EP4189422A1 - Transmission device of an optical detection device, detection device, vehicle, and method - Google Patents

Transmission device of an optical detection device, detection device, vehicle, and method

Info

Publication number
EP4189422A1
EP4189422A1 EP21746716.6A EP21746716A EP4189422A1 EP 4189422 A1 EP4189422 A1 EP 4189422A1 EP 21746716 A EP21746716 A EP 21746716A EP 4189422 A1 EP4189422 A1 EP 4189422A1
Authority
EP
European Patent Office
Prior art keywords
signal
transmission
electromagnetic
signals
transmission signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21746716.6A
Other languages
German (de)
French (fr)
Inventor
Jonas KRAUSE
Christoph Parl
Thorsten BEUTH
Oleg Loginenko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Schalter und Sensoren GmbH
Original Assignee
Valeo Schalter und Sensoren GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Schalter und Sensoren GmbH filed Critical Valeo Schalter und Sensoren GmbH
Publication of EP4189422A1 publication Critical patent/EP4189422A1/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93274Sensor installation details on the side of the vehicles

Definitions

  • the invention relates to a transmission device of an optical detection device for monitoring at least one monitoring area for objects by means of electromagnetic transmission signals, with at least one signal source with which electromagnetic transmission signals can be generated, and with at least one signal influencing device with which the electromagnetic transmission signals can be influenced .
  • the invention also relates to a detection device for detecting objects in at least one surveillance area by means of electromagnetic transmission signals, with at least one transmission device with which electromagnetic transmission signals can be transmitted into the surveillance region, with at least one reception device with which electromagnetic reception signals can be received, which originate from electromagnetic transmission signals that are reflected in the monitoring area, and with which electromagnetic reception signals can be converted into evaluation signals that can be processed with an evaluation device, and with at least one evaluation device with which, on the basis of at least the electromagnetic reception signals, information about the monitoring area can be determined, the at least one transmission device having at least one signal source with which electromagnetic transmission signals can be generated , and at least one signal influencing device with which the electromagnetic transmission signals can be influenced.
  • the invention relates to a vehicle with at least one detection device for detecting objects in at least one surveillance area by means of electromagnetic signals.
  • the invention also relates to a method for detecting objects in at least one monitoring area with a detection device using electromagnetic transmission signals, in which at least one electromagnetic transmission signal is transmitted into the at least one monitoring area using at least one transmission device, with the at least one electromagnetic transmission signal is influenced with at least one signal influencing device, at least one received signal is received with a receiving device, which originates from at least one transmission signal that is reflected in the monitored area, information about the monitored area is determined at least on the basis of the at least one received signal.
  • An optical transmitting and receiving device of an optical detection device of a vehicle is known from DE 10 2016 118 481 A1.
  • the transmitting and receiving device has at least one optical transmitter for emitting at least one transmitted light beam, at least one scanning unit for at least changing the beam direction of the at least one transmitted light beam and at least one optical receiver for receiving at least one received light beam, which is relatively are arranged relative to one another in such a way that the at least one receiver can receive transmitted light beams emitted by the at least one transmitter, which are reflected back as received light beams by an object or obstacle that may be present in a transmitted beam path of the at least one transmitter.
  • the at least one scanning unit has at least one first signal influencing device for deflecting at least one transmitted light beam radiated into the at least one scanning unit by the at least one transmitter in a first direction and at least one second signal influencing device for changing a beam propagation of the at least one transmitted light beam in one direction second direction.
  • the at least one second signal influencing device is arranged in the beam path of the at least one transmitted light beam behind the at least one first signal influencing device.
  • the first direction and the second direction are perpendicular or oblique to each other.
  • the invention is based on the object of designing a transmission device, a detection device, a vehicle and a method of the type mentioned at the outset, in which the detection of objects can be improved.
  • the at least one signal influencing device has at least two different optical diffuser regions next to one another, viewed at least in a direction transverse to an optical axis of the at least one signal source, which have different scattering properties with regard to the electromagnetic transmission signals.
  • the at least one signal influencing device has a plurality of optical diffuser areas.
  • the signal components of the transmission signals that hit the respective diffuser areas can be influenced with different scattering properties. They can be scattered differently, diffracted, provided with phase shifts or influenced in some other way.
  • the different scattering properties can cause different signal intensities and/or different deflections for the corresponding signal components of the transmission signals.
  • the signal components of the transmission signals with the diffuser areas can be sent with different signal intensities in different directions.
  • the transmission device can be individually adapted to the operating conditions in which the detection device is to be operated. In this way, the detection of objects can be operated more efficiently.
  • the at least one signal influencing device can already be individually adapted during manufacture of the detector device and/or during assembly at the installation site, in particular in or on a vehicle.
  • the detection device can advantageously be constructed in a modular manner.
  • different signal influencing devices can be provided, which can be used in a modular manner, in particular in the production of the detection device.
  • the detection device can be individualized more easily.
  • the signal components of a transmission signal relate to the respective profile of the transmission signal transverse to its direction of propagation, in particular transverse to the optical axis of the signal source.
  • the main direction of propagation of a transmission signal can extend behind the signal source parallel or axially to the optical axis of the signal source.
  • the operating conditions can be an installation location of the detection device, in particular in or on a vehicle, and/or the orientation of the detection device.
  • distances to boundaries in the at least one monitoring area can be taken into account.
  • the at least one monitoring area can be limited in one direction by the ground. Vehicle parts that are located within the at least one monitoring area and that limit the detection range can also be taken into account.
  • At least one diffuser area can widen the signal components of the transmission signals impinging on it. In this way, a correspondingly larger field of view can be illuminated simultaneously.
  • the information about the monitored area can advantageously be object information about objects in the monitored area, in particular distances, directions and/or speeds of objects relative to the detection device.
  • the information about the surveillance area can also contain the information that no object is detected.
  • the information about the surveillance area can also contain that a detection range is limited, in particular, by visibility impairments such as fog, precipitation or the like.
  • the optical detection device can work according to a signal transit time method.
  • Optical de tektionsvorraumen working according to the signal runtime method can be configured and referred to as time-of-flight (TOF), light detection and ranging systems (LiDAR), laser detection and ranging systems (LaDAR) or the like will.
  • TOF time-of-flight
  • LiDAR light detection and ranging systems
  • LaDAR laser detection and ranging systems
  • the detection device can advantageously be designed as a so-called flash system, in particular as a flash LiDAR.
  • At least one signal source can be used to send out at least one transmission signal, which simultaneously illuminates all diffuser areas of the at least one signal influencing device.
  • the correspondingly influenced signal components of the at least one transmission signal can simultaneously emit part of the at least one monitoring area or the entire at least one monitoring area.
  • the detection device can be designed as a scanning system.
  • the diffuser areas and thus the at least one monitoring area can be successively sampled, ie scanned, with transmission signals.
  • the direction of propagation of the transmission signals can be swiveled over the diffuser areas.
  • At least a deflection device in particular a scanning device, a deflection mirror device or the like, can be used here.
  • the detection device can advantageously be designed as a laser-based distance measuring system.
  • the laser-based distance measuring system can have at least one laser, in particular a diode laser, as the signal source of the at least one transmission device.
  • pulsed transmission beams can be transmitted as transmission signals with the at least one laser.
  • the laser can be used to emit transmission signals in wavelength ranges that are visible or not visible to the human eye.
  • at least one receiver can have at least one receiving device, a sensor designed for the wavelength of the emitted light, in particular a line sensor or area sensor, in particular an (avalanche) photodiode, a photodiode line, a CCD sensor, an active pixel sensor , In particular a CMOS sensor or the like.
  • the laser-based distance measuring system can advantageously be a laser scanner.
  • a monitoring area can be scanned with a laser scanner, in particular with a pulsed laser beam.
  • the invention can be used in a vehicle, particularly a motor vehicle.
  • the invention can advantageously be used in a land vehicle, in particular a passenger car, a truck, a bus, a motorcycle or the like, an aircraft, in particular drones, and/or a watercraft.
  • the invention can also be used in vehicles that can be operated autonomously or at least partially autonomously. However, the invention is not limited to vehicles. It can also be used in stationary operation and/or in robotics.
  • the detection device can advantageously be connected to at least one electronic control device of the vehicle, in particular a driver assistance system and/or chassis control and/or a driver information device and/or a parking assistance system and/or gesture recognition or the like, or be part of such. In this way, at least some of the functions of the vehicle can be operated autonomously or partially autonomously.
  • the detection device can be used to detect stationary or moving objects, in particular vehicles, people, animals, plants, obstacles, bumps in the road, in particular potholes or stones, road boundaries, traffic signs, open spaces, in particular parking spaces, precipitation or the like.
  • At least one diffuser area can have or consist of at least one scattering means with which electromagnetic transmission signals can be scattered, and/or at least one diffuser area can have or consist of at least one diffraction means with which electromagnetic transmission signals can be diffracted, and/or or at least one diffuser area can have at least one diffractive optical structure with which scattering properties with regard to the electromagnetic transmission signals can be specified.
  • scattering means and/or diffraction means the signal components of the transmission signals that impinge on a diffuser area can be scattered in a targeted manner. In this way, the directions and/or the signaling intensity of the transmission signals on the exit side of the at least one signal influencing device can be influenced in a targeted manner.
  • diffractive optical structures are structures on which light beams, in particular transmission signals, can be formed. This happens as diffraction on optical gratings.
  • the diffractive optical structures can be designed individually. They can be implemented in such a way that the beam direction of an incident light beam is changed with the diffractive optical structure depending on the angle of incidence and/or a point of incidence on the diffractive optical structure. Diffractive optical structures can be operated in transmission and/or reflection.
  • At least one diffuser area can have or consist of at least one diffractive optical element.
  • At least two different optical diffuser areas can be assigned to at least two different regions of the monitoring area.
  • the transmission signals which impinge on the respective diffuser areas can be directed into the corresponding region with the corresponding scattering properties. In this way, a better individual adjustment of the transmission device to the existing or expected operating conditions of the detection device can be implemented.
  • the transmission device can implement respective signal intensities for at least two different regions.
  • the transmission signals can be transmitted proportionally to the respective regions with the required signal intensity.
  • the signal intensity can be adjusted to the detection range in the corresponding region. A larger detection range requires a greater signal intensity than a smaller detection range.
  • the signal intensities can be specifically adapted to the ambient conditions. A lower signal intensity is required in regions in which the detection range is already limited in particular by obstacles, for example the ground or the like.
  • the overall signal intensity of the transmission signals, which is generated by the at least one signal source, can thus be appropriately divided between the regions of the surveillance area.
  • At least two different optical diffuser regions can be arranged side by side in at least two orthogonal directions viewed transversely to the optical axis of the at least one signal source.
  • the signal components of the transmission signals can be specifically assigned to the regions of the monitoring area in two spatial directions transverse to the optical axis.
  • the dispersion properties of the diffuser areas can advantageously be specified as a function of possible operating situations, in particular a driving situation, of the vehicle. In this way, the efficiency of the measurements with the detection device can be improved.
  • the signal intensity of the corresponding signal component of the transmission signal can be limited by means of the corresponding scattering property of the associated diffuser area.
  • a detection range of the order of 100 m and more can be specified for a monitoring area in the direction of travel in front of the vehicle for a far-field region of the monitoring area.
  • the signal intensity of the corresponding signal component can be increased with the corresponding diffuser area. In this way, objects in front of the vehicle, in particular vehicles driving ahead, can be detected at an early stage.
  • the detection range in a region can also be limited by operational obstacles.
  • the diffuser areas assigned to the ground can have corresponding scattering properties, by means of which the signal intensity of the corresponding signal component of the transmitted signals in the corresponding region, in particular a ground region, of the monitoring area is reduced.
  • the diffuser areas which are associated with regions of the monitoring area above the vehicle convincing, can be specified so that with them the corresponding Signal components of the transmission signals is sent with a lower signal intensity. Objects that are above the vehicle height are of lesser interest because they generally do not pose a risk of collision.
  • the object is achieved according to the invention with the detection device in that the at least one signal influencing device has at least two different optical diffuser regions next to each other, viewed in a direction transverse to an optical axis of the at least one signal source, which have different scattering properties with regard to the electromagnetic transmission signals.
  • At least one transmission device can be a flash transmission device.
  • at least one transmission signal can be sent simultaneously to a number of regions of the surveillance area. The corresponding regions can thus be checked simultaneously during a measurement.
  • the object is achieved according to the invention in the vehicle in that the vehicle has at least one detection device with at least one transmission device according to the invention.
  • the object is achieved according to the invention in the method in that the at least one transmission signal is transmitted with the at least one transmission source to at least one of at least two diffuser areas of the at least one signal influencing device and, depending on the scattering properties of the at least one diffuser area, at least the signal components of the at least a transmission signal, which impinges on the at least one diffuser area, is scattered.
  • At least one signal component of the at least one transmission signal is influenced by the corresponding at least one diffuser area.
  • At least the signal components of the at least one transmission signal can be changed with regard to the signal intensity and/or the direction of propagation.
  • the at least one transmission signal can be assigned at least in proportion to corresponding regions of the monitoring area.
  • the signal intensity can be adapted to the corresponding region. Regions for which a large detection range is is required, especially in the far field, can be sampled in a targeted manner with signal components of the transmission signal with a correspondingly increased signal intensity.
  • FIG. 1 shows a front view of a vehicle with a driver assistance system and a LiDAR system for monitoring a monitoring area to the left of the vehicle in the direction of travel;
  • FIG. 2 shows a functional representation of the vehicle from FIG. 1 with the driver assistance system and the LiDAR system;
  • FIG. 3 shows a detailed view of a transmission device of the LiDAR system in the front view of the vehicle from FIG. 1;
  • FIG. 4 shows an intensity-angle diagram in which a normalized horizontal intensity curve of transmission signals, which are transmitted with a transmission device of the LiDAR system from FIGS. 1 and 2, is shown over the horizontal directional angle in relation to a main axis of the LiDAR system is;
  • FIG. 5 shows an intensity-angle diagram in which a normalized vertical intensity curve of transmission signals, which are transmitted with the transmission device of the LiDAR system from FIGS. 1 and 2, over the vertical Orientation angle related to the flat axis of the LiDAR system is shown.
  • FIG. 1 shows a front view of a vehicle 10 by way of example in the form of a passenger car.
  • Figure 2 shows a functional representation of the vehicle 10.
  • the x-axis extends in the direction of a vehicle longitudinal axis of vehicle 10
  • the y-axis extends along a vehicle transverse axis
  • the z-axis extends spatially upwards perpendicular to the x-y plane along a vehicle vertical axis.
  • the x-axis and y-axis extend horizontally in space and the z-axis extends vertically in space.
  • the vehicle 10 has an optical detection device, for example in the form of a LiDAR system 12.
  • the LiDAR system 12 is arranged, for example, on the side in an upper area of the vehicle 10 and is directed into a monitoring area 14, which is to the left of the vehicle 10 in the direction of travel 16 located.
  • the monitoring area 14 can be monitored for objects 18 with the LiDAR system 12 .
  • the LiDAR system 12 may also be located elsewhere on the vehicle 10 and oriented differently.
  • the vehicle 10 can also have a plurality of detection devices, including different ones.
  • the LiDAR system 12 can be used to detect stationary or moving objects 18, for example vehicles, people, animals, plants, obstacles, bumps in the road, in particular potholes or stones, road boundaries, traffic signs, open spaces, in particular parking spaces, precipitation or the like.
  • the vehicle 10 has a driver assistance system 20.
  • functions of the vehicle 10 can be operated autonomously or partially autonomously.
  • Driver assistance system 20 is functionally connected to LiDAR system 12 .
  • information about the monitoring area 14 which is recorded using the LiDAR system 12 can be transmitted to the driver assistance system 20 .
  • the information about the monitoring area 14 can be used, for example, to support operating functions of the vehicle 10, for example with regard to drive, steering and braking.
  • Information about the monitored area 14 can contain information about whether objects 18 are located in the monitored area 14, for example. If an object 18 is detected in the surveillance area 14 , the information about the surveillance area 14 can include object information about the detected object 18 .
  • the direction of an object 18 can, for example, as Angles can be specified in relation to reference axes. For example, the azimuth relative to the transverse axis of the vehicle 10 and the elevation relative to the vertical axis of the vehicle can be specified to characterize the direction.
  • the LiDAR system 12 includes, for example, a transmitting device 22, a receiving device 24 and a control and evaluation device 26.
  • Electromagnetic transmission signals 28 can be transmitted with the transmission device 22 .
  • the transmission signals 28 are, for example, pulsed laser beams with wavelengths in the near infrared, for example.
  • the LiDAR system 12 is what is known as a flash LiDAR system, in which a larger area is illuminated with a transmission signal 28 .
  • the transmission signals 28, which are in the monitoring area 14, for example, at an object 18 in the direction of the LiDAR system 12 are reflected when electromagnetic reception signals 30 are converted into corresponding electrical evaluation signals.
  • the electrical evaluation signals can be transmitted to the electronic control and evaluation device 26 of the LiDAR system 12 and processed with it.
  • the control and evaluation device 26 includes means for controlling the LiDAR system 12 and for processing the electrical evaluation signals. Alternatively, the means for control and the means for evaluation can also be designed separately. A control device and evaluation device can be implemented separately from one another. The means for control and evaluation are implemented in software and hardware. Parts of the control and evaluation device 26 or the entire control and evaluation device 26 can also be combined with an electronic control device of the vehicle 10, for example also with the driver assistance system 20.
  • the information about the monitored area 14 or the object information about the detected object 18 can be obtained with the LiDAR system 12 from the received signals 30 or the electrical evaluation signals.
  • the distance of the object 18 relative to the LiDAR system 12 can be determined using a signal propagation time method, in which the propagation time between the transmission of a transmission signal 28 and the receipt of the corresponding reception signal 30 is determined.
  • the transmitting device 22 is not shown in detail in FIG.
  • the transmission device 22 comprises a signal source 32 and a signal influencing device 34.
  • the signal source 32 includes, for example, a laser diode with which the transmission signals 28 can be generated.
  • the transmission device 22 can also have more than one signal source 32, for example a plurality of laser diodes.
  • the transmission signals 28 are sent in the direction of an optical axis 36 of the signal source 32 to the signal influencing device 34 .
  • the optical axis 36 runs, for example, parallel to the y-axis, ie parallel to the transverse axis of the vehicle.
  • the expansion of the transmission signals 28 transverse to the optical axis 36 so transverse to their direction of propagation is specified so that the Transmission signals 28 illuminate an entry side 38 of the signal influencing device 34 completely.
  • the direction of propagation of the transmission signals 28 behind the signal source 32 and in front of the signal influencing device 34 is indicated by the arrow symbol in FIG.
  • the signal influencing device 34 is implemented as a diffractive optical structure, for example.
  • the diffractive optical structure can be individually adapted to the operational requirements of the LiDAR system 12 .
  • the signal influencing device 34 comprises, for example, four diffuser areas, viewed from bottom to top in FIG.
  • the diffuser regions 40a, 40b, 40c and 40d each extend transversely to the optical axis 36, for example parallel to the x-z plane.
  • the diffuser regions 40a, 40b, 40c and 40d are arranged next to one another, viewed in the direction of the z-axis, one above the other in the illustration in FIG.
  • the diffuser regions 40a, 40b, 40c and 40d each extend over the same width parallel to the x-axis and with un ferent fleas parallel to the z-axis.
  • the diffuser regions 40a, 40b, 40c and 40d have different scattering properties with respect to the transmission signals 28.
  • the transmission signals 28 can be deflected in different ways with the diffuser regions 40a, 40b, 40c and 40d.
  • the portion of the transmission signals 28 which impinges on the floor diffuser region 40a in Figure 3 is diffracted downwards to the floor 42, for example to the roadway, by the corresponding diffractive optical structure as the floor signal portion 28a, and in the vertical direction, i.e. in Direction parallel to z-axis, flared.
  • the ground signal portion 28a illuminates a ground region 44a of the surveillance area 14 .
  • the floor region 44a is delimited by the floor 42 and extends up to a floor detection range 46a, which is indicated in FIG.
  • a bottom signal intensity Int_a of the bottom Signal portion 28a adjusted so that it is sufficient to illuminate the bottom region 44a to the bottom detection range 46a.
  • a respective detection range is the distance from the LiDAR system 12 up to which the LiDAR system 12 can detect any objects 18 .
  • the detection range can be specified, for example, by the length of a measurement window within which the reflection of a transmitted transmission signal is expected.
  • the portion of the transmission signals 28 that impinges on the near-field diffuser area 40b is also bent by the corresponding diffractive optical structure as a near-field signal portion 28b in the direction of the bottom 42 in a near-field region 44b, which is located next to the bottom region 44a and widened in the vertical direction.
  • the near-field signal portion 28b illuminates the near-field region 44b of the surveillance area 14.
  • the near-field region 44b in the floor 42 delimits and extends up to a near-field detection range 46b of approximately 10 m, for example. to illuminate the near-field region 44b to the near-field detection range 46b. Since the near-field detection range 46b is greater than the ground detection range 46a, the near-field signal intensity Int_b is correspondingly greater than the ground signal intensity Int_a.
  • the portion of the transmission signals 28 which strikes the far-field diffuser area 40c is diffracted by the corresponding diffractive optical structure as a far-field signal portion 28c into a far-field region 44c and widened in the vertical direction.
  • the far-field signal component 28c illuminates the far-field region 44c of the surveillance area 14 .
  • Far-field region 44c extends next to vehicle 10 up to a far-field detection range 46c of approximately 40 m, for example.
  • Far-field region 44c extends above and below a main axis 48 of LiDAR system 12.
  • Main axis 48 extends, for example parallel to the y-axis, usually spatially horizontal.
  • the far-field region 44 has, for example, a vertical opening angle 50 of approximately 25°.
  • a far-field signal intensity Int_c of the far-field signal component 28c is set with the far-field diffuser area 40c such that it is sufficient to illuminate the far-field region 44c up to the far-field detection range 46c. Because the far-field detection range 46c is greater than the near-field Detection range 46b, the far-field signal intensity Int_c is greater than the near-field signal intensity Int_b.
  • the portion of the transmission signals 28 which impinges on the height diffuser area 40d is diffracted obliquely upwards by the corresponding diffractive optical structure as a height signal portion 28d in a height region 44d and widened in the vertical direction.
  • the high-altitude region 44b is above the far-field region 44c.
  • the high-altitude signal component 28d illuminates the high-altitude region 44d of the surveillance area 14 .
  • the height region 44d extends up to a height detection range 46d of approximately 10 m, for example. A greater detection range is not required for the height region 44d since any objects 18 are located in the height region 44d above the vehicle 10 and there is no risk of collision.
  • a height signal intensity Int_d of the height signal portion 28d is set with the height diffuser area 40d such that it is sufficient to illuminate the height region 44d up to the height detection range 46d. Since the high-altitude detection range 46d is approximately as large as the near-field detection range 46b, the high-altitude signal intensity Int_d is approximately as large as the near-field signal intensity Int_b.
  • FIG. 4 An intensity-angle diagram is shown in FIG. 4 as an example, in which a normalized horizontal intensity profile of a transmission signal 28 dispersed by the signal influencing device 34 is shown over a horizontal directional angle in relation to the main axis 48 of the LiDAR system 12.
  • the main axis 48 lies at the horizontal direction angle 0°.
  • the horizontal opening angle of the LiDAR system 12 is approximately 110°, for example.
  • the normalized horizontal intensity curves of the ground signal intensity Int_a, the near-field signal intensity Int_b, the far-field signal intensity Int_c and the height signal intensity Int_d are identical and correspond to the representation in Figure 4.
  • FIG. 5 An intensity-angle diagram is shown in FIG. 5 as an example, in which a normalized vertical intensity profile of a transmission signal 28 dispersed by the signal influencing device 34 is shown over a vertical directional angle in relation to the main axis 48 of the LiDAR system 12.
  • the main axis 48 is for example stick at the vertical direction angle 0°.
  • the vertical opening angle of the LiDAR system 12 is approximately 80°, for example.
  • the normalized vertical intensity profile is made up of the respective intensity profiles of the ground signal intensity Int_a, the near-field signal intensity Int_b, the far-field signal intensity Int_c and the height signal intensity Int_d.
  • the normalized vertical intensity curve has its maxima between the vertical directional angles of 5° and 30°. The expansion of the maxima over the angular range corresponds to the aperture angle 50 of the far-field region 44 of approximately 25°.
  • the receiving device 24 has an optical imaging system, beispielswei se in the form of an optical lens, a receiver, for example in the form of a CCD chip, and electronic components.
  • the optical system is located between the receiver 24 and the surveillance area 14.
  • transmission signals 28 are generated with the transmission device 22 and sent to the signal influencing device 34 .
  • the diffuser areas namely the bottom diffuser area 40a, the near-field diffuser area 40b, the far-field diffuser area 40c and the high-level diffuser area 40d
  • the corresponding portions of the transmitted signals 28 are scattered and used as the ground signal portion 28a, the near-field signal portion 28b, far-field signal portion 28c and height-signal portion 28d with the respective intensities, namely the ground signal intensity Int_a, the near-field signal intensity Int_b, the far-field signal intensity Int_c and the height-signal intensity Int_d, in the corresponding region of the monitoring area 14, namely into the bottom region 44a, the near-field region 44b, the far-field region 44c and the high-altitude region 44d, respectively.
  • the ground signal components 28a, near-field signal components 28b, far-field signal components 28c and altitude signal components 28d, which strike an object 18 in the monitored area 14, are reflected accordingly, received as corresponding received signals 30 with the receiving device 24 and converted into electrical evaluation signals .
  • the electrical evaluation signals are transmitted to the control and evaluation device 26 .
  • the evaluation signals With the control and evaluation device 26, the evaluation signals the object information of the object 18, namely the distance, the direction and the speed of the detected object 18 relative to the LiDAR system 12, is determined.
  • the object information is transmitted to driver assistance system 20 .
  • driver assistance system 20 With the driver assistance system 20 corresponding operating functions of the vehicle 10 are influenced on the basis of the object information, for example controlled or regulated.
  • the vehicle 10 can thus be operated autonomously or partially autonomously.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Traffic Control Systems (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

The invention relates to a transmission device (22) of an optical detection device (12) for monitoring at least one monitoring region (14) for objects (18) using electromagnetic transmission signals (28). The invention also relates to a detection device (12), to a vehicle (10), and to a method for operating the optical detection device (12). The transmission device (22) comprises at least one signal source (32), by means of which electromagnetic transmission signals (28) can be generated, and at least one signal influencing device (34), by means of which the electromagnetic transmission signals (28) can be influenced. The at least one signal influencing device (34) has at least two different optical diffuser regions (40a, 40b, 40c, 40d) which are arranged adjacently to one another when viewed at least in a direction transverse to the optical axis (36) of the at least one signal source (32) and which have different scattering properties with respect to the electromagnetic transmission signals (28).

Description

Beschreibung description
Sendeeinrichtung einer optischen Detektionsvorrichtung, Detektionsvorrichtung, Transmission device of an optical detection device, detection device,
Fahrzeug und Verfahren vehicle and procedure
Technisches Gebiet technical field
Die Erfindung betrifft eine Sendeeinrichtung einer optischen Detektionsvorrichtung zur Überwachung wenigstens eines Überwachungsbereichs auf Objekte hin mittels elekt romagnetischer Sendesignale, mit wenigstens einer Signalquelle, mit welcher elektromagnetische Sendesignale er zeugt werden können, und mit wenigstens einer Signalbeeinflussungseinrichtung, mit der die elektromagneti schen Sendesignale beeinflusst werden können. The invention relates to a transmission device of an optical detection device for monitoring at least one monitoring area for objects by means of electromagnetic transmission signals, with at least one signal source with which electromagnetic transmission signals can be generated, and with at least one signal influencing device with which the electromagnetic transmission signals can be influenced .
Außerdem betrifft die Erfindung eine Detektionsvorrichtung zum Detektieren von Objek ten in wenigstens einem Überwachungsbereich mittels elektromagnetischer Sendesig nale, mit wenigstens einer Sendeeinrichtung, mit der elektromagnetische Sendesignale in den Überwachungsbereich gesendet werden können, mit wenigstens einer Empfangseinrichtung, mit der elektromagnetische Empfangssigna le empfangen werden können, welche von elektromagnetischen Sendesignalen herrüh ren, die in dem Überwachungsbereich reflektiert werden, und mit der elektromagneti sche Empfangssignale in Auswertesignale umgewandelt werden können, die mit einer Auswerteeinrichtung verarbeitbar sind, und mit wenigstens einer Auswerteeinrichtung, mit der auf Basis wenigstens der elekt romagnetischen Empfangssignale Informationen über den Überwachungsbereich ermit telt werden können, wobei die wenigstens eine Sendeeinrichtung aufweist wenigstens eine Signalquelle, mit welcher elektromagnetische Sendesignale erzeugt werden können, und wenigstens eine Signalbeeinflussungseinrichtung, mit der die elektromagnetischen Sendesignale beeinflusst werden können. The invention also relates to a detection device for detecting objects in at least one surveillance area by means of electromagnetic transmission signals, with at least one transmission device with which electromagnetic transmission signals can be transmitted into the surveillance region, with at least one reception device with which electromagnetic reception signals can be received, which originate from electromagnetic transmission signals that are reflected in the monitoring area, and with which electromagnetic reception signals can be converted into evaluation signals that can be processed with an evaluation device, and with at least one evaluation device with which, on the basis of at least the electromagnetic reception signals, information about the monitoring area can be determined, the at least one transmission device having at least one signal source with which electromagnetic transmission signals can be generated , and at least one signal influencing device with which the electromagnetic transmission signals can be influenced.
Des Weiteren betrifft die Erfindung ein Fahrzeug mit wenigstens einer Detektionsvor richtung zum Detektieren von Objekten in wenigstens einem Überwachungsbereich mit tels elektromagnetischer Signale. Im Übrigen betrifft die Erfindung ein Verfahren zum Detektieren von Objekten in wenigs tens einem Überwachungsbereich mit einer Detektionsvorrichtung mittels elektromag netischer Sendesignale, bei dem mit wenigstens einer Sendeeinrichtung wenigstens ein elektromagnetisches Sendesig nal in den wenigstens einen Überwachungsbereich gesendet wird, wobei das wenigs tens eine elektromagnetische Sendesignal mit wenigstens einer Signalbeeinflussungs einrichtung beeinflusst wird, mit einer Empfangseinrichtung wenigstens ein Empfangssignal empfangen wird, wel ches von wenigstens einem Sendesignal herrührt, das im Überwachungsbereich reflek tiert wird, wenigstens auf Basis des wenigstens einen empfangenen Empfangssignals Informatio nen über den Überwachungsbereich ermittelt werden. Furthermore, the invention relates to a vehicle with at least one detection device for detecting objects in at least one surveillance area by means of electromagnetic signals. The invention also relates to a method for detecting objects in at least one monitoring area with a detection device using electromagnetic transmission signals, in which at least one electromagnetic transmission signal is transmitted into the at least one monitoring area using at least one transmission device, with the at least one electromagnetic transmission signal is influenced with at least one signal influencing device, at least one received signal is received with a receiving device, which originates from at least one transmission signal that is reflected in the monitored area, information about the monitored area is determined at least on the basis of the at least one received signal.
Stand der Technik State of the art
Aus der DE 10 2016 118 481 A1 ist eine optische Sende- und Empfangseinrichtung einer optischen Detektionsvorrichtung eines Fahrzeugs bekannt. Die Sende- und Emp fangseinrichtung weist wenigstens einen optischen Sender zum Aussenden wenigstens eines Sende-Lichtstrahls, wenigstens eine Abtasteinheit wenigstens zur Veränderung der Strahlrichtung des wenigstens einen Sende-Lichtstrahls und wenigstens einen opti schen Empfänger zum Empfangen wenigstens eines Empfangs-Lichtstrahls auf, welche relativ zueinander so angeordnet sind, dass der wenigstens eine Empfänger von dem wenigstens einen Sender ausgestrahlte Sende-Lichtstrahlen, die von einem in einem Sendestrahlengang des wenigstens einen Senders gegebenenfalls vorhandenen Objekt oder Hindernis als Empfangs-Lichtstrahlen zurückgestrahlt werden, empfangen kann. Die wenigstens eine Abtasteinheit weist wenigstens eine erste Signalbeeinflussungsein richtung zur Ablenkung wenigstens eines mit dem wenigstens einen Sender in die we nigstens eine Abtasteinheit eingestrahlten Sende-Lichtstrahls in einer ersten Richtung und wenigstens eine zweite Signalbeeinflussungseinrichtung zur Veränderung einer Strahlausbreitung des wenigstens einen Sende-Lichtstrahls in einer zweiten Richtung auf. Die wenigstens eine zweite Signalbeeinflussungseinrichtung ist im Strahlengang des wenigstens einen Sende-Lichtstrahls hinter der wenigstens einen ersten Signalbe einflussungseinrichtung angeordnet. Die erste Richtung und die zweite Richtung verlau fen senkrecht oder schräg zueinander. Der Erfindung liegt die Aufgabe zugrunde, eine Sendeeinrichtung, eine Detektionsvor richtung, ein Fahrzeug und ein Verfahren der eingangs genannten Art zu gestalten, bei denen die Detektion von Objekten verbessert werden kann. An optical transmitting and receiving device of an optical detection device of a vehicle is known from DE 10 2016 118 481 A1. The transmitting and receiving device has at least one optical transmitter for emitting at least one transmitted light beam, at least one scanning unit for at least changing the beam direction of the at least one transmitted light beam and at least one optical receiver for receiving at least one received light beam, which is relatively are arranged relative to one another in such a way that the at least one receiver can receive transmitted light beams emitted by the at least one transmitter, which are reflected back as received light beams by an object or obstacle that may be present in a transmitted beam path of the at least one transmitter. The at least one scanning unit has at least one first signal influencing device for deflecting at least one transmitted light beam radiated into the at least one scanning unit by the at least one transmitter in a first direction and at least one second signal influencing device for changing a beam propagation of the at least one transmitted light beam in one direction second direction. The at least one second signal influencing device is arranged in the beam path of the at least one transmitted light beam behind the at least one first signal influencing device. The first direction and the second direction are perpendicular or oblique to each other. The invention is based on the object of designing a transmission device, a detection device, a vehicle and a method of the type mentioned at the outset, in which the detection of objects can be improved.
Offenbarung der Erfindung Disclosure of Invention
Diese Aufgabe wird erfindungsgemäß bei dem Verfahren dadurch gelöst, dass die wenigstens eine Signalbeeinflussungseinrichtung wenigstens in einer Richtung quer zu einer optischen Achse der wenigstens einen Signalquelle betrachtet nebeneinander wenigstens zwei unterschiedliche optische Diffusorbereiche aufweist, die unterschiedli che Zerstreuungseigenschaften bezüglich der elektromagnetischen Sendesignale auf weisen. This object is achieved according to the invention in the method in that the at least one signal influencing device has at least two different optical diffuser regions next to one another, viewed at least in a direction transverse to an optical axis of the at least one signal source, which have different scattering properties with regard to the electromagnetic transmission signals.
Erfindungsgemäß weist die wenigstens eine Signalbeeinflussungseinrichtung mehrere optische Diffusorbereiche auf. Die Signalanteile der Sendesignale, welche auf die jewei ligen Diffusorbereiche treffen, können so mit unterschiedlichen Zerstreuungseigenschaf ten beeinflusst werden. Dabei können diese unterschiedlich gestreut, gebeugt, mit Pha senverschiebungen versehen oder in anderer Weise beeinflusst werden. Die unter schiedlichen Zerstreuungseigenschaften können dabei unterschiedliche Signalintensitä ten und/oder unterschiedliche Umlenkungen für die entsprechenden Signalanteile der Sendesignale bewirken. Auf diese Weise können die Signalanteile der Sendesignale mit den Diffusorbereichen mit unterschiedlichen Signalintensitäten in unterschiedliche Rich tungen gesendet werden. So kann die Sendeeinrichtung individuell an die Betriebsbe dingungen angepasst werden, in denen die Detektionsvorrichtung betrieben werden soll. So kann die Detektion von Objekten effizienter betrieben werden. Die wenigstens eine Signalbeeinflussungseinrichtung kann bereits bei der Herstellung der Detektorvor richtung und/oder der Montage am Einbauort, insbesondere in oder an einem Fahrzeug, individuell angepasst werden. According to the invention, the at least one signal influencing device has a plurality of optical diffuser areas. The signal components of the transmission signals that hit the respective diffuser areas can be influenced with different scattering properties. They can be scattered differently, diffracted, provided with phase shifts or influenced in some other way. The different scattering properties can cause different signal intensities and/or different deflections for the corresponding signal components of the transmission signals. In this way, the signal components of the transmission signals with the diffuser areas can be sent with different signal intensities in different directions. In this way, the transmission device can be individually adapted to the operating conditions in which the detection device is to be operated. In this way, the detection of objects can be operated more efficiently. The at least one signal influencing device can already be individually adapted during manufacture of the detector device and/or during assembly at the installation site, in particular in or on a vehicle.
Vorteilhafterweise kann die Detektionsvorrichtung modular aufgebaut sein. So können unterschiedliche Signalbeeinflussungseinrichtungen vorgesehen sein, welche modular insbesondere bei der Herstellung Detektionsvorrichtung eingesetzt werden können. Auf diese Weise kann die Detektionsvorrichtung einfacher individualisiert werden. Die Signalanteile eines Sendesignals beziehen sich auf das jeweilige Profil des Sende signals quer zu seiner Ausbreitungsrichtung, insbesondere quer zur optischen Achse der Signalquelle. The detection device can advantageously be constructed in a modular manner. Thus, different signal influencing devices can be provided, which can be used in a modular manner, in particular in the production of the detection device. In this way, the detection device can be individualized more easily. The signal components of a transmission signal relate to the respective profile of the transmission signal transverse to its direction of propagation, in particular transverse to the optical axis of the signal source.
Vorteilhafterweise kann sich die Haupt-Ausbreitungsrichtung eines Sendesignals hinter der Signalquelle parallel oder axial zur optischen Achse der Signalquelle erstrecken. Advantageously, the main direction of propagation of a transmission signal can extend behind the signal source parallel or axially to the optical axis of the signal source.
Vorteilhafterweise können die Betriebsbedingungen von einem Einbauort der Detekti onsvorrichtung, insbesondere in oder an einem Fahrzeug, und/oder der Ausrichtung der Detektionsvorrichtung sein. So können insbesondere Abstände zu Begrenzungen in dem wenigstens einen Überwachungsbereich berücksichtigt werden. Insbesondere kann der wenigstens eine Überwachungsbereich in einer Richtung durch den Boden begrenzt werden. Außerdem können Fahrzeugteile berücksichtigt werden, welche sich innerhalb des wenigstens einen Überwachungsbereichs befinden und die die Detekti onsreichweite begrenzen. Advantageously, the operating conditions can be an installation location of the detection device, in particular in or on a vehicle, and/or the orientation of the detection device. In particular, distances to boundaries in the at least one monitoring area can be taken into account. In particular, the at least one monitoring area can be limited in one direction by the ground. Vehicle parts that are located within the at least one monitoring area and that limit the detection range can also be taken into account.
Vorteilhafterweise kann wenigstens ein Diffusorbereich die auf diesen treffenden Sig nalanteile der Sendesignale aufweiten. Auf diese Weise kann ein entsprechend größe res Sichtfeld simultan ausgeleuchtet werden. Advantageously, at least one diffuser area can widen the signal components of the transmission signals impinging on it. In this way, a correspondingly larger field of view can be illuminated simultaneously.
Vorteilhafterweise kann es sich bei den Informationen über den Überwachungsbereich um Objektinformationen von Objekten in dem Überwachungsbereich, insbesondere Ent fernungen, Richtungen und/oder Geschwindigkeiten von Objekten relativ zur Detekti onsvorrichtung, handeln. Darüber hinaus können die Informationen über den Überwa chungsbereich auch die Information enthalten, dass kein Objekt erfasst wird. Außerdem können die Informationen über den Überwachungsbereich auch enthalten, dass eine Detektionsreichweite insbesondere durch Sichtbeeinträchtigungen, wie Nebel, Nieder schläge oder dergleichen, begrenzt ist. The information about the monitored area can advantageously be object information about objects in the monitored area, in particular distances, directions and/or speeds of objects relative to the detection device. In addition, the information about the surveillance area can also contain the information that no object is detected. In addition, the information about the surveillance area can also contain that a detection range is limited, in particular, by visibility impairments such as fog, precipitation or the like.
Vorteilhafterweise kann die optische Detektionsvorrichtung nach einem Signal- Laufzeitverfahren arbeiten. Nach dem Signal Laufzeitverfahren arbeitende optische De tektionsvorrichtungen können als Time-of-Flight- (TOF), Light-Detection-and-Ranging- Systeme (LiDAR), Laser-Detection-and-Ranging-Systeme (LaDAR) oder dergleichen ausgestaltet und bezeichnet werden. Aus der Signallaufzeit kann die Entfernung ermit- telt werden. Advantageously, the optical detection device can work according to a signal transit time method. Optical de tektionsvorrichtungen working according to the signal runtime method can be configured and referred to as time-of-flight (TOF), light detection and ranging systems (LiDAR), laser detection and ranging systems (LaDAR) or the like will. The distance can be determined from the signal propagation be told.
Vorteilhafterweise kann die Detektionsvorrichtung als sogenanntes Flash-System, ins besondere als Flash-LiDAR, ausgestaltet sein. Dabei kann mit wenigstens eine Signal quelle wenigstens ein Sendesignal ausgesendet werden, welches simultan alle Dif fusorbereiche der wenigstens einen Signalbeeinflussungseinrichtung anstrahlt. Auf der Austrittsseite der wenigstens einen Signalbeeinflussungseinrichtung können die ent sprechend beeinflussten Signalanteile des wenigstens einen Sendesignals gleichzeitig einen Teil des wenigstens einen Überwachungsbereich oder den gesamten wenigstens einen Überwachungsbereich ausstrahlen. The detection device can advantageously be designed as a so-called flash system, in particular as a flash LiDAR. At least one signal source can be used to send out at least one transmission signal, which simultaneously illuminates all diffuser areas of the at least one signal influencing device. On the exit side of the at least one signal influencing device, the correspondingly influenced signal components of the at least one transmission signal can simultaneously emit part of the at least one monitoring area or the entire at least one monitoring area.
Alternativ kann die Detektionsvorrichtung als scannendes System ausgestaltet sein. Dabei können mit Sendesignalen die Diffusorbereiche und damit der wenigstens eine Überwachungsbereich sukzessive abgetastet, also abgescannt, werden. Dazu können die Ausbreitungsrichtung der Sendesignale über die Diffusorbereiche geschwenkt wer den. Hierbei kann wenigstens Umlenkeinrichtung, insbesondere eine Scaneinrichtung, eine Umlenkspiegeleinrichtung oder dergleichen, zum Einsatz kommen. Alternatively, the detection device can be designed as a scanning system. In this case, the diffuser areas and thus the at least one monitoring area can be successively sampled, ie scanned, with transmission signals. For this purpose, the direction of propagation of the transmission signals can be swiveled over the diffuser areas. At least a deflection device, in particular a scanning device, a deflection mirror device or the like, can be used here.
Vorteilhafterweise kann die Detektionsvorrichtung als laserbasiertes Entfernungsmess system ausgestaltet sein. Das laserbasierte Entfernungsmesssystem kann als Signal quelle der wenigstens einen Sendeeinrichtung wenigstens einen Laser, insbesondere einen Diodenlaser, aufweisen. Mit dem wenigstens einen Laser können insbesondere gepulste Sendestrahlen als Sendesignale gesendet werden. Mit dem Laser können Sendesignale in für das menschliche Auge sichtbaren oder nicht sichtbaren Wellenlän genbereichen emittiert werden. Entsprechend kann wenigstens ein Empfänger wenigs tens einer Empfangseinrichtung einen für die Wellenlänge des ausgesendeten Lichtes ausgelegten Sensor, insbesondere einen Zeilensensor oder Flächensensor, im Beson deren eine (Lawinen)fotodiode, eine Photodiodenzeile, einen CCD-Sensor, einen Acti- ve-Pixel-Sensor, insbesondere einen CMOS-Sensor oder dergleichen, aufweisen. Das laserbasierte Entfernungsmesssystem kann vorteilhafterweise ein Laserscanner sein. Mit einem Laserscanner kann ein Überwachungsbereich mit einem insbesondere ge pulsten Laserstrahl abgetastet werden. Vorteilhafterweise kann die Erfindung bei einem Fahrzeug, insbesondere einem Kraft fahrzeug, verwendet werden. Vorteilhafterweise kann die Erfindung bei einem Land fahrzeug, insbesondere einem Personenkraftwagen, einem Lastkraftwagen, einem Bus, einem Motorrad oder dergleichen, einem Luftfahrzeug, insbesondere Drohnen, und/oder einem Wasserfahrzeug verwendet werden. Die Erfindung kann auch bei Fahr zeugen eingesetzt werden, die autonom oder wenigstens teilautonom betrieben werden können. Die Erfindung ist jedoch nicht beschränkt auf Fahrzeuge. Sie kann auch im sta tionären Betrieb und/oder in der Robotik eingesetzt werden. The detection device can advantageously be designed as a laser-based distance measuring system. The laser-based distance measuring system can have at least one laser, in particular a diode laser, as the signal source of the at least one transmission device. In particular, pulsed transmission beams can be transmitted as transmission signals with the at least one laser. The laser can be used to emit transmission signals in wavelength ranges that are visible or not visible to the human eye. Correspondingly, at least one receiver can have at least one receiving device, a sensor designed for the wavelength of the emitted light, in particular a line sensor or area sensor, in particular an (avalanche) photodiode, a photodiode line, a CCD sensor, an active pixel sensor , In particular a CMOS sensor or the like. The laser-based distance measuring system can advantageously be a laser scanner. A monitoring area can be scanned with a laser scanner, in particular with a pulsed laser beam. Advantageously, the invention can be used in a vehicle, particularly a motor vehicle. The invention can advantageously be used in a land vehicle, in particular a passenger car, a truck, a bus, a motorcycle or the like, an aircraft, in particular drones, and/or a watercraft. The invention can also be used in vehicles that can be operated autonomously or at least partially autonomously. However, the invention is not limited to vehicles. It can also be used in stationary operation and/or in robotics.
Die Detektionsvorrichtung kann vorteilhafterweise mit wenigstens einer elektronischen Steuervorrichtung des Fahrzeugs, insbesondere einem Fahrerassistenzsystem und/oder einer Fahrwerksregelung und/oder einer Fahrer-Informationseinrichtung und/oder einem Parkassistenzsystem und/oder einer Gestenerkennung oder derglei chen, verbunden oder Teil einer solchen sein. Auf diese Weise kann wenigstens ein Teil der Funktionen des Fahrzeugs autonom oder teilautonom betrieben werden. The detection device can advantageously be connected to at least one electronic control device of the vehicle, in particular a driver assistance system and/or chassis control and/or a driver information device and/or a parking assistance system and/or gesture recognition or the like, or be part of such. In this way, at least some of the functions of the vehicle can be operated autonomously or partially autonomously.
Mit der Detektionsvorrichtung können stehende oder bewegte Objekte, insbesondere Fahrzeuge, Personen, Tiere, Pflanzen, Hindernisse, Fahrbahnunebenheiten, insbeson dere Schlaglöcher oder Steine, Fahrbahnbegrenzungen, Verkehrszeichen, Freiräume, insbesondere Parklücken, Niederschlag oder dergleichen, erfasst werden. The detection device can be used to detect stationary or moving objects, in particular vehicles, people, animals, plants, obstacles, bumps in the road, in particular potholes or stones, road boundaries, traffic signs, open spaces, in particular parking spaces, precipitation or the like.
Bei einer vorteilhaften Ausführungsform kann wenigstens ein Diffusorbereich wenigstens ein Streuungsmittel aufweisen oder daraus bestehen, mit welchen elektromagnetische Sendesignale gestreut werden können, und/oder wenigstens ein Diffusorbereich kann wenigstens ein Beugungsmittel aufweisen oder daraus bestehen, mit welchen elektromagnetische Sendesignale gebeugt werden kön nen, und/oder wenigstens ein Diffusorbereich kann wenigstens eine diffraktive optische Struktur auf weisen, mit welcher Zerstreuungseigenschaften bezüglich der elektromagnetischen Sendesignale vorgegeben werden können. Mit Streuungsmitteln und/oder Beugungs mitteln können die Signalanteile der Sendesignale, die auf ein Diffusorbereich treffen, gezielt zerstreut werden. So kann entsprechend die Richtungen und/oder die Signalin- tensität der Sendesignale auf der Austrittsseite der wenigstens einen Signalbeeinflus- sungseinrichtung gezielt beeinflusst werden. In an advantageous embodiment, at least one diffuser area can have or consist of at least one scattering means with which electromagnetic transmission signals can be scattered, and/or at least one diffuser area can have or consist of at least one diffraction means with which electromagnetic transmission signals can be diffracted, and/or or at least one diffuser area can have at least one diffractive optical structure with which scattering properties with regard to the electromagnetic transmission signals can be specified. With scattering means and/or diffraction means, the signal components of the transmission signals that impinge on a diffuser area can be scattered in a targeted manner. In this way, the directions and/or the signaling intensity of the transmission signals on the exit side of the at least one signal influencing device can be influenced in a targeted manner.
Diffraktive optische Strukturen sind bekanntermaßen Strukturen, an denen Lichtstrah len, insbesondere Sendesignale, geformt werden können. Dies geschieht als Beugung an optischen Gittern. Dabei können die diffraktiven optischen Strukturen individuell aus gestaltet werden. Sie können so realisiert werden, dass die Strahlrichtung eines einfal lenden Lichtstrahls abhängig von dem Einfallswinkel und/oder einer Einfallstelle auf die diffraktive optische Struktur mit dieser entsprechend geändert wird. Diffraktive optische Strukturen können in Transmission und/oder Reflexion betrieben werden. As is known, diffractive optical structures are structures on which light beams, in particular transmission signals, can be formed. This happens as diffraction on optical gratings. The diffractive optical structures can be designed individually. They can be implemented in such a way that the beam direction of an incident light beam is changed with the diffractive optical structure depending on the angle of incidence and/or a point of incidence on the diffractive optical structure. Diffractive optical structures can be operated in transmission and/or reflection.
Vorteilhafterweise kann wenigstens ein Diffusorbereich wenigstens ein diffraktives opti sches Element aufweisen oder daraus bestehen. Advantageously, at least one diffuser area can have or consist of at least one diffractive optical element.
Bei einer weiteren vorteilhaften Ausführungsform können wenigstens zwei unterschied liche optische Diffusorbereiche wenigstens zwei unterschiedlichen Regionen des Über wachungsbereichs zugeordnet sein. Auf diese Weise können die der Sendesignale, welche auf die jeweiligen Diffusorbereiche treffen, mit den entsprechenden Zerstreu ungseigenschaften in die entsprechenden Region gelenkt werden. Auf diese Weise kann eine bessere individuelle Anpassung der Sendeeinrichtung an die vorhandenen oder zu erwartenden Betriebsbedingung der Detektionsvorrichtung realisiert werden. In a further advantageous embodiment, at least two different optical diffuser areas can be assigned to at least two different regions of the monitoring area. In this way, the transmission signals which impinge on the respective diffuser areas can be directed into the corresponding region with the corresponding scattering properties. In this way, a better individual adjustment of the transmission device to the existing or expected operating conditions of the detection device can be implemented.
Bei einer weiteren vorteilhaften Ausführungsform kann die Sendeeinrichtung für die we nigstens zwei unterschiedlichen Regionen jeweilige Signalintensitäten realisieren. Auf diese Weise können die Sendesignale anteilig jeweils mit der erforderlichen Signalin tensität in die jeweiligen Regionen gesendet werden. Die Signalintensität kann an die Detektionsreichweite in der entsprechenden Region angepasst werden. Für eine größe re Detektionsreichweite ist eine größere Signalintensität erforderlich als für eine kleinere Detektionsreichweite. So können die Signalintensitäten gezielt an die Umgebungsbe dingungen angepasst werden. In Regionen, in den ohnehin die Detektionsreichweite insbesondere durch Hindernisse, beispielsweise dem Boden, oder dergleichen begrenz tes, ist eine kleinere Signalintensität erforderlich. Die Gesamt-Signalintensität der Sen designale, welche durch die wenigstens eine Signalquelle erzeugt wird, kann so zweckmäßig auf die Regionen des Überwachungsbereichs aufgeteilt werden. Bei einer weiteren vorteilhaften Ausführungsform können in wenigstens zwei orthogona len Richtungen quer zur optischen Achse der wenigstens einen Signalquelle betrachtet jeweils nebeneinander wenigstens zwei unterschiedliche optische Diffusorbereiche an geordnet sein. Auf diese Weise können die Signalanteile der Sendesignale in zwei Raumrichtungen quer zur optischen Achse gezielt den Regionen des Überwachungsbe reichs zugeordnet werden. In a further advantageous embodiment, the transmission device can implement respective signal intensities for at least two different regions. In this way, the transmission signals can be transmitted proportionally to the respective regions with the required signal intensity. The signal intensity can be adjusted to the detection range in the corresponding region. A larger detection range requires a greater signal intensity than a smaller detection range. In this way, the signal intensities can be specifically adapted to the ambient conditions. A lower signal intensity is required in regions in which the detection range is already limited in particular by obstacles, for example the ground or the like. The overall signal intensity of the transmission signals, which is generated by the at least one signal source, can thus be appropriately divided between the regions of the surveillance area. In a further advantageous embodiment, at least two different optical diffuser regions can be arranged side by side in at least two orthogonal directions viewed transversely to the optical axis of the at least one signal source. In this way, the signal components of the transmission signals can be specifically assigned to the regions of the monitoring area in two spatial directions transverse to the optical axis.
Bei der Verwendung der Detektionsvorrichtung in Verbindung mit einem Fahrzeug kön nen vorteilhafterweise die Zerstreuungseigenschaften der Diffusorbereiche abhängig von möglichen Betriebssituation, insbesondere einer Fahrsituation, des Fahrzeugs vor gegeben werden. Auf diese Weise kann die Effizienz der Messungen mit der Detekti onsvorrichtung verbessert werden. When using the detection device in connection with a vehicle, the dispersion properties of the diffuser areas can advantageously be specified as a function of possible operating situations, in particular a driving situation, of the vehicle. In this way, the efficiency of the measurements with the detection device can be improved.
Für eine Nahfeld-Region in der Nähe des Fahrzeugs kann die Signalintensität des ent sprechenden Signalanteils des Sendesignals mittels der entsprechenden Zerstreuungs eigenschaft des zugeordneten Diffusorbereichs begrenzt werden. For a near-field region in the vicinity of the vehicle, the signal intensity of the corresponding signal component of the transmission signal can be limited by means of the corresponding scattering property of the associated diffuser area.
Bei einer Fahrt des Fahrzeugs kann für einen Überwachungsbereich in Fahrtrichtung vor dem Fahrzeug für eine Fernfeld-Region des Überwachungsbereichs eine Detekti onsreichweite in der Größenordnung von 100 m und mehr vorgegeben werden. Die Signalintensität des entsprechenden Signalanteils kann mit dem entsprechenden Dif fusorbereich vergrößert werden. Auf diese Weise können Objekte vor dem Fahrzeug, insbesondere vorausfahrende Fahrzeuge, frühzeitig erkannt werden. When the vehicle is moving, a detection range of the order of 100 m and more can be specified for a monitoring area in the direction of travel in front of the vehicle for a far-field region of the monitoring area. The signal intensity of the corresponding signal component can be increased with the corresponding diffuser area. In this way, objects in front of the vehicle, in particular vehicles driving ahead, can be detected at an early stage.
Die Detektionsreichweite in einer Region kann auch durch betriebsbedingte Flindernisse begrenzt sein. Vorteilhafterweise können bei einer Detektionsvorrichtung des Fahr zeugs die Diffusorbereiche, welche dem Boden zugeordnet sind, entsprechende Zer streuungseigenschaften aufweisen, mittels denen die Signalintensität des entsprechen den Signalanteils der Sendesignale in der entsprechenden Region, insbesondere einer Bodenregion, des Überwachungsbereichs verringert wird. The detection range in a region can also be limited by operational obstacles. Advantageously, in a detection device of the vehicle, the diffuser areas assigned to the ground can have corresponding scattering properties, by means of which the signal intensity of the corresponding signal component of the transmitted signals in the corresponding region, in particular a ground region, of the monitoring area is reduced.
Die Diffusorbereiche, welche Regionen des Überwachungsbereichs oberhalb des Fahr zeugs zugeordnet sind, können so vorgegeben sein, dass mit ihnen der entsprechende Signalanteile der Sendesignale mit einer geringeren Signalintensität gesendet wird. Ob jekte, welche sich oberhalb der Fahrzeughöhe befinden, sind von geringerem Interesse, da von Ihnen in der Regel keine Kollisionsgefahr ausgeht. The diffuser areas, which are associated with regions of the monitoring area above the vehicle convincing, can be specified so that with them the corresponding Signal components of the transmission signals is sent with a lower signal intensity. Objects that are above the vehicle height are of lesser interest because they generally do not pose a risk of collision.
Ferner wird die Aufgabe erfindungsgemäß bei der Detektionsvorrichtung dadurch ge löst, dass die wenigstens eine Signalbeeinflussungseinrichtung wenigstens in einer Richtung quer zu einer optischen Achse der wenigstens einen Signalquelle betrachtet nebeneinander wenigstens zwei unterschiedliche optische Diffusorbereiche aufweist, die unterschiedliche Zerstreuungseigenschaften bezüglich der elektromagnetischen Sendesignale aufweisen. Furthermore, the object is achieved according to the invention with the detection device in that the at least one signal influencing device has at least two different optical diffuser regions next to each other, viewed in a direction transverse to an optical axis of the at least one signal source, which have different scattering properties with regard to the electromagnetic transmission signals.
Bei einer vorteilhaften Ausführungsform kann wenigstens eine Sendeeinrichtung eine Flash-Sendeeinrichtung sein. Auf diese Weise kann wenigstens ein Sendesignal simul tan in mehrere Regionen des Überwachungsbereichs gesendet werden. Die entspre chenden Regionen können so gleichzeitig bei einer Messung überprüft werden. In an advantageous embodiment, at least one transmission device can be a flash transmission device. In this way, at least one transmission signal can be sent simultaneously to a number of regions of the surveillance area. The corresponding regions can thus be checked simultaneously during a measurement.
Außerdem wird die Aufgabe erfindungsgemäß bei dem Fahrzeug dadurch gelöst, dass das Fahrzeug wenigstens eine Detektionsvorrichtung mit wenigstens einer erfindungs gemäßen Sendeeinrichtung aufweist. In addition, the object is achieved according to the invention in the vehicle in that the vehicle has at least one detection device with at least one transmission device according to the invention.
Im Übrigen wird die Aufgabe erfindungsgemäß bei dem Verfahren dadurch gelöst, dass das wenigstens eine Sendesignal mit der wenigstens einen Sendequelle auf wenigstens einen von wenigstens zwei Diffusorbereichen der wenigstens einen Signalbeeinflus sungseinrichtung gesendet wird und abhängig von den Zerstreuungseigenschaften des wenigstens einen Diffusorbereichs zumindest der Signalanteile des wenigstens einen Sendesignals, welche auf den wenigstens einen Diffusorbereich trifft, zerstreut wird. Furthermore, the object is achieved according to the invention in the method in that the at least one transmission signal is transmitted with the at least one transmission source to at least one of at least two diffuser areas of the at least one signal influencing device and, depending on the scattering properties of the at least one diffuser area, at least the signal components of the at least a transmission signal, which impinges on the at least one diffuser area, is scattered.
Erfindungsgemäß wird zumindest ein Signalanteile des wenigstens einen Sendesignals mit dem entsprechenden wenigstens einen Diffusorbereich beeinflusst. Dabei kann zu mindest der Signalanteile des wenigstens einen Sendesignals bezüglich der Signalin tensität und/oder der Ausbreitungsrichtung verändert werden. So kann das wenigstens eine Sendesignal zumindest anteilsmäßig entsprechenden Regionen des Überwa chungsbereichs zugeordnet werden. Dabei kann die Signalintensität an die entspre chende Region angepasst sein. Regionen, für die eine große Detektionsreichweite er- forderlich ist, insbesondere im Fernfeld, können so gezielt mit Signalanteilen des Sen designals mit entsprechend erhöhter Signalintensität abgetastet werden. According to the invention, at least one signal component of the at least one transmission signal is influenced by the corresponding at least one diffuser area. At least the signal components of the at least one transmission signal can be changed with regard to the signal intensity and/or the direction of propagation. In this way, the at least one transmission signal can be assigned at least in proportion to corresponding regions of the monitoring area. The signal intensity can be adapted to the corresponding region. Regions for which a large detection range is is required, especially in the far field, can be sampled in a targeted manner with signal components of the transmission signal with a correspondingly increased signal intensity.
Im Übrigen gelten die im Zusammenhang mit der erfindungsgemäßen Sendeeinrich tung, der erfindungsgemäßen Detektionsvorrichtung, dem erfindungsgemäßen Fahr zeug und dem erfindungsgemäßen Verfahren und deren jeweiligen vorteilhaften Ausge staltungen aufgezeigten Merkmale und Vorteile untereinander entsprechend und umge kehrt. Die einzelnen Merkmale und Vorteile können selbstverständlich untereinander kombiniert werden, wobei sich weitere vorteilhafte Wirkungen einstellen können, die über die Summe der Einzelwirkungen hinausgehen. Otherwise, the features and advantages shown in connection with the transmission device according to the invention, the detection device according to the invention, the vehicle according to the invention and the method according to the invention and their respective advantageous configurations apply to each other correspondingly and vice versa. The individual features and advantages can of course be combined with one another, in which case further advantageous effects can arise that go beyond the sum of the individual effects.
Kurze Beschreibung der Zeichnungen Brief description of the drawings
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nach folgenden Beschreibung, in der Ausführungsbeispiele der Erfindung anhand der Zeich nung näher erläutert werden. Der Fachmann wird die in der Zeichnung, der Beschrei bung und den Ansprüchen in Kombination offenbarten Merkmale zweckmäßigerweise auch einzeln betrachten und zu sinnvollen weiteren Kombinationen zusammenfassen. Es zeigen schematisch Further advantages, features and details of the invention will become apparent from the following description in which the exemplary embodiments of the invention are explained in more detail with reference to the undersigned statement. The person skilled in the art will expediently also consider the features disclosed in combination in the drawing, the description and the claims individually and combine them into useful further combinations. It show schematic
Figur 1 eine Vorderansicht eines Fahrzeugs mit einem Fahrerassistenzsystem und einem LiDAR-System zur Überwachung eines Überwachungsbereichs in Fahrtrichtung links neben dem Fahrzeug; FIG. 1 shows a front view of a vehicle with a driver assistance system and a LiDAR system for monitoring a monitoring area to the left of the vehicle in the direction of travel;
Figur 2 eine Funktionsdarstellung des Fahrzeugs aus der Figur 1 mit dem Fahreras sistenzsystem und dem LiDAR-System; FIG. 2 shows a functional representation of the vehicle from FIG. 1 with the driver assistance system and the LiDAR system;
Figur 3 eine Detailansicht einer Sendeeinrichtung des LiDAR-Systems in der Vor deransicht des Fahrzeugs aus der Figur 1; FIG. 3 shows a detailed view of a transmission device of the LiDAR system in the front view of the vehicle from FIG. 1;
Figur 4 ein Intensitäts-Winkel-Diagramm, in dem ein normierter horizontaler Intensi tätsverlauf von Sendesignalen, die mit einer Sendeeinrichtung des LiDAR- Systems aus den Figuren 1 und 2 gesendet werden, über den horizontalen Richtungswinkel bezogen auf eine Hauptachse des LiDAR-Systems darge stellt ist; FIG. 4 shows an intensity-angle diagram in which a normalized horizontal intensity curve of transmission signals, which are transmitted with a transmission device of the LiDAR system from FIGS. 1 and 2, is shown over the horizontal directional angle in relation to a main axis of the LiDAR system is;
Figur 5 ein Intensitäts-Winkel-Diagramm, in dem ein normierter vertikaler Intensitäts verlauf von Sendesignalen, die mit der Sendeeinrichtung des LiDAR- Systems aus den Figuren 1 und 2 gesendet werden, über den vertikalen Richtungswinkel bezogen auf die Flauptachse des LiDAR-Systems darge stellt ist. FIG. 5 shows an intensity-angle diagram in which a normalized vertical intensity curve of transmission signals, which are transmitted with the transmission device of the LiDAR system from FIGS. 1 and 2, over the vertical Orientation angle related to the flat axis of the LiDAR system is shown.
In den Figuren sind gleiche Bauteile mit gleichen Bezugszeichen versehen. The same components are provided with the same reference symbols in the figures.
Ausführungsform(en) der Erfindung embodiment(s) of the invention
In der Figur 1 ist ein Fahrzeug 10 beispielhaft in Form eines Personenkraftwagens in der Vorderansicht gezeigt. Die Figur 2 zeigt eine Funktionsdarstellung des Fahr zeugs 10. FIG. 1 shows a front view of a vehicle 10 by way of example in the form of a passenger car. Figure 2 shows a functional representation of the vehicle 10.
Der besseren Orientierung wegen sind in den Figuren 1 bis 5 die entsprechenden Ko ordinatenachsen eines kartesischen x-y-z-Koordinatensystems eingezeichnet. Bei den gezeigten Ausführungsbeispielen erstreckt sich beispielhaft die x-Achse in Richtung einer Fahrzeuglängsachse des Fahrzeugs 10, die y-Achse erstreckt sich entlang einer Fahrzeugquerachse und die z-Achse erstreckt sich senkrecht zur x-y-Ebene entlang einer Fahrzeug-Vertikalachse nach räumlich oben. Wenn das Kraftfahrzeug 10 sich be triebsgemäß auf einer horizontalen Fahrbahn befindet, erstrecken sich die x-Achse und die y-Achse räumlich horizontal und die z-Achse räumlich vertikal. For better orientation, the corresponding coordinate axes of a Cartesian x-y-z coordinate system are shown in FIGS. In the exemplary embodiments shown, the x-axis extends in the direction of a vehicle longitudinal axis of vehicle 10, the y-axis extends along a vehicle transverse axis and the z-axis extends spatially upwards perpendicular to the x-y plane along a vehicle vertical axis. When the motor vehicle 10 is operating on a horizontal roadway, the x-axis and y-axis extend horizontally in space and the z-axis extends vertically in space.
Das Fahrzeug 10 verfügt über eine optische Detektionsvorrichtung beispielsweise in Form eines LiDAR-Systems 12. Das LiDAR-System 12 ist beispielhaft seitlich in einem oberen Bereich des Fahrzeugs 10 angeordnet und in einen Überwachungsbereich 14 gerichtet, welcher sich in Fahrtrichtung 16 links neben dem Fahrzeug 10 befindet. Mit dem LiDAR-System 12 kann der Überwachungsbereich 14 auf Objekte 18 hin über wacht werden. Das LiDAR-System 12 kann auch an anderer Stelle des Fahrzeugs 10 angeordnet und anders ausgerichtet sein. Das Fahrzeug 10 kann auch mehrere, auch unterschiedliche Detektionsvorrichtungen aufweisen. The vehicle 10 has an optical detection device, for example in the form of a LiDAR system 12. The LiDAR system 12 is arranged, for example, on the side in an upper area of the vehicle 10 and is directed into a monitoring area 14, which is to the left of the vehicle 10 in the direction of travel 16 located. The monitoring area 14 can be monitored for objects 18 with the LiDAR system 12 . The LiDAR system 12 may also be located elsewhere on the vehicle 10 and oriented differently. The vehicle 10 can also have a plurality of detection devices, including different ones.
Mit dem LiDAR-System 12 können stehende oder bewegte Objekte 18, beispielsweise Fahrzeuge, Personen, Tiere, Pflanzen, Hindernisse, Fahrbahnunebenheiten, insbeson dere Schlaglöcher oder Steine, Fahrbahnbegrenzungen, Verkehrszeichen, Freiräume, insbesondere Parklücken, Niederschlag oder dergleichen, erfasst werden. The LiDAR system 12 can be used to detect stationary or moving objects 18, for example vehicles, people, animals, plants, obstacles, bumps in the road, in particular potholes or stones, road boundaries, traffic signs, open spaces, in particular parking spaces, precipitation or the like.
Ferner verfügt das Fahrzeug 10 über ein Fahrerassistenzsystem 20. Mit dem Fahreras- sistenzsystem 20 kann Funktionen des Fahrzeugs 10 autonom oder teilweise autonom betrieben werden. Das Fahrerassistenzsystem 20 ist funktional mit dem LiDAR- System 12 verbunden. So können Informationen über den Überwachungsbereich 14 welche mit dem LiDAR-System 12 erfasst werden, an das Fahrerassistenzsystem 20 übermittelt werden. Mit dem Fahrerassistenzsystem 20 können die Informationen über den Überwachungsbereich 14 beispielsweise zur Unterstützung von Betriebsfunktionen des Fahrzeugs 10, beispielsweise bezüglich Antrieb, Lenkung und Bremsen, herange zogen werden. Furthermore, the vehicle 10 has a driver assistance system 20. With the driver assistance assistance system 20, functions of the vehicle 10 can be operated autonomously or partially autonomously. Driver assistance system 20 is functionally connected to LiDAR system 12 . In this way, information about the monitoring area 14 which is recorded using the LiDAR system 12 can be transmitted to the driver assistance system 20 . With the driver assistance system 20, the information about the monitoring area 14 can be used, for example, to support operating functions of the vehicle 10, for example with regard to drive, steering and braking.
Informationen über den Überwachungsbereich 14 können beispielsweise Informationen darüber enthalten, ob sich Objekte 18 im Überwachungsbereich 14 befinden. Falls ein Objekt 18 im Überwachungsbereich 14 erfasst wird, können die Informationen über den Überwachungsbereich 14 Objektinformationen über das erfasste Objekt 18 umfassen. Die Objektinformationen eines Objekts 18, welche mit dem LiDAR-System 12 ermittelt werden können, umfassen beispielhaft Entfernungen, Geschwindigkeiten und Richtun gen von Objekten 18 relativ zu dem Fahrzeug 10, respektive zu dem LiDAR-System 12. Die Richtung eines Objekts 18 kann beispielsweise als Winkel in Bezug auf Refe renzachsen angegeben werden. Beispielsweise kann der Azimut in Bezug auf die Fahr zeugquerachse des Fahrzeugs 10 und die Elevation in Bezug auf die Fahrzeug- Vertikalachse zur Charakterisierung der Richtung angegeben werden. Information about the monitored area 14 can contain information about whether objects 18 are located in the monitored area 14, for example. If an object 18 is detected in the surveillance area 14 , the information about the surveillance area 14 can include object information about the detected object 18 . The object information of an object 18, which can be determined with the LiDAR system 12, for example, include distances, speeds and directions of objects 18 relative to the vehicle 10, or to the LiDAR system 12. The direction of an object 18 can, for example, as Angles can be specified in relation to reference axes. For example, the azimuth relative to the transverse axis of the vehicle 10 and the elevation relative to the vertical axis of the vehicle can be specified to characterize the direction.
Das LiDAR-System 12 umfasst beispielhaft eine Sendeeinrichtung 22, eine Empfangs einrichtung 24 und eine Steuer- und Auswerteeinrichtung 26. The LiDAR system 12 includes, for example, a transmitting device 22, a receiving device 24 and a control and evaluation device 26.
Mit der Sendeeinrichtung 22 können elektromagnetische Sendesignale 28 gesendet werden. Die Sendesignale 28 sind beispielhaft gepulste Laserstrahlen mit Wellenlängen beispielsweise im nahen Infrarot. Electromagnetic transmission signals 28 can be transmitted with the transmission device 22 . The transmission signals 28 are, for example, pulsed laser beams with wavelengths in the near infrared, for example.
Beispielhaft handelt es sich bei dem LiDAR-System 12 um ein sogenanntes Flash- LiDAR-System, bei dem mit einem Sendesignal 28 ein größerer Bereich ausgeleuchtet wird. For example, the LiDAR system 12 is what is known as a flash LiDAR system, in which a larger area is illuminated with a transmission signal 28 .
Mit der Empfangseinrichtung 24 können die Sendesignale 28, welche im Überwa chungsbereich 14 beispielsweise an einem Objekt 18 in Richtung des LiDAR-Systems 12 reflektiert werden, als elektromagnetische Empfangssignale 30 in entsprechende elektrische Auswertesignale umgewandelt werden. Die elektrischen Auswertesignale können an die elektronische Steuer- und Auswerteeinrichtung 26 des LiDAR- Systems 12 übermittelt und mit dieser verarbeitet werden. With the receiving device 24, the transmission signals 28, which are in the monitoring area 14, for example, at an object 18 in the direction of the LiDAR system 12 are reflected when electromagnetic reception signals 30 are converted into corresponding electrical evaluation signals. The electrical evaluation signals can be transmitted to the electronic control and evaluation device 26 of the LiDAR system 12 and processed with it.
Die Steuer- und Auswerteeinrichtung 26 umfasst Mittel zur Steuerung des LiDAR- Systems 12 und zur Verarbeitung der elektrischen Auswertesignale. Alternativ können die Mittel zur Steuerung und die Mittel zur Auswertung auch separat ausgestaltet sein. Es können eine Steuereinrichtung und Auswerteeinrichtung getrennt voneinander reali siert sein. Die Mittel zur Steuerung und zur Auswertung sind auf softwaremäßigem und hardwaremäßigem Wege realisiert. Teile der Steuer- und Auswerteeinrichtung 26 oder die gesamte Steuer- und Auswerteeinrichtung 26 können auch mit einer elektronischen Steuereinrichtung des Fahrzeugs 10, beispielsweise auch mit dem Fahrerassistenzsys tem 20, kombiniert sein. The control and evaluation device 26 includes means for controlling the LiDAR system 12 and for processing the electrical evaluation signals. Alternatively, the means for control and the means for evaluation can also be designed separately. A control device and evaluation device can be implemented separately from one another. The means for control and evaluation are implemented in software and hardware. Parts of the control and evaluation device 26 or the entire control and evaluation device 26 can also be combined with an electronic control device of the vehicle 10, for example also with the driver assistance system 20.
Aus den Empfangssignalen 30, respektive den elektrischen Auswertesignalen, können mit dem LiDAR-System 12 die Information über den Überwachungsbereich 14, respek tive die Objektinformationen über das erfasste Objekt 18, gewonnen werden. So kann beispielhaft nach einem Signal-Laufzeitverfahren, bei dem die Laufzeit zwischen dem Senden eines Sendesignals 28 und dem Empfang des entsprechenden Empfangssig nals 30 ermittelt wird, die Entfernung des Objekts 18 relativ zu dem LiDAR-System 12 ermittelt werden. The information about the monitored area 14 or the object information about the detected object 18 can be obtained with the LiDAR system 12 from the received signals 30 or the electrical evaluation signals. For example, the distance of the object 18 relative to the LiDAR system 12 can be determined using a signal propagation time method, in which the propagation time between the transmission of a transmission signal 28 and the receipt of the corresponding reception signal 30 is determined.
Die Sendeeinrichtung 22 ist in der Figur 3 nicht maßstabsgetreu und nicht winkeltreu im Detail beispielhaft in Richtung der x-Achse betrachtet gezeigt. Die Sendeeinrichtung 22 umfasst eine Signalquelle 32 und eine Signalbeeinflussungseinrichtung 34. The transmitting device 22 is not shown in detail in FIG. The transmission device 22 comprises a signal source 32 and a signal influencing device 34.
Die Signalquelle 32 umfasst beispielhaft eine Laserdiode, mit welcher die Sendesignale 28 erzeugt werden können. Die Sendeeinrichtung 22 kann auch mehr als eine Signal quelle 32, beispielhaft mehrere Laserdioden, aufweisen. Die Sendesignale 28 werden in Richtung einer optischen Achse 36 der Signalquelle 32 zu der Signalbeeinflussungsein richtung 34 gesendet. Die optische Achse 36 verläuft beispielhaft parallel zur y-Achse, also parallel zur Fahrzeugquerachse. Die Ausdehnung der Sendesignale 28 quer zur optischen Achse 36 also quer zu ihrer Ausbreitungsrichtung ist so vorgegeben, dass die Sendesignale 28 eine Eintrittsseite 38 der Signalbeeinflussungseinrichtung 34 vollstän dig ausleuchtet. Die Ausbreitungsrichtung der Sendesignale 28 hinter der Signalquelle 32 und vor der Signalbeeinflussungseinrichtung 34 wird mit dem Pfeilsymbol in der Fi gur 3 angedeutet. The signal source 32 includes, for example, a laser diode with which the transmission signals 28 can be generated. The transmission device 22 can also have more than one signal source 32, for example a plurality of laser diodes. The transmission signals 28 are sent in the direction of an optical axis 36 of the signal source 32 to the signal influencing device 34 . The optical axis 36 runs, for example, parallel to the y-axis, ie parallel to the transverse axis of the vehicle. The expansion of the transmission signals 28 transverse to the optical axis 36 so transverse to their direction of propagation is specified so that the Transmission signals 28 illuminate an entry side 38 of the signal influencing device 34 completely. The direction of propagation of the transmission signals 28 behind the signal source 32 and in front of the signal influencing device 34 is indicated by the arrow symbol in FIG.
Die Signalbeeinflussungseinrichtung 34 ist beispielhaft als diffraktive optische Struktur realisiert. Die diffraktive optische Struktur kann individuell an die Betriebserfordernisse des LiDAR-Systems 12 angepasst sein. The signal influencing device 34 is implemented as a diffractive optical structure, for example. The diffractive optical structure can be individually adapted to the operational requirements of the LiDAR system 12 .
Die Signalbeeinflussungseinrichtung 34 umfasst beispielhaft vier Diffusorbereiche, in der Figur 3 von unten nach oben betrachtet einen Boden-Diffusorbereich 40a, einen Nahfeld-Diffusorbereich 40b, einen Fernfeld-Diffusorbereich 40c und einen Flöhen- Diffusorbereich 40d. Die Diffusorbereiche 40a, 40b, 40c und 40d erstrecken sich jeweils quer zur optischen Achse 36 beispielhaft parallel zur x-z-Ebene. Die Diffusorbereiche 40a, 40b, 40c und 40d sind in Richtung der z-Achse betrachtet nebeneinander, in der Darstellung in Figur 3 übereinander, angeordnet. Die Diffusorbereiche 40a, 40b, 40c und 40d erstrecken sich jeweils über die gleiche Breite parallel zur x-Achse und mit un terschiedlichen Flöhen parallel zur z-Achse. The signal influencing device 34 comprises, for example, four diffuser areas, viewed from bottom to top in FIG. The diffuser regions 40a, 40b, 40c and 40d each extend transversely to the optical axis 36, for example parallel to the x-z plane. The diffuser regions 40a, 40b, 40c and 40d are arranged next to one another, viewed in the direction of the z-axis, one above the other in the illustration in FIG. The diffuser regions 40a, 40b, 40c and 40d each extend over the same width parallel to the x-axis and with un ferent fleas parallel to the z-axis.
Die Diffusorbereiche 40a, 40b, 40c und 40d haben unterschiedliche Zerstreuungseigen schaften bezüglich der Sendesignale 28. Beispielsweise können die Sendesignale 28 mit den Diffusorbereichen 40a, 40b, 40c und 40d in unterschiedlicher Weise umgelenkt werden. The diffuser regions 40a, 40b, 40c and 40d have different scattering properties with respect to the transmission signals 28. For example, the transmission signals 28 can be deflected in different ways with the diffuser regions 40a, 40b, 40c and 40d.
Der Anteil der Sendesignale 28, welcher auf den in der Figur 3 Boden-Diffusorbereich 40a trifft, wird durch die entsprechende diffraktive optische Struktur als Boden- Signalanteil 28a nach unten zum Boden 42, beispielsweise zur Fahrbahn, hin gebeugt und in vertikaler Richtung, also in Richtung parallel zur z-Achse, aufgeweitet. Der Bo den-Signalanteil 28a leuchtet eine Bodenregion 44a des Überwachungsbereichs 14 aus. Die Bodenregion 44a wird durch den Boden 42 begrenzt und erstreckt sich bis zu einer Boden-Detektionsreichweite 46a, welche in der Figur 1 bezeichnet ist, von bei spielhaft etwa 2 m, was etwa der Flöhe des Fahrzeugs 10 entspricht. Zusätzlich wird mit dem Boden-Diffusorbereich 40a wird eine Boden-Signalintensität lnt_a des Boden- Signalanteils 28a so eingestellt, dass diese ausreicht, um die Bodenregion 44a bis zur Boden-Detektionsreichweite 46a auszuleuchten. The portion of the transmission signals 28 which impinges on the floor diffuser region 40a in Figure 3 is diffracted downwards to the floor 42, for example to the roadway, by the corresponding diffractive optical structure as the floor signal portion 28a, and in the vertical direction, i.e. in Direction parallel to z-axis, flared. The ground signal portion 28a illuminates a ground region 44a of the surveillance area 14 . The floor region 44a is delimited by the floor 42 and extends up to a floor detection range 46a, which is indicated in FIG. In addition, with the bottom diffuser area 40a, a bottom signal intensity Int_a of the bottom Signal portion 28a adjusted so that it is sufficient to illuminate the bottom region 44a to the bottom detection range 46a.
Eine jeweilige Detektionsreichweite ist die Entfernung von dem LiDAR-System 12, bis zu der das LiDAR-System 12 etwaige Objekte 18 erfassen kann. Die Detektionsreich weite kann beispielsweise durch die Länge eines Messfensters vorgegeben werden, innerhalb dem die Reflexion eines ausgesendeten Sendesignals erwartet wird. A respective detection range is the distance from the LiDAR system 12 up to which the LiDAR system 12 can detect any objects 18 . The detection range can be specified, for example, by the length of a measurement window within which the reflection of a transmitted transmission signal is expected.
Der Anteil der Sendesignale 28, welcher auf den Nahfeld-Diffusorbereich 40b trifft, wird durch die entsprechende diffraktive optische Struktur als Nahfeld-Signalanteil 28b eben falls in Richtung des Bodens 42 in einer Nahfeld-Region 44b, welche sich neben der Bodenregion 44a befindet, gebeugt und in vertikaler Richtung aufgeweitet. Der Nahfeld- Signalanteil 28b leuchtet die Nahfeld-Region 44b des Überwachungsbereichs 14 aus. Die Nahfeld-Region 44b im Boden 42 begrenzt und erstreckt sich bis zu einer Nahfeld- Detektionsreichweite 46b von beispielhaft etwa 10 m. Zusätzlich wird mit dem Nahfeld- Diffusorbereich 40b eine Nahfeld-Signalintensität lnt_b des Nahfeld-Signalanteils 28b so eingestellt, dass sie ausreicht, um die Nahfeld-Region 44b bis zur Nahfeld- Detektionsreichweite 46b auszuleuchten. Da die Nahfeld-Detektionsreichweite 46b grö ßer ist als die Boden-Detektionsreichweite 46a ist entsprechend die Nahfeld- Signalintensität lnt_b größer als die Boden-Signalintensität lnt_a. The portion of the transmission signals 28 that impinges on the near-field diffuser area 40b is also bent by the corresponding diffractive optical structure as a near-field signal portion 28b in the direction of the bottom 42 in a near-field region 44b, which is located next to the bottom region 44a and widened in the vertical direction. The near-field signal portion 28b illuminates the near-field region 44b of the surveillance area 14. The near-field region 44b in the floor 42 delimits and extends up to a near-field detection range 46b of approximately 10 m, for example. to illuminate the near-field region 44b to the near-field detection range 46b. Since the near-field detection range 46b is greater than the ground detection range 46a, the near-field signal intensity Int_b is correspondingly greater than the ground signal intensity Int_a.
Der Anteil der Sendesignale 28, welcher auf den Fernfeld-Diffusorbereich 40c trifft, wird durch die entsprechende diffraktive optische Struktur als Fernfeld-Signalanteil 28c in eine Fernfeld-Region 44c gebeugt und in vertikaler Richtung aufgeweitet. Der Fernfeld- Signalanteil 28c leuchtet die Fernfeld-Region 44c des Überwachungsbereichs 14 aus. Die Fernfeld-Region 44c erstreckt sich neben dem Fahrzeug 10 bis zu einer Fernfeld- Detektionsreichweite 46c von beispielhaft etwa 40 m. Die Fernfeld-Region 44c erstreckt sich oberhalb und unterhalb einer Hauptachse 48 des LiDAR-Systems 12. Die Haupt achse 48 erstreckt sich beispielhaft parallel zur y-Achse, in der Regel räumlich horizon tal. Die Fernfeld-Region 44 hat beispielhaft einen vertikalen Öffnungswinkel 50 von et wa 25°. Zusätzlich wird mit dem Fernfeld-Diffusorbereich 40c wird eine Fernfeld- Signalintensität lnt_c des Fernfeld-Signalanteils 28c so eingestellt, dass sie ausreicht, um die Fernfeld-Region 44c bis zur Fernfeld-Detektionsreichweite 46c auszuleuchten. Da die Fernfeld-Detektionsreichweite 46c größer ist als die Nahfeld- Detektionsreichweite 46b ist entsprechend die Fernfeld-Signalintensität lnt_c größer als die Nahfeld-Signalintensität lnt_b. The portion of the transmission signals 28 which strikes the far-field diffuser area 40c is diffracted by the corresponding diffractive optical structure as a far-field signal portion 28c into a far-field region 44c and widened in the vertical direction. The far-field signal component 28c illuminates the far-field region 44c of the surveillance area 14 . Far-field region 44c extends next to vehicle 10 up to a far-field detection range 46c of approximately 40 m, for example. Far-field region 44c extends above and below a main axis 48 of LiDAR system 12. Main axis 48 extends, for example parallel to the y-axis, usually spatially horizontal. The far-field region 44 has, for example, a vertical opening angle 50 of approximately 25°. In addition, a far-field signal intensity Int_c of the far-field signal component 28c is set with the far-field diffuser area 40c such that it is sufficient to illuminate the far-field region 44c up to the far-field detection range 46c. Because the far-field detection range 46c is greater than the near-field Detection range 46b, the far-field signal intensity Int_c is greater than the near-field signal intensity Int_b.
Der Anteil der Sendesignale 28, welcher auf den Höhen-Diffusorbereich 40d trifft, wird durch die entsprechende diffraktive optische Struktur als Höhen-Signalanteil 28d nach schräg oben in einer in einer Höhenregion 44d gebeugt und in vertikaler Richtung auf geweitet. Die Höhenregion 44b befindet sich oberhalb der Fernfeld-Region 44c. Der Höhen-Signalanteil 28d leuchtet die Höhenregion 44d des Überwachungsbereichs 14 aus. Die Höhenregion 44d erstreckt sich bis zu einer Höhen-Detektionsreichweite 46d von beispielhaft etwa 10 m. Eine größere Detektionsreichweite ist für die Höhenregion 44d nicht erforderlich, da sich etwaige Objekte 18 in der Höhenregion 44d oberhalb des Fahrzeugs 10 befinden und keine Kollisionsgefahr besteht. Daher besteht in der Regel auch kein Interesse, Objekte 18 zu erfassen, welche sich in einer größeren Entfernung als 10 m in dieser Höhe befinden. Zusätzlich wird mit dem Höhen-Diffusorbereich 40d wird eine Höhen-Signalintensität lnt_d des Höhen-Signalanteils 28d so eingestellt, dass sie ausreicht, um die Höhenregion 44d bis zur Höhen-Detektionsreichweite 46d auszu leuchten. Da die Höhen-Detektionsreichweite 46d etwa so groß ist wie die Nahfeld- Detektionsreichweite 46b ist entsprechend die Höhen-Signalintensität lnt_d etwa so groß wie die Nahfeld-Signalintensität lnt_b. The portion of the transmission signals 28 which impinges on the height diffuser area 40d is diffracted obliquely upwards by the corresponding diffractive optical structure as a height signal portion 28d in a height region 44d and widened in the vertical direction. The high-altitude region 44b is above the far-field region 44c. The high-altitude signal component 28d illuminates the high-altitude region 44d of the surveillance area 14 . The height region 44d extends up to a height detection range 46d of approximately 10 m, for example. A greater detection range is not required for the height region 44d since any objects 18 are located in the height region 44d above the vehicle 10 and there is no risk of collision. Therefore, as a rule, there is also no interest in detecting objects 18 which are at a greater distance than 10 m at this height. In addition, a height signal intensity Int_d of the height signal portion 28d is set with the height diffuser area 40d such that it is sufficient to illuminate the height region 44d up to the height detection range 46d. Since the high-altitude detection range 46d is approximately as large as the near-field detection range 46b, the high-altitude signal intensity Int_d is approximately as large as the near-field signal intensity Int_b.
In der Figur 4 ist beispielhaft ein Intensitäts-Winkel-Diagramm dargestellt, in dem ein normierter horizontaler Intensitätsverlauf eines mit der Signalbeeinflussungseinrichtung 34 zerstreuten Sendesignals 28 über einen horizontalen Richtungswinkel bezogen auf die Hauptachse 48 des LiDAR-Systems 12 dargestellt ist. Die Hauptachse 48 liegt bei dem horizontal Richtungswinkel 0°. Der horizontale Öffnungswinkel des LiDAR-Systems 12 beträgt beispielhaft etwa 110°. Die normierten horizontalen Intensitätsverläufe der Boden-Signalintensität lnt_a, der Nahfeld-Signalintensität lnt_b, der Fernfeld- Signalintensität lnt_c und der Höhen-Signalintensität lnt_d sind beispielhaft identisch und entsprechen jeweils der Darstellung in der Figur 4. An intensity-angle diagram is shown in FIG. 4 as an example, in which a normalized horizontal intensity profile of a transmission signal 28 dispersed by the signal influencing device 34 is shown over a horizontal directional angle in relation to the main axis 48 of the LiDAR system 12. The main axis 48 lies at the horizontal direction angle 0°. The horizontal opening angle of the LiDAR system 12 is approximately 110°, for example. The normalized horizontal intensity curves of the ground signal intensity Int_a, the near-field signal intensity Int_b, the far-field signal intensity Int_c and the height signal intensity Int_d are identical and correspond to the representation in Figure 4.
In der Figur 5 ist beispielhaft ein Intensitäts-Winkel-Diagramm dargestellt, in dem ein normierter vertikaler Intensitätsverlauf eines mit der Signalbeeinflussungseinrichtung 34 zerstreuten Sendesignals 28 über einen vertikalen Richtungswinkel bezogen auf die Hauptachse 48 des LiDAR-Systems 12 dargestellt ist. Die Hauptachse 48 liegt beispiel- haft bei dem vertikalen Richtungswinkel 0°. Der vertikale Öffnungswinkel des LiDAR- Systems 12 beträgt beispielhaft etwa 80°. Der normierte vertikale Intensitätsverlauf setzt sich zusammen aus den jeweiligen Intensitätsverläufe der Boden-Signalintensität lnt_a, der Nahfeld-Signalintensität lnt_b, der Fernfeld-Signalintensität lnt_c und der Hö- hen-Signalintensität lnt_d. Seine Maxima weist der normierte vertikale Intensitätsverlauf etwa zwischen den vertikalen Richtungswinkeln 5° und 30° auf. Die Ausdehnung der Maxima über den Winkelbereich entspricht dem Öffnungswinkel 50 der Fernfeld-Region 44 von etwa 25°. An intensity-angle diagram is shown in FIG. 5 as an example, in which a normalized vertical intensity profile of a transmission signal 28 dispersed by the signal influencing device 34 is shown over a vertical directional angle in relation to the main axis 48 of the LiDAR system 12. The main axis 48 is for example stick at the vertical direction angle 0°. The vertical opening angle of the LiDAR system 12 is approximately 80°, for example. The normalized vertical intensity profile is made up of the respective intensity profiles of the ground signal intensity Int_a, the near-field signal intensity Int_b, the far-field signal intensity Int_c and the height signal intensity Int_d. The normalized vertical intensity curve has its maxima between the vertical directional angles of 5° and 30°. The expansion of the maxima over the angular range corresponds to the aperture angle 50 of the far-field region 44 of approximately 25°.
Die Empfangseinrichtung 24 verfügt über ein optisch abbildendes System, beispielswei se in Form einer optischen Linse, einen Empfänger, beispielsweise in Form eines CCD- Chips, und elektronische Bauteile. Das optische System befindet sich zwischen dem Empfänger 24 und dem Überwachungsbereich 14. The receiving device 24 has an optical imaging system, beispielswei se in the form of an optical lens, a receiver, for example in the form of a CCD chip, and electronic components. The optical system is located between the receiver 24 and the surveillance area 14.
Bei dem Verfahren zum Detektieren von Objekten 18 in dem Überwachungsbereich 14 werden mit der Sendeeinrichtung 22 Sendesignale 28 erzeugt und auf die Signalbeein flussungseinrichtung 34 gesendet. Mit den Diffusorbereichen, nämlich dem Boden- Diffusorbereich 40a, dem Nahfeld-Diffusorbereich 40b, dem Fernfeld-Diffusorbereich 40c und dem Höhen-Diffusorbereich 40d, werden die entsprechenden Anteile der Sen designale 28 gestreut und als Boden-Signalanteil 28a, Nahfeld-Signalanteil 28b, Fern feld-Signalanteil 28c und Höhen-Signalanteil 28d mit den jeweiligen Intensitäten, näm lich der Boden-Signalintensität lnt_a, der Nahfeld-Signalintensität lnt_b, der Fernfeld- Signalintensität lnt_c beziehungsweise der Höhen-Signalintensität lnt_d, in die entspre chende Region des Überwachungsbereichs 14, nämlich in die Bodenregion 44a, die Nahfeld-Region 44b, die Fernfeld-Region 44c beziehungsweise die Höhenregion 44d, gelenkt. In the method for detecting objects 18 in the surveillance area 14 , transmission signals 28 are generated with the transmission device 22 and sent to the signal influencing device 34 . With the diffuser areas, namely the bottom diffuser area 40a, the near-field diffuser area 40b, the far-field diffuser area 40c and the high-level diffuser area 40d, the corresponding portions of the transmitted signals 28 are scattered and used as the ground signal portion 28a, the near-field signal portion 28b, far-field signal portion 28c and height-signal portion 28d with the respective intensities, namely the ground signal intensity Int_a, the near-field signal intensity Int_b, the far-field signal intensity Int_c and the height-signal intensity Int_d, in the corresponding region of the monitoring area 14, namely into the bottom region 44a, the near-field region 44b, the far-field region 44c and the high-altitude region 44d, respectively.
Die Boden-Signalanteile 28a, Nahfeld-Signalanteile 28b, Fernfeld-Signalanteile 28c und Höhen-Signalanteile 28d, welche auf ein Objekt 18 im Überwachungsbereich 14 treffen, werden entsprechend reflektiert, als entsprechende Empfangssignale 30 mit der Emp fangseinrichtung 24 empfangen und in elektrische Auswertesignale umgewandelt. Die elektrischen Auswertesignale werden an die Steuer- und Auswerteeinrichtung 26 über mittelt. Mit der Steuer- und Auswerteeinrichtung 26 werden aus den Auswertesignalen die Objektinformationen des Objekts 18, nämlich die Entfernung, die Richtung und die Geschwindigkeit des erfassten Objekts 18 relativ zum LiDAR-System 12, ermittelt. The ground signal components 28a, near-field signal components 28b, far-field signal components 28c and altitude signal components 28d, which strike an object 18 in the monitored area 14, are reflected accordingly, received as corresponding received signals 30 with the receiving device 24 and converted into electrical evaluation signals . The electrical evaluation signals are transmitted to the control and evaluation device 26 . With the control and evaluation device 26, the evaluation signals the object information of the object 18, namely the distance, the direction and the speed of the detected object 18 relative to the LiDAR system 12, is determined.
Die Objektinformationen werden an das Fahrerassistenzsystem 20 übermittelt. Mit dem Fahrerassistenzsystem 20 werden entsprechende Betriebsfunktionen des Fahrzeugs 10 auf Basis der Objektinformationen beeinflusst, beispielsweise gesteuert oder geregelt. Das Fahrzeug 10 kann so autonom oder teilautonom betrieben werden. The object information is transmitted to driver assistance system 20 . With the driver assistance system 20 corresponding operating functions of the vehicle 10 are influenced on the basis of the object information, for example controlled or regulated. The vehicle 10 can thus be operated autonomously or partially autonomously.

Claims

Ansprüche Expectations
1. Sendeeinrichtung (22) einer optischen Detektionsvorrichtung (12) zur Überwachung wenigstens eines Überwachungsbereichs (14) auf Objekte (18) hin mittels elektro magnetischer Sendesignale (28), mit wenigstens einer Signalquelle (32), mit welcher elektromagnetische Sendesig nale (28) erzeugt werden können, und mit wenigstens einer Signalbeeinflussungseinrichtung (34), mit der die elektro magnetischen Sendesignale (28) beeinflusst werden können, dadurch gekennzeichnet, dass die wenigstens eine Signalbeeinflussungseinrichtung (34) wenigstens in einer Rich tung quer zu einer optischen Achse (36) der wenigstens einen Signalquelle (32) be trachtet nebeneinander wenigstens zwei unterschiedliche optische Diffusorbereiche (40a, 40b, 40c, 40d) aufweist, die unterschiedliche Zerstreuungseigenschaften be züglich der elektromagnetischen Sendesignale (28) aufweisen. 1. Transmitting device (22) of an optical detection device (12) for monitoring at least one monitoring area (14) for objects (18) by means of electromagnetic transmission signals (28), with at least one signal source (32) with which electromagnetic transmission signals (28) can be generated, and with at least one signal influencing device (34) with which the electromagnetic transmission signals (28) can be influenced, characterized in that the at least one signal influencing device (34) extends at least in a direction transverse to an optical axis (36) the at least one signal source (32), viewed side by side, has at least two different optical diffuser regions (40a, 40b, 40c, 40d) which have different scattering properties with regard to the electromagnetic transmission signals (28).
2. Sendeeinrichtung (22) nach Anspruch 1 , dadurch gekennzeichnet, dass wenigstens ein Diffusorbereich (40a, 40b, 40c, 40d) wenigstens ein Streuungsmittel aufweist oder daraus besteht, mit welchen elektromagnetische Sendesignale (28) gestreut werden können, und/oder wenigstens ein Diffusorbereich (40a, 40b, 40c, 40d) wenigstens ein Beugungsmittel aufweist oder daraus besteht, mit welchen elektromagnetische Sendesignale (28) gebeugt werden können, und/oder wenigstens ein Diffusorbereich (40a, 40b, 40c, 40d) wenigstens eine diffraktive opti sche Struktur aufweist, mit welcher Zerstreuungseigenschaften bezüglich der elekt romagnetischen Sendesignale (28) vorgegeben werden können. 2. Transmission device (22) according to claim 1, characterized in that at least one diffuser region (40a, 40b, 40c, 40d) has or consists of at least one scattering means with which electromagnetic transmission signals (28) can be scattered, and/or at least one Diffuser area (40a, 40b, 40c, 40d) has or consists of at least one diffraction means with which electromagnetic transmission signals (28) can be diffracted, and/or at least one diffuser area (40a, 40b, 40c, 40d) has at least one diffractive optical structure has, with which dispersion properties with respect to the elec romagnetic transmission signals (28) can be specified.
3. Sendeeinrichtung (22) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass wenigstens zwei unterschiedliche optische Diffusorbereiche (40a, 40b, 40c, 40d) wenigstens zwei unterschiedlichen Regionen (44a, 44b, 44c, 44d) des Überwa chungsbereichs (14) zugeordnet sind. 3. Transmission device (22) according to claim 1 or 2, characterized in that at least two different optical diffuser areas (40a, 40b, 40c, 40d) are assigned to at least two different regions (44a, 44b, 44c, 44d) of the monitoring area (14). are.
4. Sendeeinrichtung (22) nach Anspruch 3, dadurch gekennzeichnet, dass die Sen deeinrichtung (22) für die wenigstens zwei unterschiedlichen Regionen (44a, 44b, 44c, 44d) jeweilige Signalintensitäten (lnt_a, lnt_b, lnt_c, lnt_d) realisieren. 4. Transmission device (22) according to claim 3, characterized in that the transmission device (22) realizes respective signal intensities (lnt_a, lnt_b, lnt_c, lnt_d) for the at least two different regions (44a, 44b, 44c, 44d).
5. Sendeeinrichtung (22) nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass in wenigstens zwei orthogonalen Richtungen quer zur optischen Achse (36) der wenigstens einen Signalquelle (32) betrachtet jeweils nebeneinander we nigstens zwei unterschiedliche optische Diffusorbereiche (40a, 40b, 40c, 40d) an geordnet sind. 5. Transmitting device (22) according to one of the preceding claims, characterized in that in at least two orthogonal directions transverse to the optical axis (36) of the at least one signal source (32), viewed side by side, at least two different optical diffuser regions (40a, 40b, 40c , 40d) are arranged on.
6. Detektionsvorrichtung (12) zum Detektieren von Objekten (18) in wenigstens einem Überwachungsbereich (14) mittels elektromagnetischer Sendesignale (28), mit wenigstens einer Sendeeinrichtung (22), mit der elektromagnetische Sendesig nale (28) in den Überwachungsbereich (14) gesendet werden können, mit wenigstens einer Empfangseinrichtung (24), mit der elektromagnetische Emp fangssignale (30) empfangen werden können, welche von elektromagnetischen Sendesignalen (28) herrühren, die in dem Überwachungsbereich (14) reflektiert werden, und mit der elektromagnetische Empfangssignale (30) in Auswertesignale umgewandelt werden können, die mit einer Auswerteeinrichtung (26) verarbeitbar sind, und mit wenigstens einer Auswerteeinrichtung (26), mit der auf Basis wenigstens der elektromagnetischen Empfangssignale (30) Informationen über den Überwa chungsbereich (14) ermittelt werden können, wobei die wenigstens eine Sendeeinrichtung (22) aufweist wenigstens eine Signal quelle (32), mit welcher elektromagnetische Sendesignale (28) erzeugt werden kön nen, und wenigstens eine Signalbeeinflussungseinrichtung (34), mit der die elekt romagnetischen Sendesignale (28) beeinflusst werden können, dadurch gekennzeichnet, dass die wenigstens eine Signalbeeinflussungseinrichtung (34) wenigstens in einer Rich tung quer zu einer optischen Achse (36) der wenigstens einen Signalquelle (32) be trachtet nebeneinander wenigstens zwei unterschiedliche optische Diffusorbereiche (40a, 40b, 40c, 40d) aufweist, die unterschiedliche Zerstreuungseigenschaften be züglich der elektromagnetischen Sendesignale (28) aufweisen. 6. Detection device (12) for detecting objects (18) in at least one surveillance area (14) by means of electromagnetic transmission signals (28), with at least one transmission device (22) with which electromagnetic transmission signals (28) are sent into the surveillance area (14). can be, with at least one receiving device (24) with which electromagnetic reception signals (30) can be received, which originate from electromagnetic transmission signals (28) which are reflected in the monitored area (14), and with which electromagnetic reception signals (30) can be converted into evaluation signals that can be processed with an evaluation device (26), and with at least one evaluation device (26) with which information about the monitoring area (14) can be determined on the basis of at least the electromagnetic reception signals (30), the at least one transmitting device (22) has at least one signal source (32) with which electromagnetic transmission signals (28) can be generated, and at least one signal influencing device (34) with which the electromagnetic transmission signals (28) can be influenced, characterized in that the at least one signal influencing device (34) operates in at least one direction transverse to a optical axis (36) of the at least one signal source (32), viewed side by side, has at least two different optical diffuser regions (40a, 40b, 40c, 40d) which have different scattering properties with regard to the electromagnetic transmission signals (28).
7. Detektionsvorrichtung (12) nach Anspruch 6, dadurch gekennzeichnet, dass we nigstens eine Sendeeinrichtung (22) eine Flash-Sendeeinrichtung (22) ist. 7. Detection device (12) according to claim 6, characterized in that we at least one transmitter (22) is a flash transmitter (22).
8. Fahrzeug (10) mit wenigstens einer Detektionsvorrichtung (12) zum Detektieren von Objekten (18) in wenigstens einem Überwachungsbereich (14) mittels elektromag netischer Signale, dadurch gekennzeichnet, dass das Fahrzeug (10) wenigstens eine Detektionsvorrichtung (12) mit wenigstens einer Sendeeinrichtung (22) nach einem der Ansprüche 1 bis 5 aufweist. 8. Vehicle (10) with at least one detection device (12) for detecting objects (18) in at least one monitoring area (14) by means of electromagnetic signals, characterized in that the vehicle (10) has at least one detection device (12) with at least one Transmission device (22) according to one of Claims 1 to 5.
9. Verfahren zum Detektieren von Objekten (18) in wenigstens einem Überwachungs bereich (14) mit einer Detektionsvorrichtung (12) mittels elektromagnetischer Sen designale (28), bei dem mit wenigstens einer Sendeeinrichtung (22) wenigstens ein elektromagnetisches Sendesignal (28) in den wenigstens einen Überwachungsbereich (14) gesendet wird, wobei das wenigstens eine elektromagnetische Sendesignal (28) mit wenigs tens einer Signalbeeinflussungseinrichtung (34) beeinflusst wird, mit einer Empfangseinrichtung (24) wenigstens ein Empfangssignal (30) empfangen wird, welches von wenigstens einem Sendesignal (28) herrührt, das im Überwa chungsbereich (14) reflektiert wird, wenigstens auf Basis des wenigstens einen empfangenen Empfangssignals (30) In formationen über den Überwachungsbereich (14) ermittelt werden, dadurch gekennzeichnet, dass das wenigstens eine Sendesignal (28) mit der wenigstens einen Sendequelle auf wenigstens einen von wenigstens zwei Diffusorbereichen (40a, 40b, 40c, 40d) der wenigstens einen Signalbeeinflussungseinrichtung (34) gesendet wird und abhängig von den Zerstreuungseigenschaften des wenigstens einen Diffusorbereichs (40a, 40b, 40c, 40d) zumindest der Signalanteile des wenigstens einen Sendesignal (28)s, welche auf den wenigstens einen Diffusorbereich (40a, 40b, 40c, 40d) trifft, zerstreut wird. 9. Method for detecting objects (18) in at least one monitoring area (14) with a detection device (12) by means of electromagnetic transmission signals (28), in which at least one transmission device (22) transmits at least one electromagnetic transmission signal (28) into the at least one monitoring area (14) is sent, the at least one electromagnetic transmission signal (28) being influenced with at least one signal influencing device (34), with a receiving device (24) at least one reception signal (30) is received, which of at least one transmission signal ( 28) that is reflected in the monitoring area (14), at least on the basis of the at least one received signal (30) information about the monitoring area (14) is determined, characterized in that the at least one transmission signal (28) with the at least a transmission source on at least one of at least two diffuser areas (40a, 40b, 40c, 40d ) of the at least one signal influencing device (34) and, depending on the scattering properties of the at least one diffuser area (40a, 40b, 40c, 40d), at least the signal components of the at least one transmission signal (28) which are transmitted to the at least one diffuser area (40a, 40b , 40c, 40d) hits, is scattered.
EP21746716.6A 2020-07-27 2021-07-20 Transmission device of an optical detection device, detection device, vehicle, and method Pending EP4189422A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020119729.2A DE102020119729A1 (en) 2020-07-27 2020-07-27 Transmitting device of an optical detection device, detection device, vehicle and method
PCT/EP2021/070231 WO2022023117A1 (en) 2020-07-27 2021-07-20 Transmission device of an optical detection device, detection device, vehicle, and method

Publications (1)

Publication Number Publication Date
EP4189422A1 true EP4189422A1 (en) 2023-06-07

Family

ID=77104067

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21746716.6A Pending EP4189422A1 (en) 2020-07-27 2021-07-20 Transmission device of an optical detection device, detection device, vehicle, and method

Country Status (7)

Country Link
US (1) US20230266442A1 (en)
EP (1) EP4189422A1 (en)
JP (1) JP2023535797A (en)
KR (1) KR20230041803A (en)
CN (1) CN116235078A (en)
DE (1) DE102020119729A1 (en)
WO (1) WO2022023117A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116202512B (en) * 2023-05-06 2023-07-21 湖北工业大学 AR navigation device based on computer vision

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009040325A1 (en) * 2009-09-05 2011-03-17 Conti Temic Microelectronic Gmbh Sensor system for detecting environmental objects
KR101551667B1 (en) * 2013-11-27 2015-09-09 현대모비스(주) LIDAR Sensor System
DE102015112296A1 (en) 2015-07-28 2017-02-02 Valeo Schalter Und Sensoren Gmbh Optical sensor device for a motor vehicle, motor vehicle and method
DE102016118481A1 (en) 2016-09-29 2018-03-29 Valeo Schalter Und Sensoren Gmbh Scanning unit of an optical transmitting and receiving device of an optical detection device of a vehicle
DE102017105210A1 (en) * 2017-03-13 2018-09-13 Valeo Schalter Und Sensoren Gmbh Optical radiation device for laser pulses with selective optics
DE102018212735A1 (en) 2018-07-31 2020-02-06 Robert Bosch Gmbh LIDAR device with at least one lens element
DE102018212823A1 (en) 2018-08-01 2020-02-06 Robert Bosch Gmbh LIDAR device for detecting an object
DE102018125591B4 (en) 2018-10-16 2021-02-04 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Optical distance determination module

Also Published As

Publication number Publication date
WO2022023117A1 (en) 2022-02-03
KR20230041803A (en) 2023-03-24
CN116235078A (en) 2023-06-06
DE102020119729A1 (en) 2022-01-27
JP2023535797A (en) 2023-08-21
US20230266442A1 (en) 2023-08-24

Similar Documents

Publication Publication Date Title
WO2014072105A1 (en) Scanning optoelectronic detection device with a detection threshold, motor vehicle and corresponding method
DE102018115372A1 (en) METHOD AND DEVICE FOR PARALLEL LIGHTING BY A VCSEL ARRAY
DE10151982A1 (en) Optoelectronic detection device
EP3918365A1 (en) Position detection device for a light signal deflection device of an optical measurement apparatus for detecting objects, light signal deflection device, measurement apparatus and method for operating a position detection device
EP4189422A1 (en) Transmission device of an optical detection device, detection device, vehicle, and method
EP3545338B1 (en) Receiving unit for an optical detection device, detection device and driver assistance system
DE102019213963A1 (en) LIDAR sensor for optical detection of a field of view, work device or vehicle with a LIDAR sensor and method for optical detection of a field of view using a LIDAR sensor
EP3867666A1 (en) Method for detecting at least particle compositions in a monitoring region by means of an optical detection device, and detection device
EP4327121A1 (en) Signal deflecting device for deflecting electromagnetic signal beams of a detection apparatus, detection apparatus, vehicle having at least one detection apparatus and method for operating a signal deflecting device
WO2021078552A1 (en) Calibration device for calibrating at least one optical detection device
WO2018060408A1 (en) Scanning unit of an optical transceiver device of an optical detection apparatus of a vehicle
EP3994482A1 (en) Optical measuring device for determining object information of objects in at least one monitoring region
DE102019134192A1 (en) Optical detection device for monitoring at least one monitoring area and method for operating an optical detection device
WO2021013827A1 (en) Transmission device for an optical measurement apparatus for detecting objects, light signal deflection device, measurement apparatus and method for operating a measurement apparatus
EP3885797A1 (en) Vehicle surroundings detection system with variable field of view
EP4214538A1 (en) Method for detecting objects, and detection device
WO2018153748A1 (en) Transmission signal deflection arrangement for an optical transmission device of an optical detection apparatus of a vehicle, transmission device, optical detection apparatus, and driver assistance system
WO2020221619A1 (en) Optical detection apparatus for detecting objects, and receiving device for an optical detection apparatus
DE102021126999A1 (en) Method for operating a LiDAR system, LiDAR system and vehicle having at least one LiDAR system
WO2021110655A1 (en) Method for calibrating an optical sensor system by means of a calibration device, and calibration device
WO2021078511A1 (en) Method for detecting objects in a monitored region using an optical detection apparatus, and optical detection apparatus
DE102022119584A1 (en) Method verification of an alignment of at least one optical device of a LiDAR system, LiDAR system, driving assistance system and vehicle with at least one LiDAR system
WO2022023132A1 (en) Method for operating a detection device, detection device, and vehicle comprising at least one detection device
WO2023099426A1 (en) Method for operating a lidar system, lidar system, and vehicle comprising at least one lidar system
EP4348295A1 (en) Receiving device of a detection device, detection device, vehicle comprising at least one detection device and method for operating at least one detection device

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230119

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)