EP4205746A1 - Compound for inhibiting mutant egfr and use thereof - Google Patents
Compound for inhibiting mutant egfr and use thereof Download PDFInfo
- Publication number
- EP4205746A1 EP4205746A1 EP21860587.1A EP21860587A EP4205746A1 EP 4205746 A1 EP4205746 A1 EP 4205746A1 EP 21860587 A EP21860587 A EP 21860587A EP 4205746 A1 EP4205746 A1 EP 4205746A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cancer
- egfr
- mutation
- mutations
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 150000001875 compounds Chemical class 0.000 title claims abstract description 52
- 230000002401 inhibitory effect Effects 0.000 title claims description 14
- 108060006698 EGF receptor Proteins 0.000 title description 2
- 230000035772 mutation Effects 0.000 claims abstract description 160
- YOHYSYJDKVYCJI-UHFFFAOYSA-N n-[3-[[6-[3-(trifluoromethyl)anilino]pyrimidin-4-yl]amino]phenyl]cyclopropanecarboxamide Chemical compound FC(F)(F)C1=CC=CC(NC=2N=CN=C(NC=3C=C(NC(=O)C4CC4)C=CC=3)C=2)=C1 YOHYSYJDKVYCJI-UHFFFAOYSA-N 0.000 claims abstract description 20
- 102000052116 epidermal growth factor receptor activity proteins Human genes 0.000 claims abstract description 18
- 201000010099 disease Diseases 0.000 claims abstract description 17
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 17
- 101001012157 Homo sapiens Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 claims abstract description 12
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 claims abstract description 12
- 229940079593 drug Drugs 0.000 claims abstract description 11
- 239000003814 drug Substances 0.000 claims abstract description 11
- 150000003839 salts Chemical class 0.000 claims abstract description 11
- 238000002360 preparation method Methods 0.000 claims abstract description 4
- 108700015053 epidermal growth factor receptor activity proteins Proteins 0.000 claims abstract 14
- 230000037431 insertion Effects 0.000 claims description 36
- 238000003780 insertion Methods 0.000 claims description 36
- 102200048929 rs121913444 Human genes 0.000 claims description 19
- 102220014433 rs121913418 Human genes 0.000 claims description 15
- 206010028980 Neoplasm Diseases 0.000 claims description 12
- 201000011510 cancer Diseases 0.000 claims description 11
- 102220014448 rs1554350381 Human genes 0.000 claims description 11
- 102220014441 rs397517109 Human genes 0.000 claims description 11
- 208000002154 non-small cell lung carcinoma Diseases 0.000 claims description 10
- 102200048955 rs121434569 Human genes 0.000 claims description 10
- 102220055958 rs727504263 Human genes 0.000 claims description 10
- 102220052594 rs1554350347 Human genes 0.000 claims description 9
- 102220014445 rs397517112 Human genes 0.000 claims description 9
- 102220014447 rs397517114 Human genes 0.000 claims description 9
- 102220055972 rs397517115 Human genes 0.000 claims description 9
- 102220014449 rs397517116 Human genes 0.000 claims description 9
- 102220052597 rs727503013 Human genes 0.000 claims description 9
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 claims description 8
- 108020004705 Codon Proteins 0.000 claims description 6
- 230000037430 deletion Effects 0.000 claims description 6
- 238000012217 deletion Methods 0.000 claims description 6
- 230000001404 mediated effect Effects 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 6
- 102200048951 rs121913465 Human genes 0.000 claims description 6
- 102200048796 rs28929495 Human genes 0.000 claims description 6
- 102220014234 rs397516981 Human genes 0.000 claims description 6
- 208000010507 Adenocarcinoma of Lung Diseases 0.000 claims description 5
- 206010006187 Breast cancer Diseases 0.000 claims description 5
- 208000026310 Breast neoplasm Diseases 0.000 claims description 5
- 206010008342 Cervix carcinoma Diseases 0.000 claims description 5
- 206010009944 Colon cancer Diseases 0.000 claims description 5
- 102000001301 EGF receptor Human genes 0.000 claims description 5
- 208000000461 Esophageal Neoplasms Diseases 0.000 claims description 5
- 208000008839 Kidney Neoplasms Diseases 0.000 claims description 5
- 206010025323 Lymphomas Diseases 0.000 claims description 5
- 208000034578 Multiple myelomas Diseases 0.000 claims description 5
- 206010030155 Oesophageal carcinoma Diseases 0.000 claims description 5
- 206010033128 Ovarian cancer Diseases 0.000 claims description 5
- 206010061535 Ovarian neoplasm Diseases 0.000 claims description 5
- 206010061902 Pancreatic neoplasm Diseases 0.000 claims description 5
- 206010035226 Plasma cell myeloma Diseases 0.000 claims description 5
- 206010060862 Prostate cancer Diseases 0.000 claims description 5
- 208000000236 Prostatic Neoplasms Diseases 0.000 claims description 5
- 206010038389 Renal cancer Diseases 0.000 claims description 5
- 208000000453 Skin Neoplasms Diseases 0.000 claims description 5
- 206010041067 Small cell lung cancer Diseases 0.000 claims description 5
- 208000000102 Squamous Cell Carcinoma of Head and Neck Diseases 0.000 claims description 5
- 208000005718 Stomach Neoplasms Diseases 0.000 claims description 5
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 claims description 5
- 201000010881 cervical cancer Diseases 0.000 claims description 5
- 208000029742 colonic neoplasm Diseases 0.000 claims description 5
- 201000004101 esophageal cancer Diseases 0.000 claims description 5
- 206010017758 gastric cancer Diseases 0.000 claims description 5
- 208000005017 glioblastoma Diseases 0.000 claims description 5
- 201000000459 head and neck squamous cell carcinoma Diseases 0.000 claims description 5
- 201000010982 kidney cancer Diseases 0.000 claims description 5
- 208000032839 leukemia Diseases 0.000 claims description 5
- 201000007270 liver cancer Diseases 0.000 claims description 5
- 208000014018 liver neoplasm Diseases 0.000 claims description 5
- 201000005249 lung adenocarcinoma Diseases 0.000 claims description 5
- 201000005243 lung squamous cell carcinoma Diseases 0.000 claims description 5
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 claims description 5
- 201000002528 pancreatic cancer Diseases 0.000 claims description 5
- 208000008443 pancreatic carcinoma Diseases 0.000 claims description 5
- 102220014428 rs121913229 Human genes 0.000 claims description 5
- 102220014419 rs397517090 Human genes 0.000 claims description 5
- 201000000849 skin cancer Diseases 0.000 claims description 5
- 208000000587 small cell lung carcinoma Diseases 0.000 claims description 5
- 201000011549 stomach cancer Diseases 0.000 claims description 5
- 101000851181 Homo sapiens Epidermal growth factor receptor Proteins 0.000 claims description 4
- 102200017754 rs137852655 Human genes 0.000 claims description 4
- 102200017745 rs312262904 Human genes 0.000 claims description 4
- 239000008194 pharmaceutical composition Substances 0.000 abstract description 7
- 239000003112 inhibitor Substances 0.000 abstract description 4
- VWXIHLCLIOQWRA-UHFFFAOYSA-N 1h-pteridin-2-one Chemical class N1=CC=NC2=NC(O)=NC=C21 VWXIHLCLIOQWRA-UHFFFAOYSA-N 0.000 abstract description 3
- 229940002612 prodrug Drugs 0.000 abstract 1
- 239000000651 prodrug Substances 0.000 abstract 1
- 210000004027 cell Anatomy 0.000 description 25
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 15
- 108091000080 Phosphotransferase Proteins 0.000 description 15
- 102000020233 phosphotransferase Human genes 0.000 description 15
- 229940125904 compound 1 Drugs 0.000 description 13
- 239000000203 mixture Substances 0.000 description 10
- 239000012980 RPMI-1640 medium Substances 0.000 description 9
- 230000035755 proliferation Effects 0.000 description 9
- AZSRSNUQCUDCGG-UHFFFAOYSA-N propan-2-yl 2-[4-[2-(dimethylamino)ethyl-methylamino]-2-methoxy-5-(prop-2-enoylamino)anilino]-4-(1-methylindol-3-yl)pyrimidine-5-carboxylate Chemical compound C(C=C)(=O)NC=1C(=CC(=C(C=1)NC1=NC=C(C(=N1)C1=CN(C2=CC=CC=C12)C)C(=O)OC(C)C)OC)N(C)CCN(C)C AZSRSNUQCUDCGG-UHFFFAOYSA-N 0.000 description 9
- 238000003556 assay Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 238000009472 formulation Methods 0.000 description 8
- 229940121647 egfr inhibitor Drugs 0.000 description 7
- 230000005764 inhibitory process Effects 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- ZKHQWZAMYRWXGA-KQYNXXCUSA-N Adenosine triphosphate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O ZKHQWZAMYRWXGA-KQYNXXCUSA-N 0.000 description 6
- ZKHQWZAMYRWXGA-UHFFFAOYSA-N Adenosine triphosphate Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)C(O)C1O ZKHQWZAMYRWXGA-UHFFFAOYSA-N 0.000 description 6
- 229960001456 adenosine triphosphate Drugs 0.000 description 6
- 238000012054 celltiter-glo Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 229960001686 afatinib Drugs 0.000 description 5
- ULXXDDBFHOBEHA-CWDCEQMOSA-N afatinib Chemical compound N1=CN=C2C=C(O[C@@H]3COCC3)C(NC(=O)/C=C/CN(C)C)=CC2=C1NC1=CC=C(F)C(Cl)=C1 ULXXDDBFHOBEHA-CWDCEQMOSA-N 0.000 description 5
- 238000004113 cell culture Methods 0.000 description 5
- 230000004663 cell proliferation Effects 0.000 description 5
- -1 organic acid salts Chemical class 0.000 description 5
- 102200048979 rs28929495 Human genes 0.000 description 5
- 101150039808 Egfr gene Proteins 0.000 description 4
- 238000012404 In vitro experiment Methods 0.000 description 4
- 229920002472 Starch Polymers 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 229960003278 osimertinib Drugs 0.000 description 4
- DUYJMQONPNNFPI-UHFFFAOYSA-N osimertinib Chemical compound COC1=CC(N(C)CCN(C)C)=C(NC(=O)C=C)C=C1NC1=NC=CC(C=2C3=CC=CC=C3N(C)C=2)=N1 DUYJMQONPNNFPI-UHFFFAOYSA-N 0.000 description 4
- 102200048928 rs121434568 Human genes 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- LPFWVDIFUFFKJU-UHFFFAOYSA-N 1-[4-[4-(3,4-dichloro-2-fluoroanilino)-7-methoxyquinazolin-6-yl]oxypiperidin-1-yl]prop-2-en-1-one Chemical compound C=12C=C(OC3CCN(CC3)C(=O)C=C)C(OC)=CC2=NC=NC=1NC1=CC=C(Cl)C(Cl)=C1F LPFWVDIFUFFKJU-UHFFFAOYSA-N 0.000 description 3
- 235000001014 amino acid Nutrition 0.000 description 3
- 150000001413 amino acids Chemical class 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000000875 corresponding effect Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 229940043355 kinase inhibitor Drugs 0.000 description 3
- 239000007937 lozenge Substances 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 239000003757 phosphotransferase inhibitor Substances 0.000 description 3
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 3
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 3
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 3
- 229950009876 poziotinib Drugs 0.000 description 3
- 235000019698 starch Nutrition 0.000 description 3
- 239000008107 starch Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 208000024891 symptom Diseases 0.000 description 3
- 238000002626 targeted therapy Methods 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 210000003771 C cell Anatomy 0.000 description 2
- 238000003734 CellTiter-Glo Luminescent Cell Viability Assay Methods 0.000 description 2
- 206010059866 Drug resistance Diseases 0.000 description 2
- 102000000646 Interleukin-3 Human genes 0.000 description 2
- 108010002386 Interleukin-3 Proteins 0.000 description 2
- 239000005411 L01XE02 - Gefitinib Substances 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 102000001253 Protein Kinase Human genes 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229940125959 TAK-788 Drugs 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000012752 auxiliary agent Substances 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000004108 freeze drying Methods 0.000 description 2
- 229960002584 gefitinib Drugs 0.000 description 2
- XGALLCVXEZPNRQ-UHFFFAOYSA-N gefitinib Chemical compound C=12C=C(OCCCN3CCOCC3)C(OC)=CC2=NC=NC=1NC1=CC=C(F)C(Cl)=C1 XGALLCVXEZPNRQ-UHFFFAOYSA-N 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 2
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 2
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 2
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- 239000003791 organic solvent mixture Substances 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 108060006633 protein kinase Proteins 0.000 description 2
- 102200048795 rs121913428 Human genes 0.000 description 2
- 102200048978 rs121913428 Human genes 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 239000003826 tablet Substances 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- 235000012222 talc Nutrition 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical class [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- 229940121358 tyrosine kinase inhibitor Drugs 0.000 description 2
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- HZLCGUXUOFWCCN-UHFFFAOYSA-N 2-hydroxynonadecane-1,2,3-tricarboxylic acid Chemical compound CCCCCCCCCCCCCCCCC(C(O)=O)C(O)(C(O)=O)CC(O)=O HZLCGUXUOFWCCN-UHFFFAOYSA-N 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 241001061264 Astragalus Species 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 206010007269 Carcinogenicity Diseases 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 229940126062 Compound A Drugs 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 206010012735 Diarrhoea Diseases 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 208000010201 Exanthema Diseases 0.000 description 1
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- MBBZMMPHUWSWHV-BDVNFPICSA-N N-methylglucamine Chemical compound CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO MBBZMMPHUWSWHV-BDVNFPICSA-N 0.000 description 1
- 229910020700 Na3VO4 Inorganic materials 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- XQKRPEDJRVOOAA-UHFFFAOYSA-J [Mg+2].[Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O Chemical compound [Mg+2].[Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XQKRPEDJRVOOAA-UHFFFAOYSA-J 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 239000001785 acacia senegal l. willd gum Substances 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- GAMPNQJDUFQVQO-UHFFFAOYSA-N acetic acid;phthalic acid Chemical compound CC(O)=O.OC(=O)C1=CC=CC=C1C(O)=O GAMPNQJDUFQVQO-UHFFFAOYSA-N 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 235000010419 agar Nutrition 0.000 description 1
- 229940040563 agaric acid Drugs 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 125000003295 alanine group Chemical group N[C@@H](C)C(=O)* 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 230000003698 anagen phase Effects 0.000 description 1
- 238000003149 assay kit Methods 0.000 description 1
- 235000006533 astragalus Nutrition 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 1
- 231100000260 carcinogenicity Toxicity 0.000 description 1
- 230000007670 carcinogenicity Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- JNGZXGGOCLZBFB-IVCQMTBJSA-N compound E Chemical compound N([C@@H](C)C(=O)N[C@@H]1C(N(C)C2=CC=CC=C2C(C=2C=CC=CC=2)=N1)=O)C(=O)CC1=CC(F)=CC(F)=C1 JNGZXGGOCLZBFB-IVCQMTBJSA-N 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 229940099112 cornstarch Drugs 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000007884 disintegrant Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- HKSZLNNOFSGOKW-UHFFFAOYSA-N ent-staurosporine Natural products C12=C3N4C5=CC=CC=C5C3=C3CNC(=O)C3=C2C2=CC=CC=C2N1C1CC(NC)C(OC)C4(C)O1 HKSZLNNOFSGOKW-UHFFFAOYSA-N 0.000 description 1
- DEFVIWRASFVYLL-UHFFFAOYSA-N ethylene glycol bis(2-aminoethyl)tetraacetic acid Chemical compound OC(=O)CN(CC(O)=O)CCOCCOCCN(CC(O)=O)CC(O)=O DEFVIWRASFVYLL-UHFFFAOYSA-N 0.000 description 1
- SFNALCNOMXIBKG-UHFFFAOYSA-N ethylene glycol monododecyl ether Chemical compound CCCCCCCCCCCCOCCO SFNALCNOMXIBKG-UHFFFAOYSA-N 0.000 description 1
- 201000005884 exanthem Diseases 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 229940121645 first-generation egfr tyrosine kinase inhibitor Drugs 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 210000004051 gastric juice Anatomy 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229940014259 gelatin Drugs 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 229940076264 interleukin-3 Drugs 0.000 description 1
- 238000007917 intracranial administration Methods 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- IWYDHOAUDWTVEP-UHFFFAOYSA-M mandelate Chemical compound [O-]C(=O)C(O)C1=CC=CC=C1 IWYDHOAUDWTVEP-UHFFFAOYSA-M 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 230000001394 metastastic effect Effects 0.000 description 1
- 206010061289 metastatic neoplasm Diseases 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229940015637 mobocertinib Drugs 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 230000002246 oncogenic effect Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 238000005453 pelletization Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 229940116317 potato starch Drugs 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- LVTJOONKWUXEFR-FZRMHRINSA-N protoneodioscin Natural products O(C[C@@H](CC[C@]1(O)[C@H](C)[C@@H]2[C@]3(C)[C@H]([C@H]4[C@@H]([C@]5(C)C(=CC4)C[C@@H](O[C@@H]4[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@@H](O)[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@H](CO)O4)CC5)CC3)C[C@@H]2O1)C)[C@H]1[C@H](O)[C@H](O)[C@H](O)[C@@H](CO)O1 LVTJOONKWUXEFR-FZRMHRINSA-N 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 206010037844 rash Diseases 0.000 description 1
- 239000011535 reaction buffer Substances 0.000 description 1
- 238000003259 recombinant expression Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 229940100486 rice starch Drugs 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 229940121644 second-generation egfr tyrosine kinase inhibitor Drugs 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 239000012439 solid excipient Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- HKSZLNNOFSGOKW-FYTWVXJKSA-N staurosporine Chemical compound C12=C3N4C5=CC=CC=C5C3=C3CNC(=O)C3=C2C2=CC=CC=C2N1[C@H]1C[C@@H](NC)[C@@H](OC)[C@]4(C)O1 HKSZLNNOFSGOKW-FYTWVXJKSA-N 0.000 description 1
- CGPUWJWCVCFERF-UHFFFAOYSA-N staurosporine Natural products C12=C3N4C5=CC=CC=C5C3=C3CNC(=O)C3=C2C2=CC=CC=C2N1C1CC(NC)C(OC)C4(OC)O1 CGPUWJWCVCFERF-UHFFFAOYSA-N 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 210000004233 talus Anatomy 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 229940078499 tricalcium phosphate Drugs 0.000 description 1
- 235000019731 tricalcium phosphate Nutrition 0.000 description 1
- 229910000391 tricalcium phosphate Inorganic materials 0.000 description 1
- IHIXIJGXTJIKRB-UHFFFAOYSA-N trisodium vanadate Chemical compound [Na+].[Na+].[Na+].[O-][V]([O-])([O-])=O IHIXIJGXTJIKRB-UHFFFAOYSA-N 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229940100445 wheat starch Drugs 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D475/00—Heterocyclic compounds containing pteridine ring systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/519—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
Definitions
- the present invention relates to the field of pharmaceutical chemistry.
- the present invention relates to the use of pteridinone derivatives as inhibitors of the mutant epidermal growth factor receptor tyrosine kinase (EGFR), in particular non-classical mutant EGFR.
- EGFR epidermal growth factor receptor tyrosine kinase
- EGFR 20 exon insertion mutation EGFR 20ins
- these non-classical mutations mainly include the insertion mutation and point mutation of the exon 18-21, and the point mutation and the insertion mutation of ErbB 2.
- An object of the present invention is to provide an inhibitor on EGFR with non-classical mutations and a pharmaceutical composition comprising the inhibitor.
- the present invention provides the use of a compound of formula I or a pharmaceutically acceptable salt thereof in the preparation of a drug for inhibiting mutant EGFR or a drug for treating or preventing mutant EGFR-mediated diseases:
- the mutant EGFR comprises at least one of the following mutations: point mutation and insertion mutation of EGFR 18-21 exon, and point mutation and insertion mutation of ErbB 2.
- the mutant EGFR comprises:
- the mutant EGFR comprises at least one of the following mutations: G719X (X represents A, S, C, D), D761Y, A763-Y764insFQEA, A763-Y764insFHEA, V769-D770insASV, D770-N771insSVD, D770-N771insASVDN, D770-N771insG, N771-P772insSVDNP, N771-H773dupNPH, P772-H773insPNP, P772-H773insPR, H773-V774insH, A763-Y764insFQEA, H773-V774insPH, H773-V774insNPH, N771-P772insH, H771-P772insN, H773-V774insAH, D770delinsGY, V774-C775in
- the mutant EGFR comprises at least one of the following mutations: A763_Y764insFHEA, A763-Y764insFQEA, d747-749/A750P D761Y, D770-N771insNPG, D770-N771insNPG/T790M, D770GY, G719C, G719D, G719S, and L861Q, and V777-G778insCG, V777L, D769Y of ERBB, and the like.
- the disease is a cancer.
- the cancer is non-small cell lung cancer, small cell lung cancer, lung adenocarcinoma, lung squamous cell carcinoma, breast cancer, pancreatic cancer, prostate cancer, ovarian cancer, glioblastoma, head and neck squamous cell carcinoma, cervical cancer, esophageal cancer, liver cancer, kidney cancer, colon cancer, skin cancer, leukemia, lymphoma, gastric cancer or multiple myeloma.
- the present invention provides a compound of formula I or a pharmaceutically acceptable salt thereof, for inhibiting mutant EGFR or treating or preventing mutant EGFR-mediated diseases,
- the mutant EGFR comprises at least one of following mutations: point mutation and insertion mutation of EGFR 18-21 exon, and point mutation and insertion mutation of ErbB 2.
- the mutant EGFR comprises:
- the mutant EGFR comprises at least one of the following mutations: G719X (X represents A, S, C, D), D761Y, A763-Y764insFQEA, A763-Y764insFHEA, V769-D770insASV, D770-N771insSVD, D770-N771insASVDN, D770-N771insG, N771-P772insSVDNP, N771-H773dupNPH, P772-H773insPNP, P772-H773insPR, H773-V774insH, A763-Y764insFQEA, H773-V774insPH, H773-V774insNPH, N771-P772insH, H771-P772insN, H773-V774insAH, D770delinsGY, V774-C775in
- the mutant EGFR comprises at least one of the following mutations: A763_Y764insFHEA, A763-Y764insFQEA, d747-749/A750P D761Y, D770-N771insNPG, D770-N771insNPG/T790M, D770GY, G719C, G719D, G719S, and L861Q, and V777-G778insCG, V777L, D769Y of ERBB, and the like.
- the disease is a cancer.
- the cancer is non-small cell lung cancer, small cell lung cancer, lung adenocarcinoma, lung squamous cell carcinoma, breast cancer, pancreatic cancer, prostate cancer, ovarian cancer, glioblastoma, head and neck squamous cell carcinoma, cervical cancer, esophageal cancer, liver cancer, kidney cancer, colon cancer, skin cancer, leukemia, lymphoma, gastric cancer or multiple myeloma.
- the present invention provides a method for inhibiting mutant EGFR or treating or preventing mutant EGFR-mediated diseases, comprising a step of administering a compound of formula I or a pharmaceutically acceptable salt thereof to a subject in need thereof,
- the mutant EGFR comprises at least one of following mutations: point mutation and insertion mutation of EGFR 18-21 exon, and point mutation and insertion mutation of ErbB 2.
- the mutant EGFR comprises:
- ERBB2 point mutations V777L, D769Y, R896C, P 1170A and insertion mutations V777-G778insCG, P780-Y781insGSP, and the like.
- the mutant EGFR comprises at least one of the following mutations: G719X (X represents A, S, C, D), D761Y, A763-Y764insFQEA, A763-Y764insFHEA, V769-D770insASV, D770-N771insSVD, D770-N771insASVDN, D770-N771insG, N771-P772insSVDNP, N771-H773dupNPH, P772-H773insPNP, P772-H773insPR, H773-V774insH, A763-Y764insFQEA, H773-V774insPH, H773-V774insNPH, N771-P772insH, H771-P772insN, H773-V774insAH, D770delinsGY, V774-C775in
- the mutant EGFR comprises at least one of the following mutations: A763_Y764insFHEA, A763-Y764insFQEA, d747-749/A750P D761Y, D770-N771insNPG, D770-N771insNPG/T790M, D770GY, G719C, G719D, G719S, and L861Q, and V777-G778insCG, V777L, D769Y of ERBB, and the like.
- the disease is a cancer.
- the cancer is non-small cell lung cancer, small cell lung cancer, lung adenocarcinoma, lung squamous cell carcinoma, breast cancer, pancreatic cancer, prostate cancer, ovarian cancer, glioblastoma, head and neck squamous cell carcinoma, cervical cancer, esophageal cancer, liver cancer, kidney cancer, colon cancer, skin cancer, leukemia, lymphoma, gastric cancer or multiple myeloma.
- Figures 1a-f show GI50 data from the proliferation inhibition test for stable cell lines containing different EGFR mutations by compound I, wherein compound 1 is shown as -R 201, and compound TAK788 is shown as R-203.
- the inventors Upon extensive and in-depth research, the inventors unexpectedly found pteridinone derivatives capable of targeting non-classical mutant EGFR, and thus can be used as a new generation of EGFR inhibitors, based on which the present is completed.
- EGFR inhibitors bring good news to non-small cell lung cancer patients with EGFR typical sensitive mutations and T790M drug-resistant mutation. However, not all patients with EGFR mutation can be benefited from the marketed EGFR inhibitors. It has been found that the NSCLC with EGFR 20 exon insertion mutation (EGFR 20ins) exhibits poor targeted therapy effects on most EGFR inhibitors. These mutations are generally classified as non-classical mutations. In the present invention, these non-classical mutations mainly include the insertion mutation and point mutation of the exon 18-21, and the point mutation and the insertion mutation of ErbB 2.
- the non-classical mutations of exon 18 are mainly G719X, E709X, K7716A, K728A point mutations, and a deletion mutation at codon 709.
- G719X was mutated to G719X in EGFR (X represents A alanine, S serine, C cysteine, etc.), which is a point mutation, and G719X mutation accounts for about 3.10% of total EGFR mutation [ Cancer Sci. 2016, 107(9),: 1179-1186 ].
- G719S mutation The carcinogenicity of G719S mutation is weaker than that of sensitive mutation, and it is found through in vitro experiments that Gefitinib can inhibit the phosphorylation of G719S in a dosage-increasing manner. Higher concentration of Gefitinib is required to inhibit G719S mutation as compared with the sensitive mutation L858R.
- E709X point mutation is another non-classical mutation of exon 18, and E709X mutation accounts for about 0.30% of the total EGFR mutations. In in vitro experiments, patients with E709X point mutation exhibit high sensitivity to Afatinib, compared with the first generation or third generation of TKIs.
- DelE709-T710insD is the most common deletion mutation at codon 709, accounting for about 0.30% of the total EGFR mutations.
- Non-classical mutations of exon 19 are insertion mutation and point mutation.
- the insertion mutation of exon 19 accounts for about 0.60% of the EGFR mutations, including: I744-K745insKIPVAI, K745-E746insIPVAIK, K745-E746insVPVAIK, K745-E746insTPVAIK.
- I744-K745insKIPVAI K745-E746insIPVAIK
- K745-E746insVPVAIK K745-E746insTPVAIK.
- the main point mutation of exon 19 is D761Y, and it is believed that its appearance may be related to EGFR-TKI drug resistance, however, the drug resistance level is weaker than that of point mutation T790M of exon 20. And at present, there is no clinical trial data.
- Glu762 starting at N-terminal, is an important catalytic site. It comprises a C-helix consisting of amino acids E762-M766 and a ring consisting of amino acids A767-V774.
- the non-classical mutations of exon 20 are mainly insertion mutation and point mutation, inchluding: A763-Y764insFQEA, V769-D770insASV, V769-D770insDNP , D770-N771insNPG, D770-N771insNPH, D770-N771insSVD, D770-N771insASVDN, D770-N771insG, N771-P772insSVDNP, N771-H773dupNPH, P772-H773insPNP, P772-H773insPR, H773-V774insH, A763-Y764insFQEA, H773-V774insPH, H773-V774insNPH, N771-P772insH, H771-P772insN, H773-V774insAH, D770delinsGY,
- the above mutations account for about 5.80% of the total EGFR mutations.
- the insertion mutation of exon 20 of EGFR is insensitive to the 1 st , 2 nd generation of TKIs targeted therapy.
- 763_764insFQEA is the most special.
- 763_764insFQEA is a sensitive mutation currently found in ex20ins mutations.
- Poziotinib was found to effectively inhibit the growth of Ba/F3 cell lines with an insertion mutation of EGFR exon 20. Poziotinib was stronger than Osimertinib and Afatinib. However, side effects were evident in the form of rash and diarrhea, and clinical trial data are absent.
- the point mutation of exon 20 is mainly: S768I, which accounts for about 1.0% of the total EGFR mutations. In in vitro experiments, S768I mutation was more sensitive to Afatinib as compared with Osimertinib.
- EGFR ex20ins mutations are not as sensitive to the first and second generation EGFR-TKIs as classical mutations, but are the most common non-sensitive mutations among EGFR mutations. Therefore, the treatment of people with ex20ins mutations is currently a major challenge for clinicians in clinical management.
- the non-classical mutation of exon 21 is mainly characterized by the point mutation L861Q, which accounts for about 0.90% of the total EGFR mutations.
- L861Q mutation is caused by the replacment of T by A at site 2828 of exon 21 and has similar oncogenic activity to that of L858R mutation. It was found through in vitro studies the L861Q mutation is sensitive to Osimertinib, but clinical trial data are absent.
- the compound of the present invention is a compound of formula I or a pharmaceutically acceptable salt thereof,
- the preparation method of the compound of the present invention can be the method described in CN108721298A .
- the compound of the present invention can inhibit mutant EGFR, in particular point mutation and insertion mutation of EGFR exon 18-21, as well as point mutation and insertion mutation of ErbB2. Therefore, based on the compounds of the present invention, the present invention also provides a pharmaceutical composition comprising a therapeutically effective amount of a compound of the invention or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier or excipient.
- Examples of pharmaceutically acceptable salts of the compound of the present invention include, but are not limited to, inorganic and organic acid salts such as hydrochloride, hydrobromate, sulfate, citrate, lactate, tartrate, maleate, fumarate, mandelate, and oxalate; and inorganic and organic base salts formed with bases such as sodium hydroxyl, tris (hydroxymethyl) aminomethane (Tris, amine butantriol) and N-methylglucamine.
- inorganic and organic acid salts such as hydrochloride, hydrobromate, sulfate, citrate, lactate, tartrate, maleate, fumarate, mandelate, and oxalate
- inorganic and organic base salts formed with bases such as sodium hydroxyl, tris (hydroxymethyl) aminomethane (Tris, amine butantriol) and N-methylglucamine.
- compositions of the present invention can be formulated into formulations suitable for various administration routes, including but not limited to the form of administration for parenteral, subcutaneous, intravenous, intramuscular, intraperitoneal, transdermal, oral, intrathecal, intracranial, nasal or external pathway for the treatment of tumors and other diseases.
- the dosage is an amount effective to improve or eliminate one or more conditions.
- the effective amount is an amount sufficient to improve or mitigate symptoms associated with a disease in certain ways.
- Such dosage may be administered as a single dose, or may be administered in accordance with an effective treatment regimen.
- the amount of administration may be able to cure a disease, but is generally intended to improve the symptoms of the disease. Repeated administrations are generally needed to achieve the desired improvement on symptoms.
- the dosage of a drug will be determined according to the age, health and weight of a patient, the type of parallel therapy, the frequency of therapy, and desired therapeutic benefits.
- the pharmaceutical formulations of the present invention can be administered to any mammal so long as they can obtain the therapeutic effects of the compound of the invention. Most important in these mammals is human.
- the compound of the present invention may be used to treat a cancer.
- the cancer is non-small cell lung cancer, small cell lung cancer, lung adenocarcinoma, lung squamous cell carcinoma, breast cancer, pancreatic cancer, prostate cancer, ovarian cancer, glioblastoma, head and neck squamous cell carcinoma, cervical cancer, esophageal cancer, liver cancer, kidney cancer, colon cancer, skin cancer, leukemia, lymphoma, gastric cancer, or multiple myeloma.
- the pharmaceutical formulations of the present invention can be manufactured in a known manner.
- the formulation can be prepared by traditional mixing, pelletizing, ingot making, dissolution, or freeze drying processes.
- the mixture may be selectively ground in combination with solid excipients and the active compound. If necessary, an appropriate amount of auxiliary agent can be added, and the particle mixture is processed to obtain a tablet or lozenge core.
- Suitable excipients are fillers, for example sugars, such as lactose or sucrose, mannitol or sorbitol; cellulosic or calcium phosphates, such as tricalcium phosphate or calcium hydrophosphate; and binders, such as starch pastes, including corn starch, wheat starch, rice starch, potato starch, gelatin, astragalus, methylcellulose, hydroxypropyl methylcellulose, sodium carboxymethylcellulose, or polyvinylpyrrolidone.
- sugars such as lactose or sucrose, mannitol or sorbitol
- cellulosic or calcium phosphates such as tricalcium phosphate or calcium hydrophosphate
- binders such as starch pastes, including corn starch, wheat starch, rice starch, potato starch, gelatin, astragalus, methylcellulose, hydroxypropyl methylcellulose, sodium carboxymethylcellulose, or polyvinylpyrrolidone.
- a disintegrant such as the starch mentioned above, and carboxymethyl starch, crosslinked polyvinylpyrrolidone, agar, or alginic acid or a salt thereof, such as sodium alginate, may be added.
- auxiliary agents in particular flow modulators and lubricants, for example, silica, talc, stearate, such as calcium magnesium stearate, stearic acid, or polyethylene glycol.
- the lozenge core may be appropriately coated to resists gastric juice. For this purpose, a concentrated saccharide solutions can be applied.
- This solution may contain arabic gum, talc, polyvinylpyrrolidone, polyethylene glycol and/or titanium dioxide, a paint solution, and a suitable organic solvent or solvent mixture.
- an appropriate cellulose solution such as cellulose acetate phthalic acid or hydroxypropyl methyl cellulose phthalic acid, may be used.
- the dye or pigment may be added to the coating of a tablet or lozenge core, for example, a combination for identifying or for characterizing the dosage of an active ingredient.
- the substrate for the kinase reaction was placed in a freshly prepared reaction buffer and the co-factors required for the kinase reaction were added, and the buffer was prepared as: 20 mM HEPES (pH 7.5), 10 mM MgCl 2 , 1 mM EGTA, 0.02% Brij35, 0.02 mg/mL BSA, 0.1 mM Na 3 VO 4 , 2 mM DTT, 1% DMSO; afterwards, the kinase to be tested was added and gently shaken. The compound to be tested was dissolved in DMSO to the desired concentration and added to the above buffer containing the kinase/substrate using an autosampler Echo550.
- 33 P-labeled ATP ( 33 P-ATP at a final concentration of 0.01 ⁇ Ci/ ⁇ L) was added to the reaction system to initiate the kinase reaction at room temperature for 2 h.
- the reaction system was spotted on a P81 ion exchange paper (Whatman #3698-915), thoroughly washed and filtered with 0.75% phosphoric acid, and finally the radioactive phosphorylated substrate remaining on the filter paper was measured.
- Kinase activity data were expressed as a percentage of the remaining kinase activity in the test sample, 10 concentration gradients were measured, a curve was fitted and IC 50 values were calculated using Prism4 (GraphPad software).
- a blank space means not detected.
- TAK-788 Breakthrough Therapy Designation
- Ba/F3, a mouse pro-B cell line dependent on interleukin-3 is a common system for studying kinases and kinase inhibitors. Recombinant expression of some protein kinases can make Ba/F3 cells no longer dependent on IL-3 for growth, and based on such properties, the inhibition of a compound on the proliferation of Ba/F3 cells expressing different target kinases can be detected, so as to reflect inhibitory effects of the compound on different kinase targets at the cellular level for kinase inhibitor screening.
- Adenosine Tri-Phosphate (ATP) is a common energy carrier used in various life activities in nature and is the smallest unit of energy storage and transfer.
- fluorophore enzymes are used as detectors, which require the participation of ATP to generate light signals.
- the luminescence value is measured.
- the light signal is proportional to the amount of ATP in the system, which is in turn positively correlated with the number of living cells. Therefore, by measuring the ATP content using the CellTiter-Glo kit, the viability of the cells and thus the level of cell proliferation can be reflected.
- Cells were removed from the liquid nitrogen, quickly thawed in a water bath at 37 degree Celsius, lyophilization tubes were centrifuged at 1000 rpm, the supernatant of the lyophilized solution was discarded, and the cells were resuspended in RPMI1640+10% FBS medium and incubated in a cell culture incubator at 37 degree Celsius with a cell culture density maintaining at 2 ⁇ 10e5 to 2 ⁇ 10e6/ml at all times.
- GI50 values of compound I in the proliferation inhibition assay against stable cell lines containing different EGFR mutations are shown in the table below:
- Strain GI50 ( nM) Compound 1 TAK788 EGFR V769_D770insASV BaF3 1.63 1.49 EGFR D770_N771insNPG BaF3 0.99 1.53 EGFR D770_N771insSVD BaF3 5.59 4.73 EGFR H773_V774insH BaF3 5.42 4.44 EGFR G719A BaF3 0.58 4.66 EGFR L861Q BaF3 0.98 2.55
- Figures 1a-f show GI50 values of compound I in the proliferation inhibition assay against stable cell lines containing different EGFR mutations, wherein compound 1 is shown as R201 and compound TAK788 is shown as R-203.
- CONCLUSION The results of compound 1 and a series of derivatives thereof against EGFR non-classical mutant kinase activity indicate that compound 1 possesses excellent inhibitory activities; and further proliferation-inhibiting activities against classical EGFR 20ins mutant stable cell lines indicates that compound 1 reaches or is better than the EGFR 20ins kinase inhibitor TAK788, which is now generally considered to be the most promising.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
- The present invention relates to the field of pharmaceutical chemistry. In particular, the present invention relates to the use of pteridinone derivatives as inhibitors of the mutant epidermal growth factor receptor tyrosine kinase (EGFR), in particular non-classical mutant EGFR.
- As the first, second and third generation of EGFR inhibitors marketed, it brings good news to non-small cell lung cancer patients with EGFR typical sensitive mutations and T790M drug-resistant mutation. However, not all patients with EGFR mutation can be benefited. The NSCLC of EGFR 20 exon insertion mutation (EGFR 20ins) exhibits poor targeted therapy effects on most EGFR inhibitors, and these mutations are generally classified as non-classical mutations. These non-classical mutations mainly include the insertion mutation and point mutation of the exon 18-21, and the point mutation and the insertion mutation of ErbB 2.
- Therefore, the research and development of drugs targeting EGFR with non-classical mutations has great clinical significance and application prospects.
- An object of the present invention is to provide an inhibitor on EGFR with non-classical mutations and a pharmaceutical composition comprising the inhibitor.
-
- In a specific embodiment, the mutant EGFR comprises at least one of the following mutations: point mutation and insertion mutation of EGFR 18-21 exon, and point mutation and insertion mutation of ErbB 2.
- In a specific embodiment, the mutant EGFR comprises:
- 18 exon G719X, E709X, K716A, K728A point mutations and deletion mutation at codon 709;
- 19 exon insertion mutation I744-K745InsKIPVAI, K745-E746insIPVAIK, K745-E746insVPVAIK, K745-E746insTPVAIK and point mutation D761Y;
- 20 exon insertion mutation and point mutation include: A763-Y764insFQEA, A763-Y764insFHEA, V769-D770insASV, V769-D770insDNP , D770-N771insNPG, D770-N771insNPH, D770-N771insSVD, D770-N771insASVDN, D770-N771insG, N771-P772insSVDNP, N771-H773dupNPH, P772-H773insPNP, P772-H773insPR, H773-V774insH, A763-Y764insFQEA, H773-V774insPH, H773-V774insNPH, N771-P772insH, H771-P772insN, H773-V774insAH, D770delinsGY, V774-C775insHV and the like, and 20 exon point mutation S768I;
- 21 exon point mutation L861Q;
ERBB2 point mutations V777L, D769Y, R896C, P 1170A and insertion mutations V777-G778insCG, P780-Y781insGSP, and the like. - In a specific embodiment, the mutant EGFR comprises at least one of the following mutations: G719X (X represents A, S, C, D), D761Y, A763-Y764insFQEA, A763-Y764insFHEA, V769-D770insASV, D770-N771insSVD, D770-N771insASVDN, D770-N771insG, N771-P772insSVDNP, N771-H773dupNPH, P772-H773insPNP, P772-H773insPR, H773-V774insH, A763-Y764insFQEA, H773-V774insPH, H773-V774insNPH, N771-P772insH, H771-P772insN, H773-V774insAH, D770delinsGY, V774-C775insHV, L861Q, V777-G778insCG, V777L, D769Y and the like.
- In a specific embodiment, the mutant EGFR comprises at least one of the following mutations: A763_Y764insFHEA, A763-Y764insFQEA, d747-749/A750P D761Y, D770-N771insNPG, D770-N771insNPG/T790M, D770GY, G719C, G719D, G719S, and L861Q, and V777-G778insCG, V777L, D769Y of ERBB, and the like.
- In a specific embodiment, the disease is a cancer.
- In a specific embodiment, the cancer is non-small cell lung cancer, small cell lung cancer, lung adenocarcinoma, lung squamous cell carcinoma, breast cancer, pancreatic cancer, prostate cancer, ovarian cancer, glioblastoma, head and neck squamous cell carcinoma, cervical cancer, esophageal cancer, liver cancer, kidney cancer, colon cancer, skin cancer, leukemia, lymphoma, gastric cancer or multiple myeloma.
-
- In a preferred embodiment, the mutant EGFR comprises at least one of following mutations: point mutation and insertion mutation of EGFR 18-21 exon, and point mutation and insertion mutation of ErbB 2.
- In a preferred embodiment, the mutant EGFR comprises:
- 18 exon G719X, E709X, K716A, K728A point mutations and deletion mutation at codon 709;
- 19 exon insertion mutations I744-K745InsKIPVAI, K745-E746insIPVAIK, K745-E746insVPVAIK, K745-E746insTPVAIK and point mutation D761Y;
- 20 exon insertion mutation and point mutation include: A763-Y764insFQEA, A763-Y764insFHEA, V769-D770insASV, V769-D770insDNP , D770-N771insNPG, D770-N771insNPH, D770-N771insSVD, D770-N771insASVDN, D770-N771insG, N771-P772insSVDNP, N771-H773dupNPH, P772-H773insPNP, P772-H773insPR, H773-V774insH, A763-Y764insFQEA, H773-V774insPH, H773-V774insNPH, N771-P772insH, H771-P772insN, H773-V774insAH, D770delinsGY, V774-C775insHV and the like, and 20 exon point mutation S768I;
- 21 exon point mutation L861Q;
ERBB2 point mutations V777L, D769Y, R896C, P 1170A and insertion mutations V777-G778insCG, P780-Y781insGSP, and the like. - In a preferred embodiment, the mutant EGFR comprises at least one of the following mutations: G719X (X represents A, S, C, D), D761Y, A763-Y764insFQEA, A763-Y764insFHEA, V769-D770insASV, D770-N771insSVD, D770-N771insASVDN, D770-N771insG, N771-P772insSVDNP, N771-H773dupNPH, P772-H773insPNP, P772-H773insPR, H773-V774insH, A763-Y764insFQEA, H773-V774insPH, H773-V774insNPH, N771-P772insH, H771-P772insN, H773-V774insAH, D770delinsGY, V774-C775insHV, L861Q, V777-G778insCG, V777L, D769Y and the like.
- In a preferred embodiment, the mutant EGFR comprises at least one of the following mutations: A763_Y764insFHEA, A763-Y764insFQEA, d747-749/A750P D761Y, D770-N771insNPG, D770-N771insNPG/T790M, D770GY, G719C, G719D, G719S, and L861Q, and V777-G778insCG, V777L, D769Y of ERBB, and the like.
- In a preferred embodiment, the disease is a cancer.
- In a preferred embodiment, the cancer is non-small cell lung cancer, small cell lung cancer, lung adenocarcinoma, lung squamous cell carcinoma, breast cancer, pancreatic cancer, prostate cancer, ovarian cancer, glioblastoma, head and neck squamous cell carcinoma, cervical cancer, esophageal cancer, liver cancer, kidney cancer, colon cancer, skin cancer, leukemia, lymphoma, gastric cancer or multiple myeloma.
-
- In a preferred embodiment, the mutant EGFR comprises at least one of following mutations: point mutation and insertion mutation of EGFR 18-21 exon, and point mutation and insertion mutation of ErbB 2.
- In a preferred embodiment, the mutant EGFR comprises:
- 18 exon G719X, E709X, K716A, K728A point mutations and deletion mutation at codon 709;
- 19 exon insertion mutations I744-K745InsKIPVAI, K745-E746insIPVAIK, K745-E746insVPVAIK, K745-E746insTPVAIK and point mutation D761Y;
- 20 exon insertion mutation and point mutation include: A763-Y764insFQEA, A763-Y764insFHEA, V769-D770insASV, V769-D770insDNP , D770-N771insNPG, D770-N771insNPH, D770-N771insSVD, D770-N771insASVDN, D770-N771insG, N771-P772insSVDNP, N771-H773dupNPH, P772-H773insPNP, P772-H773insPR, H773-V774insH, A763-Y764insFQEA, H773-V774insPH, H773-V774insNPH, N771-P772insH, H771-P772insN, H773-V774insAH, D770delinsGY, V774-C775insHV and the like, and 20 exon point mutation S768I;
- 21 exon point mutation L861Q;
Point mutations V 777 L, D 769 Y, R 896 C, P 1170 A and insertion mutations V 777-G 778 INS1, P780-Y781 INSGSP, etc. of ErbB 2. - ERBB2 point mutations V777L, D769Y, R896C, P 1170A and insertion mutations V777-G778insCG, P780-Y781insGSP, and the like.
- In a preferred embodiment, the mutant EGFR comprises at least one of the following mutations: G719X (X represents A, S, C, D), D761Y, A763-Y764insFQEA, A763-Y764insFHEA, V769-D770insASV, D770-N771insSVD, D770-N771insASVDN, D770-N771insG, N771-P772insSVDNP, N771-H773dupNPH, P772-H773insPNP, P772-H773insPR, H773-V774insH, A763-Y764insFQEA, H773-V774insPH, H773-V774insNPH, N771-P772insH, H771-P772insN, H773-V774insAH, D770delinsGY, V774-C775insHV, L861Q, V777-G778insCG, V777L, D769Y and the like.
- In a preferred embodiment, the mutant EGFR comprises at least one of the following mutations: A763_Y764insFHEA, A763-Y764insFQEA, d747-749/A750P D761Y, D770-N771insNPG, D770-N771insNPG/T790M, D770GY, G719C, G719D, G719S, and L861Q, and V777-G778insCG, V777L, D769Y of ERBB, and the like.
- In a preferred embodiment, the disease is a cancer.
- In a preferred embodiment, the cancer is non-small cell lung cancer, small cell lung cancer, lung adenocarcinoma, lung squamous cell carcinoma, breast cancer, pancreatic cancer, prostate cancer, ovarian cancer, glioblastoma, head and neck squamous cell carcinoma, cervical cancer, esophageal cancer, liver cancer, kidney cancer, colon cancer, skin cancer, leukemia, lymphoma, gastric cancer or multiple myeloma.
- It should be understood that, in the scope of the present disclosure, the above-mentioned technical features of the present disclosure and the technical features specifically described in the following (for example, Examples) may be combined with each other, thereby constituting a new or preferred technical solution, which is not listed herein due to the limitation on contents.
-
Figures 1a-f show GI50 data from the proliferation inhibition test for stable cell lines containing different EGFR mutations by compound I, whereincompound 1 is shown as -R 201, and compound TAK788 is shown as R-203. - Upon extensive and in-depth research, the inventors unexpectedly found pteridinone derivatives capable of targeting non-classical mutant EGFR, and thus can be used as a new generation of EGFR inhibitors, based on which the present is completed.
- EGFR inhibitors bring good news to non-small cell lung cancer patients with EGFR typical sensitive mutations and T790M drug-resistant mutation. However, not all patients with EGFR mutation can be benefited from the marketed EGFR inhibitors. It has been found that the NSCLC with EGFR 20 exon insertion mutation (EGFR 20ins) exhibits poor targeted therapy effects on most EGFR inhibitors. These mutations are generally classified as non-classical mutations. In the present invention, these non-classical mutations mainly include the insertion mutation and point mutation of the exon 18-21, and the point mutation and the insertion mutation of ErbB 2.
- The non-classical mutations of exon 18 are mainly G719X, E709X, K7716A, K728A point mutations, and a deletion mutation at codon 709. G719X was mutated to G719X in EGFR (X represents A alanine, S serine, C cysteine, etc.), which is a point mutation, and G719X mutation accounts for about 3.10% of total EGFR mutation [Cancer Sci. 2016, 107(9),: 1179-1186].
- The carcinogenicity of G719S mutation is weaker than that of sensitive mutation, and it is found through in vitro experiments that Gefitinib can inhibit the phosphorylation of G719S in a dosage-increasing manner. Higher concentration of Gefitinib is required to inhibit G719S mutation as compared with the sensitive mutation L858R. E709X point mutation is another non-classical mutation of exon 18, and E709X mutation accounts for about 0.30% of the total EGFR mutations. In in vitro experiments, patients with E709X point mutation exhibit high sensitivity to Afatinib, compared with the first generation or third generation of TKIs.
- DelE709-T710insD is the most common deletion mutation at codon 709, accounting for about 0.30% of the total EGFR mutations.
- Non-classical mutations of exon 19 are insertion mutation and point mutation. The insertion mutation of exon 19 accounts for about 0.60% of the EGFR mutations, including: I744-K745insKIPVAI, K745-E746insIPVAIK, K745-E746insVPVAIK, K745-E746insTPVAIK. In vitro tests showed that insertion mutations of exon 19 are sensitive to Afatinib.
- The main point mutation of exon 19 is D761Y, and it is believed that its appearance may be related to EGFR-TKI drug resistance, however, the drug resistance level is weaker than that of point mutation T790M of exon 20. And at present, there is no clinical trial data.
- Amino acid sites translated by exon 20 is 762-823. Glu762, starting at N-terminal, is an important catalytic site. It comprises a C-helix consisting of amino acids E762-M766 and a ring consisting of amino acids A767-V774. The non-classical mutations of exon 20 are mainly insertion mutation and point mutation, inchluding: A763-Y764insFQEA, V769-D770insASV, V769-D770insDNP , D770-N771insNPG, D770-N771insNPH, D770-N771insSVD, D770-N771insASVDN, D770-N771insG, N771-P772insSVDNP, N771-H773dupNPH, P772-H773insPNP, P772-H773insPR, H773-V774insH, A763-Y764insFQEA, H773-V774insPH, H773-V774insNPH, N771-P772insH, H771-P772insN, H773-V774insAH, D770delinsGY, V774-C775insHV, and the like. The above mutations account for about 5.80% of the total EGFR mutations. In addition to A763-Y764insFQEA, the insertion mutation of exon 20 of EGFR is insensitive to the 1st, 2nd generation of TKIs targeted therapy. Among numerous mutation forms, 763_764insFQEA is the most special. 763_764insFQEA is a sensitive mutation currently found in ex20ins mutations.
- So far, more than 60 unique forms of EGFR ex20ins have been found, and the most common form of EGFR ex20ins in the study is D770_N771>ASVDN, N771_P772>SVDNP and N771_H773upNPH, accounting for about 50% of the ex20ins mutations.
- In recent in vitro experiments, Poziotinib was found to effectively inhibit the growth of Ba/F3 cell lines with an insertion mutation of EGFR exon 20. Poziotinib was stronger than Osimertinib and Afatinib. However, side effects were evident in the form of rash and diarrhea, and clinical trial data are absent.
- The point mutation of exon 20 is mainly: S768I, which accounts for about 1.0% of the total EGFR mutations. In in vitro experiments, S768I mutation was more sensitive to Afatinib as compared with Osimertinib.
- EGFR ex20ins mutations are not as sensitive to the first and second generation EGFR-TKIs as classical mutations, but are the most common non-sensitive mutations among EGFR mutations. Therefore, the treatment of people with ex20ins mutations is currently a major challenge for clinicians in clinical management.
- The non-classical mutation of exon 21 is mainly characterized by the point mutation L861Q, which accounts for about 0.90% of the total EGFR mutations. L861Q mutation is caused by the replacment of T by A at site 2828 of exon 21 and has similar oncogenic activity to that of L858R mutation. It was found through in vitro studies the L861Q mutation is sensitive to Osimertinib, but clinical trial data are absent.
- ERBB2 point mutations V777L, D769Y, R896C, P 1170A and insertional mutations V777-G778insCG and P780-Y781insGSP.
-
- The preparation method of the compound of the present invention can be the method described in
CN108721298A . - The compound of the present invention can inhibit mutant EGFR, in particular point mutation and insertion mutation of EGFR exon 18-21, as well as point mutation and insertion mutation of ErbB2. Therefore, based on the compounds of the present invention, the present invention also provides a pharmaceutical composition comprising a therapeutically effective amount of a compound of the invention or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier or excipient.
- Examples of pharmaceutically acceptable salts of the compound of the present invention include, but are not limited to, inorganic and organic acid salts such as hydrochloride, hydrobromate, sulfate, citrate, lactate, tartrate, maleate, fumarate, mandelate, and oxalate; and inorganic and organic base salts formed with bases such as sodium hydroxyl, tris (hydroxymethyl) aminomethane (Tris, amine butantriol) and N-methylglucamine.
- The pharmaceutical compositions of the present invention can be formulated into formulations suitable for various administration routes, including but not limited to the form of administration for parenteral, subcutaneous, intravenous, intramuscular, intraperitoneal, transdermal, oral, intrathecal, intracranial, nasal or external pathway for the treatment of tumors and other diseases. The dosage is an amount effective to improve or eliminate one or more conditions. For the treatment of a particular disease, the effective amount is an amount sufficient to improve or mitigate symptoms associated with a disease in certain ways. Such dosage may be administered as a single dose, or may be administered in accordance with an effective treatment regimen. The amount of administration may be able to cure a disease, but is generally intended to improve the symptoms of the disease. Repeated administrations are generally needed to achieve the desired improvement on symptoms. The dosage of a drug will be determined according to the age, health and weight of a patient, the type of parallel therapy, the frequency of therapy, and desired therapeutic benefits.
- The pharmaceutical formulations of the present invention can be administered to any mammal so long as they can obtain the therapeutic effects of the compound of the invention. Most important in these mammals is human.
- Based on the teachings of the present invention, a skilled person in the art will appreciate that the compound of the present invention may be used to treat a cancer. In a specific embodiment, the cancer is non-small cell lung cancer, small cell lung cancer, lung adenocarcinoma, lung squamous cell carcinoma, breast cancer, pancreatic cancer, prostate cancer, ovarian cancer, glioblastoma, head and neck squamous cell carcinoma, cervical cancer, esophageal cancer, liver cancer, kidney cancer, colon cancer, skin cancer, leukemia, lymphoma, gastric cancer, or multiple myeloma.
- The pharmaceutical formulations of the present invention can be manufactured in a known manner. For example, the formulation can be prepared by traditional mixing, pelletizing, ingot making, dissolution, or freeze drying processes. When an oral formulation is manufactured, the mixture may be selectively ground in combination with solid excipients and the active compound. If necessary, an appropriate amount of auxiliary agent can be added, and the particle mixture is processed to obtain a tablet or lozenge core.
- Suitable excipients are fillers, for example sugars, such as lactose or sucrose, mannitol or sorbitol; cellulosic or calcium phosphates, such as tricalcium phosphate or calcium hydrophosphate; and binders, such as starch pastes, including corn starch, wheat starch, rice starch, potato starch, gelatin, astragalus, methylcellulose, hydroxypropyl methylcellulose, sodium carboxymethylcellulose, or polyvinylpyrrolidone. If necessary, a disintegrant, such as the starch mentioned above, and carboxymethyl starch, crosslinked polyvinylpyrrolidone, agar, or alginic acid or a salt thereof, such as sodium alginate, may be added. Auxiliary agents, in particular flow modulators and lubricants, for example, silica, talc, stearate, such as calcium magnesium stearate, stearic acid, or polyethylene glycol. If necessary, the lozenge core may be appropriately coated to resists gastric juice. For this purpose, a concentrated saccharide solutions can be applied. This solution may contain arabic gum, talc, polyvinylpyrrolidone, polyethylene glycol and/or titanium dioxide, a paint solution, and a suitable organic solvent or solvent mixture. To prepare a gastric-resistant coating, an appropriate cellulose solution, such as cellulose acetate phthalic acid or hydroxypropyl methyl cellulose phthalic acid, may be used. The dye or pigment may be added to the coating of a tablet or lozenge core, for example, a combination for identifying or for characterizing the dosage of an active ingredient.
-
- 1. The compound provided in the present invention is a brand-new compound capable of inhibiting mutant EGFRs, especially non-classical mutant EGFRs;
- 2. The compound provided in the present invention has excellent inhibitory activities against non-classical mutant EGFRs;
- 3. The compound provided in the present invention lays a foundation for the development of drugs capable of inhibiting EGFR mutations, especially non-classical mutant EGFRs, and has great industrialization and commercialization prospects and market value, and has significant economic benefits.
- The technical solutions of the present invention are further described below in connection with specific embodiments, however following embodiments do not constitute a limitation on the present invention and all the various methods of application employed according to the principles and technical means of the present invention fall within the scope of the present invention. Experimental methods for which specific conditions are not indicated in the following embodiments are usually performed according to conventional conditions, or according to the conditions recommended by the manufacturer. Percentages and parts are calculated by weight unless otherwise noted.
- Experimental Method:
The substrate for the kinase reaction was placed in a freshly prepared reaction buffer and the co-factors required for the kinase reaction were added, and the buffer was prepared as: 20 mM HEPES (pH 7.5), 10 mM MgCl2, 1 mM EGTA, 0.02% Brij35, 0.02 mg/mL BSA, 0.1 mM Na3VO4, 2 mM DTT, 1% DMSO; afterwards, the kinase to be tested was added and gently shaken. The compound to be tested was dissolved in DMSO to the desired concentration and added to the above buffer containing the kinase/substrate using an autosampler Echo550. 33P-labeled ATP (33P-ATP at a final concentration of 0.01 µCi/µL) was added to the reaction system to initiate the kinase reaction at room temperature for 2 h. The reaction system was spotted on a P81 ion exchange paper (Whatman #3698-915), thoroughly washed and filtered with 0.75% phosphoric acid, and finally the radioactive phosphorylated substrate remaining on the filter paper was measured. Kinase activity data were expressed as a percentage of the remaining kinase activity in the test sample, 10 concentration gradients were measured, a curve was fitted and IC50 values were calculated using Prism4 (GraphPad software). -
Kinase Compound I Osimertinib Afatinib Poziotinib Staurosporine EGFR 0.08 0.37 0.06 134.00 EGFR (A763_Y764insFHEA) 0.40 0.25 0.19 126.00 EGFR (A763_Y764insFQEA) 0.29 0.30 0.26 120.00 EGFR (d746-750) 0.84 0.71 0.61 30.30 EGFR (d747-749/A750P) 0.29 0.28 0.18 23.50 EGFR (D761Y) 0.12 0.39 0.09 72.30 EGFR (D770_N771insNPG) 0.23 0.49 0.29 56.20 EGFR (D770_N771insNPG/T790M) 0.49 0.17 0.81 2.11 EGFR (D770GY) 0.14 0.54 0.09 149.00 EGFR (G719C) 0.51 1.68 0.49 345.00 EGFR (G719D) 0.28 4.96 0.13 334.00 EGFR (G719S) 0.36 4.08 0.29 1250.00 EGFR (L858R) 0.17 0.22 0.11 42.20 EGFR (L858R, T790M) 0.34 0.14 1.15 2.14 EGFR (L861Q) 0.15 0.33 0.12 190.00 ERBB2 (D769Y) 0.35 0.31 0.21 19.20 ERBB2 (V777_G778insCG) 0.22 0.22 0.09 94.70 ERBB2 (V777L) 0.31 0.43 0.21 54.40 - A blank space means not detected.
- Inhibitory Activity IC50 Values (nM) of Series of Derivatives of Compound 1 (
WO 2018/192536 A1 ) on EGFR Mutant Kinase, and the evaluation method was the same as above.Kinase compound A compound B compound C compound 1 compound D compound E EGFR (A763_Y764insFHEA) 0.67 1.56 0.94 0.40 0.57 0.77 EGFR (A763_Y764insFQEA) 0.35 0.78 0.45 0.29 1.92 2.37 EGFR (D761Y) 0.34 0.78 0.99 0.12 0.45 0.62 EGFR (D770_N771insNPG) 0.52 1.23 3.67 0.23 2.78 1.74 EGFR (D770_N771insNPG/T790M) 0.67 1.89 2.47 0.49 0.99 1.58 EGFR (D770GY) 0.28 0.76 0.97 0.14 0.87 1.01 EGFR (G719C) 1.09 1.04 1.79 0.51 2.41 1.64 EGFR (G719D) 2.19 0.82 3.78 0.28 2.91 1.64 EGFR (G719S) 1.45 0.97 2.75 0.36 3.02 1.67 EGFR (L861Q) 2.05 1,67 0.93 0.15 1.04 0.88 ERBB2 (D769Y) 0.79 0.77 4.58 0.35 0.78 2.59 ERBB2 (V777_G778insCG) 0.35 1.56 2.76 0.22 1.96 3.78 ERBB2 (V777L) 0.78 2.05 1.63 0.31 1.87 0.82 - Mobocertinib (TAK-788, Takeda Pharmaceutical) has recently been granted Breakthrough Therapy Designation (BTD) drug status by U.S. FDA for treating patients with metastatic non-small cell lung cancer with insertion mutations of EGFR exon 20, whose disease has progressed after platinum-containing chemotherapy. For more objectively evaluating the activities of
compound 1, TAK-788 was used as a positive control in this trial.
1. Proliferation inhibition assay of compound I on stable cell lines containing different EGFR mutations.
2. Project content
Inhibition of the proliferation of different mutant types of Ba/F3 EGFR cell lines bycompound 1, TAK788, was examined by CTG Assay.
3. Main reagents and consumables
3. Compound:Compound 1 and TAK788, which were powders.
3. 2. List of Cells:Brand Cat. No. Name Medium Cobioer CBP73176 BA/F3_EGFR D769_N770insASV RPMI-1640+10%FBS Cobioer CBP73175 BA/F3_EGFR D770_N771insSVD RPMI-1640+10%FBS Cobioer CBP73050 BA/F3_EGFR L861Q RPMI-1640+10%FBS Cobioer CBP73170 BA/F3_EGFR G719A RPMI-1640+10%FBS Cobioer CBP73180 BA/F3_EGFR D770_N771insNPG RPMI-1640+10%FBS Cobioer CBP73224 BA/F3_EGFR H773_V774insH RPMI-1640+10%FBS
3.3 RPMI-1640 (Gibco #C11875500CP; Lot #8120069)
3.4 FBS (Gibco #10099-141C; Lot #2145068CP )
3.5 CellTiter-Glo® Luminescent Cell Viability Assay (Promega, Cat.No.: G7573; Lot #0000319784)
3.7 Cell Culture and Detection plate: 96 Well Asssay Plate (White Plate, Clear Bottom with Lid Tissue CoveredPolystyrne 1/Pack, Costar 3610)
3.8 T25 Cell Culture flask (BioFiL # TCF 012050)
3.9 Compound formulation Plate (Costar # 3357)
4. Main experimental instruments
Synergy H1 multifunctional microplate reader (Biotek, REF:8040534; SN:500431)
5. Experimental principle - Ba/F3, a mouse pro-B cell line dependent on interleukin-3, is a common system for studying kinases and kinase inhibitors. Recombinant expression of some protein kinases can make Ba/F3 cells no longer dependent on IL-3 for growth, and based on such properties, the inhibition of a compound on the proliferation of Ba/F3 cells expressing different target kinases can be detected, so as to reflect inhibitory effects of the compound on different kinase targets at the cellular level for kinase inhibitor screening.
- CellTiter-Glo® Luminescent Cell Viability Assay was employed in this experiment to detect cell proliferation, and the specific principles are as follows:
Adenosine Tri-Phosphate (ATP) is a common energy carrier used in various life activities in nature and is the smallest unit of energy storage and transfer. In the CellTiter-Glo™ Live Cell Assay Kit, fluorophore enzymes are used as detectors, which require the participation of ATP to generate light signals. After the CellTiter-Glo™ reagent is added to the cells, the luminescence value is measured. The light signal is proportional to the amount of ATP in the system, which is in turn positively correlated with the number of living cells. Therefore, by measuring the ATP content using the CellTiter-Glo kit, the viability of the cells and thus the level of cell proliferation can be reflected. - Cells were removed from the liquid nitrogen, quickly thawed in a water bath at 37 degree Celsius, lyophilization tubes were centrifuged at 1000 rpm, the supernatant of the lyophilized solution was discarded, and the cells were resuspended in RPMI1640+10% FBS medium and incubated in a cell culture incubator at 37 degree Celsius with a cell culture density maintaining at 2∗10e5 to 2∗10e6/ml at all times.
-
- 1) The compound were serially diluted in DMSO in a compound formulation plate with a starting concentration of 1 or 10 mM and a gradient dilution of 3.
- 2) A new compound formulation plate was prepared, 198 ul of RPMI160+10% FBS medium was added to each well, 2 ul/well of compound from the previous gradient-diluted compound formulation plate was transferred to this plate and mixed well, so that the highest starting compound concentration in this plate was 1 or 10 uM, and diluted by gradient (this plate was a 10* compound concentration dilution plate).
-
- 1) Cells in logarithmic growth phase were taken, the supernatant was discarded by centrifugation, and the cells were re-suspended in a fresh RPMI1640 medium at a cell density of 2∗10e4/ml.
- 2) The re-suspended cells were inoculated into 2 96-well cell culture plates with white walls and clear bottom at 100 ul of cell suspension / well, and incubated overnight in a 37° C cell incubator.
- 3) The next day, one of the 96-well plates inoculated with cells were taken, 100ul/well of cell titer glo assay reagent was added for 60 minutes, the value was read and defined as G0 data.
- 4) Another parallel plate was taken, 11.1 ul/well of compound from the previously diluted 10* compound concentration dilution plate was added to this plate, so that the final concentration of compound in the cell assay plate started from 0.5 or 1 uM, which was 3-fold diluted for 9 concentration gradients. Additional DMSO control wells were set, and incubated in a 37° C cell incubator for another 72 hours.
- 5) The 96-well plate, in which cells were treated by the compound for 72 hrs, were taken from the incubator, 100 ul/well of cell titer glo assay reagent was added for 60 minutes, the value was read and defined as G3 data.
- 6) The cell proliferation rate corresponding to each well was calculated according to the following formula
- 7) Based on the proliferation rate and concentration thereof corresponding to each gradient concentration well, a gradient curve of cell proliferation was fitted using Prism Graphpad 5.0 software and the GI50 of the compound was calculated (GI50 is defined as the concentration of the compound corresponding to a cell proliferation rate of 50%) and the fitting formula in the software is as follows:
- GI50 values of compound I in the proliferation inhibition assay against stable cell lines containing different EGFR mutations are shown in the table below:
Strain GI50 ( nM) Compound 1TAK788 EGFR V769_D770insASV BaF3 1.63 1.49 EGFR D770_N771insNPG BaF3 0.99 1.53 EGFR D770_N771insSVD BaF3 5.59 4.73 EGFR H773_V774insH BaF3 5.42 4.44 EGFR G719A BaF3 0.58 4.66 EGFR L861Q BaF3 0.98 2.55 -
Figures 1a-f show GI50 values of compound I in the proliferation inhibition assay against stable cell lines containing different EGFR mutations, whereincompound 1 is shown as R201 and compound TAK788 is shown as R-203. - CONCLUSION: The results of
compound 1 and a series of derivatives thereof against EGFR non-classical mutant kinase activity indicate thatcompound 1 possesses excellent inhibitory activities; and further proliferation-inhibiting activities against classical EGFR 20ins mutant stable cell lines indicates thatcompound 1 reaches or is better than the EGFR 20ins kinase inhibitor TAK788, which is now generally considered to be the most promising. - All literature referred to in the present invention is cited by reference in the present application as if each literature was cited separately by reference. It should furthermore be understood that after reading the above teachings of the invention, a skilled person may make various alterations or modifications to the invention, and such equivalent forms also fall within the scope defined by the claims appended to this application.
Claims (9)
- The use of claim 1, wherein the mutant EGFR comprises at least one of the following mutations: point mutation and insertion mutation of EGFR 18-21 exon, and point mutation and insertion mutation of ErbB 2.
- The use of claim 2, wherein the mutant EGFR comprises:18 exon G719X, E709X, K716A, K728A point mutations and deletion mutation at codon 70919 exon insertion mutations I744-K745InsKIPVAI, K745-E746insIPVAIK, K745-E746insVPVAIK, K745-E746insTPVAIK and point mutation D761Y;20 exon insertion mutation and point mutation include: A763-Y764insFQEA, A763-Y764insFHEA, V769-D770insASV, V769-D770insDNP , D770-N771insNPG, D770-N771insNPH, D770-N771insSVD, D770-N771insASVDN, D770-N771insG, N771-P772insSVDNP, N771-H773dupNPH, P772-H773insPNP, P772-H773insPR, H773-V774insH, A763-Y764insFQEA, H773-V774insPH, H773-V774insNPH, N771-P772insH, H771-P772insN, H773-V774insAH, D770delinsGY, V774-C775insHV and the like, and 20 exon point mutation S768I;21 exon point mutation L861Q;
ERBB2 point mutations V777L, D769Y, R896C, P 1170A and insertion mutations V777-G778insCG, P780-Y781insGSP, and the like. - The use of claim 2, wherein the mutant EGFR comprises at least one of the following mutations: G719X (X represents A, S, C, D), D761Y, A763-Y764insFQEA, A763-Y764insFHEA, V769-D770insASV, D770-N771insSVD, D770-N771insASVDN, D770-N771insG, N771-P772insSVDNP, N771-H773dupNPH, P772-H773insPNP, P772-H773insPR, H773-V774insH, A763-Y764insFQEA, H773-V774insPH, H773-V774insNPH, N771-P772insH, H771-P772insN, H773-V774insAH, D770delinsGY, V774-C775insHV, L861Q, V777-G778insCG, V777L, D769Y and the like.
- The use of claim 4, wherein the mutant EGFR comprises at least one of the following mutations: A763_Y764insFHEA, A763-Y764insFQEA, d747-749/A750P D761Y, D770-N771insNPG, D770-N771insNPG/T790M, D770GY, G719C, G719D, G719S, and L861Q, and V777-G778insCG, V777L, D769Y of ERBB, and the like.
- The use of claim 1, wherein the disease is a cancer.
- The use of claim 6, wherein the cancer is non-small cell lung cancer, small cell lung cancer, lung adenocarcinoma, lung squamous cell carcinoma, breast cancer, pancreatic cancer, prostate cancer, ovarian cancer, glioblastoma, head and neck squamous cell carcinoma, cervical cancer, esophageal cancer, liver cancer, kidney cancer, colon cancer, skin cancer, leukemia, lymphoma, gastric cancer or multiple myeloma.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010889864 | 2020-08-28 | ||
PCT/CN2021/116076 WO2022042755A1 (en) | 2020-08-28 | 2021-09-01 | Compound for inhibiting mutant egfr and use thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
EP4205746A1 true EP4205746A1 (en) | 2023-07-05 |
EP4205746A4 EP4205746A4 (en) | 2024-05-15 |
Family
ID=80354624
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21860587.1A Pending EP4205746A4 (en) | 2020-08-28 | 2021-09-01 | Compound for inhibiting mutant egfr and use thereof |
Country Status (5)
Country | Link |
---|---|
US (1) | US20230321103A1 (en) |
EP (1) | EP4205746A4 (en) |
JP (1) | JP2023540491A (en) |
KR (1) | KR20240046817A (en) |
WO (1) | WO2022042755A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PE20240327A1 (en) | 2021-04-13 | 2024-02-22 | Nuvalent Inc | HETEROCYCLES WITH AMINO SUBSTITUTION TO TREAT CANCERS WITH EGFR MUTATIONS |
CN115850282A (en) * | 2021-09-24 | 2023-03-28 | 华东理工大学 | Compound for targeted degradation of EGFR protein and preparation method and application thereof |
CN115974878A (en) * | 2021-10-15 | 2023-04-18 | 上海汇伦医药股份有限公司 | Salt and crystal form of antitumor drug |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013170671A1 (en) * | 2012-05-14 | 2013-11-21 | 华东理工大学 | Pteridine ketone derivative and applications thereof as egfr, blk, and flt3 inhibitor |
RU2656591C2 (en) * | 2013-07-11 | 2018-06-06 | Бетта Фармасьютикалз Ко., Лтд | Protein tyrosine kinase modulators and methods of use |
CN104825455B (en) * | 2014-06-11 | 2017-08-15 | 中国科学院合肥物质科学研究院 | The purposes of Buddhist nun is replaced according to Shandong |
CN106279173A (en) * | 2015-05-29 | 2017-01-04 | 华东理工大学 | Pteridinone derivant is as the application of EGFR inhibitor |
CN108721298A (en) | 2017-04-19 | 2018-11-02 | 华东理工大学 | As the pyrimido heterocyclic compound of bruton's tyrosine kinase inhibitor and its application |
CN109305967A (en) * | 2017-07-28 | 2019-02-05 | 中国科学院上海药物研究所 | New pyrimidine and heterocycle compound and preparation method and purposes |
-
2021
- 2021-09-01 EP EP21860587.1A patent/EP4205746A4/en active Pending
- 2021-09-01 WO PCT/CN2021/116076 patent/WO2022042755A1/en unknown
- 2021-09-01 US US18/043,419 patent/US20230321103A1/en active Pending
- 2021-09-01 JP JP2023514146A patent/JP2023540491A/en active Pending
- 2021-09-01 KR KR1020237010660A patent/KR20240046817A/en unknown
Also Published As
Publication number | Publication date |
---|---|
US20230321103A1 (en) | 2023-10-12 |
KR20240046817A (en) | 2024-04-09 |
EP4205746A4 (en) | 2024-05-15 |
JP2023540491A (en) | 2023-09-25 |
WO2022042755A1 (en) | 2022-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP4205746A1 (en) | Compound for inhibiting mutant egfr and use thereof | |
US11452725B2 (en) | Chiral diaryl macrocycles and uses thereof | |
EP2497773B1 (en) | Process for preparing a 5H-pyrimido[5,4-d][2]benzazepine | |
US8912194B2 (en) | CDK inhibitor for the treatment of mesothelioma | |
EP3312180B1 (en) | Use of pteridinone derivative serving as egfr inhibitor | |
TW201831188A (en) | Combination therapy involving diaryl macrocyclic compounds | |
KR20130116302A (en) | Imidazo [4,5-c]quinolin-2-one compound and its use as pi3 kinase/mtor dual inhibitor | |
US8580793B2 (en) | Use of kinase inhibitor for the treatment of thymoma | |
CN115192580A (en) | Application of compound in preparation of inhibition drug targeting ErbB2 mutant | |
EP2754441B1 (en) | Composition for preventing and treating non-small cell lung cancer, containing pyrazino-triazine derivatives | |
CN114641293A (en) | Application of FGFR inhibitor | |
KR20120099219A (en) | Combination | |
CN118338905A (en) | Use of Wee1 kinase inhibitors in the treatment of cancer | |
KR102168179B1 (en) | Novel pyrimidine derivative showing growth inhibition of cancer cell and pharmaceutical composition comprising the same | |
CN115721650A (en) | Compound for inhibiting mutant EGFR and application thereof | |
US9956221B2 (en) | Use of a receptor-type kinase modulator for treating polycystic kidney disease | |
CN115721649A (en) | Compound for inhibiting mutant EGFR and application thereof | |
CN115040519A (en) | Use of EGFR inhibitors for the treatment of rare or non-classical mutations | |
WO2024097848A1 (en) | Malonate and glycolate salts of an egfr inhibitor | |
CN118772111A (en) | Substituted aminopyrimidine compound, pharmaceutical composition and application thereof | |
CN118574621A (en) | Substituted pyrimidin-4 (3H) -ones for the treatment of cancer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20230324 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20240416 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: A61P 35/00 20060101ALI20240410BHEP Ipc: A61K 31/5365 20060101ALI20240410BHEP Ipc: A61K 31/519 20060101AFI20240410BHEP |