EP4192995A1 - Sous-couche pour superalliage base nickel permettant l'amélioration de la durée de vie des pièces et son procédé de mise en oeuvre - Google Patents

Sous-couche pour superalliage base nickel permettant l'amélioration de la durée de vie des pièces et son procédé de mise en oeuvre

Info

Publication number
EP4192995A1
EP4192995A1 EP21762756.1A EP21762756A EP4192995A1 EP 4192995 A1 EP4192995 A1 EP 4192995A1 EP 21762756 A EP21762756 A EP 21762756A EP 4192995 A1 EP4192995 A1 EP 4192995A1
Authority
EP
European Patent Office
Prior art keywords
layer
content
phase
substrate
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21762756.1A
Other languages
German (de)
English (en)
Inventor
Amar Saboundji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran SA
Original Assignee
Safran SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran SA filed Critical Safran SA
Publication of EP4192995A1 publication Critical patent/EP4192995A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/057Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/016Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of aluminium or aluminium alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/043Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/06Solid state diffusion of only metal elements or silicon into metallic material surfaces using gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/06Solid state diffusion of only metal elements or silicon into metallic material surfaces using gases
    • C23C10/14Solid state diffusion of only metal elements or silicon into metallic material surfaces using gases more than one element being diffused in one step
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/027Graded interfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • C23C28/022Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer with at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/028Including graded layers in composition or in physical properties, e.g. density, porosity, grain size
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/95Preventing corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/17Alloys
    • F05D2300/175Superalloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/1275Next to Group VIII or IB metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/12764Next to Al-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12931Co-, Fe-, or Ni-base components, alternative to each other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12944Ni-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24959Thickness [relative or absolute] of adhesive layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less

Definitions

  • the invention falls within the field of turbomachine parts, in particular aeronautical turbomachines, and particularly turbine blades or distributor vanes.
  • the present invention relates to coatings for substrates and more specifically to undercoats deposited on the surface of metal substrates and their preparation methods.
  • Thermal barriers help protect substrates in high temperature environments. In operation at such temperatures, the diffusion phenomena which are thermally activated can induce significant modifications between the substrate and the underlayer on the substrates and their chemical compositions, consequently reducing the service life of the whole of the part.
  • the thermal barriers are usually placed on sub-layers, coating the substrates, and which make it possible to ensure the cohesion of the thermal barrier with the substrate.
  • underlayers conventionally used for nickel-based superalloys mention may in particular be made of coatings composed of nickel aluminides or else Y—Ni/y′-NisAl coatings.
  • Nickel aluminide coatings generally have aluminum atomic contents of the order of 40 atomic %, which makes it possible to form an alumina oxide that protects against corrosion and oxidation. Nevertheless, the high aluminum content, compared to the substrates, causes interdiffusion phenomena, namely the migration of nickel from the substrate to the coating and of aluminum from the coating to the substrate. These phenomena are thermally activated, therefore amplified by the use of the coated substrate at high temperature, and ultimately cause a significant reduction in the lifetime of the coated parts.
  • the substrates can, in the various applications envisaged, be subjected to temperatures of the order of 1000° C., for example between 1000° C. and 1100° C.
  • the diffusion of aluminum promotes the martensitic transition in the coating, which can generate cracks and promote flaking of the alumina layer. Interdiffusion can also create secondary reaction zones that degrade the mechanical properties of the coated superalloy.
  • the Y-Ni/Y'-Ni 3 AI coatings have a chemical composition closer to that of the nickel superalloy substrate, which limits interdiffusion phenomena.
  • the close chemical composition between the substrate and the coating also makes it possible to suppress the appearance of secondary reaction zones.
  • the aluminum content of Y-Ni/Y'-Ni 3 AI coatings is of the order of 15-20 atomic % and does not allow the substrates to have a resistance to oxidation comparable to that of aluminides. of nickel and the service life of superalloy parts is therefore reduced.
  • the invention aims to meet this need by proposing a nickel superalloy part comprising:
  • the underlayer comprises a first and a second layer, said first layer being located between the substrate and the second layer, said first layer comprising a first Y'-Ni phase 3 AI and a second y-Ni phase, said second layer comprising a first ⁇ ' ⁇ Ni 3 AI phase, a second y-Ni phase and a third 0-NiAI phase, the atomic content average aluminum content in the second layer being strictly greater than the average aluminum atomic content in the first layer.
  • Such a sub-layer makes it possible on the one hand to limit the phenomena of interdiffusion in the part, in particular between the substrate and the second layer, because the first layer has an aluminum content closer to that of the substrate than the second layer.
  • the second layer, placed above the first layer makes it possible to form an alumina layer and thus to increase the resistance to oxidation of the nickel superalloy substrate.
  • the first layer does not comprise any phase other than the first y′-Ni 3 AI phase and the second y-Ni phase.
  • the second layer does not comprise any phase other than the first phase y'-Ni 3 AI, the second phase y-Ni, and the third phase 0-NiAI.
  • the underlayer does not include any layers other than the first and second layers.
  • the average atomic aluminum content of the first layer is up to 4% higher, or even higher by between 2% and 4%, than the average atomic aluminum content of the substrate.
  • the average aluminum atomic content of the second layer is up to 4% higher, or even between 2% and 4% higher than the average aluminum atomic content of the first layer.
  • the average aluminum atomic content is understood as the value of the average aluminum atomic content over the whole of the layer, or where applicable, of the zone concerned. It is understood that particular care will be taken to make a representative measurement of the composition of the layer (or zone) as a whole, since indeed, the multiphase nature of the latter can locally induce marked differences in concentrations if the measurement is performed only locally.
  • the metal underlayer comprises a first layer comprising a first y′-Ni 3 Al phase and a second y-Ni phase.
  • the first layer may comprise a plurality of zones, each comprising a first phase Y' _ Ni 3 AI and a second phase y- Ni, each of the zones having an average aluminum content higher than the zone directly under -lying.
  • the first layer can comprise a plurality of zones, together forming in the first layer a gradient of average aluminum atomic content.
  • each of the zones of the first layer can have an average aluminum atomic content up to 4% higher, or even between 2% and 4% higher, than the average aluminum atomic content of the zone directly below, said zones having a thickness of 1 ⁇ m to 5 ⁇ m.
  • a first layer comprising a plurality of zones makes it possible to gradually switch from a structure close to that of the substrate to a structure richer in aluminum, and thus to avoid a sudden variation in the concentration of aluminum, and thus to limit the interdiffusion phenomena.
  • the metal underlayer comprises a second layer comprising a first y'-NisAl phase, a second y-Ni phase and a third O-NiAl phase.
  • the second layer may comprise a plurality of zones each comprising a first y'-Ni 3 AI phase, a second y-Ni phase and a third 0-NiAl phase, each of the zones having an average atomic content of aluminum superior to the underlying area.
  • all of the zones of the second layer of the sub-layer can exhibit a gradient of the average aluminum atomic content.
  • each of the zones of the second layer can have an average aluminum atomic content up to 4% higher, or even between 2% and 4% higher, than the average aluminum atomic content of the zone directly below, said zones having a thickness of 1 ⁇ m to 5 ⁇ m.
  • a second layer having such a plurality of zones makes it possible to gradually move from a structure close to that of the first layer to a structure even richer in aluminum and thus to avoid a sudden variation in the concentration of aluminum, and thus to limit the phenomena of interdiffusion.
  • This progressive variation in the atomic content of aluminum in the second layer makes it possible, on the one hand, to have good adhesion between the underlayer and the substrate while limiting the phenomena of interdiffusion and, on the other hand, to have good adhesion between the substrate, the first layer and the second layer.
  • the average aluminum atomic content in the second layer or, where appropriate, in the last zone of the second layer can be between 7 and 15% by weight.
  • the total y-Ni content in the metal underlayer is between 5.0% and 20.0% by mass, relative to the total weight of the underlayer.
  • the total content of y′-Ni 3 Al in the metal underlayer is between 40.0% and 90.0% by mass relative to the total weight of the underlayer. For example between 40.0% and 89.8% by mass.
  • the total content of 0-NiAl in the metal underlayer is between 5.0% and 40.0% by mass relative to the total weight of the underlayer.
  • the total content of hafnium Hf in the metal underlayer is between 0.2% and 2.0% by mass relative to the total weight of the underlayer.
  • the multilayer metal underlayer may also include chromium Cr.
  • the average chromium content can be between 3% and 10% by mass.
  • the chromium should not be present in amounts which could cause it to form a different phase in the first or second layer.
  • the substrate may be a nickel superalloy comprising y-Ni and y'-Ni 3 Al phases, and preferably comprising only y-Ni and y'-Ni 3 Al phases.
  • the total y-phase content in the substrate is between 20% and 40% by mass relative to the total weight of the substrate, and preferably between 25% and 35% by mass relative to the total weight of the substrate.
  • the substrate is a single crystal nickel base superalloy.
  • the first layer is directly in contact with the substrate, and the second layer is directly in contact with the first layer.
  • the first and/or the second layer comprise, in addition to aluminum and nickel, one or more elements chosen from chromium, hafnium, cobalt, platinum, silicon, tantalum, tungsten, molybdenum, rhenium.
  • the first and/or the second layer do not include elements other than elements chosen from nickel, aluminum, chromium, hafnium, cobalt, platinum, silicon, tantalum , tungsten, molybdenum, rhenium.
  • the invention also relates to a process for manufacturing a part as described previously in which the deposition of each of the layers of the metallic sub-layer is carried out by a physical process in the vapor phase.
  • the method can be carried out in a single enclosure by co-evaporation or co-sputtering of several sources placed in a single physical vapor deposition enclosure.
  • Such an embodiment makes it possible to deposit each of the layers of the metal sub-layer by precisely controlling the content of each of its components.
  • a part as described above can be obtained in the course of a single enclosure by a magnetron cathode co-sputtering process.
  • Figure 1 is a schematic representation of a part according to one embodiment of the invention.
  • Figure 2 is a micrograph of a part according to one embodiment of the invention.
  • FIG. 3 schematically represents an enclosure for physical vapor deposition according to one embodiment of the invention.
  • FIG. 1 schematically represents a part 100 according to the invention.
  • the part comprises a substrate 10, made of nickel superalloy, and an underlayer, comprising a first layer 11 and a second layer 12.
  • the first layer 11 comprises an average aluminum atomic content higher than that of the substrate 10.
  • the scope of the invention is not departed from when the first layer 11 comprises a plurality of zones, each comprising an average aluminum atomic content greater than that of the underlying zone.
  • the first layer 11 it is possible for the first layer 11 to be composed of a plurality of zones each having a thickness of between 1 ⁇ m and 5 ⁇ m, the average atomic content of aluminum in each of the zones being greater than the average atomic content of aluminum of the underlying area.
  • the average aluminum atomic content in each zone of the first layer can be up to 4% higher, or even between 2 and 4% higher, than the average aluminum atomic content of the underlying zone.
  • the part 100 comprises a second layer 12 whose average aluminum content is greater than the average aluminum content of the first layer 11.
  • the scope of the invention is not departed from when the second layer 12 comprises a plurality of zones, each comprising a higher aluminum concentration than that of the underlying zone.
  • the second layer 12 is composed of a plurality of zones having a thickness of between 1 ⁇ m and 5 ⁇ m, the average aluminum content in each of the zones being greater than the average aluminum content of the zone underlying.
  • the average aluminum atomic content in each zone of the second layer can be up to 4% higher, or even between 2% and 4% higher than the average aluminum atomic content of the underlying zone.
  • first 11 and the second layer 12 each to comprise several zones as described above.
  • the first zone of the first layer comprises an average aluminum atomic content 2 to 4% greater than the average aluminum atomic content in the substrate
  • the second zone of the first layer comprises an average aluminum atomic content of 2 to 4% greater than the average atomic content of the first zone, and so on up to the second layer, the first zone of which comprises an average atomic aluminum content of 2% to 4% more bigger than the last zone of the first layer, and so on until the last zone of the second layer.
  • the zones have a thickness between 1 ⁇ m and 5 ⁇ m.
  • the progressive variation of the aluminum content makes it possible, in all the embodiments considered above, to obtain a sub-layer whose upper part has a higher average atomic aluminum content than that of the substrate, while minimizing the interdiffusion effects or the creation of secondary reaction zones thanks to a progressive variation of the average aluminum atomic content.
  • the last zone of the second layer comprises the y-Ni, y'-Ni 3 AI and 0-NiAI phases.
  • the first layer 11 comprises between 1 and 4 zones
  • the second layer 12 comprises between 1 and 4 zones.
  • the first layer 11 comprises between 1 or 2 zones
  • the second layer 12 comprises between 1 or 2 zones.
  • the first layer 11 comprises a single zone
  • the second layer 12 comprises a single zone
  • an underlayer as described above makes it possible, if desired, to deposit a thermal barrier layer on the face opposite the substrate of the second layer, in particular guaranteeing good adhesion of the latter.
  • the gradual increase in the average atomic aluminum content in an underlayer as proposed makes it possible to ensure that each of the layers making up the underlayer is sufficiently close in composition to exhibit high adhesion with the directly underlying layer.
  • the progressive increase makes it possible to pass from the first layer to the second layer without having to change the deposition process. Indeed, the 0-NiAl phase appears naturally at high aluminum contents and one thus simply passes from the first to the second layer.
  • the presence of numerous zones in the first and the second zone increases the number of grain boundaries, which further slows down the interdiffusion of nickel or aluminum between the layers.
  • chromium is also present in the first and second layers.
  • the amount of chromium can be adjusted depending on the exact properties desired for the undercoat.
  • the chromium content in each of the first and second layers varies opposite to the aluminum content.
  • the increase in the average atomic content of aluminum in the metal sub-layer or, where applicable, in each of the zones of each of the layers of the sub-layer is fully compensated by a decrease in the average atomic content chromium in said undercoat.
  • the average atomic content of chromium in a layer can be between 7% and 17%.
  • the chromium content is chosen such that it does not affect the y/y' or y/y'/P structures desired for the first and the second layer.
  • FIG. 2 is a micrograph obtained by scanning electron microscopy of a part according to one embodiment of the invention.
  • the substrate 20 is covered with a first layer 21 and a second layer 22.
  • the deposition can be carried out by physical vapor deposition. Mention may in particular be made of deposition methods by cathodic sputtering, by pulsed laser ablation, by Joule evaporation or else by electron impact. Preferably, the deposition method is chosen from magnetron cathode sputtering or evaporation.
  • FIG. 3 schematically represents a device making it possible to carry out a deposition by magnetron sputtering.
  • a gas is introduced through the inlet 306 and a plasma is generated between the target 305 placed close to a magnet 304 and the substrate 311.
  • the following parameters taken in their usual definition for a magnetron cathode sputtering process, makes it possible to obtain an underlayer conforming to a part of the invention.
  • the ion bombardment can be carried out with a potential ranging from -200 V to 400 V for 10 to 30 minutes.
  • the deposition is carried out at a power density of between 3 to 10 W/cm 2 , heating during the deposition is between 200 to 700°C, the bias is between -150 V to - 300 V, and the pressure is between between 0.1 and 2.0 Pa.
  • targets corresponding to the materials to be deposited are introduced into the physical vapor deposition enclosure. It is thus possible to create the sub-layer layer by layer, or if necessary zone after zone, in a single enclosure, by adjusting the deposition conditions to ensure that the composition of each layer, or if necessary each zone of the first layer then the second layer, has the desired composition.
  • compositions comprising elements in different contents were simulated with the JPMATPro-V10 software.
  • content of each of the y-Ni, y'-Ni 3 Al and 0-NiAl phases was determined by the software.
  • compositions 1 to 3 satisfy the desired conditions for the second layer of claim 1, while compositions 4 and 5 n do not satisfy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Sous-couche pour superalliage base nickel permettant l'amélioration de la durée de vie des pièces et son procédé de mise en œuvre L'invention concerne une pièce en superalliage de nickel (100) comprenant : - un substrat en superalliage de nickel (10); et - une sous-couche métallique recouvrant le substrat, caractérisée en ce que la sous-couche comprend une première (11) et une deuxième (12) couches, ladite première couche étant située entre le substrat et la deuxième couche, ladite première couche comprenant une première phase γ'-Ni3Al et une deuxième phase γ-Ni, ladite deuxième couche comprenant une première phase γ'- Ni3Al, une deuxième phase γ-Ni et une troisième phase β-NiAl, la fraction atomique moyenne en aluminium dans la deuxième couche étant strictement supérieure à la fraction atomique moyenne en aluminium dans la première couche.

Description

Description
Titre de l'invention : Sous-couche pour superalliage base nickel permettant l'amélioration de la durée de vie des pièces et son procédé de mise en œuvre.
Domaine Technique
L'invention s'inscrit dans le domaine des pièces de turbomachines notamment des turbomachines aéronautiques, et particulièrement des aubes de turbine ou d'ailettes de distributeurs. La présente invention concerne les revêtements pour des substrats et plus précisément les sous-couches déposées à la surface de substrats métalliques et leurs procédés de préparation
Technique antérieure
Les barrières thermiques permettent de protéger des substrats dans des environnements où la température est élevée. En fonctionnement à de telles températures, les phénomènes de diffusion qui sont thermiquement activés peuvent induire des modifications importantes entre le substrat et la sous-couche sur les substrats et leurs compositions chimiques réduisant par conséquent la durée de vie de l'ensemble de la pièce.
Les barrières thermiques sont habituellement placées sur des sous-couches, revêtant les substrats, et qui permettent d'assurer la cohésion de la barrière thermique avec le substrat.
Parmi les sous-couches classiquement utilisées pour les superalliages base nickel, on peut notamment citer des revêtements composés d'aluminures de nickel ou bien les revêtements Y-Ni/y'-NisAI.
Les revêtements d'aluminures de nickel présentent généralement des teneurs atomiques en aluminium de l'ordre de 40 % atomique, ce qui permet de former un oxyde d'alumine protecteur contre la corrosion et l'oxydation. Néanmoins, la forte teneur en aluminium, comparativement aux substrats, provoque des phénomènes d'interdiffusion, à savoir la migration de nickel depuis le substrat vers le revêtement et d'aluminium depuis le revêtement vers le substrat. Ces phénomènes sont thermiquement activés, donc amplifiés par l'utilisation à haute température du substrat revêtu, et causent à terme une réduction importante de la durée de vie des pièces revêtues. Par exemple, les substrats peuvent, dans les différentes applications envisagées, être sujets à des températures de l'ordre de 1000°C, par exemple comprises entre 1000°C et 1100°C.
En effet, la diffusion de l'aluminium favorise la transition martensitique dans le revêtement, ce qui peut générer des fissures et favoriser l'écaillage de la couche d'alumine. L'interdiffusion peut également créer des zones de réaction secondaire qui dégradent les propriétés mécaniques du superalliage revêtu.
Les revêtements Y-Ni/Y'-Ni3AI ont une composition chimique plus proche de celle du substrat en superalliage de nickel ce qui limite les phénomènes d'interdiffusion. De plus, la composition chimique proche entre le substrat et le revêtement permet également de supprimer l'apparition de zones de réaction secondaire. Toutefois, la teneur en aluminium des revêtements Y-Ni/Y'-Ni3AI est de l'ordre de 15-20 % atomique et ne permettent pas aux substrats de disposer d'une résistance à l'oxydation comparable à celle des aluminures de nickel et la durée de vie des pièces en superalliage s'en trouve donc réduite.
Il demeure donc un besoin pour une pièce en superalliage de nickel revêtue présentant d'une part des phénomènes d'interdiffusion limités, et d'autre part une résistance à l'oxydation et à la corrosion augmentée par rapport aux pièces revêtues de l'art antérieur.
Exposé de l'invention
L'invention vise à répondre à ce besoin en proposant une pièce en superalliage de nickel comprenant :
- un substrat en superalliage de nickel ; et
- une sous-couche métallique recouvrant le substrat, caractérisée en ce que la sous-couche comprend une première et une deuxième couches, ladite première couche étant située entre le substrat et la deuxième couche, ladite première couche comprenant une première phase Y'-Ni3AI et une deuxième phase y-Ni, ladite deuxième couche comprenant une première phase \'~ Ni3AI, une deuxième phase y-Ni et une troisième phase 0-NiAI, la teneur atomique moyenne en aluminium dans la deuxième couche étant strictement supérieure à la teneur atomique moyenne en aluminium dans la première couche.
Une telle sous-couche permet d'une part de limiter les phénomènes d'interdiffusion dans la pièce, notamment entre le substrat et la deuxième couche, car la première couche présente une teneur en aluminium plus proche de celle du substrat que la deuxième couche. De plus, la deuxième couche, disposée au-dessus de la première couche, permet de former une couche d'alumine et ainsi d'augmenter la résistance à l'oxydation du substrat en superalliage de nickel.
Dans un mode de réalisation, la première couche ne comprend pas d'autre phase que la première phase y'-Ni3AI et la deuxième phase y-Ni.
Dans un mode de réalisation, la deuxième couche ne comprend pas d'autre phase que la première phase y'-Ni3AI, la deuxième phase y-Ni, et la troisième phase 0-NiAI.
Dans un mode de réalisation, la sous-couche ne comprend pas d'autres couches que la première et la deuxième couche.
Dans un mode de réalisation, la teneur atomique moyenne en aluminium de la première couche est jusqu'à 4% supérieure, voire supérieure d'entre 2% et 4 %, à la teneur atomique moyenne en aluminium du substrat.
Dans un mode de réalisation, la teneur atomique moyenne en aluminium de la deuxième couche est jusqu'à 4% supérieure, voire supérieure d'entre 2% et 4% à la teneur atomique moyenne en aluminium de la première couche.
La teneur atomique moyenne en aluminium s'entend comme la valeur de la teneur atomique en aluminium moyennée sur l'ensemble de la couche, ou le cas échéant, de la zone concernée. Il est entendu qu'il sera apporté un soin particulier à faire une mesure représentative de la composition la couche (ou de la zone) dans son ensemble, puisqu'en effet, la nature multiphasique cette dernière peut localement induire des différences de concentrations marquées si la mesure est réalisée uniquement localement.
Comme indiqué ci-dessus, la sous-couche métallique comprend une première couche comprenant une première phase y'-Ni3AI et une deuxième phase y-Ni. Dans un mode de réalisation, la première couche peut comprendre une pluralité de zones, chacune comprenant une première phase Y'_Ni3AI et une deuxième phase y- Ni, chacune des zones ayant une teneur moyenne en aluminium supérieure à la zone directement sous-jacente.
En d'autres termes, la première couche peut comprendre une pluralité de zones, formant ensemble dans la première couche un gradient de teneur atomique moyenne en aluminium. Par exemple, chacune des zones de la première couche peut avoir une teneur atomique moyenne en aluminium jusqu'à 4% supérieure, voire entre 2 % et 4 % supérieure, à la teneur atomique moyenne en aluminium de la zone directement inférieure, lesdites zones ayant une épaisseur de 1 pm à 5 pm.
Une première couche comprenant une pluralité de zones permet de passer progressivement d'une structure proche de celle du substrat à une structure plus riche en aluminium, et d'ainsi d'éviter une variation brutale de la concentration en aluminium, et ainsi de limiter les phénomènes d'interdiffusion.
Il est entendu que l'épaisseur d'une zone ou le cas échéant d'une couche, est mesurée dans la direction normale au substrat.
Comme indiqué ci-dessus, la sous-couche métallique comprend une deuxième couche comprenant une première phase y'-NisAI, une deuxième phase y-Ni et une troisième phase 0-NiAI.
Dans un mode de réalisation, la deuxième couche peut comprendre une pluralité de zones comprenant chacune une première phase y'-Ni3AI, une deuxième phase y-Ni et une troisième phase 0-NiAI, chacune des zones ayant une teneur atomique moyenne en aluminium supérieure à la zone sous-jacente.
En d'autres termes, l'ensemble des zones de la deuxième couche de la sous-couche peut présenter un gradient de la teneur atomique moyenne en aluminium. Par exemple, chacune des zones de la deuxième couche peut avoir une teneur atomique moyenne en aluminium jusqu'à 4% supérieure, voire entre 2 % et 4 % supérieure, à la teneur atomique moyenne en aluminium de la zone directement inférieure, lesdites zones ayant une épaisseur de 1 pm à 5 pm. Une deuxième couche présentant une telle pluralité de zones permet de passer progressivement d'une structure proche de celle de la première couche à une structure encore plus riche en aluminium et d'ainsi d'éviter une variation brutale de la concentration en aluminium, et ainsi de limiter les phénomènes d'interdiffusion.
Cette variation progressive de la teneur atomique en aluminium dans la deuxième couche permet d'une part d'avoir une bonne adhérence entre la sous-couche et le substrat tout en limitant les phénomènes d'interdiffusion et d'autre part d'avoir une bonne adhérence entre le substrat, la première couche et la deuxième couche.
Dans un mode de réalisation, la teneur atomique moyenne en aluminium dans la deuxième couche ou, le cas échéant, dans la dernière zone de la deuxième couche peut être comprise entre 7 et 15 % massique.
Dans un mode de réalisation, la teneur totale en y-Ni dans la sous-couche métallique est comprise entre 5,0 % et 20,0 % massique, par rapport au poids total de la sous- couche.
Dans un mode de réalisation, la teneur totale en y'-Ni3AI dans la sous-couche métallique est comprise entre 40,0 % et 90,0 % massique par rapport au poids total de la sous-couche. Par exemple comprise entre 40,0 % et 89,8 % massique.
Dans un mode de réalisation, la teneur totale en 0-NiAI dans la sous-couche métallique est comprise entre 5,0 % et 40,0 % massique par rapport au poids total de la sous-couche.
Il a été constaté par les inventeurs, que les teneurs en y-Ni, en y'-Ni3AI et en 0-NiAI telles que proposées ci-dessus permettent d'obtenir une sous-couche métallique présentant un optimum entre d'une part la limitation des phénomènes d'interdiffusion, notamment de la diffusion de l'aluminium, et d'autre part une teneur en aluminium permettant la formation d'une couche d'alumine protégeant le substrat contre la corrosion et l'oxydation.
Dans un mode de réalisation, la teneur totale en hafnium Hf dans la sous-couche métallique est comprise entre 0,2 % et 2,0 % massique par rapport au poids total de la sous-couche. Dans un autre mode de réalisation, la sous-couche métallique multicouche peut également comprendre du chrome Cr. Par exemple, la teneur moyenne en chrome peut être comprise entre 3 % et 10 % massiques. Toutefois, le chrome ne doit pas être présent dans des quantités qui pourraient le conduire à former une phase différente dans la première ou la deuxième couche.
La présence de chrome dans une sous-couche de l'invention permet d'augmenter encore davantage la résistance de la sous-couche métallique à la corrosion.
Dans un mode de réalisation, le substrat peut être un superalliage de nickel comprenant des phases y-Ni et y'-Ni3AI, et de préférence ne comprenant que des phases y-Ni et y'-Ni3AI. Dans un mode de réalisation, la teneur totale en phase y dans le substrat est compris entre 20 % et 40 % massiques par rapport au poids total du substrat, et de préférence entre 25 % et 35 % massiques par rapport au poids total du substrat.
Dans un mode de réalisation, le substrat est un superalliage monocristallin à base de nickel.
Dans un mode de réalisation, la première couche est directement au contact du substrat, et la deuxième couche est directement au contact de la première couche.
Dans un mode de réalisation, la première et/ou la deuxième couche comprennent, en plus de l'aluminium et du nickel, un ou plusieurs éléments choisis parmi le chrome, le hafnium, le cobalt, le platine, le silicium, le tantale, le tungstène, le molybdène, le rhénium.
Dans un mode de réalisation, la première et/ou la deuxième couche ne comprennent pas d'autres éléments que des éléments choisis parmi le nickel, l'aluminium, le chrome, le hafnium, le cobalt, le platine, le silicium, le tantale, le tungstène, le molybdène, le rhénium.
Selon un autre de ses aspects, l'invention concerne également un procédé de fabrication d'une pièce telle que décrite précédemment dans lequel le dépôt de chacune des couches de la sous-couche métallique est réalisé par un procédé physique en phase vapeur. Dans un mode de réalisation, le procédé peut être réalisé dans une unique enceinte par co-évaporation ou co-pulvérisation de plusieurs sources disposées dans une unique enceinte de dépôt physique en phase vapeur.
Un tel mode de réalisation permet de déposer chacune des couches de la sous- couche métallique en contrôlant précisément la teneur en chacun de ses composants.
Par exemple, une pièce telle que décrite ci-dessus peut être obtenue au cours dans une unique enceinte par un procédé de co-pulvérisation cathodique magnétron.
Description des modes de réalisation.
[Fig. 1] La figure 1 est une représentation schématique d'une pièce selon un mode de réalisation de l'invention.
[Fig. 2] La figure 2 est une micrographie d'une pièce conforme à un mode de réalisation de l'invention.
[Fig. 3] La figure 3 représente schématiquement une enceinte pour un dépôt physique en phase vapeur selon un mode de réalisation de l'invention.
Description des modes de réalisation.
Des modes de réalisation de l'invention sont à présent décrits au moyen de figures. L'invention n'est toutefois pas limitée à ces seuls modes de réalisation. Les figures ont une vocation illustrative et ne doivent pas être interprétées comme limitant l'invention.
La figure 1 représente de manière schématique une pièce 100 selon l'invention.
La pièce comprend un substrat 10, en superalliage de nickel, et une sous-couche, comprenant une première couche 11 et une deuxième couche 12.
Comme décrit plus haut, la première couche 11 comprend une teneur atomique moyenne en aluminium supérieure à celle du substrat 10.
On ne sort pas du cadre de l'invention lorsque la première couche 11 comprend une pluralité de zones, chacune comprenant une teneur atomique moyenne en aluminium supérieure à celle de la zone sous-jacente. Par exemple, il est possible que la première couche 11 soit composée d'une pluralité de zones ayant chacune une épaisseur comprise entre 1 pm et 5 pm, la teneur atomique moyenne en aluminium dans chacune des zones étant supérieure à la teneur atomique moyenne en aluminium de la zone sous-jacente.
Par exemple, la teneur atomique moyenne en aluminium dans chaque zone de la première couche peut être jusqu'à 4 % supérieure, voire entre 2 et 4 % supérieure, à la teneur atomique moyenne en aluminium de la zone sous-jacente.
Egalement, la pièce 100 comprend une deuxième couche 12 dont la teneur moyenne en aluminium est supérieure à la teneur moyenne en aluminium de la première couche 11.
On ne sort pas du cadre de l'invention lorsque la deuxième couche 12 comprend une pluralité de zones, chacune comprenant une concentration en aluminium supérieure à celle de la zone sous-jacente.
Par exemple, il est possible que la deuxième couche 12 soit composée d'une pluralité de zones ayant une épaisseur comprise entre 1 pm et 5 pm, la teneur moyenne en aluminium dans chacune des zones étant supérieure à la teneur moyenne en aluminium de la zone sous-jacente.
Par exemple, la teneur atomique moyenne en aluminium dans chaque zone de la deuxième couche peut être jusqu'à 4 % supérieure, voire entre 2 % et 4 % supérieure à la teneur atomique moyenne en aluminium de la zone sous-jacente.
Il est également possible que la première 11 et la deuxième couche 12 comprennent chacune plusieurs zones telles que décrites ci-dessus.
Dans un mode de réalisation non représenté, la première zone de la première couche comprend une teneur atomique moyenne en aluminium de 2 à 4 % plus grande que la teneur atomique moyenne en aluminium dans le substrat, la deuxième zone de la première couche comprend une teneur atomique moyenne en aluminium de 2 à 4 % plus grande que la teneur atomique moyenne de la première zone, et ainsi de suite jusqu'à la deuxième couche, dont la première zone comprend une teneur atomique moyenne en aluminium de 2 % à 4 % plus grande que la dernière zone de la première couche, et ainsi de suite jusqu'à la dernière zone de la deuxième couche. Comme ci-dessus, les zones ont une épaisseur comprise entre 1 pm et 5 pm.
La variation progressive de la teneur en aluminium permet, dans tous les modes de réalisation envisagés ci-dessus, d'obtenir une sous-couche dont la partie supérieure présente une teneur atomique moyenne en aluminium plus élevée que celle du substrat, tout en minimisant les effets d'interdiffusion ou la création de zones de réaction secondaires grâce à une variation progressive de la teneur atomique moyenne en aluminium.
Comme décrit plus haut, il est entendu que la dernière zone de la deuxième couche comprend les phases y-Ni, y'-Ni3AI et 0-NiAI.
Dans un mode de réalisation, la première couche 11 comprend entre 1 et 4 zones, et la deuxième couche 12 comprend entre 1 et 4 zones.
Dans un mode de réalisation, la première couche 11 comprend entre 1 ou 2 zones, et la deuxième couche 12 comprend entre 1 ou 2 zones.
Dans un mode de réalisation, la première couche 11 comprend une unique zone, et la deuxième couche 12 comprend une unique zone.
Il a également été observé qu'une sous-couche telle que décrite ci-dessus permet si cela est souhaité de déposer une couche de barrière thermique sur la face opposée au substrat de la deuxième couche en garantissant notamment une bonne adhérence de cette dernière.
L'augmentation progressive de la teneur atomique moyenne en aluminium dans une sous-couche telle que proposée permet d'assurer que chacune des couches composant la sous-couche soit suffisamment proche en composition pour présenter une grande adhérence avec la couche directement sous-jacente. L'augmentation progressive permet de passer de la première couche à la deuxième couche sans avoir besoin de changer le procédé de dépôt. En effet, la phase 0-NiAI apparaît naturellement à des teneurs en aluminium élevées et l'on passe ainsi simplement de la première à la deuxième couche. De plus, la présence de nombreuses zones dans la première et la deuxième zone augmente le nombre de joints de grains ce qui ralentit encore davantage l'interdiffusion du nickel ou de l'aluminium entre les couches.
Dans un mode de réalisation, du chrome est également présent dans la première et la deuxième couche. La quantité de chrome peut être ajustée selon les propriétés exactes souhaitées pour la sous-couche.
Dans un mode de réalisation, la teneur en chrome dans chacune des première et deuxième couches varie de manière opposée à la teneur en aluminium.
Dans un mode de réalisation, l'augmentation de la teneur atomique moyenne en aluminium dans la sous-couche métallique ou le cas échéant dans chacune des zones de chacune des couches de la sous-couche est intégralement compensée par une diminution de la teneur atomique moyenne en chrome dans ladite sous-couche.
Dans un mode de réalisation, la teneur atomique moyenne en chrome dans une couche, ou le cas échéant une zone d'une couche peut être comprise entre 7 % à 17 %.
Bien entendu, la teneur en chrome est choisie de telle sorte qu'elle n'affecte pas les structures y/y' ou y/y'/P souhaitées pour la première et la deuxième couche.
La figure 2 est une micrographie obtenue par microscopie électronique à balayage d'une pièce selon un mode de réalisation de l'invention.
Le substrat 20 est recouvert d'une première couche 21 et d'une deuxième couche 22.
Sur la micrographie présente en figure 2 les phases y et y' 211 apparaissent plus claires que les phases P 221.
Dans mode de réalisation, le dépôt peut être réalisé par un dépôt physique en phase vapeur. On peut notamment citer les méthodes de dépôt par pulvérisation cathodique, par ablation laser pulsé, par évaporation joule ou encore par impact d'électron. De préférence, la méthode de dépôt est choisie parmi la pulvérisation cathodique magnétron ou l'évaporation.
La figure 3 représente schématiquement un dispositif permettant de réaliser un dépôt par pulvérisation cathodique magnétron.
Dans une chambre 301, un gaz est introduit par l'entrée 306 et un plasma est généré entre la cible 305 disposée à proximité d'un aimant 304 et le substrat 311.
Par exemple, les paramètres suivants, pris dans leur définition habituelle pour un procédé de pulvérisation cathodique magnétron permet d'obtenir une sous-couche conforme à une pièce de l'invention. Le bombardement ionique peut être réalisé avec un potentiel compris entre -200 V à 400 V pendant 10 à 30 minutes. Le dépôt est réalisé une densité de puissance comprise entre 3 à 10 W/cm2, un chauffage pendant le dépôt est compris entre 200 à 700°C, le bias est compris entre -150 V à - 300 V, et la pression est comprise entre 0,1 et 2,0 Pa.
Dans un mode de réalisation, plusieurs cibles correspondant aux matériaux à déposer sont introduites dans l'enceinte de dépôt physique en phase vapeur. On peut ainsi créer la sous-couche couche par couche, ou le cas échéant zone après zone, dans une unique enceinte, en ajustant les conditions de dépôt pour assurer que la composition de chaque couche, ou le cas échéant chaque zone de la première couche puis de la deuxième couche, ait la composition souhaitée.
Exemple
Plusieurs compositions comprenant des éléments en différentes teneurs, ont été simulées avec le logiciel JPMATPro-V10. Pour chacune de ces compositions, la teneur en chacune des phases y-Ni, y'-Ni3AI et 0-NiAI a été déterminée par le logiciel.
Dans le tableau 1, les teneurs des éléments sont données en pourcentages atomiques et les teneurs des phases sont exprimées en pourcentages massiques.
Il est observé que la teneur en chacune des phases y-Ni, y'-Ni3AI et 0-NiAI des compositions 1 à 3 satisfont aux conditions souhaitées pour la deuxième couche de la revendication 1, tandis que les compositions 4 et 5 n'y satisfont pas.
[Tableau 1]
Le tableau ci-dessus montre que ce n'est pas la teneur individuelle de chaque élément, mais bien un effet de la teneur en chacun des éléments qui est déterminante dans la présence ou non des phases y-Ni, y'-Ni3AI et 0-NiAI, et la proportion relative de chacune d'entre elles.

Claims

Revendications
[Revendication 1] Pièce en superalliage de nickel (100) comprenant :
- un substrat (10) en superalliage de nickel ; et
- une sous-couche métallique recouvrant le substrat, caractérisée en ce que la sous-couche comprend une première (11) et une deuxième (12) couches, ladite première couche étant située entre le substrat et la deuxième couche, ladite première couche comprenant une première phase Y'-Ni3AI et une deuxième phase y-Ni, ladite deuxième couche comprenant une première phase \'~ Ni3AI, une deuxième phase y-Ni et une troisième phase 0-NiAI, la teneur atomique moyenne en aluminium dans la deuxième couche étant strictement supérieure à la teneur atomique moyenne en aluminium dans la première couche, et dans laquelle la teneur totale en y-Ni dans la sous-couche métallique est comprise entre 5,0 % et 20,0 % massique, la teneur totale en y'-Ni3AI dans la sous-couche métallique est comprise entre 40,0 % et 90,0 % massique et la teneur totale en 0-NiAI dans la sous-couche métallique est comprise entre 5,0 % et 40,0 % massique par rapport au poids total de la sous-couche.
[Revendication 2] Pièce selon la revendication 1, dans laquelle la teneur totale en hafnium Hf dans la sous-couche métallique est comprise entre 0,2 % et 2,0 % massique par rapport au poids total de la sous-couche.
[Revendication 3] Pièce selon l'une des revendications 1 ou 2, dans laquelle la teneur atomique moyenne en aluminium de la première couche (11) est supérieure d'entre 2% et 4% à la teneur atomique moyenne en aluminium du substrat (10).
[Revendication 4] Pièce selon l’une quelconque des revendications 1 à 3, dans laquelle la teneur atomique moyenne en aluminium de la deuxième couche (12) est supérieure d'entre 2% et 4% à la teneur atomique moyenne en aluminium de la première couche (11).
[Revendication 5] Pièce selon l’une quelconque des revendications 1 à 4, dans laquelle le teneur totale en phase y dans le substrat (10) est compris entre 20 % et 40 % massiques par rapport au poids total du substrat.
[Revendication 6] Procédé de préparation d'une pièce selon l'une quelconque des revendications 1 à 5, dans lequel le dépôt de chacune des couches de la sous- couche métallique est réalisé par un procédé physique en phase vapeur.
[Revendication 7] Procédé de préparation selon la revendication 6, dans lequel le procédé est réalisé dans une unique enceinte (301) par co-évaporation ou copulvérisation de plusieurs sources disposées dans l'enceinte.
EP21762756.1A 2020-08-06 2021-08-06 Sous-couche pour superalliage base nickel permettant l'amélioration de la durée de vie des pièces et son procédé de mise en oeuvre Pending EP4192995A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2008317A FR3113260B1 (fr) 2020-08-06 2020-08-06 Sous-couche pour superalliage base nickel permettant l'amelioration de la duree de vie des pieces et son procede de mise en oeuvre
PCT/FR2021/051450 WO2022029393A1 (fr) 2020-08-06 2021-08-06 Sous-couche pour superalliage base nickel permettant l'amelioration de la duree de vie des pieces et son procede de mise en œuvre

Publications (1)

Publication Number Publication Date
EP4192995A1 true EP4192995A1 (fr) 2023-06-14

Family

ID=74183210

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21762756.1A Pending EP4192995A1 (fr) 2020-08-06 2021-08-06 Sous-couche pour superalliage base nickel permettant l'amélioration de la durée de vie des pièces et son procédé de mise en oeuvre

Country Status (4)

Country Link
US (1) US20230340645A1 (fr)
EP (1) EP4192995A1 (fr)
FR (1) FR3113260B1 (fr)
WO (1) WO2022029393A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3138451A1 (fr) 2022-07-28 2024-02-02 Safran Procédé d’application de revêtement et aube de turbine avec revêtement appliqué suivant ce procédé

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8133595B2 (en) * 2006-11-16 2012-03-13 National University Corporation Hokkaido University Multilayer alloy coating film, heat-resistant metal member having the same, and method for producing multilayer alloy coating film
FR3064648B1 (fr) * 2017-03-30 2019-06-07 Safran Piece de turbine en superalliage et procede de fabrication associe

Also Published As

Publication number Publication date
FR3113260B1 (fr) 2023-01-06
US20230340645A1 (en) 2023-10-26
FR3113260A1 (fr) 2022-02-11
WO2022029393A1 (fr) 2022-02-10

Similar Documents

Publication Publication Date Title
EP3532648B1 (fr) Superalliage a base de nickel, aube monocristalline et turbomachine.
JP2004068157A (ja) オーバレイコーティング
EP0884403A1 (fr) Materiau multicouches à revetement anti-erosion, anti-abrasion, et anti-usure sur substrat en aluminium, en magnesium ou en leurs alliages.
FR2814473A1 (fr) Procede de realisation d'un revetement de protection formant barriere thermique avec sous-couche de liaison sur un substrat en superalliage et piece obtenue
WO2022029393A1 (fr) Sous-couche pour superalliage base nickel permettant l'amelioration de la duree de vie des pieces et son procede de mise en œuvre
EP3469112B1 (fr) Procédé de protection contre la corrosion et l'oxydation d'une pièce en superalliage monocristallin à base de nickel exempt d'hafnium
EP3601634B1 (fr) Piece de turbine en superalliage et procede de fabrication associe
EP3698020B1 (fr) Pièce de turbine en superalliage comprenant du rhénium et procédé de fabrication associé
EP3685018B1 (fr) Pièce de turbine en superalliage comprenant du rhénium et/ou du ruthénium et procédé de fabrication associé
EP3532653B1 (fr) Pièce comprenant un substrat en superalliage monocristallin à base de nickel et son procédé de fabrication
WO2020128394A1 (fr) Pièce de turbine en superalliage comprenant du rhenium et/ou du ruthenium et procédé de fabrication associé
FR3065968A1 (fr) Piece de turbine en superalliage et procede de fabrication associe par bombardement de particules chargees
WO2021156562A1 (fr) Piece de turbomachine revetue ayant un substrat base nickel comprenant de l'hafnium
WO2024023428A1 (fr) Procede d'application de revetement et aube de turbine avec revetement applique suivant ce procede
EP4041930A1 (fr) Piece d'aeronef en superalliage comprenant du rhenium et/ou du ruthenium et procede de fabrication associe
FR3107081A1 (fr) Piece de turbomachine en superalliage a teneur en hafnium optimisee
FR2739631A1 (fr) Revetement de surface anticorrosion de type mcraly, procede de depot d'un tel revetement, aube monocristalline de turbine a gaz pourvue d'un tel revetement

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230217

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)