EP4209708B1 - Radial nozzle solid fuel gasification heater - Google Patents

Radial nozzle solid fuel gasification heater Download PDF

Info

Publication number
EP4209708B1
EP4209708B1 EP22215893.3A EP22215893A EP4209708B1 EP 4209708 B1 EP4209708 B1 EP 4209708B1 EP 22215893 A EP22215893 A EP 22215893A EP 4209708 B1 EP4209708 B1 EP 4209708B1
Authority
EP
European Patent Office
Prior art keywords
nozzle
gasification
chamber
gasification chamber
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP22215893.3A
Other languages
German (de)
French (fr)
Other versions
EP4209708C0 (en
EP4209708A1 (en
Inventor
Michal HALADA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bh Property SRO
Original Assignee
Bh Property SRO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bh Property SRO filed Critical Bh Property SRO
Publication of EP4209708A1 publication Critical patent/EP4209708A1/en
Application granted granted Critical
Publication of EP4209708C0 publication Critical patent/EP4209708C0/en
Publication of EP4209708B1 publication Critical patent/EP4209708B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B1/00Combustion apparatus using only lump fuel
    • F23B1/16Combustion apparatus using only lump fuel the combustion apparatus being modified according to the form of grate or other fuel support
    • F23B1/18Combustion apparatus using only lump fuel the combustion apparatus being modified according to the form of grate or other fuel support using inclined grate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B10/00Combustion apparatus characterised by the combination of two or more combustion chambers
    • F23B10/02Combustion apparatus characterised by the combination of two or more combustion chambers including separate secondary combustion chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B50/00Combustion apparatus in which the fuel is fed into or through the combustion zone by gravity, e.g. from a fuel storage situated above the combustion zone
    • F23B50/02Combustion apparatus in which the fuel is fed into or through the combustion zone by gravity, e.g. from a fuel storage situated above the combustion zone the fuel forming a column, stack or thick layer with the combustion zone at its bottom
    • F23B50/06Combustion apparatus in which the fuel is fed into or through the combustion zone by gravity, e.g. from a fuel storage situated above the combustion zone the fuel forming a column, stack or thick layer with the combustion zone at its bottom the flue gases being removed downwards through one or more openings in the fuel-supporting surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B90/00Combustion methods not related to a particular type of apparatus
    • F23B90/04Combustion methods not related to a particular type of apparatus including secondary combustion
    • F23B90/06Combustion methods not related to a particular type of apparatus including secondary combustion the primary combustion being a gasification or pyrolysis in a reductive atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/08Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating
    • F23G5/14Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion
    • F23G5/16Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion in a separate combustion chamber
    • F23G5/165Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion in a separate combustion chamber arranged at a different level
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/36Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a conical combustion chamber, e.g. "teepee" incinerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/10Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of field or garden waste or biomasses
    • F23G7/105Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of field or garden waste or biomasses of wood waste
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/40Gasification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/10Combustion in two or more stages
    • F23G2202/103Combustion in two or more stages in separate chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2209/00Specific waste
    • F23G2209/26Biowaste
    • F23G2209/261Woodwaste

Definitions

  • the invention relates to a solid fuel gasification heater with a radial nozzle.
  • Known heaters of this concept contain a gasification chamber in the upper part and a combustion chamber in the lower part.
  • the gasification chamber almost always has a square or rectangular cross-section.
  • In the upper part it contains a hole for filling with fuel.
  • the gasification chamber and the combustion chamber are separated by a partition.
  • the partition thus forms the bottom of the gasification chamber with its upper surface and the ceiling of the combustion chamber with its lower surface.
  • the partition contains a nozzle (vent or through hole) that connects the gasification chamber and the combustion chamber.
  • the inlet opening (slot) of the nozzle is usually located in the center of the bottom of the gasification chamber.
  • the outlet of the nozzle is located in the wall, which usually forms the ceiling of the combustion chamber.
  • the bottom of the gasification chamber can be horizontal or inclined towards the nozzle.
  • the inclined bottom of the gasification chamber thus has the shape of a four-sided pyramid with the tip at the bottom, with 4 triangular walls or a four-sided channel with a pair of opposing triangular walls and a pair of trapezoidal walls.
  • a heating device with the features of the preamble of claim 1 is known from AT 395 905 B known.
  • the gasification heater works as follows: The fuel turns into gas in the gasification chamber. It flows through the inlet opening into the nozzle, where it burns. The fuel gas flows through the nozzle outlet into the combustion chamber. In the nozzle, air is usually fed into the flame, which promotes combustion. The air is usually fed through an opening in the partition wall that opens into the nozzle.
  • the nozzle is therefore an important element and its quality has a significant influence on the quality of the entire heater. From the functions of the nozzle mentioned above, it becomes clear that the requirements for the spatial arrangement of the nozzle are quite contradictory: the removal of gases and ash requires large dimensions of the nozzle, while the capture of unburned particles or mixing with air requires small dimensions of the nozzle. The ash removal requires multiple inlets in the bottom area, while gas removal requires one inlet in the middle of the bottom. During operation, the walls of the nozzle are exposed to high temperatures (up to 1100° C), gas effects (oxidation and reduction reactions, etc.), ash effects (melting, high-temperature alkaline corrosion, etc.) and mechanical stress from parts of the fuel. This places extraordinary demands on the selection of the materials used.
  • the walls of the nozzle can be made of heat-resistant metal alloys of iron (refractory steel and cast iron). This material is strong and allows you to create any shape (for example, a grate), but its temperature resistance is insufficient and its service life is short.
  • Ceramic is most often used for the walls of the nozzle. Ceramic withstands temperatures well, but is fragile. Its strength, especially in tension, is several times lower than that of metallic materials. Therefore, the ceramic parts must be solid, which imposes significant restrictions on dimensions.
  • nozzle types differ mainly in the shape and number of inlet holes.
  • the most common nozzles are those with an inlet opening and a rectangular cross-section with a clear difference in the sides (elongated). There are also square or round nozzles.
  • the nozzle vent In nozzles with a single inlet opening, the nozzle vent usually follows the inlet opening. The cross-section of the vent widens downwards to prevent parts of the fuel from getting stuck.
  • the outlet opening is therefore usually identical to the inlet opening, but slightly larger.
  • the vents from the individual inlet holes are usually connected to a single outlet hole.
  • each type of nozzle has a different combination of advantages and disadvantages.
  • a square or round nozzle achieves a higher energy value of the gas (and thus the combustion quality) due to its central location in the bottom, but has the disadvantage of a large waste of fuel parts, which are then missing in the gasification chamber. This reduces the efficiency of gasification, while the fuel parts are disruptive in the combustion chamber and worsen the quality of gas combustion.
  • a rectangular nozzle has the advantage (because it is significantly narrower for the same area) that parts of the fuel lose a small drop.
  • its disadvantage is that its ends extend into the peripheral areas of the bottom, where the energy value of the gas is lower. This reduces the overall quality of combustion. The inhomogeneity of the gas flow then worsens the correct mixing with the secondary air. This requires, for example, the need for a homogenization (mixing) chamber behind the outlet of the nozzle, which makes heating more expensive but also more complicated.
  • the effort to achieve the greatest possible share of the above-mentioned advantages leads to the design of nozzles with a relatively small area of the inlet opening, which increases the gas throughput and thus the pressure loss of the nozzle.
  • the heater must be equipped with a fan, while the fan power also increases as the pressure loss of the nozzle increases.
  • High gas velocities locally increase the intensity of oxidation reactions, which increase the temperature due to increased formation of harmful NOX emissions (nitrogen oxides) or cause undesirable melting of ash (slag formation).
  • Nozzles with a larger number of inlet holes have advantageous operating characteristics. However, for reasons of strength, they do not allow the use of ceramic material, so they have to be made of metal. They therefore also have a short lifespan and have to be replaced frequently, which makes them more expensive to operate.
  • Some types of gasification heaters are characterized by a strongly inclined bottom of the gasification chamber towards its center - or the nozzle.
  • the bottom thus forms the shape of a four-sided pyramid with the tip at the bottom. With a sufficient angle of fall (more than 40°), the ash slides down the bottom walls into the nozzle during operation, which is a significant advantage.
  • this type of bottom also has disadvantages. For example, it limits the spatial possibilities of the nozzle, which is why heaters with a strongly inclined bottom usually have a square or round nozzle with the above-mentioned disadvantages (large drop, high gas velocities, large pressure loss).
  • a gasification heater for solid fuels with a radial nozzle containing a gasification chamber and a combustion chamber located below the gasification chamber.
  • the bottom of the gasification chamber is inclined towards the center of the gasification chamber by four inclined walls that form a pyramid shape form, with the tip pointing into the combustion chamber, or forming a trough.
  • the gasification chamber and the combustion chamber are separated by a partition through which the nozzle is guided. Its inlet opening is located in the bottom of the gasification chamber and its outlet opening in the wall of the combustion chamber.
  • the inlet opening of the nozzle consists of a central slot in the shape of a rectangle or square and radial slots forming four rectangular openings. These are located in the edges between the inclined walls of the bottom of the gasification chamber, creating a radial pattern.
  • the central vent of the nozzle is guided under the central slot.
  • the radial slots are followed by channels that open into the central vent, which forms an outlet opening in the walls of the combustion chamber.
  • the channels are located at an angle of at least 40 °, ie the angle of the bottom of the channels relative to the horizontal plane.
  • the side walls of the channels are mutually open to their lower walls (bottom of the channels).
  • Fig.1 shows a gasification heater 100 (gasification boiler) for the manual addition of solid fuel 6, for example wood.
  • the gasification boiler 100 contains a gasification chamber 4 with a square or rectangular cross-section and a combustion chamber 9 arranged below the gasification chamber 4.
  • the gasification chamber 4 and the combustion chamber 9 are separated by a partition wall 5 which forms the bottom 10 of this gasification chamber 4 on the side of the gasification chamber 4, and the combustion-side chambers 9 form the upper inner wall 7 of this combustion chamber.
  • a nozzle 2 consisting of an inlet opening 1 and an outlet opening 3, is guided through the partition wall 5.
  • the floor 10 of the gasification chamber 4 is clearly inclined towards the centre of the gasification chamber 4 by four inclined walls 11.
  • the walls 11 of the gasification chamber 4, which has a square cross-section, are inclined in the shape of a pyramid ( Fig.2 ).
  • the inclined walls 11 of the gasification chamber 4 with rectangular cross-section are inclined in the form of a channel ( Fig.10 ).
  • the inlet opening 1 of the nozzle 2 at the gasification chamber 4 with square cross-section includes a square central slot 13 and radial slots 14. Below the central slot 13 there is a central vent 15 which forms an outlet opening 3 in the wall 7 of the nozzles 2 of the combustion chamber 9.
  • the central vent opening 15 has the shape of a regular prism with a square profile, the upper part of which has folded corners.
  • the radial slots 14 are formed by rectangular openings arranged in the edges 12 of the bottom 10 of the gasification chamber 4. This creates a radial pattern which resembles a four-pointed star or a cross.
  • the channels 8 leading to the central vent 15 are connected to the radial slots 14 through the nozzles 2.
  • the channels 8 are inclined to the central vent 15 at an angle of at least 40°.
  • the side walls 16 of the channels 8 are mutually open to their lower walls 17 ( Fig. 8 and 9 ).
  • the inlet opening 1 of the nozzle 2 on the gasification chamber 4, which has a rectangular cross-section ( Fig. 11 to 15 , 8 and 9 ) contains a central slot 13 of rectangular shape and radial slots 14. Below the opening 15, a central vent 15 is guided with central slot 13, which forms a combustion chamber wall 7, 9.
  • the combustion chamber wall 7, 9 has an outlet opening 3 and nozzles 2.
  • the central vent 15 has a rectangular profile of variable size.
  • the radial slots 14 are formed by rectangular openings located in the edges 12 of the bottom 10 of the gasification chamber 4 and creating a radial pattern.
  • the channels 8 leading to the central vent 15 are connected to the radial slots 14 by the nozzles 2.
  • the channels 8 are inclined to the central vent 15 at an angle of at least 40°.
  • the side walls 16 of the channels 8 are mutually open to their lower walls 17 ( Fig. 8 and 9 ).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Spray-Type Burners (AREA)

Description

Die Erfindung betrifft einen Festbrennstoff-Vergasungserhitzer mit radialer Düse.The invention relates to a solid fuel gasification heater with a radial nozzle.

Das Konzept der Vergasungs- oder Pyrolyseerhitzer für feste Brennstoffe ist weit verbreitet. Es wird hauptsächlich in Warmwasser-Holzkesseln mit manueller Beschickung und in geringerem Umfang in Holzöfen verwendet.The concept of gasification or pyrolysis heaters for solid fuels is widespread. It is mainly used in hot water wood boilers with manual feeding and to a lesser extent in wood stoves.

Bekannte Erhitzer dieses Konzepts enthalten im oberen Teil eine Vergasungskammer und im unteren Teil eine Brennkammer. Die Vergasungskammer hat fast immer einen quadratischen oder rechteckigen Querschnitt. Im oberen Teil enthält sie ein Loch zum Einfüllen von Kraftstoff. Die Vergasungskammer und die Brennkammer sind durch eine Trennwand getrennt. Die Trennwand bildet somit mit ihrer oberen Fläche den Boden der Vergasungskammer und mit ihrer unteren Fläche die Decke der Brennkammer. Die Trennwand enthält eine Düse (Entlüftungs- oder Durchgangsloch), die die Vergasungskammer und die Brennkammer verbindet. Die Eintrittsöffnung (Schlitz) der Düse befindet sich üblicherweise in der Mitte des Bodens der Vergasungskammer. Der Austritt der Düse befindet sich in der Wand, die üblicherweise die Decke der Brennkammer bildet.Known heaters of this concept contain a gasification chamber in the upper part and a combustion chamber in the lower part. The gasification chamber almost always has a square or rectangular cross-section. In the upper part it contains a hole for filling with fuel. The gasification chamber and the combustion chamber are separated by a partition. The partition thus forms the bottom of the gasification chamber with its upper surface and the ceiling of the combustion chamber with its lower surface. The partition contains a nozzle (vent or through hole) that connects the gasification chamber and the combustion chamber. The inlet opening (slot) of the nozzle is usually located in the center of the bottom of the gasification chamber. The outlet of the nozzle is located in the wall, which usually forms the ceiling of the combustion chamber.

Der Boden der Vergasungskammer kann horizontal oder zur Düse geneigt sein. Der geneigte Boden der Vergasungskammer hat somit die Form einer vierseitigen Pyramide mit der Spitze unten, mit 4 dreieckigen Wänden oder einer vierseitigen Rinne mit einem Paar gegenüberliegender dreieckiger Wände und einem Paar trapezförmiger Wände. Ein Heizgerät mit den Merkmalen des Oberbegriffs des Anspruchs 1 ist aus der AT 395 905 B bekannt.The bottom of the gasification chamber can be horizontal or inclined towards the nozzle. The inclined bottom of the gasification chamber thus has the shape of a four-sided pyramid with the tip at the bottom, with 4 triangular walls or a four-sided channel with a pair of opposing triangular walls and a pair of trapezoidal walls. A heating device with the features of the preamble of claim 1 is known from AT 395 905 B known.

Der Vergasungserhitzer funktioniert wie folgt: Der Brennstoff wird in der Vergasungskammer zu Gas. Es strömt durch die Eintrittsöffnung in die Düse, wo es verbrennt. Das Brenngas strömt durch den Düsenaustritt in die Brennkammer. In der Düse wird in der Regel Luft in die Flamme geleitet, was die Verbrennung fördert. Die Luft wird üblicherweise durch eine Öffnung in der Trennwand geleitet, die in die Düse mündet.The gasification heater works as follows: The fuel turns into gas in the gasification chamber. It flows through the inlet opening into the nozzle, where it burns. The fuel gas flows through the nozzle outlet into the combustion chamber. In the nozzle, air is usually fed into the flame, which promotes combustion. The air is usually fed through an opening in the partition wall that opens into the nozzle.

Die Düse des Vergasungserhitzers erfüllt somit mehrere Funktionen:

  • Gasaustritt aus der Vergasungskammer, während es normalerweise wünschenswert ist, dass sich der Auslass im mittleren Teil des Bodens der Vergasungskammer befindet, wo der Energiewert (Temperatur und Heizwert) des Gases am höchsten ist.
  • Entaschung vom Boden der Vergasungskammer.
  • Eindämmung von unverbrannten Teilen des Brennstoffs (Kohle) in der Vergasungskammer (damit sie nicht in die Brennkammer fallen).
The nozzle of the gasification heater therefore fulfils several functions:
  • Gas outlet from the gasification chamber, while it is usually desirable that the outlet be located in the middle part of the bottom of the gasification chamber, where the energy value (temperature and calorific value) of the gas is highest.
  • Ash removal from the bottom of the gasification chamber.
  • Containment of unburned parts of the fuel (coal) in the gasification chamber (so that they do not fall into the combustion chamber).

Die Düse ist daher ein wichtiges Element, und ihre Qualität hat einen wesentlichen Einfluss auf die Qualität des gesamten Erhitzers. Aus den genannten Funktionen der Düse wird deutlich, dass die Anforderungen an die räumliche Anordnung der Düse durchaus widersprüchlich sind: Die Entfernung von Gasen und Asche erfordert große Dimensionen der Düse, während das Auffangen von unverbrannten Partikeln oder das Mischen mit Luft kleine Abmessungen der Düse erfordern. Die Ascheentfernung erfordert mehrere Einlässe im Bodenbereich, während die Gasentfernung einen Einlass in der Mitte des Bodens erfordert. Während des Betriebs sind die Wände der Düse hohen Temperaturen (bis zu 1100° C), Gaseinwirkungen (Oxidations- und Reduktionsreaktionen usw.), Ascheeinwirkungen (Schmelzen, alkalische Hochtemperaturkorrosion usw.) und mechanischer Beanspruchung durch Teile des Kraftstoffs ausgesetzt. Dies stellt außerordentliche Anforderungen an die Auswahl der verwendeten Materialien.The nozzle is therefore an important element and its quality has a significant influence on the quality of the entire heater. From the functions of the nozzle mentioned above, it becomes clear that the requirements for the spatial arrangement of the nozzle are quite contradictory: the removal of gases and ash requires large dimensions of the nozzle, while the capture of unburned particles or mixing with air requires small dimensions of the nozzle. The ash removal requires multiple inlets in the bottom area, while gas removal requires one inlet in the middle of the bottom. During operation, the walls of the nozzle are exposed to high temperatures (up to 1100° C), gas effects (oxidation and reduction reactions, etc.), ash effects (melting, high-temperature alkaline corrosion, etc.) and mechanical stress from parts of the fuel. This places extraordinary demands on the selection of the materials used.

Die Wände der Düse können aus hitzebeständigen Metalllegierungen aus Eisen (feuerfester Stahl und Gusseisen) bestehen. Dieses Material ist stark und ermöglicht das Erstellen beliebiger Formen (z. B. eines Rosts), aber seine Temperaturbeständigkeit ist unzureichend und seine Lebensdauer ist kurz.The walls of the nozzle can be made of heat-resistant metal alloys of iron (refractory steel and cast iron). This material is strong and allows you to create any shape (for example, a grate), but its temperature resistance is insufficient and its service life is short.

Daher wird am häufigsten Keramik für die Wände der Düse verwendet. Keramik hält Temperaturen gut aus, ist aber zerbrechlich. Die Festigkeit, insbesondere bei Zug, ist um ein Vielfaches geringer als bei metallischen Werkstoffen. Daher müssen die Keramikteile massiv sein, was erhebliche Beschränkungen hinsichtlich der Abmessungen mit sich bringt.Therefore, ceramic is most often used for the walls of the nozzle. Ceramic withstands temperatures well, but is fragile. Its strength, especially in tension, is several times lower than that of metallic materials. Therefore, the ceramic parts must be solid, which imposes significant restrictions on dimensions.

Aus den genannten Fakten wird deutlich, dass die Anforderungen an die maßliche Anordnung der Düse erheblich sind.From the above facts it is clear that the requirements for the dimensional arrangement of the nozzle are considerable.

Bekannte Düsentypen unterscheiden sich hauptsächlich in Form und Anzahl der Einlasslöcher. Am häufigsten werden Düsen mit einer Eintrittsöffnung und einem rechteckigen Querschnitt mit deutlichem Seitenunterschied (länglich) verwendet. Es gibt auch quadratische oder runde Düsen. Bei Düsen mit einer einzigen Einlassöffnung folgt die Düsenentlüftung normalerweise der Einlassöffnung. Dabei erweitert sich der Querschnitt der Entlüftung nach unten, um ein Festsetzen von Teilen des Kraftstoffs zu verhindern. Die Auslassöffnung ist daher in der Regel identisch mit der Einlassöffnung, aber etwas größer. Bei Düsen mit einer größeren Anzahl von Einlasslöchern sind die Entlüftungen von den einzelnen Einlasslöchern normalerweise mit einem einzelnen Auslassloch verbunden.Known nozzle types differ mainly in the shape and number of inlet holes. The most common nozzles are those with an inlet opening and a rectangular cross-section with a clear difference in the sides (elongated). There are also square or round nozzles. In nozzles with a single inlet opening, the nozzle vent usually follows the inlet opening. The cross-section of the vent widens downwards to prevent parts of the fuel from getting stuck. The outlet opening is therefore usually identical to the inlet opening, but slightly larger. In nozzles with a larger number of inlet holes the vents from the individual inlet holes are usually connected to a single outlet hole.

Wie bereits erwähnt, sind die Anforderungen an die Düsen widersprüchlich, sodass jeder Düsentyp eine andere Kombination von Vor- und Nachteilen hat. Zum Beispiel erzielt eine quadratische oder runde Düse durch ihre zentrale Lage im Boden einen höheren Energiewert des Gases (und damit die Verbrennungsqualität), hat aber den Nachteil eines großen Abfalls von Brennstoffteilen, die dann in der Vergasungskammer fehlen. Das verringert die Effizienz der Vergasung, während die Brennstoffteile in der Brennkammer störend sind und die Qualität der Gasverbrennung verschlechtern. Andererseits hat eine rechteckige Düse den Vorteil (weil sie bei gleicher Fläche deutlich schmaler ist), dass Teile des Kraftstoffs einen kleinen Tropfen verlieren. Ihr Nachteil besteht aber darin, dass ihre Enden in die Randbereiche des Bodens reichen, wo der Energiewert des Gases niedriger ist. Das verringert die Gesamtqualität der Verbrennung. Die Inhomogenität des Gasstroms verschlechtert dann die richtige Vermischung mit der Sekundärluft. Dies erfordert beispielsweise die Notwendigkeit einer Homogenisierungs-(Misch-)Kammer hinter dem Auslass der Düse, was die Heizung teurer, aber auch komplizierter macht.As mentioned above, the requirements for the nozzles are contradictory, so each type of nozzle has a different combination of advantages and disadvantages. For example, a square or round nozzle achieves a higher energy value of the gas (and thus the combustion quality) due to its central location in the bottom, but has the disadvantage of a large waste of fuel parts, which are then missing in the gasification chamber. This reduces the efficiency of gasification, while the fuel parts are disruptive in the combustion chamber and worsen the quality of gas combustion. On the other hand, a rectangular nozzle has the advantage (because it is significantly narrower for the same area) that parts of the fuel lose a small drop. But its disadvantage is that its ends extend into the peripheral areas of the bottom, where the energy value of the gas is lower. This reduces the overall quality of combustion. The inhomogeneity of the gas flow then worsens the correct mixing with the secondary air. This requires, for example, the need for a homogenization (mixing) chamber behind the outlet of the nozzle, which makes heating more expensive but also more complicated.

Das Bemühen, den größtmöglichen Anteil der genannten Vorteile zu erreichen, führt zur Konstruktion von Düsen mit relativ kleiner Fläche der Eintrittsöffnung, was den Gasdurchsatz und damit den Druckverlust der Düse erhöht. Dazu muss beispielsweise die Heizung mit einem Lüfter ausgestattet werden, während mit zunehmendem Druckverlust der Düse auch die Lüfterleistung zunimmt. Hohe Gasgeschwindigkeiten erhöhen lokal die Intensität von Oxidationsreaktionen, die durch erhöhte Bildung schädlicher NOX-Emissionen (Stickoxide) die Temperatur erhöhen oder ein unerwünschtes Aufschmelzen von Asche (Schlackenbildung) bewirken.The effort to achieve the greatest possible share of the above-mentioned advantages leads to the design of nozzles with a relatively small area of the inlet opening, which increases the gas throughput and thus the pressure loss of the nozzle. For this purpose, for example, the heater must be equipped with a fan, while the fan power also increases as the pressure loss of the nozzle increases. High gas velocities locally increase the intensity of oxidation reactions, which increase the temperature due to increased formation of harmful NOX emissions (nitrogen oxides) or cause undesirable melting of ash (slag formation).

Düsen mit einer größeren Anzahl von Einlasslöchern haben vorteilhafte Betriebseigenschaften. Sie erlauben jedoch aus Festigkeitsgründen keine Verwendung von keramischem Material, daher müssen sie aus Metall hergestellt werden. Sie haben daher auch eine kurze Lebensdauer und müssen häufig gewechselt werden, was den Betrieb verteuert.Nozzles with a larger number of inlet holes have advantageous operating characteristics. However, for reasons of strength, they do not allow the use of ceramic material, so they have to be made of metal. They therefore also have a short lifespan and have to be replaced frequently, which makes them more expensive to operate.

Einige Arten von Vergasungserhitzern zeichnen sich durch einen stark geneigten Boden der Vergasungskammer in Richtung ihrer Mitte - oder der Düse - aus. Der Boden bildet somit die Form einer vierseitigen Pyramide mit der Spitze unten. Bei ausreichendem Fallwinkel (mehr als 40°) rutscht die Asche im Betrieb an den Bodenwänden herunter in die Düse, was einen erheblichen Vorteil darstellt. Allerdings bringt diese Bodenart auch Nachteile mit sich. Sie schränkt z. B. die räumlichen Möglichkeiten der Düse ein, weshalb Erhitzer mit stark geneigtem Boden meist eine quadratische oder runde Düse mit den oben genannten Mängeln (großer Tropfen, hohe Gasgeschwindigkeiten, großer Druckverlust) aufweisen. Dieser Nachteil verschlechtert die Eigenschaften eines stark abfallenden Bodens derart, dass die meisten Hersteller von Vergasungsöfen einen waagerechten oder leicht abfallenden Boden (5 - 10°) bevorzugen. Der Nachteil dieser Bodentypen ist, dass die Asche nicht durch die Düse in die Brennkammer strömt und sich am Boden der Vergasungskammer ansammelt. Dies mindert die Verbrennungsqualität und belastet den Betreiber (Heizung muss regelmäßig abgeschaltet und die Asche entfernt werden).Some types of gasification heaters are characterized by a strongly inclined bottom of the gasification chamber towards its center - or the nozzle. The bottom thus forms the shape of a four-sided pyramid with the tip at the bottom. With a sufficient angle of fall (more than 40°), the ash slides down the bottom walls into the nozzle during operation, which is a significant advantage. However, this type of bottom also has disadvantages. For example, it limits the spatial possibilities of the nozzle, which is why heaters with a strongly inclined bottom usually have a square or round nozzle with the above-mentioned disadvantages (large drop, high gas velocities, large pressure loss). This disadvantage worsens the properties of a strongly sloping bottom to such an extent that most manufacturers of gasification furnaces prefer a horizontal or slightly sloping bottom (5 - 10°). The disadvantage of these types of bottom is that the ash does not flow through the nozzle into the combustion chamber and accumulates at the bottom of the gasification chamber. This reduces the combustion quality and places a burden on the operator (the heating must be switched off regularly and the ash removed).

Zusammenfassend lässt sich sagen: Existierende Düsen von Vergasungsöfen weisen viele Mängel auf, deren Anteil je nach Art und Größe der Form und dem Gefälle (Grad des Gefälles) des Bodens variiert. Diese Mängel sind bei Heizgeräten mit geneigtem Boden besonders ausgeprägt.In summary, existing nozzles of gasification furnaces have many defects, the extent of which varies depending on the type and size of the shape and slope (degree of slope) of the bottom. These defects are particularly pronounced in heaters with an inclined bottom.

Die Mängel bekannter Vergasungserhitzer-Düsen-Lösungen werden durch einen Vergasererhitzer für feste Brennstoffe mit einer Radialdüse, die eine Vergasungskammer und eine unterhalb der Vergasungskammer angeordnete Brennkammer enthält, vollständig oder weitgehend beseitigt. Der Boden der Vergasungskammer ist zur Mitte der Vergasungskammer durch vier geneigte Wände geneigt, die eine Pyramidenform bilden, wobei die Spitze in die Brennkammer zeigt, oder eine Mulde bildet. Die Vergasungskammer und die Brennkammer sind durch eine Trennwand getrennt, durch die die Düse geführt ist. Deren Eintrittsöffnung befindet sich im Boden der Vergasungskammer und deren Austrittsöffnung in der Wand der Brennkammer. Das Wesen der Erfindung besteht darin, dass die Einlassöffnung der Düse aus einem zentralen Schlitz in Form eines Rechtecks oder Quadrats und aus radialen Schlitzen besteht, die vier rechteckige Öffnungen bilden. Diese befinden sich in den Rändern zwischen den geneigten Wänden des Bodens der Vergasungskammer, wodurch ein radiales Muster entsteht. Die zentrale Entlüftung der Düse wird unter dem zentralen Schlitz geführt. An die radialen Schlitze schließen sich Kanäle an, die in die zentrale Entlüftung münden, die eine Austrittsöffnung in den Wänden der Brennkammer bildet. Dabei befinden sich die Kanäle in einem Winkel von mindestens 40°, d. h. dem Winkel von der Unterseite der Kanäle relativ zur horizontalen Ebene. Die Seitenwände der Kanäle sind gegenseitig zu ihren unteren Wänden (Boden der Kanäle) hin geöffnet.The shortcomings of known gasification heater nozzle solutions are completely or largely eliminated by a gasification heater for solid fuels with a radial nozzle containing a gasification chamber and a combustion chamber located below the gasification chamber. The bottom of the gasification chamber is inclined towards the center of the gasification chamber by four inclined walls that form a pyramid shape form, with the tip pointing into the combustion chamber, or forming a trough. The gasification chamber and the combustion chamber are separated by a partition through which the nozzle is guided. Its inlet opening is located in the bottom of the gasification chamber and its outlet opening in the wall of the combustion chamber. The essence of the invention is that the inlet opening of the nozzle consists of a central slot in the shape of a rectangle or square and radial slots forming four rectangular openings. These are located in the edges between the inclined walls of the bottom of the gasification chamber, creating a radial pattern. The central vent of the nozzle is guided under the central slot. The radial slots are followed by channels that open into the central vent, which forms an outlet opening in the walls of the combustion chamber. The channels are located at an angle of at least 40 °, ie the angle of the bottom of the channels relative to the horizontal plane. The side walls of the channels are mutually open to their lower walls (bottom of the channels).

Die Vorteile der Erfindung sind:

  • Dank der radialen Form und der diagonalen Anordnung hat der Einlassbereich eine 2 - 3x größere Fläche als eine gleich breite rechteckige Düse, die traditionell im mittleren Teil des Bodens (d. h. parallel zur Seitenwand der Vergasungskammer) angeordnet ist.
  • Das Austrittsloch konzentriert die Rauchgase zu einem kompakten Strom, was die Homogenität der Gase und die Qualität der Verbrennung erhöht.
  • Die Geometrie der Düse erlaubt den Einsatz von Keramik (die Teile zwischen den einzelnen Balken sind ausreichend massiv).
  • Der große Querschnitt der Düse reduziert den Druckverlust, was die Leistung des Ventilators reduziert und sogar den Betrieb nur mit dem natürlichen Schornsteinzug ermöglicht.
  • Der Abfall eines Teils des Kraftstoffs ist deutlich kleiner als bei Düsen mit quadratischer oder kreisförmiger Eintrittsöffnung (von gleicher Fläche), die vorhandenen Heizungen mit einem deutlich abfallenden Boden haben.
The advantages of the invention are:
  • Thanks to the radial shape and diagonal arrangement, the inlet area has a 2 - 3x larger area than a rectangular nozzle of the same width, which is traditionally located in the central part of the bottom (i.e. parallel to the side wall of the gasification chamber).
  • The exit hole concentrates the flue gases into a compact stream, which increases the homogeneity of the gases and the quality of combustion.
  • The geometry of the nozzle allows the use of ceramics (the parts between the individual beams are sufficiently solid).
  • The large cross-section of the nozzle reduces the pressure loss, which reduces the power of the fan and even allows operation only with the natural chimney draft.
  • The drop in a portion of the fuel is significantly smaller than in nozzles with square or circular inlet openings (of the same area), which have existing heaters with a significantly sloping bottom.

Die Erfindung wird anhand der beigefügten Figuren näher erläutert. Es zeigen:

Fig. 1
ein Seitenteil eines Vergasungserhitzers mit stark geneigtem Boden mit Radialdüse,
Fig. 2
eine dimensionale Ansicht einer Vergasungskammer mit quadratischem Querschnitt und pyramidenstumpfförmigem Schrägboden,
Fig. 3
eine dimensionale Ansicht einer Düse in einem Vergaserheizer mit einer Vergasungskammer mit quadratischem Querschnitt,
Fig. 3.1
eine Draufsicht auf die Düse aus Fig. 3,
Fig. 3.2
einen Schnitt A-A orientiert an Fig. 3.1,
Fig. 3.3
eine Unteransicht der Düse aus Fig. 3,
Fig. 4
eine räumliche Darstellung der Düse und Teile der Düse aus Fig. 3,
Fig. 5
eine räumliche Darstellung der Düsenkanäle aus Fig. 3,
Fig. 6
eine räumliche Darstellung der zentralen Entlüftung der Düse aus Fig. 3,
Fig. 7
eine räumliche Darstellung der Eingangsöffnung aus Fig. 3,
Fig. 8
einen Schnitt B-B orientiert an Fig. 3.1, der die Form des Kanals zeigt,
Fig. 9
eine räumliche Darstellung des Kanals aus Fig. 3,
Fig. 10
eine dreidimensionale Ansicht einer Vergasungskammer mit rechteckigem Querschnitt und schrägem, wannenförmigem Boden,
Fig. 11
eine Raumansicht einer Düse in einem Vergaserheizer mit einer im Querschnitt rechteckigen Vergasungskammer
Fig. 11.1
eine Draufsicht auf die Düse aus Fig. 11,
Fig. 11.2
einen Schnitt A-A orientiert an Fig. 11.1,
Fig. 11.3
eine Unteransicht der Düse aus Fig. 11,
Fig. 12
eine räumliche Darstellung der Düse und Teile der Düse aus Fig. 11,
Fig. 13
eine räumliche Darstellung der Düsenkanäle aus Fig. 11,
Fig. 14
eine räumliche Darstellung der zentralen Entlüftung der Düse aus Fig. 11 und
Fig. 15
eine räumliche Darstellung der Eintrittsöffnung der Düse aus Fig. 11.
The invention is explained in more detail with reference to the attached figures. They show:
Fig.1
a side part of a gasification heater with a steeply inclined bottom with radial nozzle,
Fig. 2
a dimensional view of a gasification chamber with a square cross-section and a truncated pyramid-shaped sloping floor,
Fig. 3
a dimensional view of a nozzle in a carburetor heater with a gasification chamber with a square cross-section,
Fig. 3.1
a top view of the nozzle Fig.3 ,
Fig. 3.2
a section AA oriented to Fig. 3.1 ,
Fig. 3.3
a bottom view of the nozzle Fig.3 ,
Fig.4
a spatial representation of the nozzle and parts of the nozzle Fig.3 ,
Fig.5
a spatial representation of the nozzle channels from Fig.3 ,
Fig.6
a spatial representation of the central vent of the nozzle from Fig.3 ,
Fig.7
a spatial representation of the entrance opening Fig.3 ,
Fig.8
a cut BB based on Fig. 3.1 , which shows the shape of the channel,
Fig.9
a spatial representation of the channel Fig.3 ,
Fig.10
a three-dimensional view of a gasification chamber with a rectangular cross-section and a sloping, trough-shaped floor,
Fig. 11
a spatial view of a nozzle in a carburetor heater with a gasification chamber with a rectangular cross-section
Fig.11.1
a top view of the nozzle Fig. 11 ,
Fig. 11.2
a section AA oriented to Fig.11.1 ,
Fig.11.3
a bottom view of the nozzle Fig. 11 ,
Fig. 12
a spatial representation of the nozzle and parts of the nozzle Fig. 11 ,
Fig. 13
a spatial representation of the nozzle channels from Fig. 11 ,
Fig. 14
a spatial representation of the central vent of the nozzle from Fig. 11 and
Fig. 15
a spatial representation of the inlet opening of the nozzle Fig. 11 .

Fig. 1 zeigt einen Vergasungserhitzer 100 (Vergasungskessel) zur manuellen Zugabe von Festbrennstoff 6, beispielsweise Holz. Fig.1 shows a gasification heater 100 (gasification boiler) for the manual addition of solid fuel 6, for example wood.

Der Vergasungskessel 100 enthält eine Vergasungskammer 4 mit quadratischem oder rechteckigem Querschnitt und eine unterhalb der Vergasungskammer 4 angeordnete Verbrennungskammer 9. Die Vergasungskammer 4 und die Verbrennungskammer 9 sind durch eine Trennwand 5 getrennt, die auf der Seite der Vergasungskammer 4 den Boden 10 dieser Vergasungskammer 4 bildet, und die brennseitigen Kammern 9 bilden die obere Innenwand 7 dieser Brennkammer.The gasification boiler 100 contains a gasification chamber 4 with a square or rectangular cross-section and a combustion chamber 9 arranged below the gasification chamber 4. The gasification chamber 4 and the combustion chamber 9 are separated by a partition wall 5 which forms the bottom 10 of this gasification chamber 4 on the side of the gasification chamber 4, and the combustion-side chambers 9 form the upper inner wall 7 of this combustion chamber.

Durch die Trennwand 5 ist eine Düse 2, bestehend aus einer Eintrittsöffnung 1 und einer Austrittsöffnung 3, geführt. Der Boden 10 der Vergasungskammer 4 ist durch vier geneigte Wände 11 deutlich zur Mitte der Vergasungskammer 4 hin geneigt Die Wände 11 der im Querschnitt quadratischen Vergasungskammer 4 sind in Form einer Pyramide geneigt (Fig. 2). Die geneigten Wände 11 der Vergasungskammer 4 mit rechteckigem Querschnitt sind in Form einer Rinne geneigt (Fig. 10).A nozzle 2, consisting of an inlet opening 1 and an outlet opening 3, is guided through the partition wall 5. The floor 10 of the gasification chamber 4 is clearly inclined towards the centre of the gasification chamber 4 by four inclined walls 11. The walls 11 of the gasification chamber 4, which has a square cross-section, are inclined in the shape of a pyramid ( Fig.2 ). The inclined walls 11 of the gasification chamber 4 with rectangular cross-section are inclined in the form of a channel ( Fig.10 ).

Die Eintrittsöffnung 1 der Düse 2 an der Vergasungskammer 4 mit quadratischem Querschnitt (Fig. 3 bis 9) enthält einen quadratischen zentralen Schlitz 13 und radiale Schlitze 14. Unter dem zentralen Schlitz 13 befindet sich eine zentrale Entlüftung 15, die eine Austrittsöffnung 3 in der Wand 7 der Düsen 2 der Verbrennungskammer 9 bildet. Die zentrale Entlüftungsöffnung 15 hat die Form eines regelmäßigen Prismas mit quadratischem Profil, dessen oberer Teil gefaltete Ecken hat. Die radialen Schlitze 14 werden durch rechteckige Öffnungen gebildet, die in den Rändern 12 des Bodens 10 der Vergasungskammer 4 angeordnet sind. Dadurch wird ein radiales Muster erzeugt, das einem vierzackigen Stern oder einem Kreuz ähnelt. Die Kanäle 8, die zu der zentralen Entlüftung 15 führen, sind mit den radialen Schlitzen 14 durch die Düsen 2 verbunden. Die Kanäle 8 sind zu der zentralen Entlüftung 15 in einem Winkel von mindestens 40° geneigt. Die Seitenwände 16 der Kanäle 8 sind gegenseitig zu ihren unteren Wänden 17 geöffnet (Fig. 8 und 9).The inlet opening 1 of the nozzle 2 at the gasification chamber 4 with square cross-section ( Fig. 3 to 9 ) includes a square central slot 13 and radial slots 14. Below the central slot 13 there is a central vent 15 which forms an outlet opening 3 in the wall 7 of the nozzles 2 of the combustion chamber 9. The central vent opening 15 has the shape of a regular prism with a square profile, the upper part of which has folded corners. The radial slots 14 are formed by rectangular openings arranged in the edges 12 of the bottom 10 of the gasification chamber 4. This creates a radial pattern which resembles a four-pointed star or a cross. The channels 8 leading to the central vent 15 are connected to the radial slots 14 through the nozzles 2. The channels 8 are inclined to the central vent 15 at an angle of at least 40°. The side walls 16 of the channels 8 are mutually open to their lower walls 17 ( Fig. 8 and 9 ).

Die Eintrittsöffnung 1 der Düse 2 an der im Querschnitt rechteckigen Vergasungskammer 4 (Fig. 11 bis 15, 8 und 9) enthält einen zentralen Schlitz 13 von rechteckiger Form und radiale Schlitze 14. Unterhalb der Öffnung 15 ist eine zentrale Entlüftung 15 mit zentralem Schlitz 13 geführt, der eine Brennkammerwand 7, 9 bildet. Die Brennkammerwand 7, 9 weist eine Austrittsöffnung 3 und Düsen 2 auf. Die zentrale Entlüftung 15 hat ein rechteckiges Profil variabler Größe. Die radialen Schlitze 14 werden durch rechteckige Öffnungen gebildet, die sich in den Rändern 12 des Bodens 10 der Vergasungskammer 4 befinden und ein radiales Muster erzeugen. Die Kanäle 8, die zu der zentralen Entlüftung 15 führen, sind mit den radialen Schlitzen 14 durch die Düsen 2 verbunden. Die Kanäle 8 sind zu der zentralen Entlüftung 15 in einem Winkel von mindestens 40° geneigt. Die Seitenwände 16 der Kanäle 8 sind gegenseitig zu ihren unteren Wänden 17 geöffnet (Fig. 8 und 9).The inlet opening 1 of the nozzle 2 on the gasification chamber 4, which has a rectangular cross-section ( Fig. 11 to 15 , 8 and 9 ) contains a central slot 13 of rectangular shape and radial slots 14. Below the opening 15, a central vent 15 is guided with central slot 13, which forms a combustion chamber wall 7, 9. The combustion chamber wall 7, 9 has an outlet opening 3 and nozzles 2. The central vent 15 has a rectangular profile of variable size. The radial slots 14 are formed by rectangular openings located in the edges 12 of the bottom 10 of the gasification chamber 4 and creating a radial pattern. The channels 8 leading to the central vent 15 are connected to the radial slots 14 by the nozzles 2. The channels 8 are inclined to the central vent 15 at an angle of at least 40°. The side walls 16 of the channels 8 are mutually open to their lower walls 17 ( Fig. 8 and 9 ).

BezugszeichenlisteList of reference symbols

1 -1 -
EingangslochEntrance hole
2 -2 -
Düsejet
3 -3 -
AuslasslochOutlet hole
4 -4 -
VergasungskammerGasification chamber
5 -5 -
SchottBulkhead
6 -6 -
Kraftstofffuel
7 -7 -
WandWall
8 -8th -
Kanalchannel
9 -9 -
BrennkammerCombustion chamber
10 -10 -
untenbelow
11 -11 -
schräge Wandsloping wall
12 -12 -
KanteEdge
13 -13 -
MittelspaltCenter gap
14 -14 -
RadialspaltRadial gap
15 -15 -
zentrale Entlüftungcentral ventilation
16 -16 -
SeitenwandSide wall
17 -17 -
untere Wandlower wall
100 -100 -
HeizungHeating

Claims (1)

  1. Radial nozzle solid fuel gasification heater with a jet nozzle (2), a gasification chamber (4) with a bottom (10), and a combustion chamber (9) is located below the gasification chamber (4) and the bottom (10) of the gasification chamber (4) slopes towards its centre by four inclined walls (11) which form a pyramidal shape with the apex pointing to the combustion chamber (9) or form a trough, the gasification chamber (4) and the combustion chamber (9) are separated by a partition (5), which on the side of the gasification chamber (4) forms the bottom (10) of this gasification chamber (4) and on the side of the combustion chamber (9) forms the upper inner wall (7) of this combustion chamber (9), the partition (5) being guided nozzle (2) the inlet opening (1) of which is in the bottom of the gasification chamber (4) and the outlet opening (3) is in the wall (7) of the combustion chamber (9), characterized in that the inlet opening (1) of the nozzle (2) consists of a rectangular or square central slot (13) and rectangular radial slots (14), which are formed in the edges (12) between the inclined walls (11) of the bottom (10) of the gasification chamber (4), wherein under the central slot (13) there is a central vent (15) of nozzles (2) forming a through hole, and the radial slots (14) are connected by channels (8) which go into the central vent (15) which forms in the wall (7) ) of the combustion chamber (9) outlet hole (3), wherein the channels (8) are sloped towards the central vent (15) at an angle of at least 40°, and the side walls (16) of the channels (8) are mutually opened towards their lower walls (17).
EP22215893.3A 2022-01-03 2022-12-22 Radial nozzle solid fuel gasification heater Active EP4209708B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CZ2022-1A CZ20221A3 (en) 2022-01-03 2022-01-03 Solid fuel gasification heater with radial nozzle

Publications (3)

Publication Number Publication Date
EP4209708A1 EP4209708A1 (en) 2023-07-12
EP4209708C0 EP4209708C0 (en) 2024-05-15
EP4209708B1 true EP4209708B1 (en) 2024-05-15

Family

ID=85477724

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22215893.3A Active EP4209708B1 (en) 2022-01-03 2022-12-22 Radial nozzle solid fuel gasification heater

Country Status (2)

Country Link
EP (1) EP4209708B1 (en)
CZ (1) CZ20221A3 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0154956B1 (en) * 1984-03-16 1988-06-15 UNICAL S.p.A. Burner for a solid fuel-fired steel construction boiler
AT395905B (en) * 1988-03-09 1993-04-26 Prueller Josef Grate firing system, in particular for heating boilers
EP0409790A1 (en) * 1989-07-19 1991-01-23 Willi Hager Combustion installation
EP0563499A1 (en) * 1992-03-31 1993-10-06 Liebi Lnc Ag Wood gasification boiler
KR100995412B1 (en) * 2008-07-02 2010-11-18 김일상 Firewood boiler
EP2615369B1 (en) * 2012-01-16 2019-05-29 Decona Holding B.V. Heating device
CN203629009U (en) * 2013-12-17 2014-06-04 迅达科技集团股份有限公司 Normal pressure hot water boiler for half-gasification of biomass
CN204176630U (en) * 2014-09-23 2015-02-25 韩秀峰 Biomass gasification fired normal-pressure boiler
CZ2018122A3 (en) * 2018-03-12 2019-07-03 Blaze Harmony S.R.O. Solid fuel heater with three-zone combustion air supply

Also Published As

Publication number Publication date
EP4209708C0 (en) 2024-05-15
CZ309513B6 (en) 2023-03-15
CZ20221A3 (en) 2023-03-15
EP4209708A1 (en) 2023-07-12

Similar Documents

Publication Publication Date Title
DE60013307T2 (en) INJECTION NOZZLE FOR SUPPLYING COMBUSTIBLE FABRIC INTO A BOILER
EP2029939B1 (en) Furnace for solid fuels
EP4209708B1 (en) Radial nozzle solid fuel gasification heater
DE69412999T2 (en) ROOM HEATER FOR SOLID FUELS
DE69300272T2 (en) Ceramic burner for a blast furnace blast heater.
DE19612403A1 (en) boiler
EP1477736B1 (en) Heating Device
DE1803985A1 (en) Heat generator, especially blast furnace heaters
DE102008038763B4 (en) Solid fuel fireplace
DE2700786C3 (en) Ceramic gas burner for wind heaters
LU85029A1 (en) FIREPLACE-FREE WINTER HEATER
DE19729506C2 (en) Boiler for firing solid fuels
DE4009316C2 (en) Solid fuel heater
DE3503553C2 (en)
DE3927803C2 (en) Solid fuel heater, especially tiled stove use
EP3228935B1 (en) Method for low nitrous oxide combustion of solid, liquid or gaseous fuels, especially coal dust, a burner and a furnace for performing said method
EP0483878A2 (en) Combustion device for wood and coal
EP0107244A1 (en) Furnace heated by means of a regenerator
DE8712826U1 (en) Furnace for various solid fuels
WO1982000331A1 (en) Hot gas generator
AT412306B (en) SOLID FUEL OVEN
DE4101101C2 (en) Solid fuel heater with auxiliary air supply
DE356982C (en) Grate structure for pulverized coal firing
AT515113B1 (en) firing
DE4316337B4 (en) Furnace for solid fuels

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230920

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F23G 7/10 20060101ALI20231121BHEP

Ipc: F23G 5/36 20060101ALI20231121BHEP

Ipc: F23G 5/16 20060101ALI20231121BHEP

Ipc: F23G 5/027 20060101ALI20231121BHEP

Ipc: F23B 90/06 20110101ALI20231121BHEP

Ipc: F23B 50/06 20060101ALI20231121BHEP

Ipc: F23B 10/02 20110101ALI20231121BHEP

Ipc: F23B 30/00 20060101AFI20231121BHEP

INTG Intention to grant announced

Effective date: 20231212

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BH PROPERTY S.R.O.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502022000912

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20240529

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20240606

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 44302

Country of ref document: SK