EP4193048A1 - Aircraft - Google Patents

Aircraft

Info

Publication number
EP4193048A1
EP4193048A1 EP21759238.5A EP21759238A EP4193048A1 EP 4193048 A1 EP4193048 A1 EP 4193048A1 EP 21759238 A EP21759238 A EP 21759238A EP 4193048 A1 EP4193048 A1 EP 4193048A1
Authority
EP
European Patent Office
Prior art keywords
aircraft
engine
heat exchanger
water
flight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21759238.5A
Other languages
German (de)
French (fr)
Inventor
Hermann Klingels
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines AG filed Critical MTU Aero Engines AG
Publication of EP4193048A1 publication Critical patent/EP4193048A1/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • F02C7/141Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plant in aircraft; Aircraft characterised thereby
    • B64D27/02Aircraft characterised by the type or position of power plant
    • B64D27/16Aircraft characterised by the type or position of power plant of jet type
    • B64D27/18Aircraft characterised by the type or position of power plant of jet type within or attached to wing
    • B64D27/40
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D29/00Power-plant nacelles, fairings, or cowlings
    • B64D29/06Attaching of nacelles, fairings or cowlings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D33/00Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for
    • B64D33/04Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of exhaust outlets or jet pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D33/00Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for
    • B64D33/08Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of power plant cooling systems
    • B64D33/10Radiator arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/32Collecting of condensation water; Drainage ; Removing solid particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/0205Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust using heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/30Adding water, steam or other fluids for influencing combustion, e.g. to obtain cleaner exhaust gases
    • F02C3/305Increasing the power, speed, torque or efficiency of a gas turbine or the thrust of a turbojet engine by injecting or adding water, steam or other fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D33/00Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for
    • B64D33/08Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of power plant cooling systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • F01N13/082Other arrangements or adaptations of exhaust conduits of tailpipe, e.g. with means for mixing air with exhaust for exhaust cooling, dilution or evacuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/02Exhaust treating devices having provisions not otherwise provided for for cooling the device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
    • F02C7/185Cooling means for reducing the temperature of the cooling air or gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/323Application in turbines in gas turbines for aircraft propulsion, e.g. jet engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • F05D2220/72Application in combination with a steam turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/213Heat transfer, e.g. cooling by the provision of a heat exchanger within the cooling circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/60Fluid transfer
    • F05D2260/602Drainage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/08Purpose of the control system to produce clean exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/08Purpose of the control system to produce clean exhaust gases
    • F05D2270/082Purpose of the control system to produce clean exhaust gases with as little NOx as possible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/08Purpose of the control system to produce clean exhaust gases
    • F05D2270/083Purpose of the control system to produce clean exhaust gases by monitoring combustion conditions
    • F05D2270/0831Purpose of the control system to produce clean exhaust gases by monitoring combustion conditions indirectly, at the exhaust
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to an aircraft with at least one wing, at least one flight drive and a mount, in particular an engine pylon, which connects the wing and the flight drive to one another, and methods for operating, assembling and/or maintaining the aircraft.
  • An aircraft propulsion system with a turbofan engine with a downstream evaporator and water recovery is known from WO 2019/223823 A1.
  • An object of an embodiment of the present invention is to improve an aircraft and/or its operation, assembly and/or maintenance.
  • an aircraft has at least one wing, preferably at least two (lateral) wings arranged on opposite sides of the aircraft, in one embodiment it is an airplane.
  • the aircraft has at least one flight engine and a mount, in one embodiment an engine pylon, which connects the at least one wing and the at least one flight engine to one another, preferably one or more on one or both wings Flight engines, each of which is or will be connected to the (respective) wing by a mount, in particular its own mount, in one embodiment a (own) engine pylon, in one embodiment a first mount that connects a first of the aircraft engines to a wing and at least one more bracket, which connects another of the flight drives with this or another (the) wing.
  • an engine pylon which connects the at least one wing and the at least one flight engine to one another, preferably one or more on one or both wings Flight engines, each of which is or will be connected to the (respective) wing by a mount, in particular its own mount, in one embodiment a (own) engine pylon, in one embodiment a first mount that connects a first of the aircraft engines to a wing and at least one more bracket, which
  • the or one or more of the flight drives (each) has at least one heat engine, in one embodiment a gas turbine, and/or at least one propeller, in one embodiment encased and/or coupled to this heat engine via a gearbox.
  • the or one or more of the aircraft engine(s) is a turbofan or turboprop aircraft engine.
  • the present invention is particularly suitable for this purpose due to the widespread use and the wide range of uses of such flight drives, but without being limited thereto.
  • the aircraft has at least one heat exchanger, which at least temporarily cools the exhaust gas of the at least one aircraft drive, in particular its heat engine, in one embodiment thereby generates and/or superheats steam, or is provided for this purpose, is in particular equipped or is used, in one embodiment, a first heat exchanger, which at least temporarily cools down exhaust gas from the first flight drive, in particular from its heat engine, and at least one further heat exchanger, which at least temporarily cools down exhaust gas from the further flight drive, in particular from its heat engine, or is provided for this purpose, is set up or used in particular.
  • waste heat can be used advantageously and the operation, in particular the efficiency, of the aircraft can thereby be improved.
  • the at least one flight engine is or will have one or more flight engine mountings and the at least one heat exchanger (for cooling exhaust gas from this flight engine) independently of this via one or more heat exchanger mountings on the bracket (for this flight engine ) attached, in one version the first flight drive via a or more flight engine mounts and the first heat exchanger independently attached to the first bracket via one or more heat exchanger mounts and the further flight drive via one or more flight engine mounts and the further heat exchanger (for this flight drive or for cooling exhaust gas from this flight drive ) regardless of one or more heat exchanger suspensions on the other bracket.
  • the flight engine and heat exchanger can be handled independently of one another, in particular the flight engine can be removed from the mount and the heat exchanger can remain on the mount or vice versa.
  • assembly and/or maintenance can be improved in one embodiment.
  • load distribution and/or introduction can thereby be improved and/or vibrations can be reduced, thereby improving the operation, in particular the service life, of the aircraft.
  • the aircraft has at least one water separation duct with at least one separating device which at least temporarily removes water, in particular condensed water, from the exhaust gas of the at least one aircraft engine, in particular its heat engine. separates, in one embodiment, after flowing through the heat exchanger (for this flight propulsion system), or provided for this purpose, in particular set up or used.
  • the aircraft has a first water separating duct with at least one separating device, which at least temporarily separates water from exhaust gas from the first flight engine, in particular its heat engine, in one embodiment after flowing through the first heat exchanger, and at least one further water separating duct with at least one Separation device, which at least temporarily separates water from exhaust gas of the further aircraft engine, in particular its heat engine, in one embodiment after flowing through the further heat exchanger, or is provided for this purpose, is in particular equipped or used.
  • water can be removed from the exhaust gas and the formation of contrails can thus be reduced in particular, thereby protecting the environment or improving (environmentally friendly) operation of the aircraft.
  • water can be (re)recovered and used in the operation of the aircraft, in particular for a steam supply explained below, thereby improving the operation, in particular the efficiency, of the aircraft.
  • the water separated in the at least one water separation channel is at least partially evaporated at least temporarily in the at least one heat exchanger, in one embodiment overheated, and then, in one embodiment via a steam turbine explained below, in at least one combustion chamber of the at least one aircraft engine, in particular its Heat engine supplied or the aircraft is set up for this.
  • the water separated in the first water separation channel is at least partially evaporated at least temporarily in the first heat exchanger, in one embodiment overheated, and then, in one embodiment via a (first) steam turbine explained below, at least one combustion chamber of the first aircraft engine, in particular its heat engine, and the water separated in the further water separation channel is at least partially evaporated at least temporarily in the further heat exchanger, superheated in one embodiment, and then, in one embodiment via a (further) steam turbine explained below, at least one combustion chamber of the further aircraft drive, in particular its Heat engine supplied or the aircraft is set up for this.
  • waste heat can be used particularly advantageously and the operation, in particular the efficiency, of the aircraft can be particularly greatly improved.
  • the at least one separating device is or will be arranged on, in one embodiment in, the holder (for the at least one flight drive) or via the, in particular through or by means of the holder (for the at least one flight drive ) connected to the wing, in a
  • the at least one separating device of the first water separating duct is arranged on, in particular in, the first holder or connected to the (corresponding) wing via this first holder, which connects the first flight drive to its wing
  • the at least one separating device of the further water separating duct on, in particular arranged in the further bracket or connected to that or corresponding wing via this further bracket, which connects the further flight drive with its wing.
  • short distances can be realized between the flight drive and the separating device, and thereby in particular flow resistance and/or weight can be reduced and the operation, in particular the efficiency, of the aircraft can thereby be improved.
  • a particularly advantageous weight distribution can thereby be realized and the operation, in particular the maneuverability, of the aircraft can thereby be improved.
  • the flight engine includes in one embodiment "the at least one flight engine”, “the at least one heat exchanger (for this at least one Aircraft engine or for cooling exhaust gas of this at least one aircraft engine)” or “the at least one water separation channel (for this at least one aircraft engine or for separating water from exhaust gas of this at least one aircraft engine)” or “the at least one separating device (this at least a water separation channel)”.
  • the aircraft has a steam supply device which feeds at least one combustion chamber of the at least one aircraft engine, in particular its Heat engine, at least temporarily supplies steam or is provided for this purpose, in particular is set up or used.
  • the aircraft has a first steam supply device, which at least temporarily supplies steam to at least one combustion chamber of the first flight drive, in particular its heat engine, and at least one further steam supply device, which supplies at least one combustion chamber of the further flight drive, in particular its heat engine. supplies steam at least temporarily, the first and further steam supply devices are provided for this purpose, in particular set up or used for this purpose.
  • first and further steam supply devices are provided for this purpose, in particular set up or used for this purpose.
  • this steam supply device is connected to the heat exchanger, which at least temporarily generates the steam.
  • waste heat can be used advantageously and the operation, in particular the efficiency, of the aircraft can thereby be improved.
  • the aircraft has at least one (first or additional) steam turbine, which is arranged in one embodiment between the (first or additional) heat exchanger and the (first or additional) steam supply device, which at least temporarily feeds its useful output into a compressor or at least one compressor of the (first or further) aircraft drive, in particular its heat engine, drives or is provided for this purpose, in particular is equipped or used.
  • an axis of rotation of the steam turbine and/or an axis of rotation of the compressor driven by it is separated from an axis of rotation, in particular (main) machine axis, of the aircraft engine, in particular its heat engine, in one embodiment at least a compressor stage and/or at least one turbine stage and/or the air screw, spaced apart, in one embodiment offset parallel thereto or against this, in one embodiment skew, inclined.
  • the coupling of the steam turbine and compressor can be improved, in particular simplified in terms of design, and/or the compressor can be implemented with larger rotor blades, thereby improving its efficiency.
  • the power of the steam turbine is or will be mechanically coupled into a shaft of a high-pressure compressor or a high-pressure shaft.
  • At least one seal is arranged between the flight engine and the heat exchanger.
  • the independent handling of the flight engine and the heat exchanger can be improved.
  • the heat exchanger has one or more heat exchangers arranged concentrically to one or the axis of rotation, in particular the (main) machine axis, of the aircraft engine and/or as a tube bundle and/or cross-flow and/or counter-flow heat exchanger, in particular cross-counter-flow heat exchangers.
  • Heat exchangers formed heat exchanger sections, in one embodiment, heat exchanger modules, with two or more of the heat exchanger sections or modules having different diameters in one embodiment.
  • the efficiency Efficiency can be improved, the assembly, maintenance and / or weight distribution can be improved in one embodiment by training with multiple heat exchanger sections or modules.
  • the aircraft has at least one condenser, which at least temporarily cools down exhaust gas from the aircraft engine, in particular from its heat engine, or is provided for this purpose, in particular is set up or used, and, in one embodiment, between the heat exchanger and the water separation duct is arranged in a bypass duct of the aircraft drive.
  • water separation in the water separation channel can be improved.
  • this condenser has one or more condenser sections arranged concentrically to one or the axis of rotation, in particular (main) machine axis, of the aircraft drive and/or designed as plate and/or cross and/or counterflow heat exchangers.
  • the aircraft has at least one collecting duct, which in one embodiment encompasses the condenser, which collects at least temporarily cooled exhaust gas, in particular exhaust gas cooled by the condenser, and in one embodiment leads in the direction of the water separation duct, or is provided for this purpose, is set up or used in particular.
  • water separation in the water separation channel can be improved.
  • the condenser is arranged in a bypass duct, in particular a bypass duct, of the aircraft engine and/or the ambient air conveyed by the propeller flows around or through it, or the aircraft is set up for this purpose.
  • condensation can be improved and/or air in the secondary or casing flow duct can be heated, thereby improving the efficiency or thrust of the aircraft drive.
  • the separating device In one embodiment, the separating device
  • At least one in the Was serab separating channel arranged, in one embodiment at least partially grooved or provided with grooves or grooves or grooves, separating plate;
  • At least one swirl generator arranged in the water separation channel, in one embodiment downstream after the separation plate, and fixed in one embodiment;
  • At least one turbine stage arranged in the water separation channel, in one embodiment downstream after the separation plate, and in one embodiment coupled to a generator;
  • the separating device in particular the separating plate, turbine stage, electrostatic separating device, the separating pipe and/or the heat exchanger, has a hydrophilic surface at least in sections.
  • water separation in the water separation channel can be improved.
  • the aircraft - at least one water tank which at least temporarily stores water from the water separation channel or is provided for this purpose, in particular is set up or used, and/or
  • At least one pump which at least temporarily conveys water originating from the water separation channel, in particular from the water separation channel into the water tank or from the water separation channel or the water tank to the heat exchanger, which in one embodiment at least temporarily and/or partially evaporates this or is the pump and/or the heat exchanger are provided for this purpose, in particular set up or used for this purpose, in one embodiment a first pump for pumping water from the water separation channel into the water tank and a further pump for pumping water from the water tank into the heat exchanger.
  • the use of the separated water, in particular steam generation, in particular for supply to a combustion chamber of the aircraft engine, and thereby the operation of the aircraft can be improved.
  • the water tank and/or the pump is/are arranged on, in particular in, the mount or is connected to the wing via the mount.
  • the aircraft has at least one exhaust gas passage, which conducts exhaust gas from the aircraft engine from the heat exchanger and/or to the water separation duct or is provided for this purpose, in particular is set up or used, and the at least one opening in a structural part of the bracket, in particular a pylon structural part, in one embodiment of a wall, in particular an inner wall, of the mount, in particular of the engine pylon, through which the exhaust gas flows at least temporarily or is provided, in particular equipped, or is used for this purpose.
  • the exhaust gas routing can be improved, in particular a flow path and/or flow resistance and/or weight can be reduced, thereby improving the operation, in particular the efficiency, of the aircraft.
  • the aircraft drive is or is attached to the holder in a non-destructive manner via the at least one aircraft drive suspension, in one embodiment it is screwed to it once or several times.
  • the at least one aircraft engine and/or its mount, in particular the engine pylon have (in each case) a one-part or multi-part fairing, in one embodiment at least partially removable and/or at least partially pivotably mounted, or a one-part or multi-part, in
  • the outer housing is at least partially removable and/or at least partially pivotably mounted and/or is arranged on an underside (on the undercarriage side) of the wing.
  • assembly and/or maintenance can be improved and/or load distribution and/or introduction and thereby the operation of the aircraft can be improved.
  • exhaust gas from the at least one aircraft engine is not routed within the wing to which it is attached.
  • a previous structure of the wing can be adopted or the aircraft engine can be combined with different wings.
  • exhaust gas from the at least one aircraft engine is discharged into the environment after it has flowed through the water separation channel below the wing.
  • water is separated in the water separation duct at least temporarily at at least two spaced-apart locations, in particular at at least two spaced-apart locations of the separating device or by at least two spaced-apart separating devices, and/or separated water in the water-separating duct to at least one, in one Execution wall, in particular floor-side or underlying, out outlet, in one embodiment through one or more channels or grooves, and / or discharged at least one or the at least one outlet from the water separation channel.
  • the water separation duct in a further development its at least one separating device, has one or more channels or grooves, which at least temporarily collect water or are provided for this purpose, in particular are set up or used.
  • water separation in the water separation channel can be improved.
  • the weight of the at least one aircraft engine is at least 100 kg, in particular at least 500 kg, and/or the weight of the at least one heat exchanger is at least 1 kg, in particular at least 5 kg, and/or the weight of the at least one separating device is at least 1 kg, in particular at least 5 kg.
  • the or at least one of the pumps mentioned here is an electrically (driven) pump.
  • Figure 1 is a sectional view of part of an aircraft according to an embodiment of the present invention.
  • Fig. 2 shows the part in a section along the line A-A in Fig. 1;
  • Figure 4 is a partial perspective view of the aircraft.
  • FIG. 5 shows a section through a water ab separating duct of an aircraft according to a further embodiment of the present invention.
  • FIGS. 1, 2 show a part of this aircraft in a longitudinal section (FIG. 1) or a section perpendicular thereto (FIG. 2).
  • the aircraft 5 has several similarly constructed drive systems 1, each with a flight drive in the form of a turbofan engine, which is fastened to a (own) engine pylon 4 in each case.
  • the structure and mode of operation of the drive systems 1 and their arrangement on the respective wing are, at least essentially, identical, so that only one of these drive systems is described below with reference to FIGS. 1, 2.
  • the or each of the propulsion system(s) has a downstream steam generator 30, a condenser (heat exchanger) 32 and a water recovery device with a water separating channel 200 for its flight propulsion.
  • the exhaust gas from a gas turbine of the turbofan engine flows through the steam generator 30 arranged downstream, where energy is extracted from it for generating superheated steam, which is fed back into the process. It then flows through the condenser heat exchanger 32. Ambient air flows through this condenser on the cold side.
  • the exhaust gas then enters the water recovery device, where condensed water is separated from the rest of the exhaust gas flow.
  • the water can be treated and supplied to the steam generator by condensate or feed water pump(s) 49a, 49b. This closes the water cycle.
  • the steam is mixed with the compressed air in the area of a combustion chamber 16 of the gas turbine.
  • the drive system is connected to a wing 50 by a pylon 4 in each case.
  • the turbomachine part 2 is attached to the pylon 4 .
  • Shown is a front suspension 21 on a fan casing and a rear suspension 20 on a turbine outlet casing 19.
  • the thrust is transmitted via shear rods 22 from the inlet casing 12 to the pylon and from there to the wing.
  • the turbomachine part 2 is a 3-shaft machine.
  • a fan 10 which is driven by a low-pressure turbine 18 via a gearbox 11, forms the first shaft together with the low-pressure turbine.
  • a low-pressure compressor (not shown) could also be arranged on this shaft.
  • the second shaft is arranged concentrically to the first. Its main components are a compressor 13 driven by a high-pressure turbine 17 .
  • this shaft In contrast to a conventional engine, there is a third shaft that is not coaxial but arranged next to the core engine.
  • the main components of this shaft are another compressor 14 driven by a steam turbine 15 .
  • the arrangement of the last compressor 14 next to the core engine can be advantageous and also simple to implement, since no mechanical drive from one of the other two shafts is required because the drive is provided by the steam turbine 15 .
  • the air conveyed by the fan 10 is further compressed in the compressors 13 , 14 .
  • the compressed air is then mixed with the exhaust steam from the steam turbine 15 and fed to the combustion chamber 16 to a large extent.
  • a part is also used to cool the combustion chamber and the turbine, in particular the high-pressure turbine 17 .
  • heat is supplied to the working medium by the combustion of fuel.
  • the turbines 17, 18, energy is extracted from the working gas. The power gained is primarily transmitted to the compressor 13 and the fan 10 .
  • the steam generator 30 is arranged downstream of the turbomachine part or aircraft engine 2 .
  • This comprises a feed water preheating section, an evaporation section (between feed water preheating and superheating section) and a superheating section.
  • Each of the three ring-shaped heat exchanger modules shown in FIG. 1 has a preheating section, an evaporation section and a superheating section.
  • one of the heat exchanger modules can also form a feedwater preheating section, another of the heat exchanger modules can form an evaporation section and another of the heat exchanger modules can form an overheating section.
  • the steam generator is designed as a tube bundle heat exchanger in a cross-counterflow arrangement with several passages. It is housed rotationally symmetrically and concentrically to the engine axis or axis of rotation T of the flight engine within the core engine cowling 35 . In particular for better adaptation to the shape of the core engine cowling, the steam generator 30 can consist of several modules with different diameters. It is also attached to the pylon 4 with the suspension(s) 38 .
  • a seal 23 is arranged between the turbomachine part or aircraft engine 2 and the steam generator or heat exchanger 30, which allows a certain relative movement of these assemblies to one another.
  • the individual assemblies can be handled independently.
  • the steam generator on the aircraft can remain when the turbomachinery part is removed from the wing for maintenance and vice versa.
  • the condenser 32 After the exhaust gas has flowed radially through the steam generator 30, it is guided through ribs 31, which are arranged in the bypass channel 37, to the condenser 32, which consists of several modules.
  • the condenser modules are designed as plate heat exchangers in a cross-flow arrangement and are placed concentrically to the engine axis T in the bypass duct 37, in the so-called C-ducts.
  • the outer housing or panels 3 of the C-channels are pivotably mounted on the pylon 4 with hinge-like joints 49 .
  • Fig. 2 the flow in the C-channel in this area is illustrated schematically on the left-hand side. On the right is only the outline of the C-channel in the unfolded state of its fairing.
  • the capacitor modules 32 are arranged in the bypass duct 27 in such a way that on the cold side only part of the air conveyed by the fan 10 flows through the capacitor. The other part flows past it. Both streams are then brought together again and relaxed together in the bypass nozzle 36 to ambient pressure. In a modification that is not shown, all of the air from the bypass duct 37 is routed through the condenser 32 .
  • Exhaust heat is transferred to the air as it flows through, causing its temperature to rise.
  • the higher temperature results in a greater enthalpy gradient for the expansion in the bypass nozzle 36.
  • the evaporation heat to be dissipated is not completely lost, but instead contributes to the increase in thrust.
  • the exhaust gas cools down until the water it contains condenses at least partially and is in liquid form. Thereafter, the exhaust gas is guided through the fins 33 into a collection passage 34 running along the C-channel inner surface.
  • the exhaust gas flows from the collecting duct 34 through the opening 41 in the pylon structural part 40. Downstream of the pylon opening 41 are provided within the pylon structural part 40 or Wasserab separating channel 200 from separating plates 42.
  • the separating plates From the separating plates are flat components that are arranged in the direction of flow. Channels or grooves are provided at the ends of the plates, which collect and drain the liquid water that accumulates on the surface. Further downstream, the exhaust gas passes through an optional final turbine stage 43, lowering its temperature even further, causing even more water to condense. Another advantage of this arrangement is that the size and the pressure losses of the upstream heat exchangers 30, 32 can be reduced.
  • the power of the turbine 43 is fed into a generator 44 .
  • the turbine 43 can be designed in such a way that the outflowing exhaust gas has a swirl. As a result, water droplets are moved radially outwards. The water droplets then settle on the inner surface of the channel and on the surface of separating tubes 45.
  • the channel and the separating pipes are equipped with gutters or grooves for collecting and discharging the water.
  • the centrifuging out of the water droplets can be supported by a swirl generator (not shown).
  • the separating plates 42, the inner surface of the pylon structure 40 and/or the separating pipes 45 can be made of water-attracting or hydrophilic materials or be coated with such materials. These components can also serve as precipitation electrodes for electrostatically assisted water separation or be set up as heat exchangers in a cooling circuit.
  • the outer surface of the pylon and/or the nacelle can be designed as a condenser of the cooling system.
  • the separated water is conducted by the condensate pump 49a through an optionally available water treatment into a water storage tank 48. From there, the water is fed to the steam generator 30 by means of the feed water pump 49b.
  • the water storage tank can be arranged on the aircraft side.
  • Auxiliary devices and devices for steam generation, cooling, water treatment and water storage such as condensate pump, feed water pump, filter, water tank, cooling compressor or the like are not shown in detail in the figures and can be placed directly on the flight engine.
  • the space within the pylon casing 47 and/or within the outlet cone 39 can advantageously be used for this purpose.
  • the propulsion system with aircraft propulsion, heat exchanger and water separation channel can be significantly heavier than a conventional system. Due to the attachment to the bracket 4, this higher weight can advantageously counteract the wing lift and thereby reduce the bending moment at the wing root. Due to the high specific output of the drive train, the turbomachine part can be realized lighter and/or more compact than a conventional drive, as a result of which the center of gravity can be closer to the wing. In addition, one or more of the (additional) components can be located below and/or partially behind the wing torsion center, thereby reducing the torsional moment. As a result, the wing structure weight can be reduced and the additional weight can be at least partially compensated for.
  • FIG. 5 shows a section through a waste water separating channel 200 of an aircraft according to a further embodiment of the present invention, which corresponds to the embodiment explained above except for the differences explained below, so that reference is made to the previous description and only differences are explained below .
  • the turbine stage 43 is replaced by a swirl generator 43'.
  • the separating plates 42 and a part of the inner surface of the water separating channel 200 designed as a collecting electrode 210 for the electrostatically supported water separation are set up as parts of an electrostatic separating device 220 .
  • the separating tubes 45 are set up as heat exchangers of a cooling circuit 130 with a condenser 120 .
  • one or more of the elements 42, 43, 43', 44, 45, 130 and/or 220 can be omitted or combined in a different way than in FIGS. or the cooling circuit 130 can be set up with a different heat exchanger.

Abstract

The present invention relates to an aircraft (5), comprising: - at least one wing (50); - at least one flight propulsion device (2); and - a retainer, more particularly an engine pylon (4), which interconnects the wing and the flight propulsion drive. The aircraft has at least one heat exchanger (30) for cooling exhaust gas of the flight propulsion drive and/or at least one water removal channel (200) having at least one removal apparatus (42, 43, 43', 45, 210, 220) for removing water from exhaust gas of the flight propulsion drive, more particularly after the exhaust gas has flowed through the heat exchanger. The removal apparatus is disposed on, more particularly in, the retainer or is connected to the wing by means of the retainer, and/or the flight propulsion drive is fastened to the retainer by means at least one flight-propulsion-drive suspension means (20, 21) and the heat exchanger is fastened, independently thereof, to the retainer by means of at least one heat-exchanger suspension means (38).

Description

Luftfahrzeug aircraft
Die vorliegende Erfindung betrifft ein Luftfahrzeug mit wenigstens einem Flügel, wenigstens einem Flugantrieb und einer Halterung, insbesondere einem Triebwerkspylon, die bzw. der den Flügel und den Flugantrieb miteinander verbindet, sowie Verfahren zum Betreiben, Montieren und/oder Warten des Luftfahrzeugs. The present invention relates to an aircraft with at least one wing, at least one flight drive and a mount, in particular an engine pylon, which connects the wing and the flight drive to one another, and methods for operating, assembling and/or maintaining the aircraft.
Aus der eigenen WO 2019/223823 Al ist ein Flugzeugantriebssystem mit einem Turbofan-Treibwerk mit nachgeschaltetem Verdampfer und Wasserrückgewinnung bekannt. An aircraft propulsion system with a turbofan engine with a downstream evaporator and water recovery is known from WO 2019/223823 A1.
Eine Aufgabe einer Ausführung der vorliegenden Erfindung ist es, ein Luftfahrzeug und/oder dessen Betrieb, Montage und/oder Wartung zu verbessern. An object of an embodiment of the present invention is to improve an aircraft and/or its operation, assembly and/or maintenance.
Diese Aufgabe wird durch ein Luftfahrzeug mit den Merkmalen des Anspruchs 1 gelöst. Ansprüche 11, 12 stellen ein Verfahren zum Betreiben bzw. Montieren und/oder Warten eines hier beschriebenen Luftfahrzeugs unter Schutz. Vorteilhafte Ausführungsformen der Erfindung sind Gegenstand der Unteransprüche. This object is achieved by an aircraft having the features of claim 1. Claims 11, 12 protect a method for operating or assembling and/or maintaining an aircraft described here. Advantageous embodiments of the invention are the subject matter of the dependent claims.
Nach einer Ausführung der vorliegenden Erfindung weist ein Luftfahrzeug wenigstens einen Flügel, vorzugsweise wenigstens zwei auf gegenüberliegenden Seiten des Luftfahrzeugs angeordnete (seitliche) Flügel bzw. Tragflächen auf, in einer Ausführung ist es ein Flugzeug. According to one embodiment of the present invention, an aircraft has at least one wing, preferably at least two (lateral) wings arranged on opposite sides of the aircraft, in one embodiment it is an airplane.
Nach einer Ausführung der vorliegenden Erfindung weist das Luftfahrzeug wenigstens einen Flugantrieb und eine Halterung, in einer Ausführung einen Triebwerkspylon, auf, die den wenigstens einen Flügel und den wenigstens einen Flugantrieb miteinander verbindet, vorzugsweise an einem oder beiden Flügel(n jeweils) ein oder mehrere Flugantriebe, die jeweils durch eine, insbesondere eigene, Halterung, in einer Ausführung einen (eigenen)Triebwerkspylon, mit dem (jeweiligen) Flügel verbunden sind bzw. werden, in einer Ausführung eine erste Halterung, die einen ersten der Flugantriebe mit einem Flügel verbindet und wenigsten eine weitere Halterung, die einen weiteren der Flugantriebe mit diesem oder einem anderen (der) Flügel verbindet. According to one embodiment of the present invention, the aircraft has at least one flight engine and a mount, in one embodiment an engine pylon, which connects the at least one wing and the at least one flight engine to one another, preferably one or more on one or both wings Flight engines, each of which is or will be connected to the (respective) wing by a mount, in particular its own mount, in one embodiment a (own) engine pylon, in one embodiment a first mount that connects a first of the aircraft engines to a wing and at least one more bracket, which connects another of the flight drives with this or another (the) wing.
In einer Ausführung weisen der bzw. einer oder mehrere der Flugantriebe (jeweils) wenigstens eine Wärmekraftmaschine, in einer Ausführung eine Gasturbine, und/oder wenigstens eine, in einer Ausführung ummantelte und/oder über ein Getriebe mit dieser Wärmekraftmaschine gekoppelte, Luftschraube auf. In einer Ausführung ist der bzw. einer oder mehrere der Flugantrieb(e jeweils) ein Turbofan- oder Turboprop-Flugantrieb bzw. -Triebwerk. In one embodiment, the or one or more of the flight drives (each) has at least one heat engine, in one embodiment a gas turbine, and/or at least one propeller, in one embodiment encased and/or coupled to this heat engine via a gearbox. In one embodiment, the or one or more of the aircraft engine(s) is a turbofan or turboprop aircraft engine.
Hierfür ist die vorliegende Erfindung aufgrund der großen Verbreitung und des breiten Einsatzspektrums solcher Flugantriebe besonders geeignet, ohne jedoch hierauf beschränkt zu sein. The present invention is particularly suitable for this purpose due to the widespread use and the wide range of uses of such flight drives, but without being limited thereto.
Nach einer Ausführung der vorliegenden Erfindung weist das Luftfahrzeug wenigstens einen Wärmetauscher auf, der wenigstens temporär Abgas des wenigstens einen Flugantriebs, insbesondere seiner Wärmekraftmaschine, abkühlt, in einer Ausführung hierdurch Dampf erzeugt und/oder überhitzt, bzw. hierzu vorgesehen, insbesondere eingerichtet ist bzw. verwendet wird, in einer Ausführung einen ersten Wärmetauscher, der wenigstens temporär Abgas des ersten Flugantriebes, insbesondere von dessen Wärmekraftmaschine, abkühlt, und wenigstens einen weiteren Wärmetauscher, der wenigstens temporär Abgas des weiteren Flugantriebes, insbesondere von dessen Wärmekraftmaschine, abkühlt bzw. hierzu vorgesehen, insbesondere eingerichtet ist bzw. verwendet wird. According to one embodiment of the present invention, the aircraft has at least one heat exchanger, which at least temporarily cools the exhaust gas of the at least one aircraft drive, in particular its heat engine, in one embodiment thereby generates and/or superheats steam, or is provided for this purpose, is in particular equipped or is used, in one embodiment, a first heat exchanger, which at least temporarily cools down exhaust gas from the first flight drive, in particular from its heat engine, and at least one further heat exchanger, which at least temporarily cools down exhaust gas from the further flight drive, in particular from its heat engine, or is provided for this purpose, is set up or used in particular.
Hierdurch kann in einer Ausführung Abwärme vorteilhaft genutzt und dadurch der Betrieb, insbesondere die Effizienz, des Luftfahrzeugs verbessert werden. In this way, in one embodiment, waste heat can be used advantageously and the operation, in particular the efficiency, of the aircraft can thereby be improved.
Nach einer Ausführung der vorliegenden Erfindung ist bzw. wird der wenigstens eine Flugantrieb über eine oder mehrere Flugantrieb-Aufhängungen und der wenigstens eine Wärmetauscher (zum Abkühlen von Abgas dieses Flugantriebs) unabhängig davon über eine oder mehrere Wärmetauscher- Aufhängungen an der Halterung (für diesen Flugantrieb) befestigt, in einer Ausführung der erste Flugantrieb über eine oder mehrere Flugantrieb -Aufhängungen und der erste Wärmetauscher unabhängig davon über eine oder mehrere Wärmetauscher- Aufhängungen an der ersten Halterung befestigt und der weitere Flugantrieb über eine oder mehrere Flugantrieb-Aufhängungen und der weitere Wärmetauscher (für diesen Flugantrieb bzw. zum Abkühlen von Abgas dieses Flugantriebs) unabhängig davon über eine oder mehrere Wärmetauscher- Aufhängungen an der weiteren Halterung. According to one embodiment of the present invention, the at least one flight engine is or will have one or more flight engine mountings and the at least one heat exchanger (for cooling exhaust gas from this flight engine) independently of this via one or more heat exchanger mountings on the bracket (for this flight engine ) attached, in one version the first flight drive via a or more flight engine mounts and the first heat exchanger independently attached to the first bracket via one or more heat exchanger mounts and the further flight drive via one or more flight engine mounts and the further heat exchanger (for this flight drive or for cooling exhaust gas from this flight drive ) regardless of one or more heat exchanger suspensions on the other bracket.
Dadurch können in einer Ausführung Flugantrieb und Wärmetauscher unabhängig voneinander gehandhabt werden, insbesondere der Flugantrieb von der Halterung entfernt werden und der Wärmetauscher an der Halterung verbleiben oder umgekehrt. Dadurch kann in einer Ausführung die Montage und/oder Wartung verbessert werden. Zusätzlich oder alternativ können dadurch in einer Ausführung eine Lastverteilung und/oder -einleitung verbessert und/oder Vibrationen reduziert und dadurch der Betrieb, insbesondere die Lebensdauer, des Luftfahrzeugs verbessert werden. As a result, in one embodiment, the flight engine and heat exchanger can be handled independently of one another, in particular the flight engine can be removed from the mount and the heat exchanger can remain on the mount or vice versa. As a result, assembly and/or maintenance can be improved in one embodiment. Additionally or alternatively, in one embodiment, load distribution and/or introduction can thereby be improved and/or vibrations can be reduced, thereby improving the operation, in particular the service life, of the aircraft.
Zusätzlich oder alternativ zu dem Aspekt des (unabhängig befestigten) Wärmetauschers weist das Luftfahrzeug nach einer Ausführung der vorliegenden Erfindung wenigstens einen Wasserabscheidekanal mit wenigstens einer Abscheideeinrichtung auf, die wenigstens temporär Wasser, insbesondere kondensiertes Wasser, aus Abgas des wenigstens einen Flugantriebs, insbesondere seiner Wärmekraftmaschine, abscheidet, in einer Ausführung nach Durchströmen des Wärmetauschers (für diesen Flugantrieb), bzw. hierzu vorgesehen, insbesondere eingerichtet ist bzw. verwendet wird. In einer Ausführung weist das Luftfahrzeug einen ersten Was serab Scheidekanal mit wenigstens einer Abscheideeinrichtung auf, die wenigstens temporär Wasser aus Abgas des ersten Flugantriebes, insbesondere seiner Wärmekraftmaschine, abscheidet, in einer Ausführung nach Durchströmen des ersten Wärmetauschers, und wenigstens einen weiteren Wasserabscheidekanal mit wenigstens einer Abscheideeinrichtung, die wenigstens temporär Wasser aus Abgas des weiteren Flugantriebes, insbesondere seiner Wärmekraftmaschine, abscheidet, in einer Ausführung nach Durchströmen des weiteren Wärmetauschers, bzw. hierzu vorgesehen, insbesondere eingerichtet ist bzw. verwendet wird. Hierdurch kann in einer Ausführung Wasser aus dem Abgas entfernt und so insbesondere eine Kondensstreifenbildung reduziert und dadurch die Umwelt geschont bzw. ein (umweltfreundlicher) Betrieb des Luftfahrzeugs verbessert werden. Zusätzlich oder alternativ kann hierdurch in einer Ausführung Wasser (rück)gewonnen und im Betrieb des Luftfahrzeugs verwendet werden, insbesondere zu einer nachfolgend erläuterten Dampfzuführung, und dadurch der Betrieb, insbesondere die Effizienz, des Luftfahrzeugs verbessert werden. In addition or as an alternative to the aspect of the (independently attached) heat exchanger, according to one embodiment of the present invention, the aircraft has at least one water separation duct with at least one separating device which at least temporarily removes water, in particular condensed water, from the exhaust gas of the at least one aircraft engine, in particular its heat engine. separates, in one embodiment, after flowing through the heat exchanger (for this flight propulsion system), or provided for this purpose, in particular set up or used. In one embodiment, the aircraft has a first water separating duct with at least one separating device, which at least temporarily separates water from exhaust gas from the first flight engine, in particular its heat engine, in one embodiment after flowing through the first heat exchanger, and at least one further water separating duct with at least one Separation device, which at least temporarily separates water from exhaust gas of the further aircraft engine, in particular its heat engine, in one embodiment after flowing through the further heat exchanger, or is provided for this purpose, is in particular equipped or used. As a result, in one embodiment, water can be removed from the exhaust gas and the formation of contrails can thus be reduced in particular, thereby protecting the environment or improving (environmentally friendly) operation of the aircraft. Additionally or alternatively, in one embodiment, water can be (re)recovered and used in the operation of the aircraft, in particular for a steam supply explained below, thereby improving the operation, in particular the efficiency, of the aircraft.
In einer Ausführung wird das in dem wenigstens einen Wasserabscheidekanal abgeschiedene Wasser wenigstens temporär in dem wenigstens einen Wärmetauscher wenigstens teilweise verdampft, in einer Ausführung überhitzt, und anschließend, in einer Ausführung über eine nachfolgend erläuterte Dampfturbine, wenigstens einem Brennraum des wenigstens einen Flugantriebs, insbesondere seiner Wärmekraftmaschine, zugeführt bzw. ist das Luftfahrzeug hierzu eingerichtet. In einer Ausführung wird das in dem ersten Wasserabscheidekanal abgeschiedene Wasser wenigstens temporär in dem ersten Wärmetauscher wenigstens teilweise verdampft, in einer Ausführung überhitzt, und anschließend, in einer Ausführung über eine nachfolgend erläuterte (erste) Dampfturbine, wenigstens einem Brennraum des ersten Flugantriebs, insbesondere seiner Wärmekraftmaschine, zugeführt und das in dem weiteren Wasserabscheidekanal abgeschiedene Wasser wenigstens temporär in dem weiteren Wärmetauscher wenigstens teilweise verdampft, in einer Ausführung überhitzt, und anschließend, in einer Ausführung über eine nachfolgend erläuterte (weitere) Dampfturbine, wenigstens einem Brennraum des weiteren Flugantriebs, insbesondere seiner Wärmekraftmaschine, zugeführt bzw. ist das Luftfahrzeug hierzu eingerichtet. In one embodiment, the water separated in the at least one water separation channel is at least partially evaporated at least temporarily in the at least one heat exchanger, in one embodiment overheated, and then, in one embodiment via a steam turbine explained below, in at least one combustion chamber of the at least one aircraft engine, in particular its Heat engine supplied or the aircraft is set up for this. In one embodiment, the water separated in the first water separation channel is at least partially evaporated at least temporarily in the first heat exchanger, in one embodiment overheated, and then, in one embodiment via a (first) steam turbine explained below, at least one combustion chamber of the first aircraft engine, in particular its heat engine, and the water separated in the further water separation channel is at least partially evaporated at least temporarily in the further heat exchanger, superheated in one embodiment, and then, in one embodiment via a (further) steam turbine explained below, at least one combustion chamber of the further aircraft drive, in particular its Heat engine supplied or the aircraft is set up for this.
Hierdurch kann in einer Ausführung Abwärme besonders vorteilhaft genutzt und der Betrieb, insbesondere die Effizienz, des Luftfahrzeugs besonders stark verbessert werden. In this way, in one embodiment, waste heat can be used particularly advantageously and the operation, in particular the efficiency, of the aircraft can be particularly greatly improved.
Nach einer Ausführung der vorliegenden Erfindung ist bzw. wird die wenigstens eine Abscheideeinrichtung an, in einer Ausführung in, der Halterung (für den wenigstens einen Flugantrieb) angeordnet oder über die, insbesondere durch die bzw. mittels der, Halterung (für den wenigstens einen Flugantrieb) mit dem Flügel verbunden, in einer Ausführung die wenigstens eine Abscheideeinrichtung des ersten Wasserabscheidekanals an, insbesondere in, der ersten Halterung angeordnet oder über diese erste Halterung mit dem (entsprechenden) Flügel verbunden, die den ersten Flugantrieb mit seinem Flügel verbindet, und die wenigstens eine Abscheideeinrichtung des weiteren Wasserabscheidekanals an, insbesondere in, der weiteren Halterung angeordnet oder über diese weitere Halterung, die den weiteren Flugantrieb mit seinem Flügel verbindet, mit demjenigen bzw. entsprechenden Flügel verbunden. According to one embodiment of the present invention, the at least one separating device is or will be arranged on, in one embodiment in, the holder (for the at least one flight drive) or via the, in particular through or by means of the holder (for the at least one flight drive ) connected to the wing, in a According to the embodiment, the at least one separating device of the first water separating duct is arranged on, in particular in, the first holder or connected to the (corresponding) wing via this first holder, which connects the first flight drive to its wing, and the at least one separating device of the further water separating duct on, in particular arranged in the further bracket or connected to that or corresponding wing via this further bracket, which connects the further flight drive with its wing.
Hierdurch können in einer Ausführung kurze Wege zwischen Flugantrieb und Abscheideeinrichtung realisiert und dadurch insbesondere Strömungswiederstand und/oder Gewicht reduziert und dadurch der Betrieb, insbesondere die Effizienz, des Luftfahrzeugs verbessert werden. Zusätzlich oder alternativ kann hierdurch in einer Ausführung eine besonders vorteilhafte Gewichtsverteilung realisiert und dadurch der Betrieb, insbesondere die Manövrierfähigkeit, des Luftfahrzeugs verbessert werden. In this way, in one embodiment, short distances can be realized between the flight drive and the separating device, and thereby in particular flow resistance and/or weight can be reduced and the operation, in particular the efficiency, of the aircraft can thereby be improved. Additionally or alternatively, in one embodiment, a particularly advantageous weight distribution can thereby be realized and the operation, in particular the maneuverability, of the aircraft can thereby be improved.
Sofern vorliegend von „dem Flugantrieb“, „dem Wärmetauscher“ bzw. „dem Wasserabscheidekanal“ bzw. „der Abscheideeinrichtung“ die Rede ist, umfasst dies in einer Ausführung „den wenigstens einen Flugantrieb“, „den wenigstens einen Wärmetauscher (für diesen wenigstens einen Flugantrieb bzw. zum Abkühlen von Abgas dieses wenigstens einen Flugantriebs)“ bzw. „den wenigstens einen Wasserabscheidekanal (für diesen wenigstens einen Flugantrieb bzw. zum Abscheiden von Wasser aus Abgas dieses wenigstens einen Flugantriebs)“ bzw. „die wenigstens eine Abscheideeinrichtung (dieses wenigstens einen Wasserabscheidekanals)“. In einer Ausführung gelten die entsprechenden Erläuterungen, insbesondere Merkmale, jeweils für den ersten Flugantrieb bzw. ersten Wärmetauscher und/oder ersten Wasserabscheidekanal für diesen ersten Flugantrieb bzw. dessen Abscheideeinrichtung und/oder für den weiteren Flugantrieb bzw. weiteren Wärmetauscher und/oder weiteren Wasserabscheidekanal für diesen weiteren Flugantrieb bzw. dessen Abscheideeinrichtung. If "the flight engine", "the heat exchanger" or "the water separation channel" or "the separating device" is mentioned here, this includes in one embodiment "the at least one flight engine", "the at least one heat exchanger (for this at least one Aircraft engine or for cooling exhaust gas of this at least one aircraft engine)" or "the at least one water separation channel (for this at least one aircraft engine or for separating water from exhaust gas of this at least one aircraft engine)" or "the at least one separating device (this at least a water separation channel)". In one embodiment, the corresponding explanations, in particular features, each apply to the first aircraft engine or first heat exchanger and/or first water separation duct for this first aircraft engine or its separating device and/or for the further flight engine or further heat exchanger and/or further water separation duct this further flight drive or its separation device.
In einer Ausführung weist das Luftfahrzeug eine Dampfzufuhreinrichtung auf, die wenigstens einem Brennraum des wenigstens einen Flugantriebs, insbesondere seiner Wärmekraftmaschine, wenigstens temporär Dampf zuführt bzw. hierzu vorgesehen, insbesondere eingerichtet ist bzw. verwendet wird. In one embodiment, the aircraft has a steam supply device which feeds at least one combustion chamber of the at least one aircraft engine, in particular its Heat engine, at least temporarily supplies steam or is provided for this purpose, in particular is set up or used.
Wie vorstehend erläutert, weist somit das Luftfahrzeug in einer Ausführung eine erste Dampfzufuhreinrichtung, die wenigstens einem Brennraum des ersten Flugantriebs, insbesondere seiner Wärmekraftmaschine, wenigstens temporär Dampf zuführt, und wenigstens eine weitere Dampfzufuhreinrichtung, die wenigstens einem Brennraum des weiteren Flugantriebs, insbesondere seiner Wärmekraftmaschine, wenigstens temporär Dampf zuführt, auf bzw. sind die erste und weitere Dampfzufuhreinrichtung hierzu vorgesehen, insbesondere eingerichtet bzw. werden hierzu verwendet. Im Folgenden wird nicht mehr gesondert auf das Vorhandensein einander entsprechender Merkmale bei erstem und weiteren Flugantrieb, Halterung, Wärmetauscher bzw. erstem und weiteren Wasserabscheidekanal hingewiesen. As explained above, in one embodiment the aircraft has a first steam supply device, which at least temporarily supplies steam to at least one combustion chamber of the first flight drive, in particular its heat engine, and at least one further steam supply device, which supplies at least one combustion chamber of the further flight drive, in particular its heat engine. supplies steam at least temporarily, the first and further steam supply devices are provided for this purpose, in particular set up or used for this purpose. In the following, reference is no longer made separately to the presence of corresponding features in the first and further flight drive, holder, heat exchanger or first and further water separation channel.
Hierdurch kann in einer Ausführung der Wirkungsgrad des Flugantriebs verbessert werden. In this way, the efficiency of the aircraft drive can be improved in one embodiment.
In einer Ausführung ist diese Dampfzufuhreinrichtung mit dem Wärmetauscher verbunden, der wenigstens temporär den Dampf erzeugt. In one embodiment, this steam supply device is connected to the heat exchanger, which at least temporarily generates the steam.
Hierdurch kann in einer Ausführung Abwärme vorteilhaft genutzt und dadurch der Betrieb, insbesondere die Effizienz, des Luftfahrzeugs verbessert werden. In this way, in one embodiment, waste heat can be used advantageously and the operation, in particular the efficiency, of the aircraft can thereby be improved.
In einer Ausführung weist das Luftfahrzeug wenigstens eine, in einer Ausführung zwischen dem (ersten bzw. weiteren) Wärmetauscher und der (ersten bzw. weiteren) Dampfzufuhreinrichtung angeordnete, (erste bzw. weitere) Dampfturbine auf, die wenigstens temporär ihre Nutzleistung in einen Verdichter einspeist bzw. wenigstens einen Verdichters des (ersten bzw. weiteren) Flugantriebs, insbesondere seiner Wärmekraftmaschine, antreibt bzw. hierzu vorgesehen, insbesondere eingerichtet ist bzw. verwendet wird. In one embodiment, the aircraft has at least one (first or additional) steam turbine, which is arranged in one embodiment between the (first or additional) heat exchanger and the (first or additional) steam supply device, which at least temporarily feeds its useful output into a compressor or at least one compressor of the (first or further) aircraft drive, in particular its heat engine, drives or is provided for this purpose, in particular is equipped or used.
Hierdurch kann in einer Ausführung Abwärme vorteilhaft genutzt und dadurch der Betrieb, insbesondere die Effizienz, des Luftfahrzeugs verbessert werden. In einer Ausführung ist eine Rotationsachse der Dampfturbine und/oder eine Rotationsachse des durch sie angetriebenen Verdichters, insbesondere eine Welle, die Dampfturbine und Verdichter koppelt, von einer Rotationsachse, insbesondere (Haupt)Maschinenachse, des Flugantriebs, insbesondere seiner Wärmekraftmaschine, in einer Ausführung wenigstens einer Verdichter- und/oder wenigstens einer Turbinenstufe und/oder der Luftschraube, beabstandet, in einer Ausführung parallel zu dieser versetzt oder gegen diese, in einer Ausführung windschief, geneigt. In this way, in one embodiment, waste heat can be used advantageously and the operation, in particular the efficiency, of the aircraft can thereby be improved. In one embodiment, an axis of rotation of the steam turbine and/or an axis of rotation of the compressor driven by it, in particular a shaft that couples the steam turbine and compressor, is separated from an axis of rotation, in particular (main) machine axis, of the aircraft engine, in particular its heat engine, in one embodiment at least a compressor stage and/or at least one turbine stage and/or the air screw, spaced apart, in one embodiment offset parallel thereto or against this, in one embodiment skew, inclined.
Dadurch kann in einer Ausführung im Gegensatz zu einer zur Rotations- bzw. (Haupt)Maschinenachse des Flugantriebs konzentrischen Anordnung die Kopplung von Dampfturbine und Verdichter verbessert, insbesondere konstruktiv vereinfacht, und/oder der Verdichter mit größeren Laufschaufeln realisiert und dadurch sein Wirkungsgrad verbessert werden. In contrast to an arrangement concentric to the axis of rotation or (main) machine axis of the aircraft drive, in one embodiment the coupling of the steam turbine and compressor can be improved, in particular simplified in terms of design, and/or the compressor can be implemented with larger rotor blades, thereby improving its efficiency.
In einer Ausführung ist bzw. wird die Leistung der Dampfturbine mechanisch in eine Welle eines Hochdruckverdichters bzw. eine Hochdruckwelle eingekoppelt. In one embodiment, the power of the steam turbine is or will be mechanically coupled into a shaft of a high-pressure compressor or a high-pressure shaft.
In einer Ausführung ist wenigstens eine Dichtung zwischen dem Flugantrieb und dem Wärmetauscher angeordnet. In one embodiment, at least one seal is arranged between the flight engine and the heat exchanger.
Hierdurch kann in einer Ausführung die unabhängige Handhabung von Flugantrieb und Wärmetauscher verbessert werden. In this way, in one embodiment, the independent handling of the flight engine and the heat exchanger can be improved.
In einer Ausführung weist der Wärmetauscher einen oder mehrere konzentrisch zu einer bzw. der Rotationsachse, insbesondere (Haupt)Maschinenachse, des Flugantriebs angeordnete und/oder als Rohrbündel- und/oder Kreuz- und/oder Gegenstrom-Wärmetauscher, insbesondere also Kreuz-Gegenstrom-Wärmetauscher, ausgebildete Wärmetauscherabschnitte, in einer Ausführung Wärmetauschermodule auf, wobei in einer Ausführung zwei oder mehr der Wärmetauscherabschnitte bzw. -module unterschiedliche Durchmesser aufweisen. In one embodiment, the heat exchanger has one or more heat exchangers arranged concentrically to one or the axis of rotation, in particular the (main) machine axis, of the aircraft engine and/or as a tube bundle and/or cross-flow and/or counter-flow heat exchanger, in particular cross-counter-flow heat exchangers. Heat exchangers, formed heat exchanger sections, in one embodiment, heat exchanger modules, with two or more of the heat exchanger sections or modules having different diameters in one embodiment.
Durch die konzentrische Anordnung und die Ausbildung als Rohrbündel- und/oder Kreuz- und/oder Gegenstrom-Wärmetauscher kann in einer Ausführung der Wir- kungsgrad verbessert werden, durch die Ausbildung mit mehreren Wärmetauscherabschnitten bzw. -modulen kann in einer Ausführung die Montage, Wartung und/oder Gewichtsverteilung verbessert werden. Due to the concentric arrangement and the design as a tube bundle and/or cross and/or counterflow heat exchanger, in one embodiment the efficiency Efficiency can be improved, the assembly, maintenance and / or weight distribution can be improved in one embodiment by training with multiple heat exchanger sections or modules.
In einer Ausführung weist das Luftfahrzeug wenigstens einen Kondensator auf, der wenigstens temporär Abgas des Flugantriebs, insbesondere von dessen Wärmekraftmaschine, abkühlt bzw. hierzu vorgesehen, insbesondere eingerichtet ist bzw. verwendet wird, und, der zwischen dem Wärmetauscher und dem Wasserabscheidekanal, in einer Ausführung in einem Nebenstromkanal des Flugantriebs, angeordnet ist. In one embodiment, the aircraft has at least one condenser, which at least temporarily cools down exhaust gas from the aircraft engine, in particular from its heat engine, or is provided for this purpose, in particular is set up or used, and, in one embodiment, between the heat exchanger and the water separation duct is arranged in a bypass duct of the aircraft drive.
Hierdurch kann in einer Ausführung eine Wasserabscheidung in dem Wasserabscheidekanal verbessert werden. In this way, in one embodiment, water separation in the water separation channel can be improved.
In einer Ausführung weist dieser Kondensator einen oder mehrere konzentrisch zu einer bzw. der Rotationsachse, insbesondere (Haupt)Maschinenachse, des Flugantriebs angeordnete und/oder als Platten- und/oder Kreuz- und/oder Gegenstrom-Wärmetauscher ausgebildete Kondensatorabschnitte auf. In one embodiment, this condenser has one or more condenser sections arranged concentrically to one or the axis of rotation, in particular (main) machine axis, of the aircraft drive and/or designed as plate and/or cross and/or counterflow heat exchangers.
Zusätzlich oder alternativ weist das Luftfahrzeug in einer Ausführung wenigstens einen, in einer Ausführung den Kondensator umgreifenden, Sammelkanal auf, der wenigstens temporär abgekühltes Abgas, insbesondere durch den Kondensator abgekühltes Abgas, sammelt und in einer Ausführung in Richtung Wasserabscheidekanal führt, bzw. hierzu vorgesehen, insbesondere eingerichtet ist bzw. verwendet wird. Additionally or alternatively, in one embodiment, the aircraft has at least one collecting duct, which in one embodiment encompasses the condenser, which collects at least temporarily cooled exhaust gas, in particular exhaust gas cooled by the condenser, and in one embodiment leads in the direction of the water separation duct, or is provided for this purpose, is set up or used in particular.
Hierdurch kann in einer Ausführung eine Wasserabscheidung in dem Wasserabscheidekanal verbessert werden. In this way, in one embodiment, water separation in the water separation channel can be improved.
In einer Ausführung ist der Kondensator in einem Neben-, insbesondere Mantelstromkanal des Flugantriebs angeordnet und/oder wird durch von der Luftschraube geförderte Umgebungsluft um- bzw. durchströmt bzw. ist das Luftfahrzeug hierzu eingerichtet. Hierdurch kann in einer Ausführung eine Kondensation verbessert und/oder Luft in dem Neben- bzw. Mantel Stromkanal erwärmt und dadurch der Wirkungsgrad bzw. ein Schub des Flugantriebs verbessert werden. In one embodiment, the condenser is arranged in a bypass duct, in particular a bypass duct, of the aircraft engine and/or the ambient air conveyed by the propeller flows around or through it, or the aircraft is set up for this purpose. In this way, in one embodiment, condensation can be improved and/or air in the secondary or casing flow duct can be heated, thereby improving the efficiency or thrust of the aircraft drive.
In einer Ausführung weist die Abscheideeinrichtung In one embodiment, the separating device
- wenigstens eine in dem Was serab scheidekanal angeordnete, in einer Ausführung wenigstens teilweise gerillte bzw. mit Rinnen bzw. Rillen bzw. Nuten versehene, Abscheideplatte; - At least one in the Was serab separating channel arranged, in one embodiment at least partially grooved or provided with grooves or grooves or grooves, separating plate;
- wenigstens einen in dem Wasserabscheidekanal, in einer Ausführung stromabwärts nach der Abscheideplatte, angeordneten, in einer Ausführung feststehenden, Drallerzeuger; at least one swirl generator arranged in the water separation channel, in one embodiment downstream after the separation plate, and fixed in one embodiment;
- wenigstens eine in dem Wasserabscheidekanal, in einer Ausführung stromabwärts nach der Abscheideplatte, angeordnete, in einer Ausführung mit einem Generator gekoppelte, Turbinenstufe; at least one turbine stage arranged in the water separation channel, in one embodiment downstream after the separation plate, and in one embodiment coupled to a generator;
- wenigstens ein in dem Wasserabscheidekanal, in einer Ausführung stromabwärts nach der Turbinenstufe und/oder dem Drallerzeuger, angeordnetes, in einer Ausführung wenigstens teilweise gerilltes bzw. mit Rinnen bzw. Rillen bzw. Nuten versehenes, Abscheiderohr; - at least one in the Wasserabscheidekanal, in one embodiment downstream after the turbine stage and / or the swirl generator, arranged, in one embodiment at least partially grooved or provided with channels or grooves or grooves separator pipe;
- wenigstens eine elektrostatische Abscheidevorrichtung; und/oder - at least one electrostatic precipitator; and or
- wenigstens einen wenigstens temporär durch ein in einem Kühlkreislauf zirkuliertes Kühlmittel durchströmten Wärmeübertrager auf. - At least one at least temporarily flowed through by a coolant circulated in a cooling circuit heat exchanger.
Zusätzlich oder alternativ weist in einer Ausführung die Abscheideeinrichtung, insbesondere die Abscheideplatte, Turbinenstufe, elektrostatische Abscheidevorrichtung, das Abscheiderohr und/oder der Wärmeübertrager, wenigstens abschnittsweise eine hydrophile Oberfläche auf. Additionally or alternatively, in one embodiment, the separating device, in particular the separating plate, turbine stage, electrostatic separating device, the separating pipe and/or the heat exchanger, has a hydrophilic surface at least in sections.
Hierdurch kann in einer Ausführung eine Wasserabscheidung in dem Wasserabscheidekanal verbessert werden. In this way, in one embodiment, water separation in the water separation channel can be improved.
In einer Ausführung weist das Luftfahrzeug - wenigstens einen Wassertank, der wenigstens temporär Wasser aus dem Wasserabscheidekanal speichert bzw. hierzu vorgesehen, insbesondere eingerichtet ist bzw. verwendet wird, und/oder In one embodiment, the aircraft - at least one water tank which at least temporarily stores water from the water separation channel or is provided for this purpose, in particular is set up or used, and/or
- wenigstens eine Pumpe auf, die aus dem Wasserabscheidekanal stammendes Wasser wenigstens temporär fördert, insbesondere aus dem Wasserabscheidekanal in den Wassertank oder aus dem Wasserabscheidekanal oder dem Wassertank zu dem Wärmetauscher, der dieses in einer Ausführung wenigstens temporär und/oder teilweise verdampft, bzw. sind die Pumpe und/oder der Wärmetauscher hierzu vorgesehen, insbesondere eingerichtet bzw. werden hierzu verwendet, in einer Ausführung eine erste Pumpe zum Fördern von Wasser aus dem Wasserabscheidekanal in den Wassertank und eine weitere Pumpe zum Fördern von Wasser aus dem Wassertank in den Wärmetauscher. - at least one pump, which at least temporarily conveys water originating from the water separation channel, in particular from the water separation channel into the water tank or from the water separation channel or the water tank to the heat exchanger, which in one embodiment at least temporarily and/or partially evaporates this or is the pump and/or the heat exchanger are provided for this purpose, in particular set up or used for this purpose, in one embodiment a first pump for pumping water from the water separation channel into the water tank and a further pump for pumping water from the water tank into the heat exchanger.
Hierdurch kann in einer Ausführung die Verwendung des abgeschiedenen Wassers, insbesondere eine Dampferzeugung, insbesondere zur Zuführung zu einem Brennraum des Flugantriebs, und dadurch der Betrieb des Luftfahrzeugs verbessert werden. In this way, in one embodiment, the use of the separated water, in particular steam generation, in particular for supply to a combustion chamber of the aircraft engine, and thereby the operation of the aircraft can be improved.
In einer Ausführung wird bzw. ist der Wassertank und/oder die Pumpe an, insbesondere in, der Halterung angeordnet oder über diese mit dem Flügel verbunden. In one embodiment, the water tank and/or the pump is/are arranged on, in particular in, the mount or is connected to the wing via the mount.
In einer Ausführung weist das Luftfahrzeug wenigstens eine Abgaspassage auf, die Abgas des Flugantriebs von dem Wärmetauscher und/oder zu dem Wasserabscheidekanal leitet bzw. hierzu vorgesehen, insbesondere eingerichtet ist bzw. verwendet wird, und die wenigstens eine Öffnung in einem Strukturteil der Halterung, insbesondere eine Pylon-Strukturteil, in einer Ausführung einer Wand, insbesondere Innenwand, der Halterung, insbesondere des Triebwerkspylons, aufweist, welche wenigstens temporär von dem Abgas durchströmt wird bzw. hierzu vorgesehen, insbesondere eingerichtet, ist bzw. verwendet wird. In one embodiment, the aircraft has at least one exhaust gas passage, which conducts exhaust gas from the aircraft engine from the heat exchanger and/or to the water separation duct or is provided for this purpose, in particular is set up or used, and the at least one opening in a structural part of the bracket, in particular a pylon structural part, in one embodiment of a wall, in particular an inner wall, of the mount, in particular of the engine pylon, through which the exhaust gas flows at least temporarily or is provided, in particular equipped, or is used for this purpose.
Hierdurch kann in einer Ausführung die Abgasführung verbessert, insbesondere ein Strömungsweg und/oder -widerstand und/oder Gewicht reduziert, und dadurch der Betrieb, insbesondere die Effizienz, des Luftfahrzeugs verbessert werden. In einer Ausführung wird bzw. ist der Flugantrieb, in einer Weiterbildung über die wenigstens eine Flugantrieb -Aufhängung, zerstörungsfrei lösbar an der Halterung befestigt, in einer Ausführung mit dieser ein- oder mehrfach verschraubt. As a result, in one embodiment, the exhaust gas routing can be improved, in particular a flow path and/or flow resistance and/or weight can be reduced, thereby improving the operation, in particular the efficiency, of the aircraft. In one embodiment, the aircraft drive is or is attached to the holder in a non-destructive manner via the at least one aircraft drive suspension, in one embodiment it is screwed to it once or several times.
Dadurch kann in einer Ausführung die Montage und/oder Wartung verbessert werden. As a result, assembly and/or maintenance can be improved in one embodiment.
In einer Ausführung weisen das wenigstens eine Flugtriebwerk und/oder dessen Halterung, insbesondere Triebwerkspylon, (jeweils) eine ein- oder mehrteilige, in einer Ausführung wenigstens teilweise abnehmbare und/oder wenigstens teilweise schwenkbar gelagerte, Verkleidung bzw. ein ein- oder mehrteiliges, in einer Ausführung wenigstens teilweise abnehmbares und/oder wenigstens teilweise schwenkbar gelagertes, Außengehäuse auf und/oder sind auf einer (fahrwerkseitigen) Unterseite des Flügels angeordnet. In one embodiment, the at least one aircraft engine and/or its mount, in particular the engine pylon, have (in each case) a one-part or multi-part fairing, in one embodiment at least partially removable and/or at least partially pivotably mounted, or a one-part or multi-part, in In one embodiment, the outer housing is at least partially removable and/or at least partially pivotably mounted and/or is arranged on an underside (on the undercarriage side) of the wing.
Hierdurch kann in einer Ausführung die Montage und/oder Wartung verbessert und/oder eine Lastverteilung und/oder -einleitung und dadurch der Betrieb des Luftfahrzeugs verbessert werden. In this way, in one embodiment, assembly and/or maintenance can be improved and/or load distribution and/or introduction and thereby the operation of the aircraft can be improved.
In einer Ausführung wird Abgas von dem wenigstens einen Flugtriebwerk nicht in dem Flügel geführt, an dem es befestigt ist bzw. wird. In one embodiment, exhaust gas from the at least one aircraft engine is not routed within the wing to which it is attached.
Dadurch kann in einer Ausführung eine bisherige Struktur des Flügels übernommen bzw. das Flugtriebwerk mit verschiedenen Flügeln kombiniert werden. As a result, in one embodiment, a previous structure of the wing can be adopted or the aircraft engine can be combined with different wings.
In einer Ausführung wird Abgas von dem wenigstens einen Flugtriebwerk nach Durchströmen des Wasserabscheidekanals unterhalb des Flügels in die Umgebung angeführt. In one embodiment, exhaust gas from the at least one aircraft engine is discharged into the environment after it has flowed through the water separation channel below the wing.
Dadurch kann in einer Ausführung eine bisherige Struktur des Flügels und/oder eines Rumpfes des Luftfahrzeugs übernommen werden. In einer Ausführung wird in dem Wasserabscheidekanal wenigstens temporär an wenigstens zwei voneinander beabstandeten Stellen, insbesondere an wenigstens zwei voneinander beabstandeten Stellen der Abscheideeinrichtung bzw. durch wenigstens zwei voneinander beabstandete Abscheideeinrichtungen, Wasser abgeschieden und/oder abgeschiedenes Wasser in dem Wasserabscheidekanal zu wenigstens einem, in einer Ausführung wand-, insbesondere bodenseitigen bzw. untenliegenden, Auslass geführt, in einer Ausführung durch eine oder mehrere Rinnen bzw. Rillen, und/oder an wenigstens einem bzw. dem wenigstens einen Auslass aus dem Wasserabscheidekanal abgeführt. In einer Ausführung weist der Wasserabscheidekanal, in einer Weiterbildung seine wenigstens eine Abscheideeinrichtung, eine oder mehrere Rinnen bzw. Rillen auf, die wenigstens temporär Wasser sammeln bzw. hierzu vorgesehen, insbesondere eingerichtet sind bzw. verwendet werden. As a result, in one embodiment, a previous structure of the wing and/or a fuselage of the aircraft can be adopted. In one embodiment, water is separated in the water separation duct at least temporarily at at least two spaced-apart locations, in particular at at least two spaced-apart locations of the separating device or by at least two spaced-apart separating devices, and/or separated water in the water-separating duct to at least one, in one Execution wall, in particular floor-side or underlying, out outlet, in one embodiment through one or more channels or grooves, and / or discharged at least one or the at least one outlet from the water separation channel. In one embodiment, the water separation duct, in a further development its at least one separating device, has one or more channels or grooves, which at least temporarily collect water or are provided for this purpose, in particular are set up or used.
Hierdurch kann in einer Ausführung eine Wasserabscheidung in dem Wasserabscheidekanal verbessert werden. In this way, in one embodiment, water separation in the water separation channel can be improved.
In einer Ausführung beträgt ein Gewicht des wenigstens einen Flugtriebwerks wenigstens 100 kg, insbesondere wenigstens 500 kg, und/oder ein Gewicht des wenigstens einen Wärmetauschers wenigstens 1 kg, insbesondere wenigstens 5 kg, und/oder ein Gewicht der wenigstens einen Abscheideeinrichtung wenigstens 1 kg, insbesondere wenigstens 5 kg. In einer Ausführung ist die bzw. wenigstens eine der hier genannten Pumpen eine elektrisch( angetrieben)e Pumpe. In one embodiment, the weight of the at least one aircraft engine is at least 100 kg, in particular at least 500 kg, and/or the weight of the at least one heat exchanger is at least 1 kg, in particular at least 5 kg, and/or the weight of the at least one separating device is at least 1 kg, in particular at least 5 kg. In one embodiment, the or at least one of the pumps mentioned here is an electrically (driven) pump.
Weitere vorteilhafte Weiterbildungen der vorliegenden Erfindung ergeben sich aus den Unteransprüchen und der nachfolgenden Beschreibung bevorzugter Ausführungen. Hierzu zeigt, teilweise schematisiert: Further advantageous developments of the present invention result from the dependent claims and the following description of preferred embodiments. This shows, partially schematized:
Fig. 1 einen Teil eines Luftfahrzeugs nach einer Ausführung der vorliegenden Erfindung in einem Schnitt; Figure 1 is a sectional view of part of an aircraft according to an embodiment of the present invention;
Fig. 2 den Teil in einem Schnitt längs der Linie A-A in Fig. 1; Fig. 2 shows the part in a section along the line A-A in Fig. 1;
Fig. 3 einen perspektivischen Teilschnitt des Luftfahrzeugs; Fig. 4 eine perspektivische Teilansicht des Luftfahrzeugs; und 3 shows a perspective partial section of the aircraft; Figure 4 is a partial perspective view of the aircraft; and
Fig. 5 einen Schnitt durch einen Was serab Scheidekanal eines Luftfahrzeugs nach einer weiteren Ausführung der vorliegenden Erfindung. 5 shows a section through a water ab separating duct of an aircraft according to a further embodiment of the present invention.
Fig. 3, 4 zeigen in einem perspektivischen Teilschnitt von schräg vorne oben bzw. einer perspektivische Teilansicht von schräg hinten unten ein Luftfahrzeug 5 nach einer Ausführung der vorliegenden Erfindung, Fig. 1, 2 einen Teil dieses Luftfahrzeugs in einem Längsschnitt (Fig. 1) bzw. einen hierzu senkrechten Schnitt (Fig. 2). 3, 4 show an aircraft 5 according to an embodiment of the present invention in a perspective partial section from the front above and a perspective partial view from the rear below, FIGS. 1, 2 show a part of this aircraft in a longitudinal section (FIG. 1) or a section perpendicular thereto (FIG. 2).
Das Luftfahrzeug 5 weist mehrere gleichartig aufgebaute Antriebssysteme 1 mit je einem Flugantrieb in Form eines Turbofantriebwerks auf, der bzw. das jeweils an einem (eigenen) Triebwerkspylon 4 befestigt ist. Aufbau und Wirkungsweise der Antriebssysteme 1 bzw. deren Anordnung am jeweiligen Flügel sind, wenigstens im Wesentlichen, identisch, so dass nachfolgend nur eines dieser Antriebs Systeme mit Bezug auf Fig. 1, 2 beschrieben wird. The aircraft 5 has several similarly constructed drive systems 1, each with a flight drive in the form of a turbofan engine, which is fastened to a (own) engine pylon 4 in each case. The structure and mode of operation of the drive systems 1 and their arrangement on the respective wing are, at least essentially, identical, so that only one of these drive systems is described below with reference to FIGS. 1, 2.
Das bzw. jedes der Antriebssystem(e) weist für seinen Flugantrieb jeweils einen nachgeschalteten Dampferzeuger 30, einem Kondensator(wärmetauscher) 32 und eine Wasserrückgewinnvorrichtung mit einem Was serab scheidekanal 200 auf. Das Abgas einer Gasturbine des Turbofantriebwerks durchströmt den stromabwärts angeordneten Dampferzeuger 30, dort wird ihm Energie zur Erzeugung von überhitztem Dampf entzogen, welcher dem Prozess wieder zugeführt wird. Anschließend durchströmt es den Kondensatorwärmetauscher 32. Dieser Kondensator wird kaltseitig von Umgebungsluft durchströmt. Anschließend gelangt das Abgas in die Wasserrückgewinnvorrichtung, wo auskondensiertes Wasser vom Rest des Abgasstromes getrennt wird. Das Wasser kann aufbereitet und durch Kondensat- bzw. Speisewas- serpumpe(n) 49a, 49b dem Dampferzeuger zugeführt werden. Damit ist der Wasserkreislauf geschlossen. Der Dampf wird im Bereich einer Brennkammer 16 der Gasturbine der verdichteten Luft zugemischt. Durch die Nutzung der Abgasenergie und die Reduzierung des triebwerksinternen Leistungsbedarfs ergibt sich ein sehr effektiver Kreisprozess mit sehr hoher, auf den Massedurchsatz bezogener, spezifischer Leistung. The or each of the propulsion system(s) has a downstream steam generator 30, a condenser (heat exchanger) 32 and a water recovery device with a water separating channel 200 for its flight propulsion. The exhaust gas from a gas turbine of the turbofan engine flows through the steam generator 30 arranged downstream, where energy is extracted from it for generating superheated steam, which is fed back into the process. It then flows through the condenser heat exchanger 32. Ambient air flows through this condenser on the cold side. The exhaust gas then enters the water recovery device, where condensed water is separated from the rest of the exhaust gas flow. The water can be treated and supplied to the steam generator by condensate or feed water pump(s) 49a, 49b. This closes the water cycle. The steam is mixed with the compressed air in the area of a combustion chamber 16 of the gas turbine. By using the exhaust gas energy and reducing the engine's internal power requirement, a very effective cyclic process results with a very high specific power related to the mass throughput.
Das Antriebs system ist jeweils durch einen Pylon 4 mit einem Flügel 50 verbunden. Der Turbomaschinenteil 2 ist am Pylon 4 befestigt. Dargestellt ist eine vordere Aufhängung 21 an einem Fan-Gehäuse und eine hintere Aufhängung 20 an einem Turbinenaustrittsgehäuse 19. Der Schub wird über Schublenker 22 vom Einlaufgehäuse 12 auf den Pylon und von dort zum Flügel übertragen. The drive system is connected to a wing 50 by a pylon 4 in each case. The turbomachine part 2 is attached to the pylon 4 . Shown is a front suspension 21 on a fan casing and a rear suspension 20 on a turbine outlet casing 19. The thrust is transmitted via shear rods 22 from the inlet casing 12 to the pylon and from there to the wing.
Der Turbomaschinenteil 2 ist im Ausführungsbeispiel eine 3-Wellen- Maschine. Ein Fan 10, der über ein Getriebe 11 von einer Niederdruckturbine 18 angetrieben wird, bildet zusammen mit der Niederdruckturbine die erste Welle. Optional könnte auf dieser Welle zusätzlich ein Niederdruckverdichter (nicht dargestellt) angeordnet sein. In the exemplary embodiment, the turbomachine part 2 is a 3-shaft machine. A fan 10, which is driven by a low-pressure turbine 18 via a gearbox 11, forms the first shaft together with the low-pressure turbine. Optionally, a low-pressure compressor (not shown) could also be arranged on this shaft.
Die zweite Welle ist konzentrisch zur ersten angeordnet. Ihre Hauptkomponenten sind ein Verdichter 13, der von einer Hochdruckturbine 17 angetrieben wird. The second shaft is arranged concentrically to the first. Its main components are a compressor 13 driven by a high-pressure turbine 17 .
Im Unterschied zu einem konventionellen Triebwerk ist hier eine dritte Welle vorhanden, die nicht koaxial, sondern neben dem Kemtriebwerk angeordnet ist. Die Hauptkomponenten dieser Welle sind ein weiterer Verdichter 14, der von einer Dampfturbine 15 angetrieben wird. In contrast to a conventional engine, there is a third shaft that is not coaxial but arranged next to the core engine. The main components of this shaft are another compressor 14 driven by a steam turbine 15 .
Der hier angewendete Prozess mit Dampfzufuhr durch eine Dampfzufuhreinrichtung 110 ergibt eine sehr hohe spezifische Leistung und damit einen geringen Luftmassestrom für die Verdichter. The process used here with steam supply through a steam supply device 110 results in a very high specific power and thus a low air mass flow for the compressor.
Bei koaxialer Anordnung würden sich dann sehr kleine radial Schaufelabmessungen und damit verbunden große Spaltverluste ergeben, speziell im Endbereich der Verdichtung. Insbesondere aus diesem Grund kann die Anordnung des letzten Verdichters 14 neben dem Kemtriebwerk vorteilhaft und zudem einfach zu realisieren sein, da kein mechanischer Antrieb von einer der beiden anderen Wellen erforderlich ist, weil der Antrieb durch die Dampfturbine 15 erfolgt. Die vom Fan 10 geförderte Luft wird in den Verdichtern 13, 14 weiter verdichtet. Danach wird die verdichtete Luft mit dem Abdampf der Dampfturbine 15 vermischt und zu einem großen Teil der Brennkammer 16 zugeführt. Ein Teil wird auch zu Kühlung der Brennkammer und der Turbine, insbesondere der Hochdruckturbine 17, verwendet. In der Brennkammer 16 wird dem Arbeitsmedium, durch die Verbrennung von Kraftstoff Wärme zugeführt. In den Turbinen 17, 18 wird dem Arbeitsgas Energie entzogen. Die gewonnene Leistung wird primär auf den Verdichter 13 und den Fan 10 übertragen. With a coaxial arrangement, very small radial blade dimensions and the associated large gap losses would result, especially in the end area of compression. For this reason in particular, the arrangement of the last compressor 14 next to the core engine can be advantageous and also simple to implement, since no mechanical drive from one of the other two shafts is required because the drive is provided by the steam turbine 15 . The air conveyed by the fan 10 is further compressed in the compressors 13 , 14 . The compressed air is then mixed with the exhaust steam from the steam turbine 15 and fed to the combustion chamber 16 to a large extent. A part is also used to cool the combustion chamber and the turbine, in particular the high-pressure turbine 17 . In the combustion chamber 16, heat is supplied to the working medium by the combustion of fuel. In the turbines 17, 18, energy is extracted from the working gas. The power gained is primarily transmitted to the compressor 13 and the fan 10 .
Stromabwärts vom Turbomaschinenteil bzw. Flugtriebwerk 2 ist der Dampferzeuger 30 angeordnet. Dieser umfasst einen Spei sewasser- Vorheizabschnitt, einen Verdampfungsabschnitt (zwischen Spei sewasser- Vorheiz- und Überhitzungsabschnitt) und einen Überhitzungsabschnitt. Dabei weist jeder der drei in Fig. 1 gezeigten ringförmigen Wärmetauschermodule jeweils einen Vorheiz-, Verdampfungs- und Überhitzungsabschnitt auf. Alternativ kann auch eines der Wärmetauschermodule einen Speisewasser-Vorheizabschnitt, ein weiteres der Wärmetauschermodule einen Verdampfungsabschnitt und ein weiteres der Wärmetauschermodule einen Überhitzungsabschnitt bilden. The steam generator 30 is arranged downstream of the turbomachine part or aircraft engine 2 . This comprises a feed water preheating section, an evaporation section (between feed water preheating and superheating section) and a superheating section. Each of the three ring-shaped heat exchanger modules shown in FIG. 1 has a preheating section, an evaporation section and a superheating section. Alternatively, one of the heat exchanger modules can also form a feedwater preheating section, another of the heat exchanger modules can form an evaporation section and another of the heat exchanger modules can form an overheating section.
Der Dampferzeuger ist als Rohrbündelwärmetauscher in Kreuz-Gegenstrom-Anordnung mit mehreren Passagen ausgeführt. Er ist rotationssymmetrisch und konzentrisch zur Triebwerks- bzw. Rotationsachse T des Flugantriebs innerhalb der Kerntriebwerksverkleidung 35 untergebracht. Insbesondere zur besseren Anpassung an die Form der Kerntriebwerksverkleidung kann der Dampferzeuger 30 aus mehreren Modulen mit unterschiedlichen Durchmessern bestehen. Er wird mit der bzw. den Aufhängung(en) 38 ebenfalls am Pylon 4 befestigt. The steam generator is designed as a tube bundle heat exchanger in a cross-counterflow arrangement with several passages. It is housed rotationally symmetrically and concentrically to the engine axis or axis of rotation T of the flight engine within the core engine cowling 35 . In particular for better adaptation to the shape of the core engine cowling, the steam generator 30 can consist of several modules with different diameters. It is also attached to the pylon 4 with the suspension(s) 38 .
Zwischen dem Turbomaschinenteil bzw. Flugtriebwerk 2 und dem Dampferzeuger bzw. Wärmetauscher 30 ist eine Dichtung 23 angeordnet, welche eine gewisse relative Bewegung dieser Baugruppen zueinander ermöglicht. A seal 23 is arranged between the turbomachine part or aircraft engine 2 and the steam generator or heat exchanger 30, which allows a certain relative movement of these assemblies to one another.
Durch diese Anordnung können die einzelnen Baugruppen unabhängig voneinander gehandhabt werden. So kann insbesondere der Dampferzeuger am Luftfahrzeug ver- bleiben, wenn der Turbomaschineteil für Wartungszwecke vom Flügel genommen wird und umgekehrt. With this arrangement, the individual assemblies can be handled independently. In particular, the steam generator on the aircraft can remain when the turbomachinery part is removed from the wing for maintenance and vice versa.
Nachdem das Abgas den Dampferzeuger 30 radial durchströmt hat, wird es durch Rippen 31, die im Nebenstromkanal 37 angeordnet sind, zu dem, aus mehreren Modulen bestehenden, Kondensator 32 geleitet. Die Kondensator-Module sind im Ausführungsbeispiel als Plattenwärmetauscher in Kreuzstrom-Anordnung ausgebildet und konzentrisch zur Triebwerksachse T im Nebenstromkanal 37, in den sogenannten C-Kanälen, platziert. Die Außengehäuse bzw. Verkleidungen 3 der C-Kanäle sind am Pylon 4 mit schamierartigen Gelenken 49 schwenkbar gelagert. After the exhaust gas has flowed radially through the steam generator 30, it is guided through ribs 31, which are arranged in the bypass channel 37, to the condenser 32, which consists of several modules. In the exemplary embodiment, the condenser modules are designed as plate heat exchangers in a cross-flow arrangement and are placed concentrically to the engine axis T in the bypass duct 37, in the so-called C-ducts. The outer housing or panels 3 of the C-channels are pivotably mounted on the pylon 4 with hinge-like joints 49 .
In Fig. 2 ist auf der linken Seite die Strömung im C-Kanal in diesem Bereich schematisch veranschaulicht. Auf der rechten Seite ist nur der Umriss des C-Kanals im aufgeklappten Zustand seiner Verkleidung dargestellt. In Fig. 2, the flow in the C-channel in this area is illustrated schematically on the left-hand side. On the right is only the outline of the C-channel in the unfolded state of its fairing.
Insbesondere aus Fig. 1 ist erkennbar, dass die Kondensatormodule 32 im Nebenstromkanal 27 so angeordnet sind, dass kaltseitig nur ein Teil der vom Fan 10 geförderten Luft durch den Kondensator fließt. Der andere Teil strömt daran vorbei. Beide Ströme werden dann wieder zusammengeführt und gemeinsam in der Nebenstromdüse 36 auf Umgebungsdruck entspannt. In einer nicht dargestellten Abwandlung wird die gesamte Luft aus dem Nebenstromkanal 37 durch den Kondensator 32 geleitet. It can be seen in particular from FIG. 1 that the capacitor modules 32 are arranged in the bypass duct 27 in such a way that on the cold side only part of the air conveyed by the fan 10 flows through the capacitor. The other part flows past it. Both streams are then brought together again and relaxed together in the bypass nozzle 36 to ambient pressure. In a modification that is not shown, all of the air from the bypass duct 37 is routed through the condenser 32 .
Bei der Durchströmung wird Abgaswärme auf die Luft übertragen, wodurch deren Temperatur steigt. Die höhere Temperatur ergibt ein größeres Enthalpiegefälle für die Expansion in der Nebenstromdüse 36. Dadurch ist die abzuführende Verdampfungswärme nicht komplett verloren, sondern trägt zur Schubsteigerung bei. Das Abgas kühlt dabei soweit ab, bis das darin enthaltene Wasser zumindest teilweise kondensiert und in flüssiger Form vorliegt. Danach wird das Abgas durch die Rippen 33 in einen entlang der inneren C-Kanal-Oberfläche verlaufenden Sammelkanal 34 geleitet. Vom Sammelkanal 34 strömt das Abgas durch die Öffnung 41 in dem Pylon-Strukturteil 40. Stromabwärts der Pylon-Öffnung 41 sind innerhalb des Pylon-Strukturteils 40 bzw. Wasserab scheidekanals 200 Ab scheideplatten 42 vorgesehen. Bei den Ab scheideplatten handelt es sich um flächige Bauteile, die in Strömungsrichtung angeordnet sind. An den Plattenenden sind Rinnen bzw. Rillen vorgesehen, die das flüssige Wasser das sich an der Oberfläche anlagert, auffangen und ableiten. Weiter stromabwärts durchströmt das Abgas eine optionale letzte Turbinenstufe 43, wodurch seine Temperatur noch weiter abgesenkt wird, wodurch noch mehr Wasser kondensiert. Ein weiterer Vorteil dieser Anordnung liegt darin, dass die Baugröße und die Druckverluste der stromaufwärts liegenden Wärmetauscher 30, 32 reduziert werden können. Die Leistung der Turbine 43 wird in einen Generator 44 eingespeist. Die Turbine 43 kann so ausgelegt sein, dass das abströmende Abgas einen Drall aufweist. Dadurch werden Wassertropfen radial nach außen bewegt. Die Wassertropfen legen sich dann an der inneren Oberfläche des Kanals und an der Oberfläche von Abscheiderohren 45 an. Exhaust heat is transferred to the air as it flows through, causing its temperature to rise. The higher temperature results in a greater enthalpy gradient for the expansion in the bypass nozzle 36. As a result, the evaporation heat to be dissipated is not completely lost, but instead contributes to the increase in thrust. The exhaust gas cools down until the water it contains condenses at least partially and is in liquid form. Thereafter, the exhaust gas is guided through the fins 33 into a collection passage 34 running along the C-channel inner surface. The exhaust gas flows from the collecting duct 34 through the opening 41 in the pylon structural part 40. Downstream of the pylon opening 41 are provided within the pylon structural part 40 or Wasserab separating channel 200 from separating plates 42. From the separating plates are flat components that are arranged in the direction of flow. Channels or grooves are provided at the ends of the plates, which collect and drain the liquid water that accumulates on the surface. Further downstream, the exhaust gas passes through an optional final turbine stage 43, lowering its temperature even further, causing even more water to condense. Another advantage of this arrangement is that the size and the pressure losses of the upstream heat exchangers 30, 32 can be reduced. The power of the turbine 43 is fed into a generator 44 . The turbine 43 can be designed in such a way that the outflowing exhaust gas has a swirl. As a result, water droplets are moved radially outwards. The water droplets then settle on the inner surface of the channel and on the surface of separating tubes 45.
Der Kanal und die Abscheiderohre sind wie die Ab scheideplatten 42 mit Rinnen bzw. Rillen zum Auffangen und Ableiten des Wassers ausgestattet. Bei einer Abwandlung ohne die letzte Turbinenstufe 43 kann das Auszentrifugieren der Wassertropfen durch einen Drallerzeuger unterstützt werden (nicht dargestellt). The channel and the separating pipes, like the separating plates 42, are equipped with gutters or grooves for collecting and discharging the water. In a modification without the last turbine stage 43, the centrifuging out of the water droplets can be supported by a swirl generator (not shown).
Zur besseren Ab scheidewirkung können die Ab scheideplatten 42, die Innenoberflä- che der Pylon- Struktur 40 und/oder die Abscheiderohre 45 aus wasseranziehenden bzw. hydrophilen Werkstoffen besten oder mit solchen Werkstoffen beschichtet sein. Diese Bauteile können auch als Niederschlagelektrode für die elektrostatisch unterstützte Wasserabscheidung dienen oder als Wärmeübertrager eines Kühlkreislaufs eingerichtet sein. In diesem Fall kann die Außenoberfläche des Pylons und/oder der Gondel als Kondensator des Kühlsystems ausgebildet sein. For a better separating effect, the separating plates 42, the inner surface of the pylon structure 40 and/or the separating pipes 45 can be made of water-attracting or hydrophilic materials or be coated with such materials. These components can also serve as precipitation electrodes for electrostatically assisted water separation or be set up as heat exchangers in a cooling circuit. In this case, the outer surface of the pylon and/or the nacelle can be designed as a condenser of the cooling system.
Das abgeschiedene Wasser wird von der Kondensatpumpe 49a durch eine optional vorhandene Wasseraufbereitung in einen Wasserspeichertank 48 geleitet. Von diesem wird das Wasser mittels der Speisewasserpumpe 49b dem Dampferzeuger 30 zugeführt. Der Wasserspeichertank kann luftfahrzeugseitig angeordnet sein. Hilfsgeräte und Einrichtungen für die Dampferzeugung, Kühlung, Wasseraufbereitung und Wasserspeicherung wie Kondensatpumpe, Speisewasserpumpe, Filter, Wassertank, Kühlkompressor oder dergleichen sind in den Figuren nicht im Detail dargestellt und können direkt am Flugantrieb platziert sein. Vorteilhaft kann hierzu der Raum innerhalb der Pylonverkleidung 47 und/oder innerhalb des Austrittskonus 39 verwendet werden. The separated water is conducted by the condensate pump 49a through an optionally available water treatment into a water storage tank 48. From there, the water is fed to the steam generator 30 by means of the feed water pump 49b. The water storage tank can be arranged on the aircraft side. Auxiliary devices and devices for steam generation, cooling, water treatment and water storage such as condensate pump, feed water pump, filter, water tank, cooling compressor or the like are not shown in detail in the figures and can be placed directly on the flight engine. The space within the pylon casing 47 and/or within the outlet cone 39 can advantageously be used for this purpose.
Das Antriebs system mit Flugantrieb, Wärmetauscher und Wasserabscheidekanal kann gegenüber einem konventionellen System ein deutlich höheres Gewicht aufweisen. Dieses höhere Gewicht kann aufgrund der Befestigung an der Halterung 4 vorteilhaft dem Flügelauftrieb entgegenwirken und dadurch das Biegemoment an der Flügelwurzel reduzieren. Aufgrund der hohen spezifischen Leistung des Antriebtriebs kann der Turbomaschinenteil leichter und/oder kompakter als ein konventioneller Antrieb realisiert werden bzw. sein, wodurch der Schwerpunkt näher am Flügel liegen kann. Zudem können eine oder mehrere der (zusätzlichen) Komponenten unter und/oder teilweise hinter dem Flügel-Torsionsmittelpunkt angeordnet und dadurch das Torsionsmoment verringert werden. Dadurch kann das Flügelstrukturgewicht verringert und das Mehrgewicht, zumindest teilweise, kompensiert werden. The propulsion system with aircraft propulsion, heat exchanger and water separation channel can be significantly heavier than a conventional system. Due to the attachment to the bracket 4, this higher weight can advantageously counteract the wing lift and thereby reduce the bending moment at the wing root. Due to the high specific output of the drive train, the turbomachine part can be realized lighter and/or more compact than a conventional drive, as a result of which the center of gravity can be closer to the wing. In addition, one or more of the (additional) components can be located below and/or partially behind the wing torsion center, thereby reducing the torsional moment. As a result, the wing structure weight can be reduced and the additional weight can be at least partially compensated for.
Fig. 5 zeigt einen Schnitt durch einen Was serab Scheidekanal 200 eines Luftfahrzeugs nach einer weiteren Ausführung der vorliegenden Erfindung, die mit der vorstehend erläuterten Ausführung bis auf die nachfolgend erläuterten Unterschiede übereinstimmt, so dass auf die vorhergehende Beschreibung Bezug genommen und nachfolgend nur Unterschiede erläutert werden. 5 shows a section through a waste water separating channel 200 of an aircraft according to a further embodiment of the present invention, which corresponds to the embodiment explained above except for the differences explained below, so that reference is made to the previous description and only differences are explained below .
Bei der Ausführung der Fig. 5 ist die Turbinenstufe 43 durch einen Drallerzeuger 43 ‘ ersetzt. In the embodiment of FIG. 5, the turbine stage 43 is replaced by a swirl generator 43'.
Zudem sind die Abscheideplatten 42 und ein als Niederschlagelektrode 210 für die elektrostatisch unterstützte Wasserabscheidung ausgebildeter Teil der Innenoberflä- che des Wasserabscheidekanals 200 als Teile einer elektrostatischen Abscheidevorrichtung 220 eingerichtet. Außerdem sind die Abscheiderohre 45 als Wärmeübertrager eines Kühlkreislaufs 130 mit einem Kondensator 120 eingerichtet. In addition, the separating plates 42 and a part of the inner surface of the water separating channel 200 designed as a collecting electrode 210 for the electrostatically supported water separation are set up as parts of an electrostatic separating device 220 . In addition, the separating tubes 45 are set up as heat exchangers of a cooling circuit 130 with a condenser 120 .
Obwohl in der vorhergehenden Beschreibung exemplarische Ausführungen erläutert wurden, sei darauf hingewiesen, dass eine Vielzahl von Abwandlungen möglich ist. So können insbesondere eine oder mehrere der Elemente 42, 43, 43‘, 44, 45, 130 und/oder 220 entfallen oder in anderer Weise kombiniert sein als in Fig. 1, 5. Zudem kann die elektrostatische Abscheidevorrichtung 220 mit anderen Elektroden und/oder der Kühlkreislauf 130 mit einem anderen Wärmeübertrager eingerichtet sein. Although exemplary embodiments have been explained in the preceding description, it should be pointed out that a large number of modifications are possible. In particular, one or more of the elements 42, 43, 43', 44, 45, 130 and/or 220 can be omitted or combined in a different way than in FIGS. or the cooling circuit 130 can be set up with a different heat exchanger.
Außerdem sei darauf hingewiesen, dass es sich bei den exemplarischen Ausführun- gen lediglich um Beispiele handelt, die den Schutzbereich, die Anwendungen und den Aufbau in keiner Weise einschränken sollen. Vielmehr wird dem Fachmann durch die vorausgehende Beschreibung ein Leitfaden für die Umsetzung von mindestens einer exemplarischen Ausführung gegeben, wobei diverse Änderungen, insbesondere in Hinblick auf die Funktion und Anordnung der beschriebenen Bestandteile, vorgenommen werden können, ohne den Schutzbereich zu verlassen, wie er sich aus den Ansprüchen und diesen äquivalenten Merkmalskombinationen ergibt. It should also be noted that the exemplary embodiments are only examples and are not intended in any way to limit the scope of protection, the applications and the structure. Rather, the person skilled in the art is given a guideline for the implementation of at least one exemplary embodiment by the preceding description, with various changes, in particular with regard to the function and arrangement of the described components, being able to be made without leaving the scope of protection, as it emerges from the claims and these equivalent combinations of features.
Bezugszeichenliste Reference List
1 Antriebssystem 1 drive system
2 Turbomaschinenteil 2 turbomachine part
3 C-Kanal(-Verkleidung) 3 C-channel (fairing)
4 Pylon 4 pylon
5 Luftfahrzeug 5 aircraft
10 Fan 10 fans
11 Getriebe 11 gears
12 Einlaufgehäuse 12 inlet housing
13 Verdichter 13 compressors
14 Verdichter 14 compressors
15 Dampfturbine 15 steam turbine
16 Brennkammer 16 combustion chamber
17 Hochdruckturbine 17 high pressure turbine
18 Niederdruckturbine 18 low pressure turbine
19 Turbinenaustrittsgehäuse 19 turbine exit case
20 hintere Triebwerksaufhängung 20 rear engine mount
21 vordere Triebwerksaufhängung 21 front engine mount
22 Schublenker 22 thrust link
23 Dichtung 23 seal
30 Dampferzeuger (Wärmetauscher) 30 steam generators (heat exchangers)
31 Rippe 31 rib
32 Kondensator 32 condenser
33 Rippe 33 rib
34 Sammelkanal 34 collection channel
35 Kemtriebwerksverkleidung 35 nuclear engine fairing
36 Nebenstromdüse 36 by-pass nozzle
37 Nebenstromkanal 37 bypass channel
38 Dampferzeuger -Aufhängung(en) 38 steam generator suspension(s)
39 Austrittskonus 39 exit cone
40 Pylon-Strukturteil 41 Pylon(strukturteil)-Öffnung 40 pylon structural part 41 pylon (structural part) opening
42 Ab scheideplatte 42 separation plate
43 Turbinenstufe 43 turbine stage
43 ‘ Drallerzeuger 43' swirl generator
44 Generator 44 Generator
45 Ab scheiderohr 45 separator tube
46 Kerntriebwerksdüse 46 core engine nozzle
47 Pylon-Verkleidung 47 pylon fairing
48 Wassertank 48 water tank
49a Kondensatpumpe 49a condensate pump
49b Speisewasserpumpe 49b feed water pump
50 Flügel 50 wings
110 Dampfzufuhreinrichtung 110 steam supply device
120 Kondensator des Kühlkreislaufs120 condenser of the cooling circuit
130 Kühlkreislauf 130 cooling circuit
200 Wasserabscheidekanal 200 water separation channel
210 Niederschlagselektrode 210 precipitation electrode
220 elektrostatische Abscheidevorrichtung220 electrostatic precipitator
T Rotationsachse T axis of rotation

Claims

22 22
Patentansprüche patent claims
1. Luftfahrzeug (5) mit wenigstens einem Flügel (50), wenigstens einem Flugantrieb (2) und einer Halterung, insbesondere einem Triebwerkspylon (4), die den Flügel und den Flugantrieb miteinander verbindet, wobei das Luftfahrzeug wenigstens einen Wärmetauscher (30) zum Abkühlen von Abgas des Flugantriebs und/oder wenigstens einen Wasserabscheidekanal (200) mit wenigstens einer Abscheideeinrichtung (42, 43, 43‘, 45, 210, 220) zum Abscheiden von Wasser aus Abgas des Flugantriebs, insbesondere nach Durchströmen des Wärmetauschers, aufweist, dadurch gekennzeichnet, dass die Abscheideeinrichtung an, insbesondere in, der Halterung angeordnet oder über diese mit dem Flügel verbunden ist und/oder der Flugantrieb über wenigstens eine Flugantrieb-Aufhängung (20, 21) und der Wärmetauscher unabhängig davon über wenigstens eine Wärmetauscher- Aufhängung (38) an der Halterung befestigt ist. 1. Aircraft (5) with at least one wing (50), at least one flight engine (2) and a mount, in particular an engine pylon (4), which connects the wing and the flight engine to one another, the aircraft having at least one heat exchanger (30) for Cooling of exhaust gas from the aircraft engine and/or at least one water separation channel (200) with at least one separating device (42, 43, 43', 45, 210, 220) for separating water from exhaust gas from the aircraft engine, in particular after it has flowed through the heat exchanger, characterized in that characterized in that the separating device is arranged on, in particular in, the holder or connected to the wing via it and/or the flight drive via at least one flight drive suspension (20, 21) and the heat exchanger independently via at least one heat exchanger suspension (38 ) attached to the bracket.
2. Luftfahrzeug nach Anspruch 1, gekennzeichnet durch eine, insbesondere mit dem Wärmetauscher verbundene, Dampfzufuhreinrichtung (110) zum Zuführen von Dampf zu wenigstens einem Brennraum (16) des Flugantriebs und/oder durch wenigstens eine, insbesondere zwischen dem Wärmetauscher und der Dampfzufuhreinrichtung angeordnete, Dampfturbine (15), insbesondere zum Antreiben wenigstens eines Verdichters (14) des Flugantriebs. 2. Aircraft according to Claim 1, characterized by a steam supply device (110), in particular connected to the heat exchanger, for supplying steam to at least one combustion chamber (16) of the aircraft engine and/or by at least one device, in particular arranged between the heat exchanger and the steam supply device, Steam turbine (15), in particular for driving at least one compressor (14) of the aircraft engine.
3. Luftfahrzeug nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass eine Rotationsachse der Dampfturbine (15) und/oder des Verdichters (14) von einer Rotationsachse (T) des Flugantriebs beabstandet ist. 3. Aircraft according to the preceding claim, characterized in that an axis of rotation of the steam turbine (15) and/or the compressor (14) is spaced apart from an axis of rotation (T) of the flight engine.
4. Luftfahrzeug nach einem der vorhergehenden Ansprüche, gekennzeichnet durch wenigstens eine Dichtung (23) zwischen dem Flugantrieb und dem Wärmetauscher. 4. Aircraft according to one of the preceding claims, characterized by at least one seal (23) between the flight engine and the heat exchanger.
5. Luftfahrzeug nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Wärmetauscher einen oder mehrere konzentrisch zu einer Rotationsachse des Flugantriebs angeordnete und/oder als Rohrbündel- und/oder Kreuz- und/oder Gegenstrom-Wärmetauscher ausgebildete Wärmetauscherab- schnitte, insbesondere Wärmetauschermodule und/oder mit unterschiedlichen Durchmessern, aufweist. Luftfahrzeug nach einem der vorhergehenden Ansprüche, gekennzeichnet durch wenigstens einen Kondensator (32) zum Abkühlen von Abgas des Flugantriebs, der zwischen dem Wärmetauscher und dem Wasserabscheidekanal, insbesondere in einem Nebenstromkanal (37) des Flugantriebs, angeordnet ist, insbesondere einen oder mehrere konzentrisch zu einer Rotationsachse des Flugantriebs angeordnete und/oder als Platten- und/oder Kreuz- und/oder Gegenstrom-Wärmetauscher ausgebildete Kondensatorabschnitte aufweist, und/oder durch wenigstens einen, insbesondere den Kondensator umgreifenden, Sammelkanal (34) zum Sammeln von, insbesondere durch den Kondensator, abgekühltem Abgas. Luftfahrzeug nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Abscheideeinrichtung wenigstens eine in dem Wasserabscheidekanal angeordnete Ab scheideplatte (42) und/oder wenigstens einen in dem Wasserabscheidekanal, insbesondere stromabwärts nach der Abscheideplatte, angeordneten Drallerzeuger (43 ‘) und/oder wenigstens eine in dem Wasserabscheidekanal, insbesondere stromabwärts nach der Abscheideplatte, angeordnete, insbesondere mit einem Generator (44) gekoppelte, Turbinenstufe (43) und/oder wenigstens ein in dem Wasserabscheidekanal, insbesondere stromabwärts nach der Turbinenstufe und/oder dem Drallerzeuger, angeordnetes Abscheiderohr (45) und/oder wenigstens eine elektrostatische Abscheidevorrich- tung (210, 220) und/oder wenigstens einen durch ein in einem Kühlkreislauf (130) zirkuliertes Kühlmittel durchströmten Wärmeübertrager (45) und/oder wenigstens abschnittsweise eine hydrophile Oberfläche aufweist. Luftfahrzeug nach einem der vorhergehenden Ansprüche, gekennzeichnet durch wenigstens eine Pumpe (49a, 49b) zum Fördern von aus dem Wasserabscheidekanal stammendem Wasser und/oder wenigstens einen Wassertank (48) zum Speichern von Wasser aus dem Wasserabscheidekanal. 5. Aircraft according to one of the preceding claims, characterized in that the heat exchanger has one or more heat exchangers arranged concentrically to an axis of rotation of the flight engine and/or designed as tube bundle and/or cross and/or counterflow heat exchangers. sections, in particular heat exchanger modules and/or with different diameters. Aircraft according to one of the preceding claims, characterized by at least one condenser (32) for cooling exhaust gas from the aircraft engine, which is arranged between the heat exchanger and the water separation duct, in particular in a bypass duct (37) of the aircraft engine, in particular one or more concentric to one axis of rotation of the aircraft engine and/or designed as a plate and/or cross-flow and/or counterflow heat exchanger, and/or by at least one collecting duct (34), in particular encompassing the condenser, for collecting, in particular through the condenser, cooled exhaust gas. Aircraft according to one of the preceding claims, characterized in that the separating device has at least one separating plate (42) arranged in the water separation duct and/or at least one swirl generator (43') arranged in the water separating duct, in particular downstream after the separating plate, and/or at least one turbine stage (43) arranged in the water separation duct, in particular downstream after the separating plate, in particular coupled to a generator (44) and/or at least one separator pipe (45) arranged in the water separating duct, in particular downstream after the turbine stage and/or the swirl generator and/or at least one electrostatic separating device (210, 220) and/or at least one heat exchanger (45) through which a coolant circulated in a cooling circuit (130) flows and/or has a hydrophilic surface at least in sections. Aircraft according to one of the preceding claims, characterized by at least one pump (49a, 49b) for conveying water originating from the water separation channel and/or at least one water tank (48) for storing water from the water separation channel.
9. Luftfahrzeug nach einem der vorhergehenden Ansprüche, gekennzeichnet durch wenigstens eine Abgaspassage zum Leiten von Abgas des Flugantriebs von dem Wärmetauscher und/oder zu dem Wasserabscheidekanal, die wenigstens eine Öffnung (41) in einem Strukturteil (40) der Halterung aufweist. 9. Aircraft according to one of the preceding claims, characterized by at least one exhaust gas passage for conducting exhaust gas from the aircraft engine from the heat exchanger and/or to the water separation duct, which has at least one opening (41) in a structural part (40) of the holder.
10. Luftfahrzeug nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Flugantrieb wenigstens eine Wärmekraftmaschine, insbesondere Gasturbine, und/oder wenigstens eine, insbesondere ummantelte und/oder über ein Getriebe (11) mit der Wärmekraftmaschine gekoppelte, Luftschraube (10) aufweist. 10. Aircraft according to one of the preceding claims, characterized in that the aircraft drive has at least one heat engine, in particular a gas turbine, and/or at least one propeller (10), in particular a jacketed one and/or coupled to the heat engine via a gearbox (11).
11. Verfahren zum Betreiben eines Luftfahrzeugs nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass wenigstens temporär der Wärmetauscher (30) Abgas des Flugantriebs (2) abkühlt und/oder die Abscheideeinrichtung Wasser aus Abgas des Flugantriebs abscheidet. 11. Method for operating an aircraft according to one of the preceding claims, characterized in that at least temporarily the heat exchanger (30) cools exhaust gas of the aircraft engine (2) and/or the separating device separates water from exhaust gas of the aircraft engine.
12. Verfahren zum Montieren und/oder Warten eines Luftfahrzeugs nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Abscheideeinrichtung an, insbesondere in, der Halterung (4) angeordnet oder über diese mit dem Flügel (50) verbunden wird und/oder der Flugantrieb (2) über die wenigstens eine Flugantrieb -Aufhängung (20, 21) und der Wärmetauscher (30) über die wenigstens eine Wärmetauscher- Aufhängung (38) an der Halterung (4) befestigt wird. 12. Method for assembling and/or maintaining an aircraft according to one of the preceding claims, characterized in that the separating device is arranged on, in particular in, the holder (4) or is connected to the wing (50) via this and/or the flight drive (2) is attached to the bracket (4) via the at least one aircraft engine suspension (20, 21) and the heat exchanger (30) via the at least one heat exchanger suspension (38).
EP21759238.5A 2020-08-05 2021-08-02 Aircraft Pending EP4193048A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020209850 2020-08-05
PCT/DE2021/100666 WO2022028653A1 (en) 2020-08-05 2021-08-02 Aircraft

Publications (1)

Publication Number Publication Date
EP4193048A1 true EP4193048A1 (en) 2023-06-14

Family

ID=77499576

Family Applications (3)

Application Number Title Priority Date Filing Date
EP21765831.9A Pending EP4193049A1 (en) 2020-08-05 2021-08-02 Heat engine with steam supply device
EP21759237.7A Pending EP4193047A1 (en) 2020-08-05 2021-08-02 Exhaust-gas treatment device for an aircraft engine
EP21759238.5A Pending EP4193048A1 (en) 2020-08-05 2021-08-02 Aircraft

Family Applications Before (2)

Application Number Title Priority Date Filing Date
EP21765831.9A Pending EP4193049A1 (en) 2020-08-05 2021-08-02 Heat engine with steam supply device
EP21759237.7A Pending EP4193047A1 (en) 2020-08-05 2021-08-02 Exhaust-gas treatment device for an aircraft engine

Country Status (4)

Country Link
US (3) US20230332522A1 (en)
EP (3) EP4193049A1 (en)
DE (4) DE102021201629A1 (en)
WO (3) WO2022028652A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4067239A1 (en) * 2021-03-31 2022-10-05 The Boeing Company Guide systems for installing aircraft structures such as thrust reversers
FR3128443A1 (en) * 2021-10-25 2023-04-28 Airbus Operations (S.A.S.) Aircraft propulsion assembly comprising a plate heat exchanger, of hexagonal longitudinal section, positioned in a bifurcation
US11603798B1 (en) * 2022-02-11 2023-03-14 Raytheon Technologies Corporation Cryogenically assisted exhaust condensation
US11828200B2 (en) * 2022-02-11 2023-11-28 Raytheon Technologies Corporation Hydrogen-oxygen fueled powerplant with water and heat recovery
US20230407768A1 (en) * 2022-05-19 2023-12-21 Raytheon Technologies Corporation Hydrogen fueled turbine engine pinch point water separator
WO2023237152A1 (en) * 2022-06-06 2023-12-14 MTU Aero Engines AG Propulsion system for an aircraft
DE102022115587A1 (en) 2022-06-06 2023-12-07 MTU Aero Engines AG Propulsion system for an aircraft
DE102022114214A1 (en) 2022-06-06 2023-12-07 MTU Aero Engines AG Propulsion system for an aircraft
DE102022114614A1 (en) * 2022-06-10 2023-12-21 MTU Aero Engines AG Exhaust gas treatment device for an aircraft engine
DE102022115556A1 (en) * 2022-06-22 2023-12-28 MTU Aero Engines AG Method for operating a turbomachine
DE102022115585A1 (en) 2022-06-22 2024-01-11 MTU Aero Engines AG Propulsion system for an aircraft
US11815030B1 (en) 2022-07-08 2023-11-14 General Electric Company Contrail suppression system
US11898491B1 (en) 2022-07-21 2024-02-13 Rtx Corporation Water pressure and quantity monitoring for hydrogen steam injected and inter-cooled turbine engine
US11933217B2 (en) 2022-07-21 2024-03-19 Rtx Corporation Water condition monitoring for hydrogen steam injected and inter-cooled turbine engine
FR3139160A1 (en) * 2022-08-31 2024-03-01 Safran Aeronautical turbomachine using hydrogen or other cryogenically stored fuel
US11905884B1 (en) 2022-09-16 2024-02-20 General Electric Company Hydrogen fuel system for a gas turbine engine
US11898495B1 (en) 2022-09-16 2024-02-13 General Electric Company Hydrogen fuel system for a gas turbine engine
US11873768B1 (en) 2022-09-16 2024-01-16 General Electric Company Hydrogen fuel system for a gas turbine engine

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4569195A (en) 1984-04-27 1986-02-11 General Electric Company Fluid injection gas turbine engine and method for operating
US4631914A (en) 1985-02-25 1986-12-30 General Electric Company Gas turbine engine of improved thermal efficiency
GB9415436D0 (en) * 1994-07-30 1994-09-21 Provost Michael J Auxiliary gas turbine engines
US6003298A (en) * 1997-10-22 1999-12-21 General Electric Company Steam driven variable speed booster compressor for gas turbine
US6651421B2 (en) * 2000-10-02 2003-11-25 Richard R. Coleman Coleman regenerative engine with exhaust gas water extraction
US6499303B1 (en) * 2001-04-18 2002-12-31 General Electric Company Method and system for gas turbine power augmentation
NL1020350C2 (en) * 2002-04-10 2003-10-13 Henk Ouwerkerk Steam and gas turbine installation.
GB0608859D0 (en) * 2006-05-05 2006-06-14 Rolls Royce Plc A gas turbine engine
EP2238325A2 (en) * 2007-12-21 2010-10-13 Green Partners Technology Holdings Gmbh Gas turbine systems and methods employing a vaporizable liquid delivery device
US8099944B2 (en) 2008-10-08 2012-01-24 The Invention Science Fund I, Llc Hybrid propulsive engine including at least one independently rotatable propeller/fan
SE534008C2 (en) * 2009-02-24 2011-03-29 Euroturbine Ab Procedure for operation of a gas turbine power plant and gas turbine power plant
US20170292412A1 (en) * 2009-10-27 2017-10-12 Eduardo E. Fonseca Aircraft Engine Heat Recovery System to Power Environmental Control Systems
EP2681111B1 (en) * 2011-03-01 2016-07-06 Short Brothers Plc A draining device
US9102416B1 (en) * 2012-03-20 2015-08-11 The Boeing Company Inert gas generating system
DE102012206123B4 (en) * 2012-04-13 2020-06-25 MTU Aero Engines AG Heat engine with free piston compressor
US20160237902A1 (en) * 2013-11-05 2016-08-18 Jianmin Zhang Gas turbine inlet air conditioning coil system
WO2016067303A2 (en) * 2014-10-29 2016-05-06 Swapnil Sarjerao Jagtap Heat recuperation system for the family of shaft powered aircraft gas turbine engines
GB201501045D0 (en) * 2015-01-22 2015-03-11 Rolls Royce Plc Aircraft propulsion system
US11208959B2 (en) 2016-11-09 2021-12-28 General Electric Company System and method for flexible fuel usage for gas turbines
US20180216532A1 (en) * 2017-01-31 2018-08-02 General Electric Company System and method for treating exhaust gas
US11725584B2 (en) * 2018-01-17 2023-08-15 General Electric Company Heat engine with heat exchanger
DE102018203159B4 (en) 2018-03-02 2021-05-06 MTU Aero Engines AG Reduction of contrails when operating aircraft
US11542016B2 (en) * 2018-03-23 2023-01-03 Raytheon Technologies Corporation Cryogenic cooling system for an aircraft
DE102018208026A1 (en) * 2018-05-22 2019-11-28 MTU Aero Engines AG An exhaust treatment device, aircraft propulsion system, and method of treating an exhaust flow
US11041437B2 (en) * 2018-12-14 2021-06-22 Transportation Ip Holdings, Llc Systems and methods for increasing power output in a waste heat driven air Brayton cycle turbocharger system
DE102019203595A1 (en) 2019-03-15 2020-09-17 MTU Aero Engines AG Aircraft

Also Published As

Publication number Publication date
WO2022028653A1 (en) 2022-02-10
EP4193047A1 (en) 2023-06-14
DE102021202602A1 (en) 2022-02-10
US20230332522A1 (en) 2023-10-19
WO2022028651A1 (en) 2022-02-10
DE102021201627A1 (en) 2022-02-10
US11965462B2 (en) 2024-04-23
WO2022028652A1 (en) 2022-02-10
US20230366349A1 (en) 2023-11-16
US20230286661A1 (en) 2023-09-14
DE102021201629A1 (en) 2022-02-10
EP4193049A1 (en) 2023-06-14
DE112021004156A5 (en) 2023-08-10

Similar Documents

Publication Publication Date Title
EP4193048A1 (en) Aircraft
EP3797217B1 (en) Aircraft propulsion system with exhasut-gas treatment device and method for treating an exhaust-gas stream
DE102012011294B4 (en) Method for cooling a gas turbine plant and gas turbine plant for carrying out the method
DE60110426T2 (en) AIR CONDITIONING SYSTEM WITH TWO AIR CYCLE MACHINES
DE102019203595A1 (en) Aircraft
DE2835903A1 (en) COOLING AIR COOLER FOR A GAS TURBINE ENGINE
DE112009004531B4 (en) System for supplying machine gas to dry gas and method for providing clean dry gas for gas seals in machinery
DE102009044073A1 (en) Integrated gas turbine exhaust diffuser and heat recovery steam generation system
DE102010038132A1 (en) Temperature modulated cooling flow of gas turbine engines
DE10234968A1 (en) Aircraft air conditioning
DE102013109556A1 (en) Inlet air cooling system with humidity control and energy recovery
DE2900014A1 (en) GAS TURBINE DEVICE
DE102010061628A1 (en) System and method for increasing the performance of gas turbines
EP1076761B1 (en) Gas and steam turbine installation
EP1590603B1 (en) Air cooler for power station plant and use of such an air cooler
EP0981681B1 (en) Gas and steam turbine system, and refrigeration of the coolant intended for the gas turbine in such a system
DE4336143C2 (en) Cooling process for turbomachinery
CH701012A2 (en) Cycle power plant system with two steam trains whose capacitors are coupled in series with a source of coolant.
DE102022115587A1 (en) Propulsion system for an aircraft
WO2023237152A1 (en) Propulsion system for an aircraft
DE102021126261B3 (en) Method for operating a drive device and corresponding drive device
WO2023237151A1 (en) Propulsion system for an aircraft
DE102022115585A1 (en) Propulsion system for an aircraft
DE102020202299A1 (en) Propulsion system with multiple engines

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230110

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS