EP4200960A1 - Aircraft electrical machine with improved heat transfer by means of a phase change material and associated method - Google Patents
Aircraft electrical machine with improved heat transfer by means of a phase change material and associated methodInfo
- Publication number
- EP4200960A1 EP4200960A1 EP21769765.5A EP21769765A EP4200960A1 EP 4200960 A1 EP4200960 A1 EP 4200960A1 EP 21769765 A EP21769765 A EP 21769765A EP 4200960 A1 EP4200960 A1 EP 4200960A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- notches
- stator
- electrical
- windings
- phase change
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012782 phase change material Substances 0.000 title claims abstract description 46
- 238000000034 method Methods 0.000 title claims abstract description 11
- 238000004804 winding Methods 0.000 claims abstract description 50
- 238000005266 casting Methods 0.000 claims abstract description 22
- 239000000615 nonconductor Substances 0.000 claims abstract description 22
- 238000010438 heat treatment Methods 0.000 claims abstract description 4
- 238000010292 electrical insulation Methods 0.000 claims description 13
- 229920005989 resin Polymers 0.000 claims description 10
- 239000011347 resin Substances 0.000 claims description 10
- 239000004696 Poly ether ether ketone Substances 0.000 claims description 8
- 229920002530 polyetherether ketone Polymers 0.000 claims description 8
- 239000012212 insulator Substances 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 5
- 239000004593 Epoxy Substances 0.000 claims description 4
- 229920002302 Nylon 6,6 Polymers 0.000 claims description 4
- 230000008859 change Effects 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 239000004033 plastic Substances 0.000 claims description 4
- 229920003023 plastic Polymers 0.000 claims description 4
- -1 polyethylene terephthalate Polymers 0.000 claims description 4
- 229920001296 polysiloxane Polymers 0.000 claims description 4
- 229920002635 polyurethane Polymers 0.000 claims description 4
- 239000004814 polyurethane Substances 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- 229910002651 NO3 Inorganic materials 0.000 claims description 3
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 3
- 239000000654 additive Substances 0.000 claims description 3
- 230000000996 additive effect Effects 0.000 claims description 3
- 239000011152 fibreglass Substances 0.000 claims description 3
- 239000010439 graphite Substances 0.000 claims description 3
- 229910002804 graphite Inorganic materials 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims description 3
- 239000010445 mica Substances 0.000 claims description 3
- 229910052618 mica group Inorganic materials 0.000 claims description 3
- 239000000123 paper Substances 0.000 claims description 3
- 229920000728 polyester Polymers 0.000 claims description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 3
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 3
- 238000003780 insertion Methods 0.000 claims description 2
- 230000037431 insertion Effects 0.000 claims description 2
- 238000009434 installation Methods 0.000 claims description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 7
- 238000001816 cooling Methods 0.000 description 7
- 229910052802 copper Inorganic materials 0.000 description 7
- 239000010949 copper Substances 0.000 description 7
- 239000007788 liquid Substances 0.000 description 6
- 239000012071 phase Substances 0.000 description 6
- 238000005538 encapsulation Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 3
- 239000007790 solid phase Substances 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- 230000007480 spreading Effects 0.000 description 2
- UNXHWFMMPAWVPI-UHFFFAOYSA-N Erythritol Natural products OCC(O)C(O)CO UNXHWFMMPAWVPI-UHFFFAOYSA-N 0.000 description 1
- 239000004386 Erythritol Substances 0.000 description 1
- 230000005679 Peltier effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 229940009714 erythritol Drugs 0.000 description 1
- 235000019414 erythritol Nutrition 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 235000010344 sodium nitrate Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002470 thermal conductor Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K15/00—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
- H02K15/12—Impregnating, heating or drying of windings, stators, rotors or machines
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K3/00—Details of windings
- H02K3/32—Windings characterised by the shape, form or construction of the insulation
- H02K3/34—Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation
- H02K3/345—Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation between conductor and core, e.g. slot insulation
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/02—Materials undergoing a change of physical state when used
- C09K5/06—Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
- C09K5/063—Materials absorbing or liberating heat during crystallisation; Heat storage materials
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K15/00—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
- H02K15/02—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K15/00—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
- H02K15/10—Applying solid insulation to windings, stators or rotors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K9/00—Arrangements for cooling or ventilating
- H02K9/19—Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
- H02K9/20—Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil wherein the cooling medium vaporises within the machine casing
Definitions
- the field of the invention is that of direct or alternating current electric machines integrated in aircraft engines, in particular those of helicopters or VTOL (for "Vertical Take Off and Landing"), allowing the generation and/or or the motorization of certain electrical parts of the aircraft, including the electric propulsion.
- VTOL Vertical Take Off and Landing
- one of the preferred ways is to reduce the mass of the electric generation and/or starting, assistance or even electric propulsion systems for the VTOLs.
- the weight of these systems can reach several tens of kilograms for powers not exceeding a few tens of kilowatts, the power/mass ratio of current electric machines rarely exceeding 3 kW/kg.
- the electrical components to be controlled often operate under a network voltage of 28Vdc, while the power demands are several kW or kVA, which gives high intensity currents that can reach several hundred amperes, requiring an increase in significantly the cross-section of the copper wires within the electrical machine, the latter (as well as its structure and its sizing in general) being a direct function of the amplitude of these currents. More generally, increasing the mass power densities of these electrical machines requires an increase in current densities while optimizing the onboard copper mass.
- thermoelectric module can only concern very localized areas and requires a stabilized power supply allowing the thermoelectric power supply.
- PCM phase change materials
- phase-change materials 2 are placed in the stator 4 of the electric machine at the bottom of the slots 6 receiving the windings 8 of the stator windings.
- the electromagnetic performance is increased by allowing an increase in the intensity of the electric current passing through the windings or, for an identical electric current intensity value, the wire section of the stator winding is reduced and therefore a reduction in the mass of the machine.
- the present invention therefore proposes to improve the management of heat transfers within an aircraft electrical machine comprising a stator and a rotor configured to be driven in rotation with respect to each other, the stator comprising a plurality of slots receiving the same plurality or not of windings, method characterized in that it comprises the following successive steps:
- the current intensity that can pass through the windings is significantly increased without significantly modifying the manufacturing process and the configuration of the electric machine, but giving it increased robustness in the face of external attacks (heat, dust, water in particular). Encapsulation also ensures good mechanical strength of the winding, particularly in highly vibrating environments.
- the step of casting the phase change material is preceded by a step of inserting a wedge or a hoop to close the notches and thus prevent the casting. phase change material outside the notches.
- the electrical insulator comes from a first casting of a standard resin conventionally used to encapsulate the windings of electrical machines.
- the phase change material is mixed beforehand with a resin of the epoxy, polyurethane or silicone type.
- the invention also relates to an aircraft electrical machine comprising a stator and a rotor configured to be driven in rotation relative to each other, the stator comprising a plurality of notches or teeth receiving a same plurality or not of windings, characterized in that, to protect the windings from excessive heating, it comprises an electrical insulator inserted in the notches or on the teeth to successively receive the said windings and a phase change material of which it forms a casting mold .
- the electrical insulation and the winding encapsulated in the phase change material can advantageously form an independent module that can be directly inserted on each of the stator teeth.
- said electrical insulator may be formed of a plurality of elements corresponding to the plurality of notches or teeth, each of the elements thus sectorized being configured to be inserted individually into each of the notches or on each of the teeth or a single element adapted to the geometry of the stator and configured to be inserted together in all the slots.
- Said electrical insulator can be one of the following insulators: paper, mica, polyethylene terephthalate, polyester, fiberglass, or be obtained by an additive manufacturing process from a plastic material, such as PEEK ( PolyEtherEtherKetone) or Polyamide 66 (PA66), with suitable electrical insulation and thermal resistance characteristics.
- a plastic material such as PEEK ( PolyEtherEtherKetone) or Polyamide 66 (PA66)
- the phase change material is a nitrate or a hydroxide preferably filled with graphite having a phase change temperature between 150°C and 300°C.
- the invention also relates to an independent module consisting of an electrical insulator and windings encapsulated in a phase change material and insertable directly on each of the teeth of a stator of an electric machine thus mentioned.
- the invention finally relates to an aircraft engine of the VTOL type or not comprising at least one electric machine as mentioned above.
- Figure 1 is a first example of an electric machine according to the present invention
- Figure 2 is a radial sectional view illustrating the encapsulation of the windings at the level of the coil heads in accordance with the present invention
- Figure 3 is a second example of an electric machine according to the present invention.
- Figure 4 represents the evolution of temperatures according to the percentage of phase change material filling the notches of the stator of figure 1,
- Figure 5 shows part of an internal stator of an electric machine according to the present invention.
- Figure 6 shows an electric machine stator of the prior art.
- FIG. 1 A first example of an aircraft electrical machine 10, comprising a stator 12 having a plurality of slots 120 and a rotor 14, for example with permanent magnets 140, the stator and rotor being configured to be driven in rotation one relative to each other, is shown in Figure 1.
- the stator typically made of ferromagnetic laminations is with concentric winding (also called dental) supplied with alternating current by a single-phase or polyphase system, typically three-phase (not shown).
- This winding is called "Double Layer” because the copper wires are directly wound on each of the teeth of the stator but a so-called “Single Layer” winding where certain teeth are not surrounded by copper wires is of course also possible.
- an electrical insulator which, in the example illustrated, is formed of a single element 16, is inserted together in one go into the notches 120 of the stator 12 to successively receive the windings of copper wires 18 and a phase change material 20.
- This electrical insulator 16 thus forms a casting mold for the phase change material 20 which is prevented from spreading out of the notches 120 by a hoop 22 which radially closes off these notches and therefore closes the mold during casting.
- a hoop 22 which radially closes off these notches and therefore closes the mold during casting.
- the impregnation of the windings by the liquid PCM will advantageously be carried out in a vacuum chamber. The hoop is removed once the solidification has taken place to allow the positioning of the rotor, but it can also be preserved in certain specific applications.
- the electrical insulation will preferably be produced by a known additive manufacturing process (SLA for "Stereo Lithograph Apparatus” or PIM for "Plastic Injection Molding” for example), from a plastic material with characteristics of good electrical insulation and good thermal resistance, such as PEEK (PolyEtherEtherKetone) or Polyamide 66 (PA66).
- SLA Stereo Lithograph Apparatus
- PIM PolyInjection Molding
- PEEK PolyEtherEtherKetone
- PA66 Polyamide 66
- the winding 18 generally comprises at its two ends located outside the notches of the zones 180 called “coil head” or “bun” which should also be cover with electrical insulation 16 forming a mold to ensure complete encapsulation of the winding by the phase change material 20 (shown in the solid phase after the liquid casting phase).
- the phase change material is preferably a nitrate or a hydroxide (LiNO3, NaNO3, U2CO3, etc.) preferably filled with graphite, both chemically neutral and an excellent electrical and thermal conductor, and typically has a temperature of phase change between 150°C and 300°C. It must not be chemically unstable and be of a neutral character so as not to degrade or corrode the copper wires. In order to guarantee a very significant liquid-solid phase change, the phase change material must have the property of being as congruent as possible and have a very low expansion coefficient.
- FIG. 3 A second example of an aircraft electrical machine 30, also comprising a stator 32 with a plurality of notches 320 and a rotor 34, for example with permanent magnets 340, is illustrated in FIG. 3.
- the stator has a distributed winding and it comprises lateral expansions 322 on the lower part of the teeth (known as “Tooth Tips”). It will be noted that, in this configuration with distributed winding, the number of slots is typically greater than in the preceding configuration with concentric winding. In another configuration (not shown), the stator may include completely closed notches over its entire periphery.
- the electrical insulator is no longer formed of a single element but of a plurality of elements 36 corresponding to the plurality of notches, and each inserted individually in a different notch 320 of the stator 32 to successively receive, as before, the windings of copper wires 38 then a phase change material 40.
- Each of the elements 36 forming the electrical insulator thus divided into sectors constitutes a casting mold for the phase change material 40 which is prevented from spreading out of the notches 320 by a wedge 42, supported by the lateral expansions 322, coming to block these radially notches and thus close the mold during casting.
- the assembly will then advantageously be placed in a vacuum chamber to facilitate the step of impregnating the phase change material in the liquid state before it solidifies during cooling.
- the wedge 42 can be removed once this solidification has taken place or left in place when the nature of its material allows it, for example PEEK (PolyEtherEtherKetone) or Polyamide 66 (PA66).
- the insulation of the slots normally present in the stators of an electrical machine is obtained by one of the following insulators: paper, mica, polyethylene terephthalate, polyester, fiberglass , can advantageously constitute the mold inside which the phase change material will be cast.
- this electrical insulator, sectored or not, covering the walls of the slots can also advantageously come from a first casting of a standard resin conventionally used to encapsulate the windings of machines electrical and adapted to the application (epoxy, silicone, polyurethane, or any other usual resin), which will spare the windings and will contain the internal cavity to accommodate the phase change material (PCM).
- PCM phase change material
- phase change material PCM
- a premix of a resin / PCM assembly in the form liquid or in solid form in mass proportions determined beforehand by experience and/or by thermal calculations within the reach of any person skilled in the art, and to pour this mixture into the electrical insulation instead of the PCM alone.
- the resin used for this mixture will typically be of the epoxy, polyurethane or silicone type. In this case, it may be useful to place the assembly in an oven to trigger or accelerate the solidification of the resin.
- Figure 4 shows the evolution of the temperature as a function of the rate of filling of the notches with phase change material, in this case an Erythritol compound. It can be seen that for a fixed temperature limit value (here 150 °C), the use of a mixture based on 100% (curve A) or 40% (curve B) of a phase change material (the other 60% being made up of a simple epoxy resin) makes it possible to maintain the thermal stress for several tens of additional seconds compared to filling the notches with a simple epoxy resin (curve C - 0% of MCP) or without any filling (curve D).
- a phase change material in this case an Erythritol compound.
- the invention allows a minimization of the volume and the mass of the winding of about 10% of the mass of the electric machine, i.e. about 1.2 kg for a machine of the order of 10kg. It avoids any addition of additional cooling systems degrading the mass balance, the size and the reliability rate of the electrical machine. It can be integrated in transiently very hot environments (> 150°C).
- the encapsulation of the phase change material in the notches of the stator is also valid for topologies of electrical machines with a stator placed inside and a rotor placed outside as shown in FIG. an inner stator part 50 provided with a tooth stator 52 on which is inserted the electrical insulator 54 receiving the winding 56 and serving as a mold for the phase change material 58 (shown in solid phase after the casting phase).
- the electrical insulator 54 and the winding 56, dental or concentric, encapsulated in the phase change material 58 can advantageously form an independent module directly insertable on each of the stator teeth 52.
- the invention also finds application in induction/asynchronous machines or variable reluctance machines, as in cylindrical machines with axial flux and discoid machines with linear flux.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Thermal Sciences (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Insulation, Fastening Of Motor, Generator Windings (AREA)
- Manufacture Of Motors, Generators (AREA)
Abstract
Disclosed is a method for protecting windings from excessive heating in an aircraft electrical machine comprising a stator (12) and a rotor (14) configured to be driven in rotation with respect to one another, the stator comprising a plurality of notches (120) receiving the same or different plurality of windings, the method comprising the following successive steps: inserting an electrical insulator (16) into the notches or on the teeth of the stator, positioning the windings (18) in the notches or on the teeth of the stator, casting a phase-change material (20) into the notches or onto the teeth provided with the windings, the electrical insulator forming a casting mould.
Description
MACHINE ELECTRIQUE D'AERONEF A TRANSFERT THERMIQUE AMELIORE AU MOYEN D'UN MATERIAU A CHANGEMENT DE PHASE ET PROCEDE ASSOCIE ELECTRIC AIRCRAFT MACHINE WITH IMPROVED THERMAL TRANSFER BY MEANS OF A PHASE CHANGE MATERIAL AND ASSOCIATED METHOD
Domaine Technique Technical area
Le domaine de l’invention est celui des machines électriques à courant continu ou alternatif intégrées dans les moteurs d’aéronef, en particulier ceux d’hélicoptères ou de VTOL (pour « Vertical Take Off and Landing >>), permettant la génération et/ou la motorisation de certains organes électriques de l’aéronef, y compris la propulsion électrique. The field of the invention is that of direct or alternating current electric machines integrated in aircraft engines, in particular those of helicopters or VTOL (for "Vertical Take Off and Landing"), allowing the generation and/or or the motorization of certain electrical parts of the aircraft, including the electric propulsion.
Technique antérieure Prior technique
Dans l’objectif de réduire la masse globale d’un ensemble propulsif d’hélicoptère ou de VTOL, une des voies privilégiée est de diminuer la masse des systèmes électriques de génération et/ou de démarrage, d’assistance ou encore de propulsion électrique pour les VTOL. En effet, le poids de ces systèmes peut atteindre plusieurs dizaines de kilogrammes pour des puissances ne dépassant pas quelques dizaines de kilowatts, le ratio puissance/masse des machines électriques actuelles dépassant rarement 3 kW/kg. With the aim of reducing the overall mass of a helicopter or VTOL propulsion unit, one of the preferred ways is to reduce the mass of the electric generation and/or starting, assistance or even electric propulsion systems for the VTOLs. Indeed, the weight of these systems can reach several tens of kilograms for powers not exceeding a few tens of kilowatts, the power/mass ratio of current electric machines rarely exceeding 3 kW/kg.
Or, les organes électriques à commander fonctionnent souvent sous une tension réseau de 28Vdc, alors que les demandes en puissance sont de plusieurs kW ou kVA, ce qui donne des courants d’intensité élevée pouvant atteindre plusieurs centaines d’ampères, nécessitant d’augmenter de façon importante la section des fils de cuivre au sein de la machine électrique, celle-ci (de même que sa structure et son dimensionnement en général) étant directement fonction de l’amplitude de ces courants. Plus généralement l’augmentation des densités massiques de puissance de ces machines électriques passe par une augmentation des densités de courant tout en optimisant la masse de cuivre embarquée. However, the electrical components to be controlled often operate under a network voltage of 28Vdc, while the power demands are several kW or kVA, which gives high intensity currents that can reach several hundred amperes, requiring an increase in significantly the cross-section of the copper wires within the electrical machine, the latter (as well as its structure and its sizing in general) being a direct function of the amplitude of these currents. More generally, increasing the mass power densities of these electrical machines requires an increase in current densities while optimizing the onboard copper mass.
C’est pourquoi, pour garder l’ensemble à une température ne dépassant pas les températures de fusion des isolants composant les fils du bobinage de la machine électrique ou pour éviter des dégradations plus lentes des propriétés de l’isolant qui conduiraient à des risques de décharges partielles, il est connu de recourir à différents systèmes de refroidissement, comme la convection naturelle au moyen d’un dissipateur à ailettes, la convection forcée au moyen d’un ventilateur, le
refroidissement forcé par liquide ou par échangeur ou encore le refroidissement par module thermoélectrique (type effet Peltier). This is why, to keep the assembly at a temperature not exceeding the melting temperatures of the insulators making up the wires of the winding of the electric machine or to avoid slower degradation of the properties of the insulator which would lead to risks of partial discharges, it is known to use different cooling systems, such as natural convection by means of a finned dissipator, forced convection by means of a fan, forced cooling by liquid or heat exchanger or cooling by thermoelectric module (Peltier effect type).
Toutefois, dans les applications aéronautiques, c'est-à-dire dans le cadre d’un système embarqué exigeant de fortes contraintes en termes de compacité, masse et fiabilité, ces solutions ne sont pas sans inconvénients. La convection naturelle est encombrante, massive et nécessite un flux d’air en périphérie de la machine électrique, la convection forcée est aussi encombrante et en outre nuit à la fiabilité de la machine électrique, le refroidissement forcé par liquide est pareillement encombrant, massif et intrusif envers la machine électrique et nécessite de plus de fréquentes mises hors services pour maintenance, et le refroidissement par module thermoélectrique ne peut concerner que des zones très localisées et nécessite une alimentation stabilisée permettant l’alimentation thermoélectrique. However, in aeronautical applications, i.e. in the context of an embedded system requiring strong constraints in terms of compactness, mass and reliability, these solutions are not without drawbacks. Natural convection is cumbersome, massive and requires an air flow around the periphery of the electric machine, forced convection is also bulky and moreover harms the reliability of the electric machine, forced liquid cooling is similarly bulky, massive and intrusive towards the electrical machine and also requires frequent shutdowns for maintenance, and cooling by thermoelectric module can only concern very localized areas and requires a stabilized power supply allowing the thermoelectric power supply.
Aussi, constat fait que la demande de puissance électrique d’un système électrique peut être très élevée mais sur des temps qui ne dépassent pas quelques dizaines de secondes voire la minute, ce qui signifie une dissipation thermique importante mais cyclique ou transitoire, la demanderesse dans sa demande FR3012698 a proposé l’utilisation de matériaux à changement de phase (MCP) pour permettre une meilleure gestion des transferts thermiques au plus près des éléments critiques que sont les bobinages de la machine électrique. Also, finding that the electrical power demand of an electrical system can be very high but over times that do not exceed a few tens of seconds or even a minute, which means significant but cyclical or transient heat dissipation, the applicant in its application FR3012698 proposed the use of phase change materials (PCM) to allow better management of heat transfers as close as possible to the critical elements that are the windings of the electric machine.
Comme le montre la figure 6, afin d’écrêter la température au sein du bobinage et de protéger les conducteurs électriques des pertes en courant alternatif lors des fonctionnements en haute vitesse (donc à haute fréquence électrique), ces matériaux à changement de phase 2 sont placés dans le stator 4 de la machine électrique au fond des encoches 6 recevant les enroulements 8 des bobinages statoriques. Ainsi, on augmente les performances électromagnétiques en autorisant une augmentation de l’intensité de courant électrique traversant les enroulements ou, à valeur d’intensité de courant électrique identique, on réduit la section de fil du bobinage statorique et donc on permet une diminution de la masse de la machine.As shown in FIG. 6, in order to clip the temperature within the winding and to protect the electrical conductors from alternating current losses during high-speed operation (therefore at high electrical frequency), these phase-change materials 2 are placed in the stator 4 of the electric machine at the bottom of the slots 6 receiving the windings 8 of the stator windings. Thus, the electromagnetic performance is increased by allowing an increase in the intensity of the electric current passing through the windings or, for an identical electric current intensity value, the wire section of the stator winding is reduced and therefore a reduction in the mass of the machine.
Cette solution donne globalement satisfaction. Toutefois, elle peut encore être améliorée et notamment il est possible d’améliorer les propriétés de transfert thermique tout en réduisant la masse et l’encombrement de la machine électrique et cela indépendamment de la tension du réseau électrique.
Exposé de l’invention This solution is generally satisfactory. However, it can still be improved and in particular it is possible to improve the heat transfer properties while reducing the mass and the size of the electric machine and this independently of the voltage of the electric network. Disclosure of Invention
La présente invention se propose donc d’améliorer la gestion des transferts thermiques au sein d’une machine électrique d’aéronef comprenant un stator et un rotor configurés pour être entraînés en rotation l’un par rapport à l’autre, le stator comportant une pluralité d’encoches recevant une même pluralité ou non de bobinages, procédé caractérisé en ce qu’il comporte les étapes successives suivantes : The present invention therefore proposes to improve the management of heat transfers within an aircraft electrical machine comprising a stator and a rotor configured to be driven in rotation with respect to each other, the stator comprising a plurality of slots receiving the same plurality or not of windings, method characterized in that it comprises the following successive steps:
- insertion d’un isolant électrique dans les encoches ou sur les dents du stator, - insertion of an electrical insulator in the notches or on the teeth of the stator,
- mise en place des bobinages dans les encoches ou sur les dents du stator, - installation of the windings in the notches or on the teeth of the stator,
- coulée d’un matériau à changement de phase dans les encoches ou sur les dents munies des bobinages, l’isolant électrique formant un moule de coulée. - casting of a phase change material in the notches or on the teeth fitted with the windings, the electrical insulation forming a casting mould.
Ainsi en réalisant une encapsulation du matériau à changement de phase dans un contenant formé par l’isolant électrique assurant la protection du bobinage stator, on augmente notablement l’intensité de courant pouvant traverser les bobinages sans modifier notablement le procédé de fabrication et la configuration de la machine électrique, mais en lui conférant une robustesse accrue face aux agressions extérieures (thermique, poussières, eau notamment). L’encapsulation permet également d’assurer une bonne tenue mécanique du bobinage, en particulier dans des environnements fortement vibratoires. Thus, by carrying out an encapsulation of the phase change material in a container formed by the electrical insulation ensuring the protection of the stator winding, the current intensity that can pass through the windings is significantly increased without significantly modifying the manufacturing process and the configuration of the electric machine, but giving it increased robustness in the face of external attacks (heat, dust, water in particular). Encapsulation also ensures good mechanical strength of the winding, particularly in highly vibrating environments.
Lorsque les encoches sont ouvertes et l’isolant ainsi sectorisé, l’étape de coulée du matériau à changement de phase est précédée d’une étape d’insertion d’une cale ou d’une frette pour fermer les encoches et ainsi interdire la coulée du matériau à changement de phase en dehors des encoches. When the notches are open and the insulation thus sectorized, the step of casting the phase change material is preceded by a step of inserting a wedge or a hoop to close the notches and thus prevent the casting. phase change material outside the notches.
De préférence, l’isolant électrique, sectorisé ou non, est issu d’une première coulée d’une résine standard utilisée classiquement pour encapsuler les bobinages de machines électriques.
Selon un mode de réalisation avantageux, le matériau de changement de phase est préalablement mélangé avec une résine de type époxy, polyuréthane ou silicone.Preferably, the electrical insulator, sectorized or not, comes from a first casting of a standard resin conventionally used to encapsulate the windings of electrical machines. According to an advantageous embodiment, the phase change material is mixed beforehand with a resin of the epoxy, polyurethane or silicone type.
L’invention concerne également une machine électrique d’aéronef comprenant un stator et un rotor configurés pour être entraînés en rotation l’un par rapport à l’autre, le stator comportant une pluralité d’encoches ou de dents recevant une même pluralité ou non de bobinages, caractérisée en ce que, pour protéger les bobinages d’un échauffement excessif, elle comprend un isolant électrique inséré dans les encoches ou sur les dents pour recevoir successivement lesdits bobinages et un matériau à changement de phase dont il forme un moule de coulée. The invention also relates to an aircraft electrical machine comprising a stator and a rotor configured to be driven in rotation relative to each other, the stator comprising a plurality of notches or teeth receiving a same plurality or not of windings, characterized in that, to protect the windings from excessive heating, it comprises an electrical insulator inserted in the notches or on the teeth to successively receive the said windings and a phase change material of which it forms a casting mold .
De préférence, l’isolant électrique et le bobinage encapsulé dans le matériau à changement de phase peuvent avantageusement former un module indépendant directement insérable sur chacune des dents de stator. Preferably, the electrical insulation and the winding encapsulated in the phase change material can advantageously form an independent module that can be directly inserted on each of the stator teeth.
Selon le mode de réalisation envisagé, ledit isolant électrique peut être formé d’une pluralité d’éléments correspondant à la pluralité d’encoches ou de dents, chacun des éléments ainsi sectorisé étant configuré pour être inséré individuellement dans chacune des encoches ou sur chacune des dents ou d’un élément unique adapté à la géométrie du stator et configuré pour être inséré conjointement dans toutes les encoches. According to the embodiment envisaged, said electrical insulator may be formed of a plurality of elements corresponding to the plurality of notches or teeth, each of the elements thus sectorized being configured to be inserted individually into each of the notches or on each of the teeth or a single element adapted to the geometry of the stator and configured to be inserted together in all the slots.
Ledit isolant électrique peut être l’un des isolants suivants : papier, mica, poly- téréphtalate d'éthylène, polyester, fibre de verre, ou être obtenu par un procédé de fabrication additive à partir d’une matière plastique, comme le PEEK (PolyEtherEtherKetone) ou le Polyamide 66 (PA66), ayant des caractéristiques d’isolation électrique et de tenue thermique appropriées. Said electrical insulator can be one of the following insulators: paper, mica, polyethylene terephthalate, polyester, fiberglass, or be obtained by an additive manufacturing process from a plastic material, such as PEEK ( PolyEtherEtherKetone) or Polyamide 66 (PA66), with suitable electrical insulation and thermal resistance characteristics.
De préférence, le matériau à changement de phase est un nitrate ou un hydroxyde préférablement chargé avec du graphite ayant une température de changement de phase comprise entre 150 °C et 300 °C. Preferably, the phase change material is a nitrate or a hydroxide preferably filled with graphite having a phase change temperature between 150°C and 300°C.
L’invention concerne aussi un module indépendant constitué d’un isolant électrique et de bobinages encapsulés dans un matériau à changement de phase et insérable directement sur chacune des dents d’un stator d’une machine électrique ainsi citée.The invention also relates to an independent module consisting of an electrical insulator and windings encapsulated in a phase change material and insertable directly on each of the teeth of a stator of an electric machine thus mentioned.
L’invention concerne enfin un moteur d’aéronef de type VTOL ou non comportant au moins une machine électrique telle que précitée.
Brève description des dessins The invention finally relates to an aircraft engine of the VTOL type or not comprising at least one electric machine as mentioned above. Brief description of the drawings
D'autres caractéristiques et avantages de la présente invention ressortiront de la description détaillée faite ci-dessous, en référence aux figures suivantes dépourvues de tout caractère limitatif et sur lesquelles : Other characteristics and advantages of the present invention will emerge from the detailed description given below, with reference to the following figures, which are not of any limiting nature and in which:
[Fig. 1] La figure 1 est un premier exemple d’une machine électrique conforme à la présente invention, [Fig. 1] Figure 1 is a first example of an electric machine according to the present invention,
[Fig. 2] La figure 2 est une vue en coupe radiale illustrant l’encapsulation des bobinages au niveau des têtes de bobines conformément à la présente invention,[Fig. 2] Figure 2 is a radial sectional view illustrating the encapsulation of the windings at the level of the coil heads in accordance with the present invention,
[Fig. 3] La figure 3 est un second exemple d’une machine électrique conforme à la présente invention, [Fig. 3] Figure 3 is a second example of an electric machine according to the present invention,
[Fig. 4] La figure 4 représente l’évolution des températures selon le pourcentage de matériau à changement de phase remplissant les encoches du stator de la figure 1 ,[Fig. 4] Figure 4 represents the evolution of temperatures according to the percentage of phase change material filling the notches of the stator of figure 1,
[Fig. 5] La figure 5 montre une partie d’un stator interne de machine électrique conforme à la présente invention, et [Fig. 5] Figure 5 shows part of an internal stator of an electric machine according to the present invention, and
[Fig. 6] La figure 6 représente un stator de machine électrique de l’art antérieur. [Fig. 6] Figure 6 shows an electric machine stator of the prior art.
Description des modes de réalisation Description of embodiments
Un premier exemple d’une machine électrique d’aéronef 10, comprenant un stator 12 ayant une pluralité d’encoches 120 et un rotor 14, par exemple à aimants permanents 140, les stator et rotor étant configurés pour être entraînés en rotation l’un par rapport à l’autre, est présenté à la figure 1 . Dans l’exemple illustré, le stator typiquement formé de tôles ferromagnétiques est à bobinage concentrique (dit aussi dentaire) alimenté en courant alternatif par un système monophasé ou polyphasé, typiquement triphasé (non représenté). Ce bobinage est dit « Double Layer » car les fils de cuivre sont directement bobinés sur chacune des dents du stator mais un bobinage dit « Single Layer » où certaines dents ne sont pas entourées de fils de cuivre est bien entendu aussi envisageable. A first example of an aircraft electrical machine 10, comprising a stator 12 having a plurality of slots 120 and a rotor 14, for example with permanent magnets 140, the stator and rotor being configured to be driven in rotation one relative to each other, is shown in Figure 1. In the example shown, the stator typically made of ferromagnetic laminations is with concentric winding (also called dental) supplied with alternating current by a single-phase or polyphase system, typically three-phase (not shown). This winding is called "Double Layer" because the copper wires are directly wound on each of the teeth of the stator but a so-called "Single Layer" winding where certain teeth are not surrounded by copper wires is of course also possible.
Conformément à l’invention, un isolant électrique qui, dans l’exemple illustré, est formé d’un élément unique 16, est inséré en une fois conjointement dans les
encoches 120 du stator 12 pour recevoir successivement les bobinages de fils de cuivre 18 et un matériau à changement de phase 20. In accordance with the invention, an electrical insulator which, in the example illustrated, is formed of a single element 16, is inserted together in one go into the notches 120 of the stator 12 to successively receive the windings of copper wires 18 and a phase change material 20.
Cet isolant électrique 16 forme ainsi un moule de coulée pour le matériau à changement de phase 20 qui est empêché de se répandre hors des encoches 120 par une frette 22 venant obturer radialement ces encoches et donc refermer le moule pendant la coulée. Afin de limiter la quantité d’air à l’intérieur du matériau à changement de phase, permettant d’augmenter la quantité de matériaux moulée et donc la quantité de chaleur pouvant être extraite, l’imprégnation des bobinages par le MCP liquide sera avantageusement réalisée dans une enceinte sous vide. La frette est retirée une fois la solidification opérée pour permettre la mise en place du rotor, mais elle peut aussi être préservée dans certaines applications particulières.This electrical insulator 16 thus forms a casting mold for the phase change material 20 which is prevented from spreading out of the notches 120 by a hoop 22 which radially closes off these notches and therefore closes the mold during casting. In order to limit the amount of air inside the phase change material, making it possible to increase the amount of material molded and therefore the amount of heat that can be extracted, the impregnation of the windings by the liquid PCM will advantageously be carried out in a vacuum chamber. The hoop is removed once the solidification has taken place to allow the positioning of the rotor, but it can also be preserved in certain specific applications.
Afin de posséder une forme optimisée, adaptée aux contraintes géométriques du stator, l’isolant électrique sera de préférence réalisé par un procédé connu de fabrication additive (SLA pour « Stereo Lithograph Apparatus » ou PIM pour « Plastic Injection Molding » par exemple), à partir d’une matière plastique possédant des caractéristiques de bonne isolation électrique et de bonne tenue thermique, comme le PEEK (PolyEtherEtherKetone) ou le Polyamide 66 (PA66).In order to have an optimized shape, adapted to the geometric constraints of the stator, the electrical insulation will preferably be produced by a known additive manufacturing process (SLA for "Stereo Lithograph Apparatus" or PIM for "Plastic Injection Molding" for example), from a plastic material with characteristics of good electrical insulation and good thermal resistance, such as PEEK (PolyEtherEtherKetone) or Polyamide 66 (PA66).
En effet et comme l’illustre la coupe de la figure 2, le bobinage 18 comporte en général à ses deux extrémités situées à l’extérieur des encoches des zones 180 dénommées « tête de bobine » ou « chignon » qu’il convient également de recouvrir de l’isolant électrique 16 formant moule pour assurer une encapsulation complète du bobinage par le matériau à changement de phase 20 (représenté en phase solide après la phase de coulée liquide). In fact, and as the section of FIG. 2 illustrates, the winding 18 generally comprises at its two ends located outside the notches of the zones 180 called "coil head" or "bun" which should also be cover with electrical insulation 16 forming a mold to ensure complete encapsulation of the winding by the phase change material 20 (shown in the solid phase after the liquid casting phase).
Le matériau à changement de phase est de préférence un nitrate ou un hydroxyde (LiNO3, NaNO3, U2CO3, etc...) préférablement chargé avec du graphite, à la fois neutre chimiquement et excellent conducteur électrique et thermique, et a typiquement une température de changement de phase comprise entre 150 °C et 300 °C. Il ne devra pas être instable chimiquement et être d’un caractère neutre pour ne pas venir dégrader ou corroder les fils de cuivre. Afin de garantir un changement de phase liquide-solide très important, le matériau à changement de phase devra avoir la propriété d’être le plus congruent possible et avoir un coefficient de dilatation très faible.
Un second exemple d’une machine électrique d’aéronef 30, comprenant également un stator 32 avec une pluralité d’encoches 320 et un rotor 34, par exemple à aimants permanents 340, est illustré à la figure 3. Dans l’exemple représenté, le stator est toutefois à bobinage distribué et il comporte des épanouissements latéraux 322 sur la partie basse des dents (dits « Tooth Tips »). On remarquera que, dans cette configuration à bobinage distribué, le nombre d’encoches est typiquement plus important que dans la configuration précédente à bobinage concentrique. Dans une autre configuration (non représentée), le stator peut comporter des encoches complètement fermées sur toute sa périphérie. The phase change material is preferably a nitrate or a hydroxide (LiNO3, NaNO3, U2CO3, etc.) preferably filled with graphite, both chemically neutral and an excellent electrical and thermal conductor, and typically has a temperature of phase change between 150°C and 300°C. It must not be chemically unstable and be of a neutral character so as not to degrade or corrode the copper wires. In order to guarantee a very significant liquid-solid phase change, the phase change material must have the property of being as congruent as possible and have a very low expansion coefficient. A second example of an aircraft electrical machine 30, also comprising a stator 32 with a plurality of notches 320 and a rotor 34, for example with permanent magnets 340, is illustrated in FIG. 3. In the example shown, however, the stator has a distributed winding and it comprises lateral expansions 322 on the lower part of the teeth (known as “Tooth Tips”). It will be noted that, in this configuration with distributed winding, the number of slots is typically greater than in the preceding configuration with concentric winding. In another configuration (not shown), the stator may include completely closed notches over its entire periphery.
Contrairement au premier exemple de réalisation, l’isolant électrique n’est plus formé d’un élément unique mais d’une pluralité d’éléments 36 correspondant à la pluralité d’encoches, et chacun inséré individuellement dans une encoche différente 320 du stator 32 pour recevoir successivement, comme précédemment, les bobinages de fils de cuivre 38 puis un matériau à changement de phase 40. Unlike the first embodiment, the electrical insulator is no longer formed of a single element but of a plurality of elements 36 corresponding to the plurality of notches, and each inserted individually in a different notch 320 of the stator 32 to successively receive, as before, the windings of copper wires 38 then a phase change material 40.
Chacun des éléments 36 formant l’isolant électrique ainsi sectorisé constitue un moule de coulée pour le matériau à changement de phase 40 qui est empêché de se répandre hors des encoches 320 par une cale 42, supportée par les épanouissements latéraux 322, venant obturer radialement ces encoches et donc refermer le moule pendant la coulée. L’ensemble sera ensuite avantageusement placé dans une enceinte sous vide pour faciliter l’étape d’imprégnation du matériau à changement de phase à l’état liquide avant sa solidification lors du refroidissement. La cale 42 peut être retirée une fois cette solidification opérée ou laissée en place lorsque la nature de son matériau le permet, par exemple du PEEK (PolyEtherEtherKetone) ou le Polyamide 66 (PA66). Each of the elements 36 forming the electrical insulator thus divided into sectors constitutes a casting mold for the phase change material 40 which is prevented from spreading out of the notches 320 by a wedge 42, supported by the lateral expansions 322, coming to block these radially notches and thus close the mold during casting. The assembly will then advantageously be placed in a vacuum chamber to facilitate the step of impregnating the phase change material in the liquid state before it solidifies during cooling. The wedge 42 can be removed once this solidification has taken place or left in place when the nature of its material allows it, for example PEEK (PolyEtherEtherKetone) or Polyamide 66 (PA66).
On notera que dans cet exemple de réalisation, l’isolation des encoches normalement présente dans les stators d’une machine électrique est obtenue par l’un des isolants suivants : papier, mica, poly-téréphtalate d'éthylène, polyester, fibre de verre, peut avantageusement constituer le moule à l’intérieur duquel sera coulé le matériau à changement de phase. It will be noted that in this embodiment, the insulation of the slots normally present in the stators of an electrical machine is obtained by one of the following insulators: paper, mica, polyethylene terephthalate, polyester, fiberglass , can advantageously constitute the mold inside which the phase change material will be cast.
Toutefois, cet isolant électrique, sectorisé ou non, recouvrant les parois des encoches peut aussi avantageusement être issu d’une première coulée d’une résine standard utilisée classiquement pour encapsuler les bobinages de machines
électriques et adaptée à l’application (époxy, silicone, polyuréthane, ou tout autre résine usuelle), laquelle épargnera les bobinages et contiendra la cavité interne pour accueillir le matériau à changement de phase (MCP). Cela nécessitera bien entendu un premier moule rigide qui sera retiré une fois cette résine solidifiée. However, this electrical insulator, sectored or not, covering the walls of the slots can also advantageously come from a first casting of a standard resin conventionally used to encapsulate the windings of machines electrical and adapted to the application (epoxy, silicone, polyurethane, or any other usual resin), which will spare the windings and will contain the internal cavity to accommodate the phase change material (PCM). This will of course require a first rigid mold which will be removed once this resin has solidified.
S’il n’a été question précédemment que de la coulée d’un matériau à changement de phase (MCP), il doit être noté qu’il est aussi envisageable de réaliser un pré mélange d’un ensemble résine / MCP, sous forme liquide ou sous forme solide dans des proportions massiques déterminées au préalable par expérience et/ou par calculs thermiques à la portée de tout homme du métier, et de couler ce mélange dans l’isolant électrique en lieu et place du MCP seul. La résine utilisée pour ce mélange sera typiquement de type époxy, polyuréthane ou silicone. Dans ce cas, il peut être utile de placer l’ensemble dans un four pour déclencher ou accélérer la solidification de la résine. If it was previously only a question of the casting of a phase change material (PCM), it should be noted that it is also possible to produce a premix of a resin / PCM assembly, in the form liquid or in solid form in mass proportions determined beforehand by experience and/or by thermal calculations within the reach of any person skilled in the art, and to pour this mixture into the electrical insulation instead of the PCM alone. The resin used for this mixture will typically be of the epoxy, polyurethane or silicone type. In this case, it may be useful to place the assembly in an oven to trigger or accelerate the solidification of the resin.
La figure 4 montre l’évolution de la température en fonction du taux de remplissage des encoches en matériau à changement de phase, en l’espèce un composé Erythritol. On peut y constater que pour une valeur limite figée de température (ici 150 °C), l’emploi d’un mélange à base de 100% (courbe A) ou 40% (courbe B) d’un matériau à changement de phase (les autres 60% étant constitués d’une simple résine époxy) permet de maintenir le stress thermique pendant plusieurs dizaines de secondes supplémentaires par rapport à un remplissage des encoches par une simple résine époxy (courbe C - 0% de MCP) ou sans aucun remplissage (courbe D). Figure 4 shows the evolution of the temperature as a function of the rate of filling of the notches with phase change material, in this case an Erythritol compound. It can be seen that for a fixed temperature limit value (here 150 °C), the use of a mixture based on 100% (curve A) or 40% (curve B) of a phase change material (the other 60% being made up of a simple epoxy resin) makes it possible to maintain the thermal stress for several tens of additional seconds compared to filling the notches with a simple epoxy resin (curve C - 0% of MCP) or without any filling (curve D).
Ainsi, par rapport à une machine électrique standard, l’invention permet une minimisation du volume et de la masse du bobinage d’environ 10% de la masse de la machine électrique soit environ 1 ,2 kg pour une machine de l’ordre de 10 kg. Elle évite tout ajout de systèmes supplémentaires de refroidissement dégradant le bilan masse, l’encombrement et le taux de fiabilité de la machine électrique. Elle peut être intégrée dans des environnements transitoirement très chauds (> 150 °C). Thus, compared to a standard electric machine, the invention allows a minimization of the volume and the mass of the winding of about 10% of the mass of the electric machine, i.e. about 1.2 kg for a machine of the order of 10kg. It avoids any addition of additional cooling systems degrading the mass balance, the size and the reliability rate of the electrical machine. It can be integrated in transiently very hot environments (> 150°C).
Bien entendu, l’encapsulation du matériau à changement de phase dans les encoches du stator est aussi valable pour des topologies de machines électriques avec un stator placé à l’intérieur et un rotor placé à l’extérieur comme le montre la figure 5 illustrant schématiquement une partie de stator interne 50 munie d’une dent
de stator 52 sur laquelle est inséré l’isolant électrique 54 recevant le bobinage 56 et servant de moule au matériau à changement de phase 58 (représenté en phase solide après la phase de coulée). On notera que l’isolant électrique 54 et le bobinage 56, dentaire ou concentrique, encapsulé dans le matériau à changement de phase 58, peuvent avantageusement former un module indépendant directement insérable sur chacune des dents de stator 52. Of course, the encapsulation of the phase change material in the notches of the stator is also valid for topologies of electrical machines with a stator placed inside and a rotor placed outside as shown in FIG. an inner stator part 50 provided with a tooth stator 52 on which is inserted the electrical insulator 54 receiving the winding 56 and serving as a mold for the phase change material 58 (shown in solid phase after the casting phase). It will be noted that the electrical insulator 54 and the winding 56, dental or concentric, encapsulated in the phase change material 58, can advantageously form an independent module directly insertable on each of the stator teeth 52.
On notera que l’invention trouve aussi application dans les machines à induction/asynchrone ou les machines à réluctance variable, comme dans les machines cylindriques à flux axial et discoïdes à flux linéaire.
It will be noted that the invention also finds application in induction/asynchronous machines or variable reluctance machines, as in cylindrical machines with axial flux and discoid machines with linear flux.
Claims
[Revendication 1] Procédé de protection des bobinages d'un échauffement excessif dans une machine électrique d'aéronef comprenant un stator (12, 50) et un rotor (14) configurés pour être entraînés en rotation l'un par rapport à l'autre, le stator comportant une pluralité d'encoches (120) ou de dents (52) recevant une même pluralité ou non de bobinages (18, 56), procédé caractérisé en ce qu'il comporte les étapes successives suivantes : [Claim 1] Method for protecting the windings from excessive heating in an aircraft electrical machine comprising a stator (12, 50) and a rotor (14) configured to be driven in rotation relative to each other , the stator comprising a plurality of notches (120) or teeth (52) receiving the same plurality or not of windings (18, 56), method characterized in that it comprises the following successive steps:
- insertion d'un isolant électrique (16, 54) dans les encoches ou sur les dents du stator, - insertion of an electrical insulator (16, 54) in the notches or on the teeth of the stator,
- mise en place des bobinages dans les encoches ou sur les dents du stator,- installation of the windings in the notches or on the teeth of the stator,
- coulée d'un matériau à changement de phase (20, 58) dans les encoches ou sur les dents munies des bobinages, l'isolant électrique formant un moule de coulée. - Casting of a phase change material (20, 58) in the notches or on the teeth provided with the windings, the electrical insulation forming a casting mould.
[Revendication 2] Procédé selon la revendication 1, caractérisé en ce que, lorsque les encoches sont ouvertes et l'isolant électrique ainsi sectorisé, l'étape de coulée du matériau à changement de phase est précédée d'une étape d'insertion d'une cale (42) ou d'une frette (22) pou6r fermer les encoches et ainsi interdire la coulée du matériau à changement de phase en dehors des encoches. [Claim 2] Method according to claim 1, characterized in that, when the notches are open and the electrical insulation thus sectorized, the step of casting the phase change material is preceded by a step of inserting a wedge (42) or a hoop (22) pou6r close the notches and thus prevent the casting of the phase change material outside the notches.
[Revendication 3] Procédé selon la revendication 1 ou la revendication 2, caractérisé en ce que l'isolant électrique, sectorisé ou non, est issu d'une première coulée d'une résine d'encapsulation de bobinages de machines électriques. [Claim 3] Process according to claim 1 or claim 2, characterized in that the electrical insulation, sectorized or not, is derived from a first casting of a resin for encapsulating the windings of electrical machines.
[Revendication 4] Procédé selon la revendication 1 ou la revendication 2, caractérisé en ce que le matériau de changement de phase est préalablement mélangé avec une résine de type époxy, polyuréthane ou silicone. [Claim 4] Process according to Claim 1 or Claim 2, characterized in that the phase change material is mixed beforehand with a resin of the epoxy, polyurethane or silicone type.
[Revendication 5] Machine électrique d'aéronef comprenant un stator (12, 50) et un rotor (14) configurés pour être entraînés en rotation l'un par rapport à l'autre, le stator comportant une pluralité d'encoches (120) ou de dents (52) recevant une même pluralité ou non de bobinages (18, 56),
caractérisée en ce que, pour protéger les bobinages d'un échauffement excessif, elle comprend un isolant électrique (16, 54) inséré dans les encoches ou sur les dents pour recevoir successivement lesdits bobinages et un matériau à changement de phase (20, 58) dont il forme un moule de coulée. [Claim 5] Aircraft electrical machine comprising a stator (12, 50) and a rotor (14) configured to be driven in rotation relative to each other, the stator comprising a plurality of notches (120) or teeth (52) receiving the same plurality or not of windings (18, 56), characterized in that, to protect the windings from excessive heating, it comprises an electrical insulator (16, 54) inserted in the notches or on the teeth to successively receive said windings and a phase change material (20, 58) of which it forms a casting mould.
[Revendication 6] Machine électrique selon la revendication 5, caractérisé en ce que l'isolant électrique (54) et le bobinage (56) encapsulé dans le matériau à changement de phase (58) peuvent avantageusement former un module indépendant insérable directement sur chacune des dents de stator (52). [Claim 6] Electrical machine according to Claim 5, characterized in that the electrical insulation (54) and the winding (56) encapsulated in the phase-change material (58) can advantageously form an independent module which can be inserted directly on each of the stator teeth (52).
[Revendication 7] Machine électrique selon la revendication 5, caractérisée en ce que ledit isolant électrique est formé d'une pluralité d'éléments (36) correspondant à la pluralité d'encoches (320) ou de dents (52), chacun des éléments ainsi sectorisé étant configuré pour être inséré individuellement dans chacune des encoches ou sur chacune des dents. [Claim 7] Electrical machine according to claim 5, characterized in that said electrical insulator is formed of a plurality of elements (36) corresponding to the plurality of notches (320) or teeth (52), each of the elements thus sectorized being configured to be inserted individually in each of the notches or on each of the teeth.
[Revendication 8] Machine électrique selon la revendication 7, caractérisée en ce que ledit isolant électrique est l'un des isolants suivants : papier, mica, poly-téréphtalate d’éthylène, polyester, fibre de verre. [Claim 8] Electrical machine according to Claim 7, characterized in that the said electrical insulator is one of the following insulators: paper, mica, polyethylene terephthalate, polyester, fiberglass.
[Revendication 9] Machine électrique selon la revendication 5, caractérisée en ce que ledit isolant électrique est formé d'un élément unique (16) adapté à la géométrie du stator et configuré pour être inséré conjointement dans toutes les encoches (120). [Claim 9] Electrical machine according to Claim 5, characterized in that the said electrical insulator is formed of a single element (16) adapted to the geometry of the stator and configured to be inserted together in all the slots (120).
[Revendication 10] Machine électrique selon la revendication 7 ou la revendication 9, caractérisée en ce que ledit isolant électrique est obtenu par un procédé de fabrication additive à partir d'une matière plastique, comme le PEEK (PolyEtherEtherKetone) ou le Polyamide 66 (PA66), ayant des caractéristiques d'isolation électrique et de tenue thermique appropriées.[Claim 10] Electrical machine according to Claim 7 or Claim 9, characterized in that the said electrical insulator is obtained by an additive manufacturing process from a plastic material, such as PEEK (PolyEtherEtherKetone) or Polyamide 66 (PA66 ), with appropriate electrical insulation and thermal resistance characteristics.
[Revendication 11] Machine électrique selon l'une quelconque des revendications 5 à 10, caractérisée en ce que le matériau à changement de phase est un nitrate ou un hydroxyde préférablement chargé avec du graphite ayant une température de changement de phase comprise entre 150°C et 300°C.
[Revendication 12] Module indépendant constitué d'un isolant électrique (54) et de bobinages (56) encapsulés dans un matériau à changement de phase (58) et insérable directement sur chacune des dents (52) d'un stator (50) d'une machine électrique selon l'une quelconque des revendications 5 à 11. [Revendication 13] Moteur d'aéronef comportant au moins une machine électrique selon l'une quelconque des revendications 5 à 11.
[Claim 11] Electrical machine according to any one of Claims 5 to 10, characterized in that the phase change material is a nitrate or a hydroxide, preferably filled with graphite, having a phase change temperature of between 150°C and 300°C. [Claim 12] Independent module consisting of an electrical insulator (54) and windings (56) encapsulated in a phase change material (58) and insertable directly on each of the teeth (52) of a stator (50) d an electric machine according to any one of claims 5 to 11. [Claim 13] Aircraft engine comprising at least one electric machine according to any one of claims 5 to 11.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR2008583A FR3113546B1 (en) | 2020-08-20 | 2020-08-20 | Aircraft electrical machine with enhanced heat transfer using phase change material and associated method |
PCT/FR2021/051466 WO2022038326A1 (en) | 2020-08-20 | 2021-08-13 | Aircraft electrical machine with improved heat transfer by means of a phase change material and associated method |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4200960A1 true EP4200960A1 (en) | 2023-06-28 |
Family
ID=74183228
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21769765.5A Pending EP4200960A1 (en) | 2020-08-20 | 2021-08-13 | Aircraft electrical machine with improved heat transfer by means of a phase change material and associated method |
Country Status (6)
Country | Link |
---|---|
US (1) | US20230318416A1 (en) |
EP (1) | EP4200960A1 (en) |
JP (1) | JP2023538567A (en) |
CN (1) | CN116195173A (en) |
FR (1) | FR3113546B1 (en) |
WO (1) | WO2022038326A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115286477A (en) * | 2022-06-30 | 2022-11-04 | 湖北航天化学技术研究所 | Solid propellant/coating layer integrated additive manufacturing interface structure |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PT2637176E (en) * | 2012-03-07 | 2016-03-04 | Siemens Ag | Resin encapsulated transformer |
DE102012020958A1 (en) * | 2012-10-25 | 2014-04-30 | Volkswagen Aktiengesellschaft | Cooling device for cooling an electrical machine and electrical machine with such |
FR3012698B1 (en) | 2013-10-28 | 2017-03-31 | Turbomeca | ELECTRIC MACHINE HAVING A PHASE CHANGE MATERIAL OF A TURBOMACHINE GENERATOR STARTER |
DE102015216374A1 (en) * | 2015-08-27 | 2017-03-02 | Schaeffler Technologies AG & Co. KG | Electric motor and vehicle with the electric motor |
CN108702050B (en) * | 2015-12-15 | 2022-04-05 | 格鲁博-工厂有限及两合公司 | Method for introducing an insulating film and at least one electrical conductor |
JP2018050389A (en) * | 2016-09-21 | 2018-03-29 | 本田技研工業株式会社 | Stator and manufacturing method of the same |
AT521301B1 (en) * | 2018-05-29 | 2020-04-15 | Miba Ag | Stator with insulation layer |
US20200131363A1 (en) * | 2018-10-26 | 2020-04-30 | Rogers Corporation | Polyurethane phase-change compositions and methods of manufacture thereof |
CN111181285A (en) * | 2020-02-05 | 2020-05-19 | 湖北工业大学 | Cooling method for motor stator winding |
-
2020
- 2020-08-20 FR FR2008583A patent/FR3113546B1/en active Active
-
2021
- 2021-08-13 WO PCT/FR2021/051466 patent/WO2022038326A1/en unknown
- 2021-08-13 CN CN202180056097.6A patent/CN116195173A/en active Pending
- 2021-08-13 US US18/042,157 patent/US20230318416A1/en active Pending
- 2021-08-13 JP JP2023511924A patent/JP2023538567A/en active Pending
- 2021-08-13 EP EP21769765.5A patent/EP4200960A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
JP2023538567A (en) | 2023-09-08 |
FR3113546B1 (en) | 2022-12-23 |
CN116195173A (en) | 2023-05-30 |
WO2022038326A1 (en) | 2022-02-24 |
US20230318416A1 (en) | 2023-10-05 |
FR3113546A1 (en) | 2022-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FR3066053B1 (en) | ELECTRIC MACHINE HAVING A PHASE CHANGE MATERIAL OF A TURBOMACHINE GENERATOR STARTER | |
US11228215B2 (en) | System of a conductor disposed within an insulator | |
EP1897210B1 (en) | Projecting pole rotor comprising coil end support plates and rotary electric machine comprising one such rotor | |
EP1273086B1 (en) | Rotary electric machine and method for making same | |
EP0403317B1 (en) | Electric motor stator | |
JP2013135611A (en) | Electric machine with encapsulated end turns | |
US20210367483A1 (en) | Method and system for thermally insulating portions of a stator core | |
EP4200960A1 (en) | Aircraft electrical machine with improved heat transfer by means of a phase change material and associated method | |
WO2020169929A1 (en) | Electrical machine winding having improved cooling | |
EP2239828B1 (en) | Coil of a rotating electrical machine | |
WO2009150357A2 (en) | Rotor for a multipolar synchronous electric machine with salient poles | |
US9742249B2 (en) | Method for partially cured insulators for electromagnetic systems | |
WO2020174158A1 (en) | Electric machine coil with improved cooling | |
FR2575329A1 (en) | EQUIPPED FORCED CONVECTION SHEATH FOR ROTATING ANODE RADIOGENIC TUBE | |
EP4104279B1 (en) | Electrically and thermally conductive element and method for producing such an element | |
US20240162775A1 (en) | Rotor and Method for Producing a Rotor | |
FR3088152A1 (en) | ROTATING ELECTRIC MACHINE AND METHOD FOR MANUFACTURING SUCH A MACHINE | |
FR2598045A1 (en) | ELECTRIC ROTATING MACHINE SUPERCONDUCTING | |
EP4070442A1 (en) | Flux barrier electric motor with superconducting armature and inductor | |
EP4167441A1 (en) | End winding heat conductor components | |
FR3127086A1 (en) | Electric motor rotor | |
EP4307531A1 (en) | Electric machine with cooling channel in the potting material of the winding heads | |
JP2022184651A (en) | Method of manufacturing pm motor, and pm motor | |
WO2023105147A1 (en) | Method for de-energizing a superconducting electric machine via current injection | |
WO2020148493A1 (en) | Aerodynamic arm for an aircraft turbine engine casing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20230222 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) |