouches 16 et commandée par l’unité de commande 36. En aval de cette valve, le circuit de recyclage 38 comprend une branche de réinsertion 40 dans chacune des cartouches 16, chaque branche de réinsertion 40 comprenant une valve anti-retour 21 agencée pour empêcher l’ammoniac de sortir des cartouches 16 par les branches de réinsertion 40. The second embodiment of the invention differs from that of the first embodiment in that the injection circuit 20 comprises, in the direction opposite to the metering unit 22, a recycling circuit 38 whose opening and closing is ensured by an all-or-nothing valve 34 arranged in parallel with the cartridges 16 and controlled by the control unit 36. Downstream of this valve, the recycling circuit 38 comprises a reinsertion branch 40 in each of the cartridges 16, each reinsertion branch 40 comprising a non-return valve 21 arranged to prevent ammonia from leaving the cartridges 16 through the reinsertion branches 40.
Le système 2’ fonctionne de la même manière que le système selon le premier mode de réalisation. En outre, il permet la mise en œuvre d’une autre opération afin d’augmenter la puissance thermique consommée par le système : c) On augmente la vitesse de désorption d’ammoniac dans une des cartouches 16 occupant l’état actif, une partie de l’ammoniac désorbé étant stocké dans une des cartouches 16 occupant l’état passif. L’excès d’ammoniac ainsi désorbé passe dans le circuit de recyclage 38 et, par différence de pression, rentre dans les cartouches 16 occupant l’état passif à travers des valves anti-retours 21 des branches de réinsertion 40 correspondantes. System 2' operates in the same way as the system according to the first embodiment. In addition, it allows the implementation of another operation in order to increase the thermal power consumed by the system: c) the ammonia desorption rate is increased in one of the cartridges 16 occupying the active state, a part desorbed ammonia being stored in one of the cartridges 16 occupying the passive state. The excess ammonia thus desorbed passes into the recycling circuit 38 and, by pressure difference, enters the cartridges 16 occupying the passive state through non-return valves 21 of the corresponding reinsertion branches 40.
Les opérations a) et b), et éventuellement d), peuvent être mises en œuvre simultanément à l’opération c) pour augmenter la quantité de puissance thermique utilisée par le système 2’. Operations a) and b), and possibly d), can be implemented simultaneously with operation c) to increase the quantity of thermal power used by the system 2′.
L'invention n'est pas limitée aux modes de réalisation présentés et d'autres modes de réalisation apparaîtront clairement à l'homme du métier. The invention is not limited to the embodiments shown and other embodiments will be apparent to those skilled in the art.
Liste de références List of references
2 ; 2’ : système d’alimentation en énergie 2; 2': energy supply system
4 : véhicule 6 : pile 4: vehicle 6: battery
8 : circuit de refroidissement8: cooling circuit
10 : capteur de température10: temperature sensor
12 : pompe 12: pump
14 : radiateur 14: radiator
16 : cartouche de stockage16: storage cartridge
18 : matrice 18: matrix
20 : circuit d’injection 20: injection circuit
21 : valve anti-retour 21: non-return valve
22 : unité de dosage 22: dosing unit
24 : capteur de pression24: pressure sensor
26 : module de craquage26: cracking modulus
28 : module de purification28: purification module
30 : vanne à trois voies30: three-way valve
32 : branche 32: branch
34 : valve tout-ou-rien 34: on/off valve
36 : unité de commande36: control unit
38 : circuit de recyclage38: recycling circuit
40 : branche de réinsertion 40: reintegration branch

Claims

Revendications Claims
[Revendication 1] Procédé de gestion thermique dans un système d’alimentation électrique (2 ; 2’) pour véhicule, le système comprenant : [Claim 1] A method of thermal management in an electrical power system (2; 2') for a vehicle, the system comprising:
- une pile à combustible (6) apte à être alimentée en dihydrogène,- a fuel cell (6) capable of being supplied with dihydrogen,
- plusieurs cartouches (16) de stockage d’ammoniac sous forme absorbée dans une matrice (18), - several cartridges (16) for storing ammonia in absorbed form in a matrix (18),
- un circuit d’injection (20) reliant une sortie de chacune des cartouches (16) à une entrée de la pile (6), - an injection circuit (20) connecting an output of each of the cartridges (16) to an input of the battery (6),
- un circuit de refroidissement (8) de la pile, dans lequel circule un fluide caloporteur, comportant des branches (32) alimentant chacune des cartouches (16), et - a cooling circuit (8) of the stack, in which circulates a heat transfer fluid, comprising branches (32) supplying each of the cartridges (16), and
- un radiateur (14) apte à refroidir le fluide caloporteur, caractérisé en ce que, au moins une des cartouches (16) occupant un état actif dans lequel elle relâche de l’ammoniac gazeux dans le circuit d’injection (20) et au moins une des cartouches (16) occupant un état passif dans lequel elle ne relâche pas d’ammoniac gazeux dans le circuit d’injection (20), on met en œuvre au moins l’une des étapes suivantes : a) on augmente la pression en ammoniac à l’intérieur d’au moins une des cartouches (16) occupant l’état actif, b) on fait circuler le fluide caloporteur sortant de la pile (6) dans au moins une des cartouches (16) occupant l’état passif, c) on augmente la vitesse de désorption d’ammoniac dans une des cartouches (16) occupant l’état actif, une partie de l’ammoniac désorbé étant stocké dans une des autres cartouches (16), de préférence dans une des cartouches (16) occupant l’état passif.- a radiator (14) capable of cooling the heat transfer fluid, characterized in that, at least one of the cartridges (16) occupying an active state in which it releases gaseous ammonia into the injection circuit (20) and at least one of the cartridges (16) occupying a passive state in which it does not release gaseous ammonia into the injection circuit (20), at least one of the following steps is implemented: a) the pressure is increased in ammonia inside at least one of the cartridges (16) occupying the active state, b) the heat transfer fluid leaving the stack (6) is circulated in at least one of the cartridges (16) occupying the state passive, c) the ammonia desorption rate is increased in one of the cartridges (16) occupying the active state, a part of the desorbed ammonia being stored in one of the other cartridges (16), preferably in one of the cartridges (16) occupying the passive state.
[Revendication 2] Procédé selon la revendication précédente, dans lequel on met en œuvre au moins deux des étapes a), b) et c). [Claim 2] Method according to the preceding claim, in which at least two of steps a), b) and c) are implemented.
[Revendication 3] Procédé selon l’une quelconque des revendications précédentes, dans lequel on met en œuvre les trois étapes a), b) et c). [Claim 3] Process according to any one of the preceding claims, in which the three steps a), b) and c) are carried out.
[Revendication 4] Procédé selon l’une quelconque des revendications précédentes, dans lequel on met également en œuvre l’étape d) consistant à diminuer la puissance de la pile (6). [Claim 4] Method according to any one of the preceding claims, in which step d) consisting in reducing the power of the battery (6) is also implemented.
[Revendication 5] Procédé selon l’une quelconque des revendications précédentes, dans lequel dans l’étape a), on augmente la pression dans au moins une des cartouches (16) occupant l’état actif à une valeur supérieure à 3 bar, de préférence supérieure à 4 bar, préférentiellement supérieure à 5 bar. [Claim 5] Method according to any one of the preceding claims, in which in step a), the pressure is increased in at least one of the cartridges (16) occupying the active state to a value greater than 3 bar, by preferably greater than 4 bar, preferably greater than 5 bar.
[Revendication 6] Procédé selon l’une quelconque des revendications précédentes, dans lequel les cartouches (16) comprennent chacune une matrice (18) en chlorure de calcium apte à absorber et désorber l’ammoniac. [Claim 6] A method according to any preceding claim, wherein the cartridges (16) each comprise a matrix (18) of calcium chloride capable of absorbing and desorbing ammonia.
[Revendication 7] Procédé selon l’une quelconque des revendications précédentes, dans lequel le circuit d’injection (20) comprend un module de craquage d’ammoniac (26), apte à transformer l’ammoniac en un mélange gazeux comprenant du diazote, du dihydrogène et de l’ammoniac, et un module de purification (28), apte à réduire la teneur en ammoniac du mélange gazeux. [Claim 7] Process according to any one of the preceding claims, in which the injection circuit (20) comprises an ammonia cracking module (26), capable of transforming the ammonia into a gaseous mixture comprising dinitrogen, dihydrogen and ammonia, and a purification module (28), capable of reducing the ammonia content of the gaseous mixture.
[Revendication 8] Procédé selon l’une quelconque des revendications précédentes, mis en œuvre à bord d’un véhicule (4). [Claim 8] Method according to any one of the preceding claims, carried out on board a vehicle (4).
[Revendication 9] Système d’alimentation électrique (2 ; 2’) pour véhicule, caractérisé en ce qu’il comprend : [Claim 9] Electric power supply system (2; 2') for a vehicle, characterized in that it comprises:
- une pile à combustible (6) apte à être alimentée en dihydrogène,- a fuel cell (6) capable of being supplied with dihydrogen,
- plusieurs cartouches (16) de stockage d’ammoniac sous forme absorbée dans une matrice (18), - several cartridges (16) for storing ammonia in absorbed form in a matrix (18),
- un circuit d’injection (20) reliant une sortie de chacune des cartouches (16) à une entrée de la pile (6), - an injection circuit (20) connecting an output of each of the cartridges (16) to an input of the battery (6),
- un circuit de refroidissement (8) de la pile, dans lequel circule un fluide caloporteur, comportant des branches (32) alimentant chacune des cartouches (16), - a cooling circuit (8) of the stack, in which circulates a heat transfer fluid, comprising branches (32) supplying each of the cartridges (16),
- un radiateur (14) apte à refroidir le fluide caloporteur, et - a radiator (14) capable of cooling the heat transfer fluid, and
- une unité de commande (36) apte à mettre en œuvre un procédé de gestion thermique selon l’une quelconque des revendications précédentes. - a control unit (36) capable of implementing a thermal management method according to any one of the preceding claims.
[Revendication 10] Véhicule automobile (4) comprenant un système d’alimentation (2 ; 2’) selon la revendication précédente. [Claim 10] Motor vehicle (4) comprising a supply system (2; 2') according to the preceding claim.
EP21786130.1A 2020-09-30 2021-09-28 Method for managing heat in a vehicle fuel cell system Pending EP4222799A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2010005A FR3114692B1 (en) 2020-09-30 2020-09-30 Method for thermal management of a vehicle fuel cell system
PCT/EP2021/076625 WO2022069463A1 (en) 2020-09-30 2021-09-28 Method for managing heat in a vehicle fuel cell system

Publications (1)

Publication Number Publication Date
EP4222799A1 true EP4222799A1 (en) 2023-08-09

Family

ID=73643097

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21786130.1A Pending EP4222799A1 (en) 2020-09-30 2021-09-28 Method for managing heat in a vehicle fuel cell system

Country Status (5)

Country Link
EP (1) EP4222799A1 (en)
JP (1) JP2023546799A (en)
KR (1) KR102584021B1 (en)
FR (1) FR3114692B1 (en)
WO (1) WO2022069463A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5211357B2 (en) * 2008-03-10 2013-06-12 国立大学法人広島大学 Hydrogen storage station, hydrogen supply station and composite cartridge
EP2181963B1 (en) * 2008-10-06 2018-12-12 Amminex Emissions Technology A/S Release of stored ammonia at start-up
EP2543103A1 (en) 2010-03-02 2013-01-09 Amminex A/S Apparatus for generating hydrogen from ammonia stored in solid materials and integration thereof into low temperature fuel cells
EP3125348B1 (en) * 2015-07-31 2018-11-07 Plastic Omnium Advanced Innovation and Research Vehicle system comprising a fuel cell
JP6623091B2 (en) * 2016-03-18 2019-12-18 株式会社Kri Ammonia storage and supply device and ammonia fuel tank

Also Published As

Publication number Publication date
JP2023546799A (en) 2023-11-08
KR20230051314A (en) 2023-04-17
FR3114692A1 (en) 2022-04-01
WO2022069463A1 (en) 2022-04-07
FR3114692B1 (en) 2022-08-26
KR102584021B1 (en) 2023-09-27

Similar Documents

Publication Publication Date Title
FR3116386A1 (en) Method for thermal management of a vehicle fuel cell system
EP1776730B1 (en) Control of the polymer humidifying membrane of a fuel cell
EP2943675B1 (en) Propellant supply circuit
US8148024B2 (en) Method and apparatus for PEM fuel cell freezing protection
WO2022069463A1 (en) Method for managing heat in a vehicle fuel cell system
EP1446298A1 (en) Absorption temperature control system for electric vehicle
WO2022207364A1 (en) System and method for cooling a fuel cell
KR20220061595A (en) System for supplying hydrogen using heat of fuelcell and method for controlling the same
EP1733447B1 (en) Device and method for cooling a electricity generating unit comprising a fuel cell
CA2890285C (en) Electrical installation having a cooled fuel cell comprising an absorption heat engine
EP1593171A1 (en) System for reformation of fuel for supply to a fuel cell on a motor vehicle and method for operation thereof
FR2886765A1 (en) Fuel cell system for motor vehicle, has condenser condensing water vapor resulting from combustion reaction of hydrogen and oxygen which are separated by separation membranes of separation enclosure, and pump circulating condensed water
WO2009004253A2 (en) Method for controlling the temperature of a cathode feedline of a fuel cell
EP1733446B1 (en) Device and method for cooling the power module of a fuel cell
WO2021198227A1 (en) System for storing and delivering ammonia
FR3118154A1 (en) Process for thermal management of an ammonia storage system
CA3221948A1 (en) Reversible system comprising a reversible fuel cell and a metal hydride storage device
FR2886766A1 (en) Fuel cell system for motor vehicle, has condensation unit with heat recuperator cooling gas from fuel cell or burner of reformer, and coolant circulation loop cooling condenser which communicates with heat recuperator
FR2860924A1 (en) Power module for motor vehicle, has control system controlling valve for supplying fuel cell by hydro carbonated fuel reformer or hydrogen storage tank based on external temperature and electrical power required by vehicle
FR3017491A1 (en) ELECTRIC GENERATION GROUP AND STARTING METHOD

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230428

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)