EP4204532B1 - Fabric conditioner for sportswear - Google Patents

Fabric conditioner for sportswear Download PDF

Info

Publication number
EP4204532B1
EP4204532B1 EP21762065.7A EP21762065A EP4204532B1 EP 4204532 B1 EP4204532 B1 EP 4204532B1 EP 21762065 A EP21762065 A EP 21762065A EP 4204532 B1 EP4204532 B1 EP 4204532B1
Authority
EP
European Patent Office
Prior art keywords
composition
fabric
perfume
cationic
protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21762065.7A
Other languages
German (de)
French (fr)
Other versions
EP4204532A1 (en
Inventor
Julie Cullen
Suzannah Sophia HATTON
Adrian Kevin Norman WILLIAMS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unilever Global IP Ltd
Unilever IP Holdings BV
Original Assignee
Unilever Global IP Ltd
Unilever IP Holdings BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unilever Global IP Ltd, Unilever IP Holdings BV filed Critical Unilever Global IP Ltd
Publication of EP4204532A1 publication Critical patent/EP4204532A1/en
Application granted granted Critical
Publication of EP4204532B1 publication Critical patent/EP4204532B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/001Softening compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/382Vegetable products, e.g. soya meal, wood flour, sawdust
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/40Products in which the composition is not well defined
    • C11D7/44Vegetable products
    • C11D2111/12

Definitions

  • the present invention is in the field of providing a composition for use in the laundering of sportswear.
  • Sportswear is becoming increasingly popular with consumers.
  • Sportswear can be generally characterised by technical fabrics made from synthetic fibres, which are designed to provide benefits such as stretching as needed, wicking moisture from the skin surface and quick dry.
  • a particularly important feature that consumers look for is the ability to wick moisture from the skin surface and distribute the moisture throughout the fabric, allowing an increased rate of evaporation. This keeps the wearer of the fabric cool and dry while working out.
  • US6494920 discloses detergent mixtures containing esterquats and aloe and to the use of the mixtures for the production of surface-active compositions.
  • the present invention provides a use of a fabric conditioning composition which improves the wicking abilities of a fabric i.e. the ability to absorb moisture from the skins surface and distribute through the fabric.
  • composition comprising:
  • the moisture wicking capability of the fabric refers to the capability of the fabric, once dried, and in wear, to wick moisture (such as sweat) away from the skin of the wearer.
  • the improved moisture wicking capability of synthetic fabric may be expressed in many ways, including rejuvenating sportswear, improving the lifetime of sportswear, reviving sportswear, caring for sportswear.
  • the improved moisture wicking capability of synthetic fabric it may be expressed in terms of the benefits while the garment is being worm, for example: keeping the wearer drier for longer, keeping the wearer cooler for longer, keeping the wearer feeling comfortable for longer. In particular these benefits are seen during exercise when the wearer of the clothes is more likely to sweat.
  • a fabric conditioner formulation as described herein provides a multi-wash benefit, in particular a 5 wash benefit.
  • 5 wash benefit it is meant that the improved moisture wicking benefit is particularly evident after 5 washes.
  • 'washes' is a colloquial term for the laundry process; in this context 'wash' refers to the process of laundering clothes and includes the wash, rinse and drying stages of the laundry process.
  • the 5 wash benefit is demonstrated in the examples included herein. Sports clothes washed 5 times wherein a composition comprising a fabric softening active and a hydrolysed wheat protein is added in the rinse cycle showed significant moisture wicking benefits compared to the same garments washed 5 times with a composition comprising a fabric softening active added in the rinse cycle.
  • Synthetic fibres are fibres made by chemical synthesis, as opposed to natural fibres that are directly derived from living organisms.
  • Examples of synthetic fibres are polyester, nylon, polyvinyl chloride (PVC), spandex/lycra/elastane and acrylic fibres.
  • the use described herein is for treating fabric comprising 90 wt.% to 100 wt.%, more preferably 95 wt.% to 100 wt.% polyester and most preferably 100 wt.% polyester by weight of the fabric.
  • the use described herein may be for treating fabric comprising only synthetic fibres (i.e. 100% synthetic fibres), most preferably the fabric comprises 100 % polyester.
  • a fabric conditioner formulation as described herein is during the laundry process.
  • the fabric conditioner formulation is contacted with the synthetic fabric during the rinse stage of the laundry process.
  • the laundry process may be hand washing or machine washing.
  • the clothes are treated with a 10 to 100 ml dose of fabric conditioner for a 4 to 7 kg load of clothes. More preferably, 10 to 80 ml for a 4 to 7 kg load of clothes.
  • compositions for use as described herein comprise a fabric softening active.
  • the fabric conditioners of the present invention comprise more than 1 wt. % fabric softening active, more preferably more than 2 wt. % fabric softening active, most preferably more than 3 wt. % fabric softening active by weight of the composition.
  • the fabric conditioners of the present invention comprise less than 40 wt. % fabric softening active, more preferably less than 30 wt. % fabric softening active, most preferably less than 20 wt. % fabric softening active by weight of the composition.
  • the fabric conditioners comprise 1 to 40 wt. % fabric softening active, preferably 2 to 30 wt.% fabric softening active and more preferably 3 to 20 wt. % fabric softening active by weight of the composition.
  • the fabric softening actives may be any material known to soften fabrics. These may be polymeric materials or compounds known to soften materials. Examples of suitable fabric softening actives include: quaternary ammonium compounds, silicone polymers, polysaccharides, clays, amines, fatty esters, dispersible polyolefins, polymer latexes and mixtures thereof.
  • the fabric softening actives may preferably be cationic or non-ionic materials.
  • the fabric softening actives of the present invention are cationic materials. Suitable cationic fabric softening actives are described herein.
  • the preferred softening actives for use in fabric conditioner compositions of the invention are quaternary ammonium compounds (QAC).
  • the QAC preferably comprises at least one chain derived from fatty acids, more preferably at least two chains derived from a fatty acids.
  • fatty acids are defined as aliphatic monocarboxylic acids having a chain of 4 to 28 carbons.
  • Fatty acids may be derived from various sources such as tallow or plant sources.
  • the fatty acid chains are derived from plants.
  • the fatty acid chains of the QAC comprise from 10 to 50 wt. % of saturated C18 chains and from 5 to 40 wt. % of monounsaturated C18 chains by weight of total fatty acid chains.
  • the fatty acid chains of the QAC comprise from 20 to 40 wt. %, preferably from 25 to 35 wt. % of saturated C18 chains and from 10 to 35 wt. %, preferably from 15 to 30 wt. % of monounsaturated C18 chains, by weight of total fatty acid chains.
  • the preferred quaternary ammonium fabric softening actives for use in compositions of the present invention are so called "ester quats".
  • Particularly preferred materials are the ester-linked triethanolamine (TEA) quaternary ammonium compounds comprising a mixture of mono-, di- and tri-ester linked components.
  • TAA ester-linked triethanolamine
  • TEA-based fabric softening compounds comprise a mixture of mono, di- and tri ester forms of the compound where the di-ester linked component comprises no more than 70 wt.% of the fabric softening compound, preferably no more than 60 wt.% e.g. no more than 55%, or even no more that 45% of the fabric softening compound and at least 10 wt.% of the monoester linked component.
  • a first group of quaternary ammonium compounds (QACs) suitable for use in the present invention is represented by formula (I): wherein each R is independently selected from a C5 to C35 alkyl or alkenyl group; R1 represents a C1 to C4 alkyl, C2 to C4 alkenyl or a C1 to C4 hydroxyalkyl group; T may be either O-CO. (i.e. an ester group bound to R via its carbon atom), or may alternatively be CO-O (i.e.
  • Suitable actives include soft quaternary ammonium actives such as Stepantex VT90, Rewoquat WE18 (ex-Evonik) and Tetranyl L1/90N, Tetranyl L190 SP and Tetranyl L190 S (all ex-Kao).
  • TEA ester quats actives rich in the di-esters of triethanolammonium methylsulfate, otherwise referred to as "TEA ester quats".
  • Preapagen TM TQL Ex-Clariant
  • Tetranyl TM AHT-1 Ex-Kao
  • AT-1 di-[hardened tallow ester] of triethanolammonium methylsulfate
  • L5/90 di-[palm ester] of triethanolammonium methylsulfate
  • Rewoquat TM WE15 a di-ester of triethanolammonium methylsulfate having fatty acyl residues deriving from C10-C20 and C16-C18 unsaturated fatty acids
  • a second group of QACs suitable for use in the invention is represented by formula (II): wherein each R1 group is independently selected from C1 to C4 alkyl, hydroxyalkyl or C2 to C4 alkenyl groups; and wherein each R2 group is independently selected from C8 to C28 alkyl or alkenyl groups; and wherein n, T, and X- are as defined above.
  • Preferred materials of this second group include 1,2 bis[tallowoyloxy]-3-trimethylammonium propane chloride, 1,2 bis[hardened tallowoyloxy]-3-trimethylammonium propane chloride, 1,2-bis[oleoyloxy]-3-trimethylammonium propane chloride, and 1,2 bis[stearoyloxy]-3-trimethylammonium propane chloride.
  • Such materials are described in US 4, 137,180 (Lever Brothers ).
  • these materials also comprise an amount of the corresponding mono-ester.
  • a third group of QACs suitable for use in the invention is represented by formula (III): (R 1 ) 2 -N + -[(CH 2 ) n -T-R 2 ] 2 X - (III) wherein each R1 group is independently selected from C1 to C4 alkyl, or C2 to C4 alkenyl groups; and wherein each R2 group is independently selected from C8 to C28 alkyl or alkenyl groups; and n, T, and X- are as defined above.
  • Preferred materials of this third group include bis(2-tallowoyloxyethyl)dimethyl ammonium chloride, partially hardened and hardened versions thereof.
  • a fourth group of QACs suitable for use in the invention are represented by formula (V)
  • R1 and R2 are independently selected from C10 to C22 alkyl or alkenyl groups, preferably C14 to C20 alkyl or alkenyl groups.
  • X- is as defined above.
  • the iodine value of the quaternary ammonium fabric conditioning material is preferably from 0 to 80, more preferably from 0 to 60, and most preferably from 0 to 45.
  • the iodine value may be chosen as appropriate.
  • Essentially saturated material having an iodine value of from 0 to 5, preferably from 0 to 1 may be used in the compositions of the invention. Such materials are known as "hardened" quaternary ammonium compounds.
  • a further preferred range of iodine values is from 20 to 60, preferably 25 to 50, more preferably from 30 to 45.
  • a material of this type is a "soft" triethanolamine quaternary ammonium compound, preferably triethanolamine di-alkylester methylsulfate. Such ester-linked triethanolamine quaternary ammonium compounds comprise unsaturated fatty chains.
  • the iodine value represents the mean iodine value of the parent fatty acyl compounds or fatty acids of all of the quaternary ammonium materials present.
  • the iodine value represents the mean iodine value of the parent acyl compounds of fatty acids of all of the quaternary ammonium materials present.
  • Iodine value refers to, the fatty acid used to produce the QAC, the measurement of the degree of unsaturation present in a material by a method of nmr spectroscopy as described in Anal. Chem. , 34, 1136 (1962) Johnson and Shoolery .
  • a further type of softening compound may be a non-ester quaternary ammonium material represented by formula (VI): wherein each R1 group is independently selected from C1 to C4 alkyl, hydroxyalkyl or C2 to C4 alkenyl groups; R2 group is independently selected from C8 to C28 alkyl or alkenyl groups, and X- is as defined above.
  • formula (VI) wherein each R1 group is independently selected from C1 to C4 alkyl, hydroxyalkyl or C2 to C4 alkenyl groups; R2 group is independently selected from C8 to C28 alkyl or alkenyl groups, and X- is as defined above.
  • compositions for use as described herein comprise a hydrolysed protein.
  • Compositions of the present invention comprise 0.01 to 4 wt.%, more preferably 0.05 to 4 wt.%, more preferably 0.125 to 4 wt. % hydrolysed protein, preferably, 0.2 to 2 wt. % hydrolysed protein, more preferably 0.25 to 1.5 wt. % hydrolysed protein.
  • Protein hydrolysates are proteins which are obtainable by hydrolysis of proteins. Hydrolysis can be achieved by chemical reactions, in particular by alkaline hydrolysis, acid hydrolysis, enzymatic hydrolysis or combinations thereof.
  • hydrolytic enzymes are suitable, for example alkaline proteases.
  • the production of protein hydrolysates are described, for example, by G. Schuster and A. Domsch in soaps and oils Fette Wachse 108, (1982) 177 and Cosm.Toil, respectively. 99, (1984) 63 , by H.W. Steisslinger in Parf.Kosm. 72, (1991) 556 and F. Aurich et al. in Tens.Surf.Det. 29, (1992) 389 appeared.
  • the hydrolysed proteins of the present invention may come from a variety of sources.
  • the proteins may be naturally sourced, e.g. from plants or animal sources, or they may be synthetic proteins.
  • the protein is a naturally sourced protein or a synthetic equivalent of a naturally sourced protein.
  • a preferred class of proteins are plant proteins, i.e. proteins obtained from a plant or synthetic equivalents thereof.
  • the protein is obtained from a plant.
  • Preferred plant sources include nuts, seeds, beans, and grains.
  • Particularly preferred plant sources are grains.
  • grains include cereal grains (e.g. millet, maize, barley, oats, rice and wheat), pseudoceral grains (e.g. buckwheat and quinoa), pulses (e.g. chickpeas, lentils and soybeans) and oilseeds (e.g. mustard, rapeseed, sunflower seed, hemp seed, poppy seed, flax seed).
  • cereal grains e.g. millet, maize, barley, oats, rice and wheat
  • pseudoceral grains e.g. buckwheat and quinoa
  • pulses e.g. chickpeas, lentils and soybeans
  • oilseeds e.g. mustard, rapeseed, sunflower seed, hemp seed, poppy seed, flax seed.
  • Most preferred are cereal grains, in particular wheat proteins or synthetic equivalents to wheat proteins.
  • the protein hydrolyzate preferably has a weight-average molecular weight Mw in the range from 300 g / mol to 50,000 g / mol, in particular from 300 g / mol to 15,000 g / mol.
  • the average molecular weight Mw can be determined, for example, by gel permeation chromatography (GPC) ( Andrews P., "Estimation of the Molecular Weight of Proteins by Sephadex Gel Filtration"; Biochem J., 1964, 91, pages 222 to 233 ).
  • GPC gel permeation chromatography
  • the protein hydrolyzate is cationically modified.
  • a cationically modified wheat protein hydrolysate Preferably, a cationically modified wheat protein hydrolysate.
  • the hydrolysed protein contains at least one radical of the formula: R1-N + (CH 3 ) 2 -CH 2 -CH(OH)-CH 2 -XR
  • R1 is an alkyl group having 1 to 30 carbon atoms, an alkenyl group having 1 to 30 carbon atoms, or a hydroxyalkyl group having 1 to 30 carbon atoms.
  • R1 is preferably selected from, a methyl group, a C 10-18 alkyl, or a C 10-13 alkenyl group
  • X is O, N or S R represents the protein residue.
  • protein residue is to be understood as meaning the backbone of the corresponding protein hydrolyzate formed by the linking of amino acids, to which the cationic group is bound.
  • the cationization of the protein hydrolysates with the above-described residues can be achieved by reacting the protein hydrolyzates, in particular the reactive groups of the amino acids of the protein hydrolysates, with halides which otherwise correspond to compounds of the above formula (wherein the X-R moiety is replaced by a halogen).
  • Wheat protein hydrolysates are commercially available, for example, from Croda under the trade name ColtideRadiance.
  • compositions for use as described herein preferably comprise perfume.
  • the compositions preferably comprise 0.1 to 30 wt. % perfume materials, i.e. free perfume and/or perfume microcapsules.
  • free perfumes and perfume microcapsules provide the consumer with perfume hits at different points during the laundry process. It is particularly preferred that the compositions of the present invention comprise a combination of both free perfume and perfume microcapsules.
  • compositions of the present invention comprise 0.5 to 20 wt.% perfume materials, more preferably 1 to 15 wt.% perfume materials, most preferably 1 to 10 wt. % perfume materials.
  • Useful perfume components may include materials of both natural and synthetic origin. They include single compounds and mixtures. Specific examples of such components may be found in the current literature, e.g., in Fenaroli's Handbook of Flavor Ingredients, 1975, CRC Press ; Synthetic Food Adjuncts, 1947 by M. B. Jacobs, edited by Van Nostrand ; or Perfume and Flavor Chemicals by S. Arctander 1969, Montclair, N.J. (USA ). These substances are well known to the person skilled in the art of perfuming, flavouring, and/or aromatizing consumer products.
  • compositions of the present invention preferably comprises 0.1 to 15 wt.% free perfume, more preferably 0.5 to 8 wt. % free perfume.
  • Particularly preferred perfume components are blooming perfume components and substantive perfume components.
  • Blooming perfume components are defined by a boiling point less than 250°C and a LogP or greater than 2.5.
  • Substantive perfume components are defined by a boiling point greater than 250°C and a LogP greater than 2.5. Boiling point is measured at standard pressure (760 mm Hg).
  • a perfume composition will comprise a mixture of blooming and substantive perfume components.
  • the perfume composition may comprise other perfume components.
  • perfume components it is commonplace for a plurality of perfume components to be present in a free oil perfume composition.
  • compositions for use in the present invention it is envisaged that there will be three or more, preferably four or more, more preferably five or more, most preferably six or more different perfume components.
  • An upper limit of 300 perfume components may be applied.
  • compositions of the present invention preferably comprise 0.1 to 15 wt.% perfume microcapsules, more preferably 0.2 to 8 wt. % perfume microcapsules.
  • the weight of microcapsules is of the material as supplied.
  • suitable encapsulating materials may comprise, but are not limited to; aminoplasts, proteins, polyurethanes, polyacrylates, polymethacrylates, polysaccharides, polyamides, polyolefins, gums, silicones, lipids, modified cellulose, polyphosphate, polystyrene, polyesters or combinations thereof.
  • Particularly preferred materials are aminoplast microcapsules, such as melamine formaldehyde or urea formaldehyde microcapsules.
  • Perfume microcapsules of the present invention can be friable microcapsules and/or moisture activated microcapsules.
  • friable it is meant that the perfume microcapsule will rupture when a force is exerted.
  • moisture activated it is meant that the perfume is released in the presence of water.
  • the compositions of the present invention preferably comprise friable microcapsules. Moisture activated microcapsules may additionally be present. Examples of a microcapsules which can be friable include aminoplast microcapsules.
  • Perfume components contained in a microcapsule may comprise odiferous materials and/or pro-fragrance materials.
  • Particularly preferred perfume components contained in a microcapsule are blooming perfume components and substantive perfume components.
  • Blooming perfume components are defined by a boiling point less than 250°C and a LogP greater than 2.5.
  • the encapsulated perfume compositions comprises at least 20 wt.% blooming perfume ingredients, more preferably at least 30 wt.% and most preferably at least 40 wt.% blooming perfume ingredients.
  • Substantive perfume components are defined by a boiling point greater than 250°C and a LogP greater than 2.5.
  • the encapsulated perfume compositions comprises at least 10 wt.% substantive perfume ingredients, more preferably at least 20 wt.% and most preferably at least 30 wt.% substantive perfume ingredients. Boiling point is measured at standard pressure (760 mm Hg).
  • a perfume composition will comprise a mixture of blooming and substantive perfume components.
  • the perfume composition may comprise other perfume components.
  • perfume components it is commonplace for a plurality of perfume components to be present in a microcapsule.
  • compositions for use in the present invention it is envisaged that there will be three or more, preferably four or more, more preferably five or more, most preferably six or more different perfume components in a microcapsule.
  • An upper limit of 300 perfume components may be applied.
  • the microcapsules may comprise perfume components and a carrier for the perfume ingredients, such as zeolites or cyclodextrins.
  • compositions for use as described herein preferably comprise anti-malodour ingredient(s).
  • Anti-malodour ingredients maybe used in addition to traditional perfume ingredients.
  • Anti-malodour agent may be present at a level selected from: less than 20%, less than 10%, and less than 5%, by weight of the composition.
  • Suitably anti-malodour agent is present in the composition in an amount selected from the range of from about 0.01 % to about 5%, preferably from about 0.1% to about 3%, more preferably from about 0.2% to about 2%, by weight of the composition.
  • Any suitable anti-malodour agent may be used.
  • An anti-malodour effect may be achieved by any compound or product that is effective to "trap”, “absorb” or “destroy” odour molecules to thereby separate or remove odour from the garment or act as a "malodour counteractant".
  • the odour control agent may be selected from the group consisting of: uncomplexed cyclodextrin; odour blockers; reactive aldehydes; flavanoids; zeolites; activated carbon; a mixture of zinc ricinoleate or a solution thereof and a substituted monocyclic organic compound; and mixtures thereof.
  • a suitable anti-malodour agent is cyclodextrin, suitably water soluble uncomplexed cyclodextrin.
  • cyclodextrin is present at a level selected from 0.01 % to 5%, 0.1 % to 4%, and 0.2% to 2% by weight of the composition.
  • cyclodextrin includes any of the known cyclodextrins such as unsubstituted cyclodextrins containing from six to twelve glucose units, especially, alpha-cyclodextrin, beta-cyclodextrin, gamma-cyclodextrin and/or their derivatives and/or mixtures thereof.
  • the alpha-cyclodextrin consists of six glucose units
  • the beta-cyclodextrin consists of seven glucose units
  • the gamma-cyclodextrin consists of eight glucose units arranged in donut-shaped rings.
  • the cyclodextrins are highly water-soluble such as, alpha-cyclodextrin and/or derivatives thereof, gamma-cyclodextrin and/or derivatives thereof, derivatised beta-cyclodextrins, and/or mixtures thereof.
  • the derivatives of cyclodextrin consist mainly of molecules wherein some of the OH groups are converted to OR groups.
  • Cyclodextrin derivatives include, e.g., those with short chain alkyl groups such as methylated cyclodextrins, and ethylated cyclodextrins, wherein R is a methyl or an ethyl group; those with hydroxyalkyl substituted groups, such as hydroxypropyl cyclodextrins and/or hydroxyethyl cyclodextrins, wherein R is a -CH2-CH(OH)-CH3 or a -CH2CH2-OH group; branched cyclodextrins such as maltose-bonded cyclodextrins; cationic cyclodextrins such as those containing 2-hydroxy-3-(dimethylamino)propyl ether, wherein R is CH2-CH(OH)-CH2-N(CH3)2 which is cationic at low pH; quaternary ammonium, e.g., 2-hydroxy-3-(trimethyl
  • Highly water-soluble cyclodextrins are those having water solubility of at least about 10 g in 100 ml of water at room temperature, preferably at least about 20 g in 100 ml of water, more preferably at least about 25 g in 100 ml of water at room temperature.
  • the availability of solubilized, uncomplexed cyclodextrins is essential for effective and efficient odour control performance. Solubilized, water-soluble cyclodextrin can exhibit more efficient odour control performance than non-water-soluble cyclodextrin when deposited onto surfaces, especially fabric.
  • Examples of preferred water-soluble cyclodextrin derivatives suitable for use herein are hydroxypropyl alpha-cyclodextrin, methylated alpha-cyclodextrin, methylated beta-cyclodextrin, hydroxyethyl beta-cyclodextrin, and hydroxypropyl beta-cyclodextrin.
  • Hydroxyalkyl cyclodextrin derivatives preferably have a degree of substitution of from about 1 to about 14, more preferably from about 1.5 to about 7, wherein the total number of OR groups per cyclodextrin is defined as the degree of substitution.
  • Methylated cyclodextrin derivatives typically have a degree of substitution of from about 1 to about 18, preferably from about 3 to about 16.
  • a known methylated beta-cyclodextrin is heptakis-2,6-di-O-methyl- ⁇ -cyclodextrin, commonly known as DIMEB, in which each glucose unit has about 2 methyl groups with a degree of substitution of about 14.
  • DIMEB heptakis-2,6-di-O-methyl- ⁇ -cyclodextrin
  • a preferred, more commercially available, methylated beta-cyclodextrin is a randomly methylated beta-cyclodextrin, commonly known as RAMEB, having different degrees of substitution, normally of about 12.6.
  • RAMEB is more preferred than DIMEB, since DIMEB affects the surface activity of the preferred surfactants more than RAMEB.
  • the preferred cyclodextrins are available, e.g., from Cerestar U.S.A., Inc. and Wacker Chemicals (U.S.A.), Inc.
  • mixtures of cyclodextrins are used.
  • odour blockers can be used as an anti-malodour agent to mitigate the effects of malodours.
  • Non-limiting examples of odour blockers include 4-cyclohexyl-4-methyl-2-pentanone, 4-ethylcyclohexyl methyl ketone, 4-isopropylcyclohexyl methyl ketone, cyclohexyl methyl ketone, 3-methylcyclohexyl methyl ketone, 4-tert.-butylcyclohexyl methyl ketone, 2-methyl-4-tert.butylcyclohexyl methyl ketone, 2-methyl-5-isopropylcyclohexyl methyl ketone, 4-methylcyclohexyl isopropyl ketone, 4- methylcyclohexyl secbutyl ketone, 4-methylcyclohexyl isobutyl ketone, 2,4-dimethylcyclohexyl methyl ketone,
  • Reactive aldehydes can be used as anti-malodour agent to mitigate the effects of malodours.
  • suitable reactive aldehydes include Class I aldehydes and Class II aldehydes.
  • Class I aldehydes include anisic aldehyde, o-allyl-vanillin, benzaldehyde, cuminic aldehyde, ethylaubepin, ethyl-vanillin, heliotropin, tolyl aldehyde, and vanillin.
  • Class II aldehydes include 3-(4'-tert.butylphenyl)propanal, 2-methyl-3-(4'-tertbutylphenyl)propanal, 2- methyl-3-(4'-isopropylphenyl)propanal, 2,2-dimethyl-3-(4-ethylphenyl)propanal, cinnamic aldehyde, a-amyl-cinnamic aldehyde, and a-hexyl-cinnamic aldehyde. These reactive aldehydes are described in more detail in US5,676,163 .
  • Reactive aldehydes when used, can include a combination of at least two aldehydes, with one aldehyde being selected from acyclic aliphatic aldehydes, non-terpenic aliphatic aldehydes, non-terpenic alicyclic aldehydes, terpenic aldehydes, aliphatic aldehydes substituted by an aromatic group and bifunctional aldehydes; and the second aldehyde being selected from aldehydes possessing an unsaturation alpha to the aldehyde function conjugated with an aromatic ring, and aldehydes in which the aldehyde group is on an aromatic ring.
  • reactive aldehydes further encompasses deodourizing materials that are the reaction products of (i) an aldehyde with an alcohol, (ii) a ketone with an alcohol, or (iii) an aldehyde with the same or different aldehydes.
  • Such deodourizing materials can be: (a) an acetal or hemiacetal produced by means of reacting an aldehyde with a carbinol; (b) a ketal or hemiketal produced by means of reacting a ketone with a carbinol; (c) a cyclic triacetal or a mixed cyclic triacetal of at least two aldehydes, or a mixture of any of these acetals, hemiacetals, ketals, hemiketals, or cyclic triacetals.
  • deodorizing perfume materials are described in more detail in WO 01/07095 .
  • Flavanoids can also be used as anti-malodour agent. Flavanoids are compounds based on the C6-C3-C6 flavan skeleton. Flavanoids can be found in typical essential oils. Such oils include essential oil extracted by dry distillation from needle leaf trees and grasses such as cedar, Japanese cypress, eucalyptus, Japanese red pine, dandelion, low striped bamboo and cranesbill and can contain terpenic material such as alpha-pinene, beta-pinene, myrcene, phencone and camphene. Also included are extracts from tea leaf. Descriptions of such materials can be found in JP 02284997 and JP 04030855 .
  • Metallic salts can also be used as anti-malodour agents for malodour control benefits.
  • Examples include metal salts of fatty acids. Ricinoleic acid is a preferred fatty acid. Zinc salt is a preferred metal salt. The zinc salt of ricinoleic acid is especially preferred.
  • a commercially available product is TEGO Sorb A30 ex Evonik. Further details of suitable metallic salts is provided below.
  • Zeolites can be used as anti-malodour agent.
  • a useful class of zeolites is characterized as "intermediate" silicate/aluminate zeolites.
  • the intermediate zeolites are characterized by SiO 2 / AlO 2 molar ratios of less than about 10. Preferably the molar ratio of SiO 2 / AlO 2 ranges from about 2 to about 10.
  • the intermediate zeolites can have an advantage over the "high" zeolites.
  • the intermediate zeolites have a higher affinity for amine-type odours, they are more weight efficient for odour absorption because they have a larger surface area, and they are more moisture tolerant and retain more of their odour absorbing capacity in water than the high zeolites.
  • a wide variety of intermediate zeolites suitable for use herein are commercially available as Valfor ® CP301-68, Valfor ® 300-63, Valfor ® CP300-35, and Valfor ® CP300-56, available from PQ Corporation, and the CBV100 ® series of zeolites from Conteka.
  • Zeolite materials marketed under the trade name Abscents ® and Smellrite ® available from The Union Carbide Corporation and UOP are also preferred. Such materials are preferred over the intermediate zeolites for control of sulfur-containing odours, e.g., thiols, mercaptans.
  • the zeolite material has a particle size of less than about 10 microns and is present in the composition at a level of less than about 1% by weight of the composition.
  • Activated carbon is another suitable anti-malodour agent.
  • Suitable carbon material is a known absorbent for organic molecules and/or for air purification purposes. Often, such carbon material is referred to as "activated” carbon or "activated” charcoal. Such carbon is available from commercial sources under such trade names as; Calgon- Type CPG ® ;Type PCB ® ;Type SGL ® ;Type CAL ® ;and Type OL ® .
  • the activated carbon preferably has a particle size of less than about 10 microns and is present in the composition at a level of less than about 1% by weight of the composition.
  • anti-malodour agents are as follows.
  • ODOBAN TM is manufactured and distributed by Clean Central Corp. of Warner Robins, Ga. Its active ingredient is alkyl (C14 50%, C12 40% and C16 10%) dimethyl benzyl ammonium chloride which is an antibacterial quaternary ammonium compound.
  • the alkyl dimethyl benzyl ammonium chloride is in a solution with water and isopropanol.
  • BIOODOUR CONTROL TM Another product by Clean Control Corp. is BIOODOUR CONTROL TM which includes water, bacterial spores, alkylphenol ethoxylate and propylene glycol.
  • ZEOCRYSTAL FRESH AIR MIST TM is manufactured and distributed by Zeo Crystal Corp. (a/k/a American Zeolite Corporation) of Crestwood, III.
  • the liquid comprises chlorites, oxygen, sodium, carbonates and citrus extract, and may comprise zeolite.
  • the odour control agent may comprise a "malodour counteractant" as described in US2005/0113282A1 .
  • this malodour counteractant may comprise a mixture of zinc ricinoleate or a solution thereof and a substituted monocyclic organic compound as described at page 2, paragraph 17 whereby the substituted monocyclic organic compound is in the alternative or in combination one or more of:
  • compositions comprising:
  • the weight ratio of components of the immediately-aforementioned zinc riconoleate-containing mixture is one where the zinc ricinoleate-containing composition: 1-cyclohexylethan-1-yl butyrate: 1-cyclohexylethan-1-yl acetate: 1-(4'-methylethyl)-cyclohexylethan-1-yl propionate is about 2:1:1:1.
  • composition useful in combination with the zinc ricinoleate component or solution is a mixture of:
  • the weight ratio of components of the immediately-aforementioned zinc riconoleate mixture is one where the zinc ricinoleate-containing composition: 1-cyclohexylethan-1-yl acetate: 1-(4'-methylethyl)cyclohexylethan-1-yl propionate is about 3:1:1.
  • the anti-malodour materials of the present invention may be 'free' in the composition or they may be encapsulated.
  • Suitable encapsulating material may comprise, but are not limited to; aminoplasts, proteins, polyurethanes, polyacrylates, polymethacrylates, polysaccharides, polyamides, polyolefins, gums, silicones, lipids, modified cellulose, polyphosphate, polystyrene, polyesters or combinations thereof.
  • microcapsules of the present invention can be friable microcapsules and/or moisture activated microcapsules.
  • friable it is meant that the perfume microcapsule will rupture when a force is exerted.
  • moisture activated it is meant that the perfume is released in the presence of water.
  • any material described herein as an odour control agent might also be classified as another component described herein, for purposes of the present invention, such material shall be classified as an odour control agent.
  • compositions for use as described herein may optionally comprise a cationic polymer.
  • a cationic polymer refers to polymers having an overall positive charge.
  • the cationic polymer is different to the hydrolysed protein polymers.
  • the cationic polymer may be naturally derived or synthetic.
  • suitable cationic polymers include: acrylate polymers, cationic amino resins, cationic urea resins, and cationic polysaccharides, including: cationic celluloses, cationic guars and cationic starches.
  • the cationic polymer of the present invention may be categorised as a polysaccharide-based cationic polymer or non-polysaccharide based cationic polymers.
  • Polysaccharide-based cationic polymers include cationic celluloses, cationic guars and cationic starches. Polysaccharides are polymers made up from monosaccharide monomers joined together by glycosidic bonds.
  • the cationic polysaccharide-based polymers present in the compositions of the invention have a modified polysaccharide backbone, modified in that additional chemical groups have been reacted with some of the free hydroxyl groups of the polysaccharide backbone to give an overall positive charge to the modified cellulosic monomer unit.
  • a preferred polysaccharide polymer is cationic cellulose. This refers to polymers having a cellulose backbone and an overall positive charge.
  • Cellulose is a polysaccharide with glucose as its monomer, specifically it is a straight chain polymer of D-glucopyranose units linked via beta -1,4 glycosidic bonds and is a linear, non-branched polymer.
  • the cationic cellulose-based polymers of the present invention have a modified cellulose backbone, modified in that additional chemical groups have been reacted with some of the free hydroxyl groups of the polysaccharide backbone to give an overall positive charge to the modified cellulose monomer unit.
  • a preferred class of cationic cellulose polymers suitable for this invention are those that have a cellulose backbone modified to incorporate a quaternary ammonium salt.
  • the quaternary ammonium salt is linked to the cellulose backbone by a hydroxyethyl or hydroxypropyl group.
  • the charged nitrogen of the quaternary ammonium salt has one or more alkyl group substituents.
  • Example cationic cellulose polymers are salts of hydroxyethyl cellulose reacted with trimethyl ammonium substituted epoxide, referred to in the field under the International Nomenclature for Cosmetic Ingredients as Polyquatemium 10 and is commercially available from the Amerchol Corporation, a subsidiary of The Dow Chemical Company, marketed as the Polymer LR, JR, and KG series of polymers.
  • Other suitable types of cationic celluloses include the polymeric quaternary ammonium salts of hydroxyethyl cellulose reacted with lauryl dimethyl ammonium- substituted epoxide referred to in the field under the International Nomenclature for Cosmetic Ingredients as Polyquatemium 24. These materials are available from Amerchol Corporation marketed as Polymer LM-200.
  • Typical examples of preferred cationic cellulosic polymers include cocodimethylammonium hydroxypropyl oxyethyl cellulose, lauryldimethylammonium hydroxypropyl oxyethyl cellulose, stearyldimethylammonium hydroxypropyl oxyethyl cellulose, and stearyldimethylammonium hydroxyethyl cellulose; cellulose 2-hydroxyethyl 2- hydroxy 3-(trimethyl ammonio) propyl ether salt, polyquaternium-4, polyquaternium-10, polyquaternium-24 and polyquaternium-67 or mixtures thereof.
  • the cationic cellulosic polymer is a quaternised hydroxy ether cellulose cationic polymer. These are commonly known as polyquaternium-10. Suitable commercial cationic cellulosic polymer products for use according to the present invention are marketed by the Amerchol Corporation under the trade name UCARE.
  • the counterion of the cationic polymer is freely chosen from the halides: chloride, bromide, and iodide; or from hydroxide, phosphate, sulphate, hydrosulphate, ethyl sulphate, methyl sulphate, formate, and acetate.
  • Non polysaccharide-based cationic polymers A non-polysaccharide-based cationic polymer is comprised of structural units, these structural units may be non-ionic, cationic, anionic or mixtures thereof.
  • the polymer may comprise non-cationic structural units, but the polymer must have a net cationic charge.
  • the cationic polymer may consists of only one type of structural unit, i.e., the polymer is a homopolymer.
  • the cationic polymer may consists of two types of structural units, i.e., the polymer is a copolymer.
  • the cationic polymer may consists of three types of structural units, i.e., the polymer is a terpolymer.
  • the cationic polymer may comprises two or more types of structural units.
  • the structural units may be described as first structural units, second structural units, third structural units, etc.
  • the structural units, or monomers, may be incorporated in the cationic polymer in a random format or in a block format.
  • the cationic polymer may comprise a nonionic structural units derived from monomers selected from: (meth)acrylamide, vinyl formamide, N, N-dialkyl acrylamide, N, N-dialkylmethacrylamide, C1-C12 alkyl acrylate, C1-C12 hydroxyalkyl acrylate, polyalkylene glyol acrylate, C1-C12 alkyl methacrylate, C1-C12 hydroxyalkyl methacrylate, polyalkylene glycol methacrylate, vinyl acetate, vinyl alcohol, vinyl formamide, vinyl acetamide, vinyl alkyl ether, vinyl pyridine, vinyl pyrrolidone, vinyl imidazole, vinyl caprolactam, and mixtures thereof.
  • monomers selected from: (meth)acrylamide, vinyl formamide, N, N-dialkyl acrylamide, N, N-dialkylmethacrylamide, C1-C12 alkyl acrylate, C1-C12 hydroxyalkyl
  • the cationic polymer may comprise a cationic structural units derived from monomers selected from: N, N-dialkylaminoalkyl methacrylate, N, N-dialkylaminoalkyl acrylate, N, N-dialkylaminoalkyl acrylamide, N, N-dialkylaminoalkylmethacrylamide, methacylamidoalkyl trialkylammonium salts, acrylamidoalkylltrialkylamminium salts, vinylamine, vinylimine, vinyl imidazole, quaternized vinyl imidazole, diallyl dialkyl ammonium salts, and mixtures thereof.
  • the cationic monomer is selected from: diallyl dimethyl ammonium salts (DADMAS), N, N-dimethyl aminoethyl acrylate, N,N-dimethyl aminoethyl methacrylate (DMAM), [2-(methacryloylamino)ethyl]trl-methylammonium salts, N, N-dimethylaminopropyl acrylamide (DMAPA), N, N-dimethylaminopropyl methacrylamide (DMAPMA), acrylamidopropyl trimethyl ammonium salts (APTAS), methacrylamidopropyl trimethylammonium salts (MAPTAS), quaternized vinylimidazole (QVi), and mixtures thereof.
  • DADMAS diallyl dimethyl ammonium salts
  • N, N-dimethyl aminoethyl acrylate N,N-dimethyl aminoethyl methacrylate
  • DMAPA N-dimethylaminopropy
  • the cationic polymer may comprise a anionic structural units derived from monomers selected from: acrylic acid (AA), methacrylic acid, maleic acid, vinyl sulfonic acid, styrene sulfonic acid, acrylamidopropylmethane sulfonic acid (AMPS) and their salts, and mixtures thereof.
  • AA acrylic acid
  • methacrylic acid maleic acid
  • vinyl sulfonic acid vinyl sulfonic acid
  • styrene sulfonic acid styrene sulfonic acid
  • AMPS acrylamidopropylmethane sulfonic acid
  • stabilisers i.e. materials which will exhibit a yield stress in the ancillary laundry composition of the present invention.
  • Such stabilisers may be selected from: thread like structuring systems for example hydrogenated castor oil or trihydroxystearin e.g. Thixcin ex. Elementis Specialties, crosslinked polyacrylic acid for example Carbopol ex. Lubrizol and gums for example carrageenan.
  • the cationic polymer is selected from; cationic polysaccharides and acrylate polymers. More preferably the cationic polymer is a cationic acrylate polymer.
  • the molecular weight of the cationic polymer is preferably greater than 20 000 g/mol, more preferably greater than 25 000 g/mol.
  • the molecular weight is preferably less than 2 000 000 g/mol, more preferably less than 1 000 000 g/mol.
  • compositions of the present invention may preferably comprise cationic polymer at a level of 0.25 to 10 wt % of the formulation, preferably 0.35 to 7.5 wt. % of the formulation, more preferably 0.5 to 5 wt. % of the composition.
  • Co-softeners may be used. When employed, they are typically present at from 0.1 to 20% and particularly at from 0.5 to 10%, based on the total weight of the composition.
  • Preferred co-softeners include fatty esters, and fatty N-oxides.
  • Fatty esters that may be employed include fatty monoesters, such as glycerol monostearate, fatty sugar esters, such as those disclosed WO 01/46361 (Unilever ).
  • compositions of the present invention may comprise a fatty complexing agent.
  • Suitable fatty complexing agents include fatty alcohols and fatty acids. Of these, fatty alcohols are most preferred.
  • the fatty complexing material improves the viscosity profile of the composition by complexing with mono-ester component of the fabric conditioner material thereby providing a composition which has relatively higher levels of di-ester and tri-ester linked components.
  • the di-ester and tri-ester linked components are more stable and do not affect initial viscosity as detrimentally as the mono-ester component.
  • compositions comprising quaternary ammonium materials based on TEA may destabilise the composition through depletion flocculation.
  • depletion flocculation is significantly reduced.
  • the fatty complexing agent at the increased levels as required by the present invention, "neutralises” the mono-ester linked component of the quaternary ammonium material. This in situ di-ester generation from mono-ester and fatty alcohol also improves the softening of the composition.
  • Preferred fatty acids include tallow fatty acid or vegetable fatty acids, particularly preferred are hardened tallow fatty acid or hardened vegetable fatty acid (available under the trade name Pristerene TM , ex Croda).
  • Preferred fatty alcohols include tallow alcohol or vegetable alcohol, particularly preferred are hardened tallow alcohol or hardened vegetable alcohol (available under the trade names Stenol TM and Hydrenol TM , ex BASF and Laurex TM CS, ex Huntsman).
  • the fatty complexing agent is preferably present in an amount greater than 0.3 to 5% by weight based on the total weight of the composition. More preferably, the fatty component is present in an amount of from 0.4 to 4%.
  • the weight ratio of the mono-ester component of the quaternary ammonium fabric softening material to the fatty complexing agent is preferably from 5:1 to 1:5, more preferably 4:1 to 1:4, most preferably 3:1 to 1:3, e.g. 2:1 to 1:2.
  • compositions for use as described herein may comprise a nonionic surfactant. Typically, these can be included for the purpose of stabilising the compositions.
  • Suitable nonionic surfactants include addition products of ethylene oxide and/or propylene oxide with fatty alcohols, fatty acids and fatty amines. Any of the alkoxylated materials of the particular type described hereinafter can be used as the nonionic surfactant.
  • Suitable surfactants are substantially water soluble surfactants of the general formula (VII): R-Y-(C2H4O)z-CH2-CH2-OH (VII) where R is selected from the group consisting of primary, secondary and branched chain alkyl and/or acyl hydrocarbyl groups; primary, secondary and branched chain alkenyl hydrocarbyl groups; and primary, secondary and branched chain alkenyl-substituted phenolic hydrocarbyl groups; the hydrocarbyl groups having a chain length of from 8 to about 25, preferably 10 to 20, e.g. 14 to 18 carbon atoms.
  • Y is typically: -O-, -C(O)O- , -C(O)N(R)- or -C(O)N(R)R- in which R has the meaning given above for formula (VII), or can be hydrogen; and Z is at least about 8, preferably at least about 10 or 11.
  • the nonionic surfactant has an HLB of from about 7 to about 20, more preferably from 10 to 18, e.g. 12 to 16.
  • Genapol TM C200 (Clariant) based on coco chain and 20 EO groups is an example of a suitable nonionic surfactant.
  • the nonionic surfactant is present in an amount from 0.01 to 10%, more preferably 0.1 to 5 by weight, based on the total weight of the composition.
  • a class of preferred non-ionic surfactants include addition products of ethylene oxide and/or propylene oxide with fatty alcohols, fatty acids and fatty amines. These are preferably selected from addition products of (a) an alkoxide selected from ethylene oxide, propylene oxide and mixtures thereof with (b) a fatty material selected from fatty alcohols, fatty acids and fatty amines.
  • Y is typically: -O- , -C(O)O- , -C(O)N(R)- or -C(O)N(R)R- in which R has the meaning given above for formula (VIII), or can be hydrogen; and Z is at least about 6, preferably at least about 10 or 11.
  • Lutensol TM AT25 (BASF) based on C16:18 chain and 25 EO groups is an example of a suitable non-ionic surfactant.
  • suitable surfactants include Renex 36 (Trideceth-6), ex Croda; Tergitol 15-S3, ex Dow Chemical Co.; Dihydrol LT7, ex Thai Ethoxylate Itd; Cremophor CO40, ex BASF and Neodol 91-8, ex Shell.
  • compositions for use as described herein may comprise other ingredients of fabric conditioner liquids as will be known to the person skilled in the art.
  • antifoams e.g. bactericides
  • pH buffering agents perfume carriers, hydrotropes, antiredeposition agents, soil-release agents, polyelectrolytes, anti-shrinking agents, anti-wrinkle agents, anti-oxidants, dyes, colorants, sunscreens, anti-corrosion agents, drape imparting agents, anti-static agents, sequestrants and ironing aids.
  • the products of the invention may contain pearlisers and/or opacifiers.
  • a preferred sequestrant is HEDP, an abbreviation for Etidronic acid or 1-hydroxyethane 1,1-diphosphonic acid.
  • Example compositions Ingredient wt. % Composition A 1 2 Fabric Softening active 1 8 8 16 Hydrolysed wheat protein 2 - 1 2 Perfume 0.9 0.9 1.8 Perfume microcapsule 0.4 0.4 0.8 Cationic polymer 3 - - 0.2 Malodour ingredient - - 0.5 Mirrors; antifoam, dyes, pH regulators, preservatives etc.
  • compositions A and 1 were prepared by the following method: Water was heated in a vessel to ⁇ 40°C, the perfume microcapsules were dispersed therein, followed by some of the minors and the hydrolysed wheat protein (where present). A premix of quaternary ammonium and water was prepared at ⁇ 65°C and added to the main mix vessel with stirring. The composition was then cooled to ⁇ 35°C. Finally, the free oil perfume was added.
  • composition A or composition 1 100 % knitted polyester sports clothes were washed with composition A or composition 1.
  • the moisture wicking properties of the fabric were assessed by the following method.
  • a single droplet of water was dropped on the fabric using a pipette.
  • the water was at room temperature (20-24°C) and humidity within the room uncontrolled.
  • the timer was started when the droplet hit the surface of the fabric and stopped at the point where the water droplet had absorbed into fabric. This is known as the wetting time. This was repeated 20 times on 20 different parts of the fabric and a mean wetting time calculated. This does not consider the time taken for water to evaporate completely from the fabric inner structure.
  • Table 2 Results Average time taken for water droplet to absorb into fabric (seconds) Garment 1 Garment 2 Garment 3 Composition A 12.8 30.8 10.2 Composition 1 2.05 10.4 9
  • compositions 1 and A were tested on different fabrics and the improved wicking compared.
  • the garments were treated according to example 1 and the difference between average time taken for water droplet to absorb into fabric (seconds) was recorded. In other words, for each fabric; fabric treated with composition A time for droplet to absorb minus fabric treated with composition 1 time for droplet to absorb. ⁇ average time taken for water droplet to absorb into fabric (secs) between fabric treated with composition A and composition 1 Garment 1 (100% Polyester) 10.75 Garment 2 (100% Polyester) 20.4 Garment 3 (100% Polyester) 1.2 Garment A (91 % Polyamide, 9 % elastane) 6.35 Garment B (80% Polyamide, 20 % elastane) 0.05
  • compositions comprising hydrolysed proteins are greater for polyester fabrics containing fabrics than non-polyester fabrics.

Description

    FIELD OF THE INVENTION
  • The present invention is in the field of providing a composition for use in the laundering of sportswear.
  • BACKGROUND OF THE INVENTION
  • Sportswear is becoming increasingly popular with consumers. Sportswear can be generally characterised by technical fabrics made from synthetic fibres, which are designed to provide benefits such as stretching as needed, wicking moisture from the skin surface and quick dry. A particularly important feature that consumers look for is the ability to wick moisture from the skin surface and distribute the moisture throughout the fabric, allowing an increased rate of evaporation. This keeps the wearer of the fabric cool and dry while working out.
  • Consumers desire laundry products which help to maintain the technical functioning of their sportswear fabrics. Products which maintain or improve the wicking ability of a fabric are in particular demand and this represents an unmet need.
  • US6494920 discloses detergent mixtures containing esterquats and aloe and to the use of the mixtures for the production of surface-active compositions.
  • The present invention provides a use of a fabric conditioning composition which improves the wicking abilities of a fabric i.e. the ability to absorb moisture from the skins surface and distribute through the fabric.
  • SUMMARY OF THE INVENTION
  • In a first aspect of the present invention is provided a use of a composition comprising:
    1. a. Fabric softening active;
    2. b. 0.01 to 4 wt.% Hydrolysed protein to treat fabrics comprising synthetic fibres during the laundry process wherein the fabric comprising synthetic fibres comprise 90 wt.% to 100 wt.% polyester.
    DESCRIPTION
  • These and other aspects, features and advantages will become apparent to those of ordinary skill in the art from a reading of the following detailed description and the appended claims. For the avoidance of doubt, any feature of one aspect of the present invention may be utilised in any other aspect of the invention. The word "comprising" is intended to mean "including" but not necessarily "consisting of" or "composed of." In other words, the listed steps or options need not be exhaustive. It is noted that the examples given in the description below are intended to clarify the invention and are not intended to limit the invention to those examples per se. Similarly, all percentages are weight/weight percentages unless otherwise indicated. Except in the operating and comparative examples, or where otherwise explicitly indicated, all numbers in this description indicating amounts of material or conditions of reaction, physical properties of materials and/or use are to be understood as modified by the word "about". Numerical ranges expressed in the format "from x to y" are understood to include x and y. When for a specific feature multiple preferred ranges are described in the format "from x to y", it is understood that all ranges combining the different endpoints are also contemplated.
  • Described herein is the use of a fabric conditioning composition to improve the moisture wicking capability of synthetic fabric. The moisture wicking capability of the fabric refers to the capability of the fabric, once dried, and in wear, to wick moisture (such as sweat) away from the skin of the wearer.
  • The improved moisture wicking capability of synthetic fabric may be expressed in many ways, including rejuvenating sportswear, improving the lifetime of sportswear, reviving sportswear, caring for sportswear. Alternatively the improved moisture wicking capability of synthetic fabric it may be expressed in terms of the benefits while the garment is being worm, for example: keeping the wearer drier for longer, keeping the wearer cooler for longer, keeping the wearer feeling comfortable for longer. In particular these benefits are seen during exercise when the wearer of the clothes is more likely to sweat.
  • The use of a fabric conditioner formulation as described herein provides a multi-wash benefit, in particular a 5 wash benefit. By 5 wash benefit it is meant that the improved moisture wicking benefit is particularly evident after 5 washes. 'washes' is a colloquial term for the laundry process; in this context 'wash' refers to the process of laundering clothes and includes the wash, rinse and drying stages of the laundry process. The 5 wash benefit is demonstrated in the examples included herein. Sports clothes washed 5 times wherein a composition comprising a fabric softening active and a hydrolysed wheat protein is added in the rinse cycle showed significant moisture wicking benefits compared to the same garments washed 5 times with a composition comprising a fabric softening active added in the rinse cycle.
  • The use described herein is for treating fabric comprising synthetic fibres. Synthetic fibres are fibres made by chemical synthesis, as opposed to natural fibres that are directly derived from living organisms. Examples of synthetic fibres are polyester, nylon, polyvinyl chloride (PVC), spandex/lycra/elastane and acrylic fibres.
  • Preferably the use described herein is for treating fabric comprising 90 wt.% to 100 wt.%, more preferably 95 wt.% to 100 wt.% polyester and most preferably 100 wt.% polyester by weight of the fabric.
  • Preferably the use described herein may be for treating fabric comprising only synthetic fibres (i.e. 100% synthetic fibres), most preferably the fabric comprises 100 % polyester.
  • The use of a fabric conditioner formulation as described herein is during the laundry process. Preferably the fabric conditioner formulation is contacted with the synthetic fabric during the rinse stage of the laundry process. The laundry process may be hand washing or machine washing. Preferably the clothes are treated with a 10 to 100 ml dose of fabric conditioner for a 4 to 7 kg load of clothes. More preferably, 10 to 80 ml for a 4 to 7 kg load of clothes.
  • Fabric Softening Active
  • The compositions for use as described herein comprise a fabric softening active. Preferably the fabric conditioners of the present invention comprise more than 1 wt. % fabric softening active, more preferably more than 2 wt. % fabric softening active, most preferably more than 3 wt. % fabric softening active by weight of the composition. Preferably the fabric conditioners of the present invention comprise less than 40 wt. % fabric softening active, more preferably less than 30 wt. % fabric softening active, most preferably less than 20 wt. % fabric softening active by weight of the composition. Suitably the fabric conditioners comprise 1 to 40 wt. % fabric softening active, preferably 2 to 30 wt.% fabric softening active and more preferably 3 to 20 wt. % fabric softening active by weight of the composition.
  • The fabric softening actives may be any material known to soften fabrics. These may be polymeric materials or compounds known to soften materials. Examples of suitable fabric softening actives include: quaternary ammonium compounds, silicone polymers, polysaccharides, clays, amines, fatty esters, dispersible polyolefins, polymer latexes and mixtures thereof.
  • The fabric softening actives may preferably be cationic or non-ionic materials. Preferably, the fabric softening actives of the present invention are cationic materials. Suitable cationic fabric softening actives are described herein.
  • The preferred softening actives for use in fabric conditioner compositions of the invention are quaternary ammonium compounds (QAC).
  • The QAC preferably comprises at least one chain derived from fatty acids, more preferably at least two chains derived from a fatty acids. Generally fatty acids are defined as aliphatic monocarboxylic acids having a chain of 4 to 28 carbons. Fatty acids may be derived from various sources such as tallow or plant sources. Preferably the fatty acid chains are derived from plants. Preferably the fatty acid chains of the QAC comprise from 10 to 50 wt. % of saturated C18 chains and from 5 to 40 wt. % of monounsaturated C18 chains by weight of total fatty acid chains. In a further preferred embodiment, the fatty acid chains of the QAC comprise from 20 to 40 wt. %, preferably from 25 to 35 wt. % of saturated C18 chains and from 10 to 35 wt. %, preferably from 15 to 30 wt. % of monounsaturated C18 chains, by weight of total fatty acid chains.
  • The preferred quaternary ammonium fabric softening actives for use in compositions of the present invention are so called "ester quats". Particularly preferred materials are the ester-linked triethanolamine (TEA) quaternary ammonium compounds comprising a mixture of mono-, di- and tri-ester linked components.
  • Typically, TEA-based fabric softening compounds comprise a mixture of mono, di- and tri ester forms of the compound where the di-ester linked component comprises no more than 70 wt.% of the fabric softening compound, preferably no more than 60 wt.% e.g. no more than 55%, or even no more that 45% of the fabric softening compound and at least 10 wt.% of the monoester linked component.
  • A first group of quaternary ammonium compounds (QACs) suitable for use in the present invention is represented by formula (I):
    Figure imgb0001
    wherein each R is independently selected from a C5 to C35 alkyl or alkenyl group; R1 represents a C1 to C4 alkyl, C2 to C4 alkenyl or a C1 to C4 hydroxyalkyl group; T may be either O-CO. (i.e. an ester group bound to R via its carbon atom), or may alternatively be CO-O (i.e. an ester group bound to R via its oxygen atom); n is a number selected from 1 to 4; m is a number selected from 1, 2, or 3; and X- is an anionic counter-ion, such as a halide or alkyl sulphate, e.g. chloride or methylsulfate. Di-esters variants of formula I (i.e. m = 2) are preferred and typically have mono- and tri-ester analogues associated with them. Such materials are particularly suitable for use in the present invention.
  • Suitable actives include soft quaternary ammonium actives such as Stepantex VT90, Rewoquat WE18 (ex-Evonik) and Tetranyl L1/90N, Tetranyl L190 SP and Tetranyl L190 S (all ex-Kao).
  • Also suitable are actives rich in the di-esters of triethanolammonium methylsulfate, otherwise referred to as "TEA ester quats".
  • Commercial examples include Preapagen TQL (ex-Clariant), and Tetranyl AHT-1 (ex-Kao), (both di-[hardened tallow ester] of triethanolammonium methylsulfate), AT-1 (di-[tallow ester] of triethanolammonium methylsulfate), and L5/90 (di-[palm ester] of triethanolammonium methylsulfate), (both ex-Kao), and Rewoquat WE15 (a di-ester of triethanolammonium methylsulfate having fatty acyl residues deriving from C10-C20 and C16-C18 unsaturated fatty acids) (ex-Evonik).
  • A second group of QACs suitable for use in the invention is represented by formula (II):
    Figure imgb0002
    wherein each R1 group is independently selected from C1 to C4 alkyl, hydroxyalkyl or C2 to C4 alkenyl groups; and wherein each R2 group is independently selected from C8 to C28 alkyl or alkenyl groups; and wherein n, T, and X- are as defined above.
  • Preferred materials of this second group include 1,2 bis[tallowoyloxy]-3-trimethylammonium propane chloride, 1,2 bis[hardened tallowoyloxy]-3-trimethylammonium propane chloride, 1,2-bis[oleoyloxy]-3-trimethylammonium propane chloride, and 1,2 bis[stearoyloxy]-3-trimethylammonium propane chloride. Such materials are described in US 4, 137,180 (Lever Brothers ). Preferably, these materials also comprise an amount of the corresponding mono-ester.
  • A third group of QACs suitable for use in the invention is represented by formula (III):

            (R1)2-N+-[(CH2)n-T-R2]2X-     (III)

    wherein each R1 group is independently selected from C1 to C4 alkyl, or C2 to C4 alkenyl groups; and wherein each R2 group is independently selected from C8 to C28 alkyl or alkenyl groups; and n, T, and X- are as defined above. Preferred materials of this third group include bis(2-tallowoyloxyethyl)dimethyl ammonium chloride, partially hardened and hardened versions thereof.
  • A particular example of the fourth group of QACs is represented the by the formula:
    Figure imgb0003
  • A fourth group of QACs suitable for use in the invention are represented by formula (V)
    Figure imgb0004
  • R1 and R2 are independently selected from C10 to C22 alkyl or alkenyl groups, preferably C14 to C20 alkyl or alkenyl groups. X- is as defined above.
  • The iodine value of the quaternary ammonium fabric conditioning material is preferably from 0 to 80, more preferably from 0 to 60, and most preferably from 0 to 45. The iodine value may be chosen as appropriate. Essentially saturated material having an iodine value of from 0 to 5, preferably from 0 to 1 may be used in the compositions of the invention. Such materials are known as "hardened" quaternary ammonium compounds.
  • A further preferred range of iodine values is from 20 to 60, preferably 25 to 50, more preferably from 30 to 45. A material of this type is a "soft" triethanolamine quaternary ammonium compound, preferably triethanolamine di-alkylester methylsulfate. Such ester-linked triethanolamine quaternary ammonium compounds comprise unsaturated fatty chains.
  • If there is a mixture of quaternary ammonium materials present in the composition, the iodine value, referred to above, represents the mean iodine value of the parent fatty acyl compounds or fatty acids of all of the quaternary ammonium materials present. Likewise, if there is any saturated quaternary ammonium materials present in the composition, the iodine value represents the mean iodine value of the parent acyl compounds of fatty acids of all of the quaternary ammonium materials present.
  • Iodine value as used in the context of the present invention refers to, the fatty acid used to produce the QAC, the measurement of the degree of unsaturation present in a material by a method of nmr spectroscopy as described in Anal. Chem. , 34, 1136 (1962) Johnson and Shoolery.
  • A further type of softening compound may be a non-ester quaternary ammonium material represented by formula (VI):
    Figure imgb0005
    wherein each R1 group is independently selected from C1 to C4 alkyl, hydroxyalkyl or C2 to C4 alkenyl groups; R2 group is independently selected from C8 to C28 alkyl or alkenyl groups, and X- is as defined above.
  • Hydrolysed Protein
  • The compositions for use as described herein comprise a hydrolysed protein. Compositions of the present invention comprise 0.01 to 4 wt.%, more preferably 0.05 to 4 wt.%, more preferably 0.125 to 4 wt. % hydrolysed protein, preferably, 0.2 to 2 wt. % hydrolysed protein, more preferably 0.25 to 1.5 wt. % hydrolysed protein.
  • Protein hydrolysates are proteins which are obtainable by hydrolysis of proteins. Hydrolysis can be achieved by chemical reactions, in particular by alkaline hydrolysis, acid hydrolysis, enzymatic hydrolysis or combinations thereof.
  • For alkaline or acid hydrolysis, methods such as prolonged boiling in a strong acid or strong base may be employed.
  • For enzymatic hydrolysis, all hydrolytic enzymes are suitable, for example alkaline proteases. The production of protein hydrolysates are described, for example, by G. Schuster and A. Domsch in soaps and oils Fette Wachse 108, (1982) 177 and Cosm.Toil, respectively. 99, (1984) 63, by H.W. Steisslinger in Parf.Kosm. 72, (1991) 556 and F. Aurich et al. in Tens.Surf.Det. 29, (1992) 389 appeared.
  • The hydrolysed proteins of the present invention may come from a variety of sources. The proteins may be naturally sourced, e.g. from plants or animal sources, or they may be synthetic proteins. Preferably the protein is a naturally sourced protein or a synthetic equivalent of a naturally sourced protein. A preferred class of proteins are plant proteins, i.e. proteins obtained from a plant or synthetic equivalents thereof. Preferably the protein is obtained from a plant. Preferred plant sources include nuts, seeds, beans, and grains.
  • Particularly preferred plant sources are grains. Examples of grains include cereal grains (e.g. millet, maize, barley, oats, rice and wheat), pseudoceral grains (e.g. buckwheat and quinoa), pulses (e.g. chickpeas, lentils and soybeans) and oilseeds (e.g. mustard, rapeseed, sunflower seed, hemp seed, poppy seed, flax seed). Most preferred are cereal grains, in particular wheat proteins or synthetic equivalents to wheat proteins.
  • The protein hydrolyzate preferably has a weight-average molecular weight Mw in the range from 300 g / mol to 50,000 g / mol, in particular from 300 g / mol to 15,000 g / mol. The average molecular weight Mw can be determined, for example, by gel permeation chromatography (GPC) (Andrews P., "Estimation of the Molecular Weight of Proteins by Sephadex Gel Filtration"; Biochem J., 1964, 91, pages 222 to 233). The use of protein hydrolysates with average molecular weights in this range leads to a particularly effective perfume benefits.
  • It is preferred if the protein hydrolyzate is cationically modified. Preferably, a cationically modified wheat protein hydrolysate. Preferably the hydrolysed protein contains at least one radical of the formula:

            R1-N+(CH3)2-CH2-CH(OH)-CH2 -XR

    R1 is an alkyl group having 1 to 30 carbon atoms, an alkenyl group having 1 to 30 carbon atoms, or a hydroxyalkyl group having 1 to 30 carbon atoms. R1 is preferably selected from, a methyl group, a C 10-18 alkyl, or a C 10-13 alkenyl group,

            X is O, N or S

    R represents the protein residue. The term "protein residue" is to be understood as meaning the backbone of the corresponding protein hydrolyzate formed by the linking of amino acids, to which the cationic group is bound.
  • The cationization of the protein hydrolysates with the above-described residues can be achieved by reacting the protein hydrolyzates, in particular the reactive groups of the amino acids of the protein hydrolysates, with halides which otherwise correspond to compounds of the above formula (wherein the X-R moiety is replaced by a halogen).
  • Wheat protein hydrolysates are commercially available, for example, from Croda under the trade name ColtideRadiance.
  • Perfume
  • The compositions for use as described herein preferably comprise perfume. Where present, the compositions preferably comprise 0.1 to 30 wt. % perfume materials, i.e. free perfume and/or perfume microcapsules. As is known in the art, free perfumes and perfume microcapsules provide the consumer with perfume hits at different points during the laundry process. It is particularly preferred that the compositions of the present invention comprise a combination of both free perfume and perfume microcapsules.
  • Preferably the compositions of the present invention comprise 0.5 to 20 wt.% perfume materials, more preferably 1 to 15 wt.% perfume materials, most preferably 1 to 10 wt. % perfume materials.
  • Useful perfume components may include materials of both natural and synthetic origin. They include single compounds and mixtures. Specific examples of such components may be found in the current literature, e.g., in Fenaroli's Handbook of Flavor Ingredients, 1975, CRC Press; Synthetic Food Adjuncts, 1947 by M. B. Jacobs, edited by Van Nostrand; or Perfume and Flavor Chemicals by S. Arctander 1969, Montclair, N.J. (USA). These substances are well known to the person skilled in the art of perfuming, flavouring, and/or aromatizing consumer products.
  • The compositions of the present invention preferably comprises 0.1 to 15 wt.% free perfume, more preferably 0.5 to 8 wt. % free perfume.
  • Particularly preferred perfume components are blooming perfume components and substantive perfume components. Blooming perfume components are defined by a boiling point less than 250°C and a LogP or greater than 2.5. Substantive perfume components are defined by a boiling point greater than 250°C and a LogP greater than 2.5. Boiling point is measured at standard pressure (760 mm Hg). Preferably a perfume composition will comprise a mixture of blooming and substantive perfume components.
  • The perfume composition may comprise other perfume components.
  • It is commonplace for a plurality of perfume components to be present in a free oil perfume composition. In the compositions for use in the present invention it is envisaged that there will be three or more, preferably four or more, more preferably five or more, most preferably six or more different perfume components. An upper limit of 300 perfume components may be applied.
  • The compositions of the present invention preferably comprise 0.1 to 15 wt.% perfume microcapsules, more preferably 0.2 to 8 wt. % perfume microcapsules. The weight of microcapsules is of the material as supplied.
  • When perfume components are encapsulated, suitable encapsulating materials, may comprise, but are not limited to; aminoplasts, proteins, polyurethanes, polyacrylates, polymethacrylates, polysaccharides, polyamides, polyolefins, gums, silicones, lipids, modified cellulose, polyphosphate, polystyrene, polyesters or combinations thereof. Particularly preferred materials are aminoplast microcapsules, such as melamine formaldehyde or urea formaldehyde microcapsules.
  • Perfume microcapsules of the present invention can be friable microcapsules and/or moisture activated microcapsules. By friable, it is meant that the perfume microcapsule will rupture when a force is exerted. By moisture activated, it is meant that the perfume is released in the presence of water. The compositions of the present invention preferably comprise friable microcapsules. Moisture activated microcapsules may additionally be present. Examples of a microcapsules which can be friable include aminoplast microcapsules.
  • Perfume components contained in a microcapsule may comprise odiferous materials and/or pro-fragrance materials.
  • Particularly preferred perfume components contained in a microcapsule are blooming perfume components and substantive perfume components. Blooming perfume components are defined by a boiling point less than 250°C and a LogP greater than 2.5. Preferably the encapsulated perfume compositions comprises at least 20 wt.% blooming perfume ingredients, more preferably at least 30 wt.% and most preferably at least 40 wt.% blooming perfume ingredients. Substantive perfume components are defined by a boiling point greater than 250°C and a LogP greater than 2.5. Preferably the encapsulated perfume compositions comprises at least 10 wt.% substantive perfume ingredients, more preferably at least 20 wt.% and most preferably at least 30 wt.% substantive perfume ingredients. Boiling point is measured at standard pressure (760 mm Hg). Preferably a perfume composition will comprise a mixture of blooming and substantive perfume components. The perfume composition may comprise other perfume components.
  • It is commonplace for a plurality of perfume components to be present in a microcapsule. In the compositions for use in the present invention it is envisaged that there will be three or more, preferably four or more, more preferably five or more, most preferably six or more different perfume components in a microcapsule. An upper limit of 300 perfume components may be applied.
  • The microcapsules may comprise perfume components and a carrier for the perfume ingredients, such as zeolites or cyclodextrins.
  • Anti-Malodour Ingredient
  • The compositions for use as described herein preferably comprise anti-malodour ingredient(s). Anti-malodour ingredients maybe used in addition to traditional perfume ingredients.
  • Anti-malodour agent may be present at a level selected from: less than 20%, less than 10%, and less than 5%, by weight of the composition. Suitably anti-malodour agent is present in the composition in an amount selected from the range of from about 0.01 % to about 5%, preferably from about 0.1% to about 3%, more preferably from about 0.2% to about 2%, by weight of the composition.
  • Any suitable anti-malodour agent may be used. An anti-malodour effect may be achieved by any compound or product that is effective to "trap", "absorb" or "destroy" odour molecules to thereby separate or remove odour from the garment or act as a "malodour counteractant".
  • The odour control agent may be selected from the group consisting of: uncomplexed cyclodextrin; odour blockers; reactive aldehydes; flavanoids; zeolites; activated carbon; a mixture of zinc ricinoleate or a solution thereof and a substituted monocyclic organic compound; and mixtures thereof.
  • As noted above, a suitable anti-malodour agent is cyclodextrin, suitably water soluble uncomplexed cyclodextrin. Suitably cyclodextrin is present at a level selected from 0.01 % to 5%, 0.1 % to 4%, and 0.2% to 2% by weight of the composition.
  • As used herein, the term "cyclodextrin" includes any of the known cyclodextrins such as unsubstituted cyclodextrins containing from six to twelve glucose units, especially, alpha-cyclodextrin, beta-cyclodextrin, gamma-cyclodextrin and/or their derivatives and/or mixtures thereof. The alpha-cyclodextrin consists of six glucose units, the beta-cyclodextrin consists of seven glucose units, and the gamma-cyclodextrin consists of eight glucose units arranged in donut-shaped rings.
  • Preferably, the cyclodextrins are highly water-soluble such as, alpha-cyclodextrin and/or derivatives thereof, gamma-cyclodextrin and/or derivatives thereof, derivatised beta-cyclodextrins, and/or mixtures thereof. The derivatives of cyclodextrin consist mainly of molecules wherein some of the OH groups are converted to OR groups. Cyclodextrin derivatives include, e.g., those with short chain alkyl groups such as methylated cyclodextrins, and ethylated cyclodextrins, wherein R is a methyl or an ethyl group; those with hydroxyalkyl substituted groups, such as hydroxypropyl cyclodextrins and/or hydroxyethyl cyclodextrins, wherein R is a -CH2-CH(OH)-CH3 or a -CH2CH2-OH group; branched cyclodextrins such as maltose-bonded cyclodextrins; cationic cyclodextrins such as those containing 2-hydroxy-3-(dimethylamino)propyl ether, wherein R is CH2-CH(OH)-CH2-N(CH3)2 which is cationic at low pH; quaternary ammonium, e.g., 2-hydroxy-3-(trimethylammonio)propyl ether chloride groups, wherein R is CH2-CH(OH)-CH2-N+(CH3)3Cl-; anionic cyclodextrins such as carboxymethyl cyclodextrins, cyclodextrin sulfates, and cyclodextrin succinylates; amphoteric cyclodextrins such as carboxymethyl/quaternary ammonium cyclodextrins; cyclodextrins wherein at least one glucopyranose unit has a 3-6-anhydro-cyclomalto structure, e.g., the mono-3-6-anhydrocyclodextrinse
  • Highly water-soluble cyclodextrins are those having water solubility of at least about 10 g in 100 ml of water at room temperature, preferably at least about 20 g in 100 ml of water, more preferably at least about 25 g in 100 ml of water at room temperature. The availability of solubilized, uncomplexed cyclodextrins is essential for effective and efficient odour control performance. Solubilized, water-soluble cyclodextrin can exhibit more efficient odour control performance than non-water-soluble cyclodextrin when deposited onto surfaces, especially fabric.
  • Examples of preferred water-soluble cyclodextrin derivatives suitable for use herein are hydroxypropyl alpha-cyclodextrin, methylated alpha-cyclodextrin, methylated beta-cyclodextrin, hydroxyethyl beta-cyclodextrin, and hydroxypropyl beta-cyclodextrin. Hydroxyalkyl cyclodextrin derivatives preferably have a degree of substitution of from about 1 to about 14, more preferably from about 1.5 to about 7, wherein the total number of OR groups per cyclodextrin is defined as the degree of substitution. Methylated cyclodextrin derivatives typically have a degree of substitution of from about 1 to about 18, preferably from about 3 to about 16. A known methylated beta-cyclodextrin is heptakis-2,6-di-O-methyl-β-cyclodextrin, commonly known as DIMEB, in which each glucose unit has about 2 methyl groups with a degree of substitution of about 14. A preferred, more commercially available, methylated beta-cyclodextrin is a randomly methylated beta-cyclodextrin, commonly known as RAMEB, having different degrees of substitution, normally of about 12.6. RAMEB is more preferred than DIMEB, since DIMEB affects the surface activity of the preferred surfactants more than RAMEB. The preferred cyclodextrins are available, e.g., from Cerestar U.S.A., Inc. and Wacker Chemicals (U.S.A.), Inc.
  • In embodiments mixtures of cyclodextrins are used.
  • "Odour blockers" can be used as an anti-malodour agent to mitigate the effects of malodours. Non-limiting examples of odour blockers include 4-cyclohexyl-4-methyl-2-pentanone, 4-ethylcyclohexyl methyl ketone, 4-isopropylcyclohexyl methyl ketone, cyclohexyl methyl ketone, 3-methylcyclohexyl methyl ketone, 4-tert.-butylcyclohexyl methyl ketone, 2-methyl-4-tert.butylcyclohexyl methyl ketone, 2-methyl-5-isopropylcyclohexyl methyl ketone, 4-methylcyclohexyl isopropyl ketone, 4- methylcyclohexyl secbutyl ketone, 4-methylcyclohexyl isobutyl ketone, 2,4-dimethylcyclohexyl methyl ketone, 2,3-dimethylcyclohexyl methyl ketone, 2,2-dimethylcyclohexyl methyl ketone, 3,3-dimethylcyclohexyl methyl ketone, 4,4-dimethylcyclohexyl methyl ketone, 3,3,5- trimethylcyclohexyl methyl ketone, 2,2,6-trimethylcyclohexyl methyl ketone, 1-cyclohexy1-1-ethyl formate, 1-cyclohexyl-1-ethyl acetate, 1-cyclohexyl-1-ethyl propionate, 1-cyclohexy1-1-ethyl isobutyrate, 1-cyclohexyl-1-ethyl n-butyrate, 1-cyclohexyl-1-propyl acetate, 1-cyclohexyl-1-propyl n-butyrate, 1-cyclohexyl-2-methyl-1-propy1 acetate, 2-cyclohexyl-2-propyl acetate, 2-cyclohexyl-2-propyl propionate, 2-cyc10hexyl-2-propyl isobutyrate, 2-cyc10hexyl-2-propyl nbutyrate, 5,5-dimethyl-1,3-cyclohexanedione (dimedone), 2,2-dimethy1-1,3-dioxane-4,6-dione (Meldrum's acid), spiro-[4.5]-6,1 0-dioxa-7,9-dioxodecane, spiro-[5.5]-1,5-dioxa-2,4-dioxoundecane, 2,2-hydroxymethyl-1,3-dioxane-4,6-dione and 1,3-cyclohexadione. Odour blockers are disclosed in more detail in US4,009,253 ; US4,187,251 ; US4,719,105 ; US5,441,727 ; and US5,861,371 .
  • Reactive aldehydes can be used as anti-malodour agent to mitigate the effects of malodours. Examples of suitable reactive aldehydes include Class I aldehydes and Class II aldehydes. Examples of Class I aldehydes include anisic aldehyde, o-allyl-vanillin, benzaldehyde, cuminic aldehyde, ethylaubepin, ethyl-vanillin, heliotropin, tolyl aldehyde, and vanillin. Examples of Class II aldehydes include 3-(4'-tert.butylphenyl)propanal, 2-methyl-3-(4'-tertbutylphenyl)propanal, 2- methyl-3-(4'-isopropylphenyl)propanal, 2,2-dimethyl-3-(4-ethylphenyl)propanal, cinnamic aldehyde, a-amyl-cinnamic aldehyde, and a-hexyl-cinnamic aldehyde. These reactive aldehydes are described in more detail in US5,676,163 . Reactive aldehydes, when used, can include a combination of at least two aldehydes, with one aldehyde being selected from acyclic aliphatic aldehydes, non-terpenic aliphatic aldehydes, non-terpenic alicyclic aldehydes, terpenic aldehydes, aliphatic aldehydes substituted by an aromatic group and bifunctional aldehydes; and the second aldehyde being selected from aldehydes possessing an unsaturation alpha to the aldehyde function conjugated with an aromatic ring, and aldehydes in which the aldehyde group is on an aromatic ring. This combination of at least two aldehydes is described in more detail in WO 00/49120 . As used herein, the term "reactive aldehydes" further encompasses deodourizing materials that are the reaction products of (i) an aldehyde with an alcohol, (ii) a ketone with an alcohol, or (iii) an aldehyde with the same or different aldehydes. Such deodourizing materials can be: (a) an acetal or hemiacetal produced by means of reacting an aldehyde with a carbinol; (b) a ketal or hemiketal produced by means of reacting a ketone with a carbinol; (c) a cyclic triacetal or a mixed cyclic triacetal of at least two aldehydes, or a mixture of any of these acetals, hemiacetals, ketals, hemiketals, or cyclic triacetals. These deodorizing perfume materials are described in more detail in WO 01/07095 .
  • Flavanoids can also be used as anti-malodour agent. Flavanoids are compounds based on the C6-C3-C6 flavan skeleton. Flavanoids can be found in typical essential oils. Such oils include essential oil extracted by dry distillation from needle leaf trees and grasses such as cedar, Japanese cypress, eucalyptus, Japanese red pine, dandelion, low striped bamboo and cranesbill and can contain terpenic material such as alpha-pinene, beta-pinene, myrcene, phencone and camphene. Also included are extracts from tea leaf. Descriptions of such materials can be found in JP 02284997 and JP 04030855 .
  • Metallic salts can also be used as anti-malodour agents for malodour control benefits. Examples include metal salts of fatty acids. Ricinoleic acid is a preferred fatty acid. Zinc salt is a preferred metal salt. The zinc salt of ricinoleic acid is especially preferred. A commercially available product is TEGO Sorb A30 ex Evonik. Further details of suitable metallic salts is provided below.
  • Zeolites can be used as anti-malodour agent. A useful class of zeolites is characterized as "intermediate" silicate/aluminate zeolites. The intermediate zeolites are characterized by SiO2 / AlO2 molar ratios of less than about 10. Preferably the molar ratio of SiO2 / AlO2 ranges from about 2 to about 10. The intermediate zeolites can have an advantage over the "high" zeolites. The intermediate zeolites have a higher affinity for amine-type odours, they are more weight efficient for odour absorption because they have a larger surface area, and they are more moisture tolerant and retain more of their odour absorbing capacity in water than the high zeolites. A wide variety of intermediate zeolites suitable for use herein are commercially available as Valfor® CP301-68, Valfor® 300-63, Valfor® CP300-35, and Valfor® CP300-56, available from PQ Corporation, and the CBV100® series of zeolites from Conteka. Zeolite materials marketed under the trade name Abscents® and Smellrite®, available from The Union Carbide Corporation and UOP are also preferred. Such materials are preferred over the intermediate zeolites for control of sulfur-containing odours, e.g., thiols, mercaptans. Suitably the zeolite material has a particle size of less than about 10 microns and is present in the composition at a level of less than about 1% by weight of the composition.
  • Activated carbon is another suitable anti-malodour agent. Suitable carbon material is a known absorbent for organic molecules and/or for air purification purposes. Often, such carbon material is referred to as "activated" carbon or "activated" charcoal. Such carbon is available from commercial sources under such trade names as; Calgon- Type CPG®;Type PCB®;Type SGL®;Type CAL®;and Type OL®. Suitably the activated carbon preferably has a particle size of less than about 10 microns and is present in the composition at a level of less than about 1% by weight of the composition.
  • Exemplar anti-malodour agents are as follows.
  • ODOBAN is manufactured and distributed by Clean Central Corp. of Warner Robins, Ga. Its active ingredient is alkyl (C14 50%, C12 40% and C16 10%) dimethyl benzyl ammonium chloride which is an antibacterial quaternary ammonium compound. The alkyl dimethyl benzyl ammonium chloride is in a solution with water and isopropanol. Another product by Clean Control Corp. is BIOODOUR CONTROL which includes water, bacterial spores, alkylphenol ethoxylate and propylene glycol.
  • ZEOCRYSTAL FRESH AIR MIST is manufactured and distributed by Zeo Crystal Corp. (a/k/a American Zeolite Corporation) of Crestwood, III. The liquid comprises chlorites, oxygen, sodium, carbonates and citrus extract, and may comprise zeolite.
  • The odour control agent may comprise a "malodour counteractant" as described in US2005/0113282A1 . In particular this malodour counteractant may comprise a mixture of zinc ricinoleate or a solution thereof and a substituted monocyclic organic compound as described at page 2, paragraph 17 whereby the substituted monocyclic organic compound is in the alternative or in combination one or more of:
    • 1-cyclohexylethan-1-yl butyrate;
    • 1-cyclohexylethan-1-yl acetate;
    • 1-cyclohexylethan-1-ol;
    • 1-(4'-methylethyl) cyclohexylethan-1-yl propionate; and
    • 2'-hydroxy-1'-ethyl(2-phenoxy)acetate.
  • Synergistic combinations of malodour counteractants as disclosed at paragraphs 38-49 are suitable, for example, the compositions comprising:
    1. (i) from about 10 to about 90 parts by weight of at least one substituted monocyclic organic compound-containing material which is:
      1. (a) 1-cyclohexylethan-1-yl butyrate having the structure:
        Figure imgb0006
      2. (b) 1-cyclohexylethan-1-yl acetate having the structure:
        Figure imgb0007
      3. (c) 1-cyclohexylethan-1-ol having the structure:
        Figure imgb0008
      4. (d) 1-(4'-methylethyl)cyclohexylethan-1-yl propionate having the structure:
        Figure imgb0009
        and
      5. (e) 2'-hydroxy-1'-ethyl(2-phenoxy)acetate having the structure:
        Figure imgb0010
        and (ii) from about 90 to about 10 parts by weight of a zinc ricinoleate-containing composition which is zinc ricinoleate and/or solutions of zinc ricinoleate containing greater than about 30% by weight of zinc ricinoleate. Preferably, the aforementioned zinc ricinoleate-containing compositions are mixtures of about 50% by weight of zinc ricinoleate and about 50% by weight of at least one 1-hydroxy-2-ethoxyethyl ether of a More specifically, a preferred composition useful in combination with the zinc ricinoleate component is a mixture of:
        1. (A) 1-cyclohexylethan-1-yl butyrate;
        2. (B) 1-cyclohexylethan-1-yl acetate; and
        3. (C) 1-(4'-methylethyl)cyclohexylethan-1-yl propionate.
  • More preferably, the weight ratio of components of the immediately-aforementioned zinc riconoleate-containing mixture is one where the zinc ricinoleate-containing composition: 1-cyclohexylethan-1-yl butyrate: 1-cyclohexylethan-1-yl acetate: 1-(4'-methylethyl)-cyclohexylethan-1-yl propionate is about 2:1:1:1.
  • Another preferred composition useful in combination with the zinc ricinoleate component or solution is a mixture of:
    1. (A) 1-cyclohexylethan-1-yl acetate; and
    2. (B) 1-(4'-methylethyl)cyclohexylethan-1-yl propionate.
  • More preferably, the weight ratio of components of the immediately-aforementioned zinc riconoleate mixture is one where the zinc ricinoleate-containing composition: 1-cyclohexylethan-1-yl acetate: 1-(4'-methylethyl)cyclohexylethan-1-yl propionate is about 3:1:1.
  • The anti-malodour materials of the present invention may be 'free' in the composition or they may be encapsulated. Suitable encapsulating material, may comprise, but are not limited to; aminoplasts, proteins, polyurethanes, polyacrylates, polymethacrylates, polysaccharides, polyamides, polyolefins, gums, silicones, lipids, modified cellulose, polyphosphate, polystyrene, polyesters or combinations thereof.
  • Particularly preferred encapsulating materials are aminoplasts, such as melamine formaldehyde or urea formaldehyde. The microcapsules of the present invention can be friable microcapsules and/or moisture activated microcapsules. By friable, it is meant that the perfume microcapsule will rupture when a force is exerted. By moisture activated, it is meant that the perfume is released in the presence of water.
  • To the extent any material described herein as an odour control agent might also be classified as another component described herein, for purposes of the present invention, such material shall be classified as an odour control agent.
  • Cationic Polymer
  • The compositions for use as described herein may optionally comprise a cationic polymer. This refers to polymers having an overall positive charge. For the avoidance of doubt, the cationic polymer is different to the hydrolysed protein polymers.
  • The cationic polymer may be naturally derived or synthetic. Examples of suitable cationic polymers include: acrylate polymers, cationic amino resins, cationic urea resins, and cationic polysaccharides, including: cationic celluloses, cationic guars and cationic starches.
  • The cationic polymer of the present invention may be categorised as a polysaccharide-based cationic polymer or non-polysaccharide based cationic polymers.
  • Polysaccharide-based cationic polymers:
    Polysacchride based cationic polymers include cationic celluloses, cationic guars and cationic starches. Polysaccharides are polymers made up from monosaccharide monomers joined together by glycosidic bonds.
  • The cationic polysaccharide-based polymers present in the compositions of the invention have a modified polysaccharide backbone, modified in that additional chemical groups have been reacted with some of the free hydroxyl groups of the polysaccharide backbone to give an overall positive charge to the modified cellulosic monomer unit.
  • A preferred polysaccharide polymer is cationic cellulose. This refers to polymers having a cellulose backbone and an overall positive charge.
  • Cellulose is a polysaccharide with glucose as its monomer, specifically it is a straight chain polymer of D-glucopyranose units linked via beta -1,4 glycosidic bonds and is a linear, non-branched polymer.
  • The cationic cellulose-based polymers of the present invention have a modified cellulose backbone, modified in that additional chemical groups have been reacted with some of the free hydroxyl groups of the polysaccharide backbone to give an overall positive charge to the modified cellulose monomer unit.
  • A preferred class of cationic cellulose polymers suitable for this invention are those that have a cellulose backbone modified to incorporate a quaternary ammonium salt. Preferably the quaternary ammonium salt is linked to the cellulose backbone by a hydroxyethyl or hydroxypropyl group. Preferably the charged nitrogen of the quaternary ammonium salt has one or more alkyl group substituents.
  • Example cationic cellulose polymers are salts of hydroxyethyl cellulose reacted with trimethyl ammonium substituted epoxide, referred to in the field under the International Nomenclature for Cosmetic Ingredients as Polyquatemium 10 and is commercially available from the Amerchol Corporation, a subsidiary of The Dow Chemical Company, marketed as the Polymer LR, JR, and KG series of polymers. Other suitable types of cationic celluloses include the polymeric quaternary ammonium salts of hydroxyethyl cellulose reacted with lauryl dimethyl ammonium- substituted epoxide referred to in the field under the International Nomenclature for Cosmetic Ingredients as Polyquatemium 24. These materials are available from Amerchol Corporation marketed as Polymer LM-200.
  • Typical examples of preferred cationic cellulosic polymers include cocodimethylammonium hydroxypropyl oxyethyl cellulose, lauryldimethylammonium hydroxypropyl oxyethyl cellulose, stearyldimethylammonium hydroxypropyl oxyethyl cellulose, and stearyldimethylammonium hydroxyethyl cellulose; cellulose 2-hydroxyethyl 2- hydroxy 3-(trimethyl ammonio) propyl ether salt, polyquaternium-4, polyquaternium-10, polyquaternium-24 and polyquaternium-67 or mixtures thereof.
  • More preferably the cationic cellulosic polymer is a quaternised hydroxy ether cellulose cationic polymer. These are commonly known as polyquaternium-10. Suitable commercial cationic cellulosic polymer products for use according to the present invention are marketed by the Amerchol Corporation under the trade name UCARE.
  • The counterion of the cationic polymer is freely chosen from the halides: chloride, bromide, and iodide; or from hydroxide, phosphate, sulphate, hydrosulphate, ethyl sulphate, methyl sulphate, formate, and acetate.
  • Non polysaccharide-based cationic polymers:
    A non-polysaccharide-based cationic polymer is comprised of structural units, these structural units may be non-ionic, cationic, anionic or mixtures thereof. The polymer may comprise non-cationic structural units, but the polymer must have a net cationic charge.
  • The cationic polymer may consists of only one type of structural unit, i.e., the polymer is a homopolymer. The cationic polymer may consists of two types of structural units, i.e., the polymer is a copolymer. The cationic polymer may consists of three types of structural units, i.e., the polymer is a terpolymer. The cationic polymer may comprises two or more types of structural units. The structural units may be described as first structural units, second structural units, third structural units, etc. The structural units, or monomers, may be incorporated in the cationic polymer in a random format or in a block format.
  • The cationic polymer may comprise a nonionic structural units derived from monomers selected from: (meth)acrylamide, vinyl formamide, N, N-dialkyl acrylamide, N, N-dialkylmethacrylamide, C1-C12 alkyl acrylate, C1-C12 hydroxyalkyl acrylate, polyalkylene glyol acrylate, C1-C12 alkyl methacrylate, C1-C12 hydroxyalkyl methacrylate, polyalkylene glycol methacrylate, vinyl acetate, vinyl alcohol, vinyl formamide, vinyl acetamide, vinyl alkyl ether, vinyl pyridine, vinyl pyrrolidone, vinyl imidazole, vinyl caprolactam, and mixtures thereof.
  • The cationic polymer may comprise a cationic structural units derived from monomers selected from: N, N-dialkylaminoalkyl methacrylate, N, N-dialkylaminoalkyl acrylate, N, N-dialkylaminoalkyl acrylamide, N, N-dialkylaminoalkylmethacrylamide, methacylamidoalkyl trialkylammonium salts, acrylamidoalkylltrialkylamminium salts, vinylamine, vinylimine, vinyl imidazole, quaternized vinyl imidazole, diallyl dialkyl ammonium salts, and mixtures thereof.
  • Preferably, the cationic monomer is selected from: diallyl dimethyl ammonium salts (DADMAS), N, N-dimethyl aminoethyl acrylate, N,N-dimethyl aminoethyl methacrylate (DMAM), [2-(methacryloylamino)ethyl]trl-methylammonium salts, N, N-dimethylaminopropyl acrylamide (DMAPA), N, N-dimethylaminopropyl methacrylamide (DMAPMA), acrylamidopropyl trimethyl ammonium salts (APTAS), methacrylamidopropyl trimethylammonium salts (MAPTAS), quaternized vinylimidazole (QVi), and mixtures thereof.
  • The cationic polymer may comprise a anionic structural units derived from monomers selected from: acrylic acid (AA), methacrylic acid, maleic acid, vinyl sulfonic acid, styrene sulfonic acid, acrylamidopropylmethane sulfonic acid (AMPS) and their salts, and mixtures thereof.
  • Some cationic polymers disclosed herein will require stabilisers i.e. materials which will exhibit a yield stress in the ancillary laundry composition of the present invention. Such stabilisers may be selected from: thread like structuring systems for example hydrogenated castor oil or trihydroxystearin e.g. Thixcin ex. Elementis Specialties, crosslinked polyacrylic acid for example Carbopol ex. Lubrizol and gums for example carrageenan.
  • Preferably the cationic polymer is selected from; cationic polysaccharides and acrylate polymers. More preferably the cationic polymer is a cationic acrylate polymer.
  • The molecular weight of the cationic polymer is preferably greater than 20 000 g/mol, more preferably greater than 25 000 g/mol. The molecular weight is preferably less than 2 000 000 g/mol, more preferably less than 1 000 000 g/mol.
  • The compositions of the present invention may preferably comprise cationic polymer at a level of 0.25 to 10 wt % of the formulation, preferably 0.35 to 7.5 wt. % of the formulation, more preferably 0.5 to 5 wt. % of the composition.
  • Co-softeners
  • Co-softeners may be used. When employed, they are typically present at from 0.1 to 20% and particularly at from 0.5 to 10%, based on the total weight of the composition. Preferred co-softeners include fatty esters, and fatty N-oxides. Fatty esters that may be employed include fatty monoesters, such as glycerol monostearate, fatty sugar esters, such as those disclosed WO 01/46361 (Unilever ).
  • The compositions of the present invention may comprise a fatty complexing agent.
  • Especially suitable fatty complexing agents include fatty alcohols and fatty acids. Of these, fatty alcohols are most preferred.
  • Without being bound by theory it is believed that the fatty complexing material improves the viscosity profile of the composition by complexing with mono-ester component of the fabric conditioner material thereby providing a composition which has relatively higher levels of di-ester and tri-ester linked components. The di-ester and tri-ester linked components are more stable and do not affect initial viscosity as detrimentally as the mono-ester component.
  • It is also believed that the higher levels of mono-ester linked component present in compositions comprising quaternary ammonium materials based on TEA may destabilise the composition through depletion flocculation. By using the fatty complexing material to complex with the mono-ester linked component, depletion flocculation is significantly reduced.
  • In other words, the fatty complexing agent at the increased levels, as required by the present invention, "neutralises" the mono-ester linked component of the quaternary ammonium material. This in situ di-ester generation from mono-ester and fatty alcohol also improves the softening of the composition.
  • Preferred fatty acids include tallow fatty acid or vegetable fatty acids, particularly preferred are hardened tallow fatty acid or hardened vegetable fatty acid (available under the trade name Pristerene, ex Croda). Preferred fatty alcohols include tallow alcohol or vegetable alcohol, particularly preferred are hardened tallow alcohol or hardened vegetable alcohol (available under the trade names Stenol and Hydrenol, ex BASF and Laurex CS, ex Huntsman).
  • The fatty complexing agent is preferably present in an amount greater than 0.3 to 5% by weight based on the total weight of the composition. More preferably, the fatty component is present in an amount of from 0.4 to 4%. The weight ratio of the mono-ester component of the quaternary ammonium fabric softening material to the fatty complexing agent is preferably from 5:1 to 1:5, more preferably 4:1 to 1:4, most preferably 3:1 to 1:3, e.g. 2:1 to 1:2.
  • Non-ionic Surfactants
  • The compositions for use as described herein may comprise a nonionic surfactant. Typically, these can be included for the purpose of stabilising the compositions. Suitable nonionic surfactants include addition products of ethylene oxide and/or propylene oxide with fatty alcohols, fatty acids and fatty amines. Any of the alkoxylated materials of the particular type described hereinafter can be used as the nonionic surfactant.
  • Suitable surfactants are substantially water soluble surfactants of the general formula (VII):

            R-Y-(C2H4O)z-CH2-CH2-OH     (VII)

    where R is selected from the group consisting of primary, secondary and branched chain alkyl and/or acyl hydrocarbyl groups; primary, secondary and branched chain alkenyl hydrocarbyl groups; and primary, secondary and branched chain alkenyl-substituted phenolic hydrocarbyl groups; the hydrocarbyl groups having a chain length of from 8 to about 25, preferably 10 to 20, e.g. 14 to 18 carbon atoms.
  • In the general formula for the ethoxylated nonionic surfactant, Y is typically:

            -O-, -C(O)O- , -C(O)N(R)- or -C(O)N(R)R-

    in which R has the meaning given above for formula (VII), or can be hydrogen; and Z is at least about 8, preferably at least about 10 or 11.
  • Preferably the nonionic surfactant has an HLB of from about 7 to about 20, more preferably from 10 to 18, e.g. 12 to 16. Genapol C200 (Clariant) based on coco chain and 20 EO groups is an example of a suitable nonionic surfactant.
  • If present, the nonionic surfactant is present in an amount from 0.01 to 10%, more preferably 0.1 to 5 by weight, based on the total weight of the composition.
  • A class of preferred non-ionic surfactants include addition products of ethylene oxide and/or propylene oxide with fatty alcohols, fatty acids and fatty amines. These are preferably selected from addition products of (a) an alkoxide selected from ethylene oxide, propylene oxide and mixtures thereof with (b) a fatty material selected from fatty alcohols, fatty acids and fatty amines.
  • Suitable surfactants are substantially water soluble surfactants of the general formula (VIII):

            R-Y-(C2H4O)z-CH2-CH2-OH     (VIII)

    where R is selected from the group consisting of primary, secondary and branched chain alkyl and/or acyl hydrocarbyl groups (when Y = -C(O)O, R ≠ an acyl hydrocarbyl group); primary, secondary and branched chain alkenyl hydrocarbyl groups; and primary, secondary and branched chain alkenyl-substituted phenolic hydrocarbyl groups; the hydrocarbyl groups having a chain length of from 10 to 60, preferably 10 to 25, e.g. 14 to 20 carbon atoms.
  • In the general formula for the ethoxylated nonionic surfactant, Y is typically:

            -O- , -C(O)O- , -C(O)N(R)- or -C(O)N(R)R-

    in which R has the meaning given above for formula (VIII), or can be hydrogen; and Z is at least about 6, preferably at least about 10 or 11.
  • Lutensol AT25 (BASF) based on C16:18 chain and 25 EO groups is an example of a suitable non-ionic surfactant. Other suitable surfactants include Renex 36 (Trideceth-6), ex Croda; Tergitol 15-S3, ex Dow Chemical Co.; Dihydrol LT7, ex Thai Ethoxylate Itd; Cremophor CO40, ex BASF and Neodol 91-8, ex Shell.
  • Other Ingredients
  • The compositions for use as described herein may comprise other ingredients of fabric conditioner liquids as will be known to the person skilled in the art. Among such materials there may be mentioned: antifoams, insect repellents, shading or hueing dyes, preservatives (e.g. bactericides), pH buffering agents, perfume carriers, hydrotropes, antiredeposition agents, soil-release agents, polyelectrolytes, anti-shrinking agents, anti-wrinkle agents, anti-oxidants, dyes, colorants, sunscreens, anti-corrosion agents, drape imparting agents, anti-static agents, sequestrants and ironing aids. The products of the invention may contain pearlisers and/or opacifiers. A preferred sequestrant is HEDP, an abbreviation for Etidronic acid or 1-hydroxyethane 1,1-diphosphonic acid.
  • EXAMPLES Example 1:
  • The effectiveness of the claimed invention at wicking moisture was assessed in the following example. Table 1 Example compositions:
    Ingredient wt. % Composition
    A 1 2
    Fabric Softening active1 8 8 16
    Hydrolysed wheat protein2 - 1 2
    Perfume 0.9 0.9 1.8
    Perfume microcapsule 0.4 0.4 0.8
    Cationic polymer3 - - 0.2
    Malodour ingredient - - 0.5
    Mirrors; antifoam, dyes, pH regulators, preservatives etc. < 1 wt.% < 1 wt.% < 1 wt.%
    Water To 100 To 100 To 100
    Fabric Softening active1 - TEA quaternary ammonium compound according to formula (I) above
    Hydrolysed wheat protein2 - Coltide radiance ex. Croda
    Cationic polymer3 - Flosoft 270LS ex. SNF
  • Compositions A and 1 were prepared by the following method: Water was heated in a vessel to ~40°C, the perfume microcapsules were dispersed therein, followed by some of the minors and the hydrolysed wheat protein (where present). A premix of quaternary ammonium and water was prepared at ~ 65°C and added to the main mix vessel with stirring. The composition was then cooled to ~35°C. Finally, the free oil perfume was added.
  • 100 % knitted polyester sports clothes were washed with composition A or composition 1. Three different garments were tested from different manufacturers. The fabric was washed using a front-loading Miele washing machine on a 40°C cotton wash cycle. A liquid detergent was used in the wash stage, followed by 35 ml of either composition A or composition 1 in the rinse. The garments were tumble dried and washed 4 more times following the same procedure. In total the garments were 'washed'/laundered 5 times and in every cycle of the laundry process, they were treated with either composition A or composition 1 in the rinse cycle.
  • The moisture wicking properties of the fabric were assessed by the following method. A single droplet of water was dropped on the fabric using a pipette. The water was at room temperature (20-24°C) and humidity within the room uncontrolled. The timer was started when the droplet hit the surface of the fabric and stopped at the point where the water droplet had absorbed into fabric. This is known as the wetting time. This was repeated 20 times on 20 different parts of the fabric and a mean wetting time calculated. This does not consider the time taken for water to evaporate completely from the fabric inner structure. Table 2: Results
    Average time taken for water droplet to absorb into fabric (seconds)
    Garment 1 Garment 2 Garment 3
    Composition A 12.8 30.8 10.2
    Composition 1 2.05 10.4 9
  • This demonstrates that the use described herein provides garments made from synthetic fibres with superior moisture wicking capabilities when compared to the same garments washed with a standard fabric conditioner composition.
  • Example 2
  • Compositions 1 and A were tested on different fabrics and the improved wicking compared. The garments were treated according to example 1 and the difference between average time taken for water droplet to absorb into fabric (seconds) was recorded. In other words, for each fabric; fabric treated with composition A time for droplet to absorb minus fabric treated with composition 1 time for droplet to absorb.
    Δ average time taken for water droplet to absorb into fabric (secs) between fabric treated with composition A and composition 1
    Garment 1 (100% Polyester) 10.75
    Garment 2 (100% Polyester) 20.4
    Garment 3 (100% Polyester) 1.2
    Garment A (91 % Polyamide, 9 % elastane) 6.35
    Garment B (80% Polyamide, 20 % elastane) 0.05
  • This demonstrates that the benefit of improved moisture wicking from compositions comprising hydrolysed proteins is greater for polyester fabrics containing fabrics than non-polyester fabrics.

Claims (11)

  1. A use of a composition comprising:
    a. Fabric softening active;
    b. 0.01 to 4 wt.% hydrolysed protein
    to treat fabrics comprising synthetic fibres during the laundry process wherein the fabric comprising synthetic fibres comprises 90 wt.% to 100 wt.% polyester.
  2. A use according to claim 1 wherein the composition is used to improve the moisture wicking capabilities of synthetic fabrics.
  3. A use according to any preceding claim wherein the composition is used to improve the moisture wicking capabilities of synthetic fabrics after 5 cycles of the laundry process.
  4. A use according to any proceeding claim wherein the composition is used in the rinse stage of the laundry process.
  5. A use according to any preceding claim, for treating fabrics comprising only synthetic fibres.
  6. A use according to any preceding claim wherein the fabric comprising synthetic fibres comprise 100% polyester.
  7. A use according to any preceding claim wherein the composition comprises 1 to 40 wt.% fabric softening active.
  8. A use according to any preceding claim wherein the composition further comprises 0.1 to 30 wt. % perfume materials.
  9. A use according to any preceding claim wherein the composition comprises an 0.01 to 5 wt.% anti-malodour agent.
  10. Use of a composition according to any proceeding claim, wherein the protein is a plant protein.
  11. Use of a composition according to any proceeding claim, wherein the protein is a wheat protein.
EP21762065.7A 2020-08-27 2021-08-26 Fabric conditioner for sportswear Active EP4204532B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP20193072 2020-08-27
PCT/EP2021/073643 WO2022043454A1 (en) 2020-08-27 2021-08-26 Fabric conditioner for sportswear

Publications (2)

Publication Number Publication Date
EP4204532A1 EP4204532A1 (en) 2023-07-05
EP4204532B1 true EP4204532B1 (en) 2024-02-14

Family

ID=72266202

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21762065.7A Active EP4204532B1 (en) 2020-08-27 2021-08-26 Fabric conditioner for sportswear

Country Status (4)

Country Link
EP (1) EP4204532B1 (en)
CN (1) CN116209742A (en)
BR (1) BR112023002821A2 (en)
WO (1) WO2022043454A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB202209432D0 (en) * 2022-06-28 2022-08-10 Croda Int Plc Composition, home care formulations, method and use

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4009253A (en) 1973-11-05 1977-02-22 Monsanto Company 4-cyclohexyl-4-methyl-2-pentanone useful as a malodor counteractant
US4719105A (en) 1975-11-05 1988-01-12 Bush Boake Allen, Inc. Method, compositions and compounds useful in room fresheners employing cyclohexyl alcohol and ester derivatives
US4187251A (en) 1976-12-16 1980-02-05 Schleppnik Alfred A Malodor counteractants
JPS63212318A (en) 1987-02-28 1988-09-05 キヤノン株式会社 Eye measuring apparatus
JPH02284997A (en) 1989-04-26 1990-11-22 Osaka Yakuhin Kenkyusho:Kk Deodorizing cleanser
US5441727A (en) 1989-06-21 1995-08-15 The Procter & Gamble Company Diketone deodorant composition and method of deodorization
JP3691061B2 (en) 1993-11-30 2005-08-31 クエスト・インターナショナル・ビー・ブイ Anti-smoke perfume and composition
DE4439570A1 (en) 1994-11-05 1996-05-09 Henkel Kgaa Laundry after-treatment agent
DE19730649C1 (en) * 1997-07-17 1998-09-24 Henkel Kgaa Skin-compatible detergent mixture with good cleaning, rewetting and conditioning power
DE19904513A1 (en) * 1999-02-04 2000-08-10 Cognis Deutschland Gmbh Detergent mixtures
GB2346900A (en) 1999-02-18 2000-08-23 Reckitt & Colman Inc Deodorizing compositions for fibrous substrates
GB2352179A (en) 1999-07-21 2001-01-24 Unilever Plc Deodorising perfume compositions
GB9930435D0 (en) 1999-12-22 2000-02-16 Unilever Plc Fabric softening compositions
DE10253217A1 (en) * 2002-11-15 2004-05-27 Cognis Deutschland Gmbh & Co. Kg Use of quaternized protein hydrolyzates in washing and cleaning agents
US20050113282A1 (en) 2003-11-20 2005-05-26 Parekh Prabodh P. Melamine-formaldehyde microcapsule slurries for fabric article freshening
GB0822823D0 (en) * 2008-12-15 2009-01-21 Dow Corning Silicone oi-in-water emulsions

Also Published As

Publication number Publication date
EP4204532A1 (en) 2023-07-05
CN116209742A (en) 2023-06-02
WO2022043454A1 (en) 2022-03-03
BR112023002821A2 (en) 2023-03-14

Similar Documents

Publication Publication Date Title
EP1991648A1 (en) Fabric care compositions comprising formaldehyde scavengers
CA3142772A1 (en) Fabric care compositions comprising acrylate encapsulates
EP4204532B1 (en) Fabric conditioner for sportswear
US20230323251A1 (en) Laundry composition
EP0760243B1 (en) Use of allylic alcohol perfumes as a malodour reduction agent
EP4277971A1 (en) Fabric conditioner
CA2590707A1 (en) Fabric enhancing composition
EP3880779A1 (en) Fabric conditioner compositions
EP3953443A1 (en) Fabric conditioner compositions
WO2019185353A1 (en) Use of fabric conditioner composition
EP4277973A1 (en) Laundry composition
CN117321183A (en) Composition for reducing off-flavors
CN117716009A (en) Composition for reducing off-flavors
WO2022268446A1 (en) Laundry composition
EP4026887A1 (en) Fabric conditioner composition
EP4150038A1 (en) Laundry composition

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230126

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
INTG Intention to grant announced

Effective date: 20231002

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20231128

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20240131

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602021009443

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D