EP4189373A1 - Backscattered x-photon imaging device - Google Patents

Backscattered x-photon imaging device

Info

Publication number
EP4189373A1
EP4189373A1 EP21719636.9A EP21719636A EP4189373A1 EP 4189373 A1 EP4189373 A1 EP 4189373A1 EP 21719636 A EP21719636 A EP 21719636A EP 4189373 A1 EP4189373 A1 EP 4189373A1
Authority
EP
European Patent Office
Prior art keywords
imaging device
photons
sources
detector
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21719636.9A
Other languages
German (de)
French (fr)
Inventor
Thierry LEMOINE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP4189373A1 publication Critical patent/EP4189373A1/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4241Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using energy resolving detectors, e.g. photon counting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/203Measuring back scattering
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/06Diaphragms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/22Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
    • G01V5/222Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays measuring scattered radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/40Arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/4007Arrangements for generating radiation specially adapted for radiation diagnosis characterised by using a plurality of source units
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • G21K1/025Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using multiple collimators, e.g. Bucky screens; other devices for eliminating undesired or dispersed radiation

Definitions

  • the invention relates to an X-ray photon imaging system.
  • Most X-ray imaging systems operate in transmission, as is the case with conventional radiography. More precisely, a part of incident X photons illuminating an object to be imaged is absorbed by the object. The image is obtained from the part of the unabsorbed X photons having passed through the object which is placed between the X radiation source and the detector. In certain situations, this type of radiology does not allow obtaining an image, this is the case in particular for checking luggage abandoned along a wall. It is then impossible to place the object between the source and the detector. This is also the case in the presence of a substance opaque to X-rays which appears as a uniform zone in conventional radiography. Backscattered photon imaging can overcome these situations.
  • This type of imaging takes advantage of the interaction between incident X-ray photons and the material constituting the objects to be imaged.
  • Several phenomena result in a diffusion of photons in all directions and in particular in the direction of the source of incident radiation.
  • the physical phenomena identified we note mainly Rayleigh and Compton scattering.
  • a first technique consists in illuminating the object to be imaged by means of a fine beam of X photons and moving the beam to cover the entire object. This technique is known in Anglo-Saxon literature as: “flying spot”. At a given instant, only a narrow zone of the object is likely to emit backscattered photons. It then suffices to collect all the photons emitted without worrying about their origin, by a detector with a single pixel. The image is reconstructed by scanning the entire object by moving the beam of X photons. The resolution of the image obtained is given by the geometry of the beam.
  • a second technique consists of illuminating the object as a whole with X-ray photons and using a pixelated and collimated detector to collect the backscattered photons.
  • the collimator placed in front of each pixel of the detector is sufficiently anisotropic for each pixel to receive photons from a zone of the object located opposite. The resolution of the image is then given by the detector and its collimator.
  • a third technique is also to illuminate the object as a whole and use a pixelated detector. Unlike the second technique, the third technique does not use a collimator but an absorbent plate pierced with a hole, hence the Anglo-Saxon name of this technique: "pin hole" for needle hole.
  • the so-called “pin hole” technique has the advantage of simplicity.
  • the size of the hole forms the most important parameter to take into account for the quality of the image obtained.
  • the hole diameter is of the same order of magnitude, or even smaller, than the size of the detector pixels. A larger hole would degrade image resolution.
  • the flux of photons crossing a hole remains of low intensity, which results in a signal-to-noise ratio which may be too low to obtain a usable image.
  • the dimensions of the hole must be increased, which degrades the spatial resolution of the image.
  • Image quality is the result of a compromise between resolution and signal-to-noise ratio.
  • one solution consists in increasing the quantity of incident photons emitted by the source, which makes it possible to proportionally increase the number of backscattered photons.
  • certain objects are subjected to maximum doses of irradiation, in particular in medical imaging.
  • X-ray sources are also limited in the doses they can emit.
  • the limitation of sources is essentially due to the thermal aspect. The more radiation the source emits, the greater its heating. In the case of self-powered portable imaging systems, the emission of radiation is also limited by the batteries that the system embeds.
  • Another limitation of the pinhole technique lies in the geometry of the imaging system.
  • the areas closest to the source receive more incident radiation than the areas furthest away.
  • the amount of backscattered radiation is therefore a function of the distance from the source.
  • the amount of backscattered radiation is also a function of an angle formed between a direction passing through the source and the point of the object impacted by the incident radiation and a direction passing through this point and the hole in the absorber plate.
  • the invention aims to overcome all or part of the problems mentioned above by proposing a backscattered X photon imaging device making it possible to improve the quality of the images obtained by illuminating an imaged object by means of several distinct sources of X radiation.
  • the illumination of the object by several distinct sources makes it possible to improve the homogeneity of the flux of incident photons reaching the object both in intensity and in angle of illumination.
  • the subject of the invention is a backscattered X photon imaging device comprising:
  • a pixelated X-radiation detector configured to simultaneously collect several distinct data, an image delivered by the imaging device being formed by juxtaposing the distinct data, the pixelated detector being arranged so as to detect X photons which can be diffused by the object
  • an absorbent plate pierced with at least one orifice allowing X photons which can be diffused by the object to pass through the orifice, the pixelated detector being arranged so as to detect the X photons passing through the orifice.
  • the orifice(s) can each form a diaphragm through which X photons pass, between the object and the pixelated detector.
  • the absorber plate may be pierced with several orifices and form a collimator adapted to the pixelated detector and allowing only X photons to pass through, moving substantially in a predefined direction.
  • the different sources of X-radiation are advantageously evenly distributed around the orifice.
  • Each X-radiation source advantageously comprises a cold cathode emitting an electron beam by field effect.
  • the imaging device can comprise one of the X-ray sources.
  • the control module can be configured to cause several sources to be emitted simultaneously or to cause one or more sources to be sequentially emitted from among the X-control module radiation sources.
  • Each radiation source X is advantageously configured to illuminate the entire analysis zone at a given instant.
  • the absorbent plate may comprise several orifices.
  • the imaging device then comprises a module for processing signals coming from the detector, the processing module being configured to extract the useful information representing the image of the object to be imaged.
  • FIG. 1 schematically represents an example of a device imaging according to the invention
  • FIG. 2 schematically represents a variant of the device of FIG. 1
  • FIG. 3 schematically represents another variant of the device of FIG. 1.
  • FIG. 1 schematically represents an example of an imaging device 10 according to the invention and making it possible to detect backscattered X photons.
  • the imaging device 10 comprises several X-ray sources all configured to illuminate an analysis zone 12 of the device 10.
  • the objects to be imaged are placed in the analysis zone 12.
  • the shape of the beam emitted by each source can be conical and cover the entire analysis area.
  • the sources do not need scanning to illuminate the analysis zone 12 and all the points of the analysis zone 12 are illuminated at the same time by all the X-ray sources.
  • the different sources can use a sweep to illuminate the analysis zone 12. It is also possible to implement sources that cannot illuminate the entire analysis zone 12 with or without sweeping.
  • the sources 14 and 16 are represented in FIG. 1 schematically for a point forming the focal point from which the X-radiation originates.
  • any type of X-radiation source can be work, whether it has a focal point or not.
  • thermionic cathode tubes it is possible to use fixed anode tubes or rotating anode tubes. This last type of tube has the advantage of better dissipation of the heat emitted when the beam of electrons emitted by the cathode reaches the anode. It is also possible to use cold cathode tubes emitting an electron beam by field effect.
  • Cold-cathode X-radiation sources have the advantage of their compactness, which makes it possible, for example, to implement them in a portable imaging device.
  • Cold cathode X-ray sources are also smaller in size than cathode sources. thermionic which makes it easier to increase the number of sources present in the imaging device 10.
  • the imaging device 10 is based on the “pin hole” principle.
  • the device 10 comprises an absorbent plate 20. More specifically, the plate is made of a material that absorbs X-radiation.
  • the absorbent plate 20 is pierced with at least one orifice 22 allowing X-ray photons diffused by the object to be imaged to pass through the orifice 22.
  • the orifice(s) can each form a diaphragm through which X photons pass.
  • the diaphragm has a fixed aperture and can be likened to the so-called pin hole” for needle hole.
  • the material of the absorbing plate 20 makes it possible to absorb a majority of the radiation reaching it.
  • Materials with a high atomic number are chosen.
  • the material and the thickness of the plate 20 are defined to allow discrimination between the part of the radiation absorbed by the plate and the part passing through the orifice 22.
  • the imaging device 10 further comprises an X-radiation detector 24 arranged so as to detect the X-ray photons passing through the orifice 22.
  • the detector 24 is pixelated so as to identify the zone of the object to be imaged from which the photons originate. broadcast.
  • pixelated detector is meant any type of detector capable of simultaneously collecting different information in at least one direction.
  • the image delivered by the device 10 is formed by juxtaposing the different data. In other words, the number of distinct pieces of information collected by the detector defines the spatial resolution of the image delivered by the device 10.
  • the image is formed by spatial juxtaposition of the different data collected by the detector 24. It may be an analog detector such as for example a photosensitive film or a digital detector having several discrete pixels. In practice, digital detectors typically comprise several thousand to several million pixels.
  • the flat panels with indirect detection and having a scintillator transforming the X photons into photons in a wavelength is adapted to the technology of the detectors.
  • the flat panel extends along two dimensions. It is also possible to implement a strip detector extending in a single direction. It is also possible to implement an optical camera associated with a scintillator.
  • Memory radio-luminescent screens can also be used as a detector in the context of the invention.
  • This type of screen is commonly used in a particular form of digital radiology often called by its English acronym: CR for “Computed Radiography”.
  • the principle of this form of radiology consists of making an image on the screen and then scanning the screen with a dedicated device. The screen is then brightly lit so as to erase the image before further use.
  • the invention can also be implemented without an absorbent plate and with a collimated detector. More precisely, a collimated detector makes it possible to receive only photons originating from one direction or having a small angular difference therewith. The photons coming from other directions are absorbed by a collimator arranged between the detector and the zone 12. This makes it possible to distinguish, for each pixel of the detector, the zone of the object from which it comes.
  • the various sources of X-ray radiation are evenly distributed around the orifice 22. More precisely, the various sources are distributed over a circle whose center passes through an axis passing through the orifice 22. In the example shown, the two sources 14 and 16 are diametrically opposed on the circle defined above. In Figure 1, the circle is seen from the edge.
  • the imaging device 10 comprises a module 26 for controlling the X-ray sources (14, 16).
  • the control module 26 can be configured so that the various sources can transmit simultaneously. Simultaneous emission makes it possible to improve the signal-to-noise ratio of the image of the object obtained by the detector 24. Indeed, for a source taken in isolation, the maximum X-radiation flux that it can emit is mainly linked to its possibility of heat dissipation. By multiplying the number of sources, the flux of X photons reaching the object to be imaged is increased accordingly. If, on the contrary, the signal-to-noise ratio of a single source is considered sufficient, by multiplying the number of sources, to reach the same flux of incident X photons, the emission duration of the different sources can be reduced.
  • the reduction of the integration time makes it possible to reduce the impact of the leakage current of each pixel and therefore makes it possible to improve the quality of the signals collected and consequently the quality of the image of the object.
  • control module 26 it is possible to configure control module 26 so that the various sources can transmit sequentially. Sequential emission may be of interest in particular for limiting the instantaneous consumption of the device by distributing the switching on of the various sources of X-radiation over time.
  • the control module 26 may be configured to allow a user to choose between a simultaneous transmission and a sequential transmission. These two types of transmission can even be combined by allowing simultaneous transmission of P sources among N, N being the total number of sources and P being a natural integer strictly less than N. The choice of the P sources rotating sequentially among the N sources.
  • FIG. 2 represents a variant of imaging device 10 in which one finds the sources 14 and 16 as well as the detector 24.
  • the absorbing plate forms a collimator 28 adapted to the detector 24.
  • the collimator 28 is pierced with several orifices allowing only X photons to pass through, moving substantially in a predefined direction 29.
  • the collimator 28 has the same surface as the detector 24.
  • the pitch of the orifices of the collimator 28 is equal or multiple of the pitch of the pixels of the detector 24.
  • the direction 29 is perpendicular to the plane of the detector 24.
  • the X photons deviating from the direction 29 are absorbed by the collimator 28.
  • the pixels of the detector 24 receiving X photons having passed through the collimator 28 are shown in darker gray than the other pixels.
  • FIG. 3 represents a variant of imaging device 30 in which one finds the sources 14 and 16 as well as the detector 24.
  • the device 30 comprises a plate 32 pierced with several orifices 34, 36, 38 , 40, 42, 44 and 46.
  • the various orifices are distributed on the same axis of the plate 32, vertical axis in FIG. 3.
  • the different orifices are distributed over a surface of the plate 32, for example with a circular outline.
  • the orifices can be discreet. More generally, the absorption of plate 32 varies according to a two-variable function in a spatial frame of the plate.
  • the imaging device 30 comprises a module 50 for processing signals from the detector 24 and configured to extract the useful information 0(x, y) representing the image of the object.
  • the signals coming from the detector 24 form a convolution of elementary signals coming from the photons having passed through each of the orifices 34 to 46.
  • the processing module 50 advantageously implements a deconvolution-based algorithm to find the image of the object 0( x, y). Note that if the images projected on the detector by the different orifices do not overlap, the deconvolution algorithm approaches a simple superposition of the images, possibly with a processing making it possible to reduce the impact of parallax effects.
  • device 30 makes it possible to substantially increase the flux of photons reaching detector 24 and therefore the signal-to-noise ratio of the image. This improvement is however obtained at the expense of a slight loss of spatial resolution which may remain acceptable with regard to the gain in image quality due to the improvement in the signal-to-noise ratio.
  • the processing module 50 is configured to deliver the image coming from the device 10 or 30. More precisely, the processing module 50 recovers the data coming from the detector 24 and assembles them by juxtaposing them to form an image of the object located in the analysis zone 12.
  • the processing module 50 receives the data from the different pixels, for example in the form of a charge or a voltage.
  • the processing module 50 can comprise one or more analog-digital converters and a multiplexer making it possible to deliver the image in the form of a digital frame. In the case of the detector 30 equipped with the plate 32, the deconvolution processing can be performed on the digital information downstream of the analog-to-digital converter.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

The invention relates to a backscattered X-photon imaging device comprising a plurality of X-ray sources (14, 16), all configured to illuminate an analysis area (12) in which an object to be imaged can be placed, and a pixelated X-ray detector (24) configured so as to detect X-photons that can be scattered by the object.

Description

Dispositif d’imagerie par photons X rétrodiffusés Backscattered X photon imaging device
L’invention concerne un système d’imagerie par photons X. La plupart des systèmes d’imagerie X fonctionnent en transmission, c’est le cas de la radiographie conventionnelle. Plus précisément, une partie de photons X incidents éclairant un objet à imager est absorbée par l’objet. L’image est obtenue à partir de la partie des photons X non absorbée ayant traversé l’objet qui est disposé entre la source de rayonnement X et le détecteur. Dans certaines situations, ce type de radiologie ne permet pas l’obtention d’image, c’est le cas notamment pour contrôler un bagage abandonné le long d’une paroi. Il est alors impossible de placer l’objet entre la source et le détecteur. C’est également le cas en présence d’une substance opaque au rayonnement X qui apparaît comme une zone uniforme en radiographie conventionnelle. L’imagerie par photons rétrodiffusés permet de pallier ces situations. Ce type d’imagerie met à profit l’interaction entre les photons X incidents et la matière constituant les objets à imager. Plusieurs phénomènes se traduisent par une diffusion de photons dans toutes les directions et notamment en direction de la source de rayonnement incident. Parmi les phénomènes physiques identifiés, on note principalement les diffusions de Rayleigh et de Compton. The invention relates to an X-ray photon imaging system. Most X-ray imaging systems operate in transmission, as is the case with conventional radiography. More precisely, a part of incident X photons illuminating an object to be imaged is absorbed by the object. The image is obtained from the part of the unabsorbed X photons having passed through the object which is placed between the X radiation source and the detector. In certain situations, this type of radiology does not allow obtaining an image, this is the case in particular for checking luggage abandoned along a wall. It is then impossible to place the object between the source and the detector. This is also the case in the presence of a substance opaque to X-rays which appears as a uniform zone in conventional radiography. Backscattered photon imaging can overcome these situations. This type of imaging takes advantage of the interaction between incident X-ray photons and the material constituting the objects to be imaged. Several phenomena result in a diffusion of photons in all directions and in particular in the direction of the source of incident radiation. Among the physical phenomena identified, we note mainly Rayleigh and Compton scattering.
La mise en oeuvre de l’imagerie par photons rétrodiffusés peine néanmoins à se développer car la réalisation d’une image est difficile. La raison essentielle tient au fait que pour des photons dont l’énergie est comprise entre 1 et 1000 keV, il n’est pas possible de réaliser des dispositifs fonctionnant de façon semblable aux dispositifs de focalisation optique. L’indice de réfraction est trop faible pour la réalisation de lentilles, et la transparence des métaux à ces énergies empêche la réalisation de miroirs. However, the implementation of backscattered photon imaging is struggling to develop because the realization of an image is difficult. The main reason is that for photons whose energy is between 1 and 1000 keV, it is not possible to produce devices operating in a similar way to optical focusing devices. The refractive index is too low for the production of lenses, and the transparency of metals at these energies prevents the production of mirrors.
Plusieurs techniques ont cependant été développées pour réaliser une image à partir de photons rétrodiffusés. Une première technique consiste à éclairer l’objet à imager au moyen d’un faisceau fin de photons X et de déplacer le faisceau pour couvrir l’ensemble de l’objet. Cette technique est connue dans la littérature anglo-saxonne sous le nom de : « flying spot ». A un instant donné, seule une zone étroite de l’objet est susceptible d’émettre des photons rétrodiffusés. Il suffit alors de collecter tous les photons émis sans se préoccuper de leur origine, par un détecteur à un seul pixel. L’image est reconstituée en balayant la totalité de l’objet en déplaçant le faisceau de photons X. La résolution de l’image obtenue est donnée par la géométrie du faisceau. However, several techniques have been developed to produce an image from backscattered photons. A first technique consists in illuminating the object to be imaged by means of a fine beam of X photons and moving the beam to cover the entire object. This technique is known in Anglo-Saxon literature as: “flying spot”. At a given instant, only a narrow zone of the object is likely to emit backscattered photons. It then suffices to collect all the photons emitted without worrying about their origin, by a detector with a single pixel. The image is reconstructed by scanning the entire object by moving the beam of X photons. The resolution of the image obtained is given by the geometry of the beam.
Une deuxième technique consiste à éclairer l’objet dans son ensemble par des photons X et à utiliser un détecteur pixélisé et collimaté pour collecter les photons rétrodiffusés. Le collimateur placé devant chaque pixel du détecteur est suffisamment anisotrope pour que chaque pixel ne reçoive les photons d’une zone de l’objet située en vis-à-vis. La résolution de l’image est alors donnée par le détecteur et son collimateur. A second technique consists of illuminating the object as a whole with X-ray photons and using a pixelated and collimated detector to collect the backscattered photons. The collimator placed in front of each pixel of the detector is sufficiently anisotropic for each pixel to receive photons from a zone of the object located opposite. The resolution of the image is then given by the detector and its collimator.
Une troisième technique consiste également à éclairer l’objet dans son ensemble et à utiliser un détecteur pixélisé. A la différence de la deuxième technique, la troisième technique n’utilise pas de collimateur mais une plaque absorbante percée d’un trou d’où l’appellation anglo-saxonne de cette technique : « pin hole » pour trou d’aiguille. A third technique is also to illuminate the object as a whole and use a pixelated detector. Unlike the second technique, the third technique does not use a collimator but an absorbent plate pierced with a hole, hence the Anglo-Saxon name of this technique: "pin hole" for needle hole.
La technique dite du « pin hole » présente l’avantage de la simplicité. La dimension du trou forme le paramètre le plus important à prendre en compte pour la qualité de l’image obtenue. En première approche, le diamètre de trou est du même ordre de grandeur, voire plus petit, que la taille des pixels du détecteur. Un trou plus grand entraînerait une dégradation de la résolution de l’image. En revanche, le flux de photons traversant un trou reste de faible intensité, ce qui entraîne un rapport signal sur bruit qui peut être trop faible pour l’obtention d’une image exploitable. Autrement dit, pour améliorer le rapport signal sur bruit il faut augmenter les dimensions du trou ce qui dégrade la résolution spatiale de l’image. La qualité de l’image est le résultat d’un compromis entre résolution et rapport signal sur bruit. The so-called “pin hole” technique has the advantage of simplicity. The size of the hole forms the most important parameter to take into account for the quality of the image obtained. As a first approach, the hole diameter is of the same order of magnitude, or even smaller, than the size of the detector pixels. A larger hole would degrade image resolution. On the other hand, the flux of photons crossing a hole remains of low intensity, which results in a signal-to-noise ratio which may be too low to obtain a usable image. In other words, to improve the signal-to-noise ratio, the dimensions of the hole must be increased, which degrades the spatial resolution of the image. Image quality is the result of a compromise between resolution and signal-to-noise ratio.
Pour augmenter le rapport signal sur bruit, une solution consiste à augmenter la quantité de photons incidents émis par la source, ce qui permet d’augmenter proportionnellement le nombre de photons rétrodiffusés. Cependant, certains objets sont soumis à des doses maximales d’irradiation, notamment en imagerie médicale. De plus, les sources de rayonnement X sont également limitées dans les doses qu’elles peuvent émettre. La limitation des sources est essentiellement due à l’aspect thermique. Plus la source émet de rayonnement, plus son échauffement est important. Dans le cas de systèmes d’imagerie portable à alimentation autonome, l’émission de rayonnement est également limitée par les batteries que le système embarque. To increase the signal to noise ratio, one solution consists in increasing the quantity of incident photons emitted by the source, which makes it possible to proportionally increase the number of backscattered photons. However, certain objects are subjected to maximum doses of irradiation, in particular in medical imaging. In addition, X-ray sources are also limited in the doses they can emit. The limitation of sources is essentially due to the thermal aspect. The more radiation the source emits, the greater its heating. In the case of self-powered portable imaging systems, the emission of radiation is also limited by the batteries that the system embeds.
Une autre limitation de la technique du « pin hole » réside dans la géométrie du système d’imagerie. Dans l’objet à imager, les zones les plus proches de la source reçoivent un rayonnement incident plus important que les zones les plus éloignées. La quantité de rayonnement rétrodiffusé est donc fonction de la distance à la source. De plus, la quantité de rayonnement rétrodiffusé est aussi fonction d’un angle formé entre une direction passant par la source et le point de l’objet impacté par le rayonnement incident et une direction passant par ce point et le trou de la plaque absorbante. Ces deux caractéristiques géométriques entraînent une inhomogénéité intrinsèque de la distribution des photons rétrodiffusés sur la surface du détecteur indépendamment de l’objet à imager. Another limitation of the pinhole technique lies in the geometry of the imaging system. In the object to be imaged, the areas closest to the source receive more incident radiation than the areas furthest away. The amount of backscattered radiation is therefore a function of the distance from the source. In addition, the amount of backscattered radiation is also a function of an angle formed between a direction passing through the source and the point of the object impacted by the incident radiation and a direction passing through this point and the hole in the absorber plate. These two geometric characteristics lead to an intrinsic inhomogeneity in the distribution of backscattered photons on the surface of the detector, independently of the object to be imaged.
L’invention vise à pallier tout ou partie des problèmes cités plus haut en proposant un dispositif d’imagerie par photons X rétrodiffusés permettant d’améliorer la qualité des images obtenues en éclairant un objet imager au moyen de plusieurs sources distinctes de rayonnement X. The invention aims to overcome all or part of the problems mentioned above by proposing a backscattered X photon imaging device making it possible to improve the quality of the images obtained by illuminating an imaged object by means of several distinct sources of X radiation.
L’éclairement de l’objet par plusieurs sources distinctes permet d’améliorer l’homogénéité du flux de photons incidents atteignant l’objet aussi bien en intensité qu’en angle d’éclairement. The illumination of the object by several distinct sources makes it possible to improve the homogeneity of the flux of incident photons reaching the object both in intensity and in angle of illumination.
A cet effet, l’invention a pour objet un dispositif d'imagerie par photons X rétrodiffusés comprenant : To this end, the subject of the invention is a backscattered X photon imaging device comprising:
• plusieurs sources de rayonnement X, toutes configurées pour éclairer une zone d'analyse dans laquelle un objet à imager peut être disposé,• several X-ray sources, all configured to illuminate an analysis area in which an object to be imaged can be placed,
• un détecteur pixélisé de rayonnement X configuré pour collecter simultanément plusieurs données distinctes, une image délivrée par le dispositif d’imagerie étant formée en juxtaposant les données distinctes, le détecteur pixélisé étant disposé de façon à détecter des photons X pouvant être diffusés par l'objet • a pixelated X-radiation detector configured to simultaneously collect several distinct data, an image delivered by the imaging device being formed by juxtaposing the distinct data, the pixelated detector being arranged so as to detect X photons which can be diffused by the object
• une plaque absorbante percée d'au moins un orifice permettant à des photons X pouvant être diffusés par l'objet de traverser l'orifice, le détecteur pixélisé étant disposé de façon à détecter les photons X traversant l'orifice. les ou les orifices peuvent former chacun un diaphragme par lequel traverse des photons X, entre l’objet et le détecteur pixélisé. Alternativement, la plaque absorbante peut être percée de plusieurs orifices et forme un collimateur adapté au détecteur pixélisé et ne laissant traverser que des photons X se déplaçant sensiblement selon une direction prédéfinie. • an absorbent plate pierced with at least one orifice allowing X photons which can be diffused by the object to pass through the orifice, the pixelated detector being arranged so as to detect the X photons passing through the orifice. the orifice(s) can each form a diaphragm through which X photons pass, between the object and the pixelated detector. Alternatively, the absorber plate may be pierced with several orifices and form a collimator adapted to the pixelated detector and allowing only X photons to pass through, moving substantially in a predefined direction.
Dans le mode de réalisation particulier les différentes sources de rayonnement X sont avantageusement équiréparties autour de l'orifice. In the particular embodiment, the different sources of X-radiation are advantageously evenly distributed around the orifice.
Chaque source de rayonnement X comprend avantageusement une cathode froide émettant un faisceau d'électrons par effet de champ. Le dispositif d'imagerie peut comprendre un des sources de rayonnement X. Le module de pilotage peut être configuré pour faire émettre simultanément plusieurs sources ou pour faire émettre séquentiellement une ou plusieurs sources parmi les sources de rayonnement module de pilotage X. Chaque source de rayonnement X est avantageusement configurée pour éclairer à un instant donné la totalité de la zone d'analyse. Each X-radiation source advantageously comprises a cold cathode emitting an electron beam by field effect. The imaging device can comprise one of the X-ray sources. The control module can be configured to cause several sources to be emitted simultaneously or to cause one or more sources to be sequentially emitted from among the X-control module radiation sources. Each radiation source X is advantageously configured to illuminate the entire analysis zone at a given instant.
Dans le mode de réalisation particulier de l’invention, la plaque absorbante peut comprendre plusieurs orifices. Le dispositif d'imagerie comprend alors, un module de traitement de signaux issus du détecteur, le module de traitement étant configuré pour extraire l'information utile représentant l'image de l'objet à imager. In the particular embodiment of the invention, the absorbent plate may comprise several orifices. The imaging device then comprises a module for processing signals coming from the detector, the processing module being configured to extract the useful information representing the image of the object to be imaged.
L’invention sera mieux comprise et d’autres avantages apparaîtront à la lecture de la description détaillée d’un mode de réalisation donné à titre d’exemple, description illustrée par le dessin joint dans lequel : la figure 1 représente schématiquement un exemple de dispositif d’imagerie conforme à l’invention ; la figure 2 représente schématiquement une variante du dispositif de la figure 1 ; la figure 3 représente schématiquement une autre variante du dispositif de la figure 1. The invention will be better understood and other advantages will appear on reading the detailed description of an embodiment given by way of example, description illustrated by the attached drawing in which: FIG. 1 schematically represents an example of a device imaging according to the invention; FIG. 2 schematically represents a variant of the device of FIG. 1; FIG. 3 schematically represents another variant of the device of FIG. 1.
Par souci de clarté, les mêmes éléments porteront les mêmes repères dans les différentes figures. la figure 1 représente schématiquement un exemple de dispositif d’imagerie 10 selon l’invention et permettant de détecter des photons X rétrodiffusés. Le dispositif d’imagerie 10 comprend plusieurs sources de rayonnement X toutes configurées pour éclairer une zone d’analyse 12 du dispositif 10. Les objets à imager sont disposés dans la zone d’analyse 12. La forme du faisceau émis par chaque source peut être conique et couvrir toute la zone d’analyse. Ainsi les sources n’ont pas besoin de balayage pour éclairer la zone d’analyse 12 et tous les points de la zone d’analyse 12 sont éclairés à un même instant par toutes les sources de rayonnement X. Alternativement, les différentes sources peuvent utiliser un balayage pour éclairer la zone d’analyse 12. Il est également possible de mettre en oeuvre des sources ne pouvant pas éclairer la totalité de la zone d’analyse 12 avec ou sans balayage. La présence de plusieurs sources de rayonnement X, même si chacune ne peut éclairer la totalité de la zone d’analyse permet déjà d’améliorer l’homogénéité de l’éclairement de la zone d’analyse 12. Dans l’exemple représenté, deux sources 14 et 16 sont représentées. Il est bien entendu possible de mettre en oeuvre l’invention dans un dispositif comprenant plus de deux sources de rayonnement X. For the sake of clarity, the same elements will bear the same references in the different figures. FIG. 1 schematically represents an example of an imaging device 10 according to the invention and making it possible to detect backscattered X photons. The imaging device 10 comprises several X-ray sources all configured to illuminate an analysis zone 12 of the device 10. The objects to be imaged are placed in the analysis zone 12. The shape of the beam emitted by each source can be conical and cover the entire analysis area. Thus the sources do not need scanning to illuminate the analysis zone 12 and all the points of the analysis zone 12 are illuminated at the same time by all the X-ray sources. Alternatively, the different sources can use a sweep to illuminate the analysis zone 12. It is also possible to implement sources that cannot illuminate the entire analysis zone 12 with or without sweeping. The presence of several sources of X-radiation, even if each one cannot illuminate the whole of the analysis zone already makes it possible to improve the homogeneity of the illumination of the analysis zone 12. In the example represented, two sources 14 and 16 are shown. It is of course possible to implement the invention in a device comprising more than two X-radiation sources.
Les sources 14 et 16 sont représentées sur la figure 1 de façon schématique pour un point formant le point focal dont est issu le rayonnement X. En pratique, dans le cadre de l’invention, tout type de source de rayonnement X peut être mise en oeuvre, qu’elle possède un point focal ou non. A titre d’exemple, on peut citer les tubes à cathode thermoïonique. Parmi ces tubes, il est possible de mettre en oeuvre des tubes à anode fixe ou des tubes à anode tournante. Ce dernier type de tube présente l’intérêt d’une meilleure dissipation de la chaleur émise lorsque le faisceau d’électrons émis par la cathode atteint l’anode. Il est également possible de mettre en oeuvre des tubes à cathode froide émettant un faisceau d’électrons par effet de champ. Ce type de tube est par exemple décrit dans la demande de brevet WO 2019/011980 A1 déposé au nom de la demanderesse. Les sources de rayonnement X à cathode froide présente l’intérêt de leur compacité ce qui permet par exemple de les mettre en oeuvre dans un dispositif d’imagerie 10 portatif. Les sources de rayonnement X à cathode froide sont également de plus petites dimensions que les sources à cathode thermoïonique ce qui permet d’augmenter plus facilement le nombre de sources présentes dans le dispositif d’imagerie 10. The sources 14 and 16 are represented in FIG. 1 schematically for a point forming the focal point from which the X-radiation originates. In practice, within the scope of the invention, any type of X-radiation source can be work, whether it has a focal point or not. By way of example, mention may be made of thermionic cathode tubes. Among these tubes, it is possible to use fixed anode tubes or rotating anode tubes. This last type of tube has the advantage of better dissipation of the heat emitted when the beam of electrons emitted by the cathode reaches the anode. It is also possible to use cold cathode tubes emitting an electron beam by field effect. This type of tube is for example described in patent application WO 2019/011980 A1 filed in the name of the applicant. Cold-cathode X-radiation sources have the advantage of their compactness, which makes it possible, for example, to implement them in a portable imaging device. Cold cathode X-ray sources are also smaller in size than cathode sources. thermionic which makes it easier to increase the number of sources present in the imaging device 10.
Le dispositif d’imagerie 10 est basé sur le principe du « pin hole ». A cet effet, le dispositif 10 comprend une plaque absorbante 20. Plus précisément la plaque est réalisée dans un matériau absorbant le rayonnement X. La plaque absorbante 20 est percée d’au moins un orifice 22 permettant à des photons X diffusés par l’objet à imager de traverser l’orifice 22. Dans la variante représentée sur la figure 1 , les ou les orifices peuvent former chacun un diaphragme par lequel traverse des photons X. Le diaphragme est à ouverture fixe et peut être assimilé à la technique dite du « pin hole » pour trou d’aiguille. En pratique, le matériau de la plaque absorbante 20 permet d’absorber une majorité du rayonnement l’atteignant. On choisit des matériaux à fort numéro atomique. Dans un dispositif portable où l’on cherche à réduire la masse globale, on peut être enclin à réduire la masse des composants embarqués et notamment la masse de la plaque absorbante 20 notamment en réduisant son épaisseur ce qui conduit à réduire l’absorption de la plaque 20. Le matériau et l’épaisseur de la plaque 20 sont définis pour permettre une discrimination entre la partie du rayonnement absorbée par la plaque et la partie traversant l’orifice 22. The imaging device 10 is based on the “pin hole” principle. To this end, the device 10 comprises an absorbent plate 20. More specifically, the plate is made of a material that absorbs X-radiation. The absorbent plate 20 is pierced with at least one orifice 22 allowing X-ray photons diffused by the object to be imaged to pass through the orifice 22. In the variant shown in FIG. 1, the orifice(s) can each form a diaphragm through which X photons pass. The diaphragm has a fixed aperture and can be likened to the so-called pin hole” for needle hole. In practice, the material of the absorbing plate 20 makes it possible to absorb a majority of the radiation reaching it. Materials with a high atomic number are chosen. In a portable device where one seeks to reduce the overall mass, one may be inclined to reduce the mass of the on-board components and in particular the mass of the absorbent plate 20 in particular by reducing its thickness, which leads to reducing the absorption of the plate 20. The material and the thickness of the plate 20 are defined to allow discrimination between the part of the radiation absorbed by the plate and the part passing through the orifice 22.
Le dispositif d’imagerie 10 comprend en outre un détecteur de rayonnement X 24 disposé de façon à détecter les photons X traversant l’orifice 22. Le détecteur 24 est pixélisé de façon à identifier la zone de l’objet à imager dont proviennent les photons diffusés. Par détecteur pixélisé, on entend tout type de détecteur apte à collecter simultanément différentes informations selon au moins une direction. L’image délivrée par le dispositif 10 est formée en juxtaposant les différentes données. Autrement dit, le nombre d’informations distinctes collectées par le détecteur définit la résolution spatiale de l’image délivrée par le dispositif 10. L’image est formée par juxtaposition spatiale des différentes données collectées par le détecteur 24. Il peut s’agir d’un détecteur analogique comme par exemple un film photosensible ou d’un détecteur numérique possédant plusieurs pixels discrets. En pratique, les détecteurs numériques comprennent typiquement de plusieurs milliers à plusieurs millions de pixels. Parmi les détecteurs numériques, de nombreuses familles de existent et peuvent être mise en oeuvre dans le cadre de l’invention, A titre d’exemple, on peut citer les panneaux plats à détection indirecte et possédant un scintillateur transformant les photons X en photons dans une longueur d’onde est adaptée à la technologie des détecteurs. On peut également citer les panneaux plats à détection directe des photons X. Le panneau plat s’étend selon deux dimensions. Il est également possible de mettre en oeuvre un détecteur en barrette s’étendant selon une seule direction. Il est également possible de mettre en oeuvre une caméra optique associée à un scintillateur. Les écrans radio-luminescent à mémoire peuvent aussi être utilisés comme détecteur dans le cadre de l’invention. Ce type d’écran est couramment utilisé dans une forme particulière de radiologie numérique souvent appelée par son acronyme anglais : CR pour « Computed Radiography ». Le principe de cette forme de radiologie consiste à réaliser une image sur l’écran puis de scanner l’écran avec un appareil dédié. L’écran est ensuite fortement éclairé de manière à en effacer l’image avant une nouvelle utilisation. L’invention peut également être mise en oeuvre sans plaque absorbante et avec un détecteur collimaté. Plus précisément, un détecteur collimaté permet de ne recevoir que des photons provenant d’une direction ou ayant un faible écart angulaire avec celle-ci. Les photons provenant d’autres directions sont absorbés par un collimateur disposé entre le détecteur et la zone 12. Cela permet de distinguer, pour chaque pixel du détecteur, la zone de l’objet dont il provient. The imaging device 10 further comprises an X-radiation detector 24 arranged so as to detect the X-ray photons passing through the orifice 22. The detector 24 is pixelated so as to identify the zone of the object to be imaged from which the photons originate. broadcast. By pixelated detector is meant any type of detector capable of simultaneously collecting different information in at least one direction. The image delivered by the device 10 is formed by juxtaposing the different data. In other words, the number of distinct pieces of information collected by the detector defines the spatial resolution of the image delivered by the device 10. The image is formed by spatial juxtaposition of the different data collected by the detector 24. It may be an analog detector such as for example a photosensitive film or a digital detector having several discrete pixels. In practice, digital detectors typically comprise several thousand to several million pixels. Among the digital detectors, many families of exist and can be implemented within the scope of the invention. By way of example, mention may be made of the flat panels with indirect detection and having a scintillator transforming the X photons into photons in a wavelength is adapted to the technology of the detectors. Mention may also be made of flat panels with direct detection of X photons. The flat panel extends along two dimensions. It is also possible to implement a strip detector extending in a single direction. It is also possible to implement an optical camera associated with a scintillator. Memory radio-luminescent screens can also be used as a detector in the context of the invention. This type of screen is commonly used in a particular form of digital radiology often called by its English acronym: CR for “Computed Radiography”. The principle of this form of radiology consists of making an image on the screen and then scanning the screen with a dedicated device. The screen is then brightly lit so as to erase the image before further use. The invention can also be implemented without an absorbent plate and with a collimated detector. More precisely, a collimated detector makes it possible to receive only photons originating from one direction or having a small angular difference therewith. The photons coming from other directions are absorbed by a collimator arranged between the detector and the zone 12. This makes it possible to distinguish, for each pixel of the detector, the zone of the object from which it comes.
Le fait d’éclairer la zone 12 au moyen de plusieurs sources de rayonnement X distinctes permet d’améliorer l’homogénéité de l’éclairement de la zone 12 ainsi que l’homogénéité de la répartition des photons rétrodiffusés sur le détecteur 24. Avec une seule source, deux types d’inhomogénéités peuvent être remarquées. Tout d’abord, la distance à la source entraîne une inhomogénéité de l’éclairement en intensité du fait de l’étalement conique du faisceau incident. Plus un point de l’objet est proche de la source, plus il reçoit de photons incidents et par voie de conséquence, plus il émet de photons diffusés. Ensuite, il est possible de définir pour chaque point de l’objet, un angle entre une première direction passant par le point considéré et la source et une seconde direction passant par le point considéré et l’orifice 22. Pour un même flux de photons incidents, l’intensité de photons diffusés dépend de l’angle entre les deux directions. Sur la figure 1, un angle Q1 et un angle Q2 sont représentés pour des diffusions réalisées à partir d’un point de l’objet recevant respectivement des photons X issus des deux sources 14 et 16. Avec plusieurs sources, les deux types d’inhomogénéités due à la distance à la source et due à l’angle ont tendance à se compenser en fonction de l’origine des photons incidents. The fact of illuminating the zone 12 by means of several distinct X-ray sources makes it possible to improve the homogeneity of the illumination of the zone 12 as well as the homogeneity of the distribution of the photons backscattered on the detector 24. With a single source, two types of inhomogeneities can be noticed. First of all, the distance to the source leads to an inhomogeneity of the illumination in intensity due to the conical spreading of the incident beam. The closer a point of the object is to the source, the more incident photons it receives and consequently the more scattered photons it emits. Then, it is possible to define for each point of the object, an angle between a first direction passing through the point considered and the source and a second direction passing through the point considered and the orifice 22. For the same flux of photons incidents, the intensity of scattered photons depends on the angle between the two directions. In figure 1, an angle Q1 and an angle Q2 are represented for diffusions carried out from a point of the object respectively receiving X photons coming from the two sources 14 and 16. With several sources, the two types of inhomogeneities due to the distance to the source and due to the angle tend to compensate according to the origin of the incident photons.
Afin de réduire au mieux les deux types d’inhomogénéités, les différentes sources de rayonnement X sont équiréparties autour de l’orifice 22. Plus précisément, les différentes sources sont réparties sur un cercle dont le centre passe par un axe passant par l’orifice 22. Dans l’exemple représenté, les deux sources 14 et 16 sont diamétralement opposées sur le cercle défini plus haut. Sur la figure 1 , le cercle est vu par la tranche. In order to best reduce the two types of inhomogeneities, the various sources of X-ray radiation are evenly distributed around the orifice 22. More precisely, the various sources are distributed over a circle whose center passes through an axis passing through the orifice 22. In the example shown, the two sources 14 and 16 are diametrically opposed on the circle defined above. In Figure 1, the circle is seen from the edge.
Le dispositif d’imagerie 10 comprend un module de pilotage 26 des sources de rayonnement X (14, 16). Le module de pilotage 26 peut être configuré pour que les différentes sources puissent émettre simultanément. L’émission simultanée permet d’améliorer le rapport signal sur bruit de l’image de l’objet obtenue par le détecteur 24. En effet, pour une source prise isolément, le flux de rayonnement X maximum qu’elle peut émettre est principalement lié à sa possibilité dissipation de chaleur. En multipliant le nombre de sources, on augmente d’autant le flux de photons X atteignant l’objet à imager. Si au contraire, le rapport signal sur bruit d’une source unique est considéré comme suffisant, en multipliant le nombre de source, pour atteindre le même flux de photons X incidents, on peut réduire la durée d’émission des différentes sources. Cela permet de réduire la durée d’intégration au niveau de chaque pixel du détecteur 24. Dans un détecteur numérique, la réduction de la durée d’intégration permet de réduire l’impact du courant de fuite de chaque pixel et donc permet d’améliorer la qualité des signaux collectés et par conséquent la qualité de l’image de l’objet. The imaging device 10 comprises a module 26 for controlling the X-ray sources (14, 16). The control module 26 can be configured so that the various sources can transmit simultaneously. Simultaneous emission makes it possible to improve the signal-to-noise ratio of the image of the object obtained by the detector 24. Indeed, for a source taken in isolation, the maximum X-radiation flux that it can emit is mainly linked to its possibility of heat dissipation. By multiplying the number of sources, the flux of X photons reaching the object to be imaged is increased accordingly. If, on the contrary, the signal-to-noise ratio of a single source is considered sufficient, by multiplying the number of sources, to reach the same flux of incident X photons, the emission duration of the different sources can be reduced. This makes it possible to reduce the integration time at the level of each pixel of the detector 24. In a digital detector, the reduction of the integration time makes it possible to reduce the impact of the leakage current of each pixel and therefore makes it possible to improve the quality of the signals collected and consequently the quality of the image of the object.
Alternativement ou même en complément, il est possible de configurer module de pilotage 26 pour que les différentes sources puissent émettre séquentiellement. L’émission séquentielle peut présenter un intérêt notamment pour limiter la consommation instantanée du dispositif en répartissant dans le temps l’allumage des différentes sources de rayonnement X. Dans le dispositif 10 le module de pilotage 26 peut être configuré pour permettre à un utilisateur de choisir entre une émission simultanée et une émission séquentielle. Ces deux types d’émission peuvent même être combinés en permettant une émission simultanée de P sources parmi N, N étant le nombre de total de sources et P étant un entier naturel strictement inférieur à N. Le choix des P sources tournant séquentiellement parmi les N sources. Alternatively or even in addition, it is possible to configure control module 26 so that the various sources can transmit sequentially. Sequential emission may be of interest in particular for limiting the instantaneous consumption of the device by distributing the switching on of the various sources of X-radiation over time. In the device 10, the control module 26 may be configured to allow a user to choose between a simultaneous transmission and a sequential transmission. These two types of transmission can even be combined by allowing simultaneous transmission of P sources among N, N being the total number of sources and P being a natural integer strictly less than N. The choice of the P sources rotating sequentially among the N sources.
La figure 2 représente une variante de dispositif d’imagerie 10 dans lequel on retrouve les sources 14 et 16 ainsi que le détecteur 24. A la différence du dispositif 10 de la figure 1 , la plaque absorbante forme un collimateur 28 adapté au détecteur 24. Autrement dit, le collimateur 28 est percé de plusieurs orifices ne laissant traverser que des photons X se déplaçant sensiblement selon une direction prédéfinie 29. Le collimateur 28 a la même surface que le détecteur 24. Le pas des orifices du collimateur 28 est égal ou multiple du pas des pixels du détecteur 24. Dans l’exemple représenté la direction 29 est perpendiculaire au plan du détecteur 24. FIG. 2 represents a variant of imaging device 10 in which one finds the sources 14 and 16 as well as the detector 24. Unlike the device 10 of FIG. 1, the absorbing plate forms a collimator 28 adapted to the detector 24. In other words, the collimator 28 is pierced with several orifices allowing only X photons to pass through, moving substantially in a predefined direction 29. The collimator 28 has the same surface as the detector 24. The pitch of the orifices of the collimator 28 is equal or multiple of the pitch of the pixels of the detector 24. In the example represented the direction 29 is perpendicular to the plane of the detector 24.
Les photons X s’écartant de la direction 29 sont absorbés par le collimateur 28. Sur la figure 2, les pixels du détecteur 24 recevant des photons X ayant traversé le collimateur 28 sont représentés en gris plus foncés que les autres pixels. The X photons deviating from the direction 29 are absorbed by the collimator 28. In FIG. 2, the pixels of the detector 24 receiving X photons having passed through the collimator 28 are shown in darker gray than the other pixels.
Dans la variante de la figure 1 , l’image formée sur le détecteur 24 est inversée tandis que celle de la variante de la figure 2 ne l’est pas. In the variant of Figure 1, the image formed on the detector 24 is inverted while that of the variant of Figure 2 is not.
La figure 3 représente une variante de dispositif d’imagerie 30 dans lequel on retrouve les sources 14 et 16 ainsi que le détecteur 24. A la différence du dispositif 10, le dispositif 30 comprend une plaque 32 percée de plusieurs orifices 34, 36, 38, 40, 42, 44 et 46. Dans l’exemple représenté, les différents orifices sont répartis sur un même axe de la plaque 32, axe vertical sur la figure 3. En pratique, dans le cas d’un détecteur 24 plan, les différents orifices sont répartis sur une surface de la plaque 32, par exemple à contour circulaire. Les orifices peuvent être discrets. Plus généralement, l’absorption de la plaque 32 varie selon une fonction à deux variables dans un repère spatial de la plaque. On note par exemple la fonction : f(x, y), x et y étant deux coordonnées cartésiennes de la surface de la plaque 32. L’image l(x, y) délivrée par le détecteur dépend à la fois de l’objet dont on recherche l’information utile dans un repère x, y : 0(x, y) et de la fonction f(x, y). Le dispositif d’imagerie 30 comprend un module de traitement 50 de signaux issus du détecteur 24 et configuré pour extraire l’information utile 0(x, y) représentant l’image de l’objet. Les signaux issus du détecteur 24 forment une convolution de signaux élémentaires issus des photons ayant traversé chacun des orifices 34 à 46. Le module de traitement 50 met en oeuvre avantageusement un algorithme à base de déconvolution pour retrouver l’image de l’objet 0(x, y). Notons que si les images projetées sur le détecteur par les différents orifices ne se recouvrent pas, l’algorithme de déconvolution s’approche d’une simple superposition des images, éventuellement avec un traitement permettant de réduire l’impact des effets de parallaxe. FIG. 3 represents a variant of imaging device 30 in which one finds the sources 14 and 16 as well as the detector 24. Unlike the device 10, the device 30 comprises a plate 32 pierced with several orifices 34, 36, 38 , 40, 42, 44 and 46. In the example shown, the various orifices are distributed on the same axis of the plate 32, vertical axis in FIG. 3. In practice, in the case of a plane detector 24, the different orifices are distributed over a surface of the plate 32, for example with a circular outline. The orifices can be discreet. More generally, the absorption of plate 32 varies according to a two-variable function in a spatial frame of the plate. We note for example the function: f(x, y), x and y being two Cartesian coordinates of the surface of the plate 32. The image l(x, y) delivered by the detector depends both on the object whose useful information is sought in a coordinate system x, y: 0(x, y) and of the function f(x, y). The imaging device 30 comprises a module 50 for processing signals from the detector 24 and configured to extract the useful information 0(x, y) representing the image of the object. The signals coming from the detector 24 form a convolution of elementary signals coming from the photons having passed through each of the orifices 34 to 46. The processing module 50 advantageously implements a deconvolution-based algorithm to find the image of the object 0( x, y). Note that if the images projected on the detector by the different orifices do not overlap, the deconvolution algorithm approaches a simple superposition of the images, possibly with a processing making it possible to reduce the impact of parallax effects.
Par rapport au dispositif 10, le dispositif 30 permet d’augmenter de façon substantielle le flux de photons atteignant le détecteur 24 et donc du rapport signal sur bruit de l’image. Cette amélioration est cependant obtenue au détriment d’une légère perte de résolution spatiale qui peut rester acceptable au regard du gain de qualité de l’image due à l’amélioration du rapport signal sur bruit. Compared to device 10, device 30 makes it possible to substantially increase the flux of photons reaching detector 24 and therefore the signal-to-noise ratio of the image. This improvement is however obtained at the expense of a slight loss of spatial resolution which may remain acceptable with regard to the gain in image quality due to the improvement in the signal-to-noise ratio.
Dans les différentes variantes, le module de traitement 50 est configuré pour délivrer l’image issue du dispositif 10 ou 30. Plus précisément, le module de traitement 50 récupère les données provenant du détecteur 24 et les assemble en les juxtaposant pour former une image de l’objet situé dans la zone d’analyse 12. Lorsque le détecteur 24 est numérique, le module de traitement 50 reçoit les données des différents pixels, par exemple sous forme de charge ou de tension. Le module de traitement 50 peut comprendre un ou plusieurs convertisseurs analogiques numériques et un multiplexeur permettant de délivrer l’image sous forme d’une trame numérique. Dans le cas du détecteur 30 équipé de la plaque 32, le traitement de déconvolution peut être réalisé sur les informations numériques en aval du convertisseur analogique numérique. In the different variants, the processing module 50 is configured to deliver the image coming from the device 10 or 30. More precisely, the processing module 50 recovers the data coming from the detector 24 and assembles them by juxtaposing them to form an image of the object located in the analysis zone 12. When the detector 24 is digital, the processing module 50 receives the data from the different pixels, for example in the form of a charge or a voltage. The processing module 50 can comprise one or more analog-digital converters and a multiplexer making it possible to deliver the image in the form of a digital frame. In the case of the detector 30 equipped with the plate 32, the deconvolution processing can be performed on the digital information downstream of the analog-to-digital converter.

Claims

REVENDICATIONS
1. Dispositif d’imagerie par photons X rétrodiffusés comprenant : 1. Backscattered X photon imaging device comprising:
• plusieurs sources de rayonnement X (14, 16), toutes configurées pour éclairer une zone d’analyse (12) dans laquelle un objet à imager peut être disposé, • several X-radiation sources (14, 16), all configured to illuminate an analysis zone (12) in which an object to be imaged can be placed,
• un détecteur pixélisé (24) de rayonnement X configuré pour collecter simultanément plusieurs données distinctes, une image délivrée par le dispositif d’imagerie (10) étant formée en juxtaposant les données distinctes, le détecteur pixélisé (24) étant disposé de façon à détecter des photons X pouvant être diffusés par l’objet, • a pixelated detector (24) of X-radiation configured to simultaneously collect several distinct data, an image delivered by the imaging device (10) being formed by juxtaposing the distinct data, the pixelated detector (24) being arranged so as to detect X photons that can be scattered by the object,
• une plaque absorbante (20 ; 32) percée d’au moins un orifice (22 ; 34, 36, 38, 40, 42, 44, 46) permettant à des photons X pouvant être diffusés par l’objet de traverser l’orifice, le détecteur pixélisé (24) étant disposé de façon à détecter les photons X traversant l’orifice. • an absorbent plate (20; 32) pierced with at least one orifice (22; 34, 36, 38, 40, 42, 44, 46) allowing X-ray photons which can be diffused by the object to pass through the orifice , the pixelated detector (24) being arranged to detect X-ray photons passing through the orifice.
2. Dispositif d’imagerie selon la revendication 1 , dans lequel les ou les orifices (22 ; 34, 36, 38, 40, 42, 44, 46) forment chacun un diaphragme par lequel traverse des photons X, entre l’objet et le détecteur pixélisé (24). 2. Imaging device according to claim 1, in which the orifice(s) (22; 34, 36, 38, 40, 42, 44, 46) each form a diaphragm through which X photons pass between the object and the pixelated detector (24).
3. Dispositif d’imagerie selon la revendication 1 , dans lequel la plaque absorbante est percée de plusieurs orifices et forme un collimateur (28) adapté au détecteur pixélisé (24) et ne laissant traverser que des photons X se déplaçant sensiblement selon une direction prédéfinie (29). 3. Imaging device according to claim 1, in which the absorbent plate is pierced with several orifices and forms a collimator (28) adapted to the pixelated detector (24) and allowing only X photons to pass through, moving substantially in a predefined direction. (29).
4. Dispositif d’imagerie selon l’une des revendications précédentes, dans lequel les différentes sources de rayonnement X (14, 16) sont équiréparties autour de l’orifice (22 ; 34, 36, 38, 40, 42, 44, 46). 4. Imaging device according to one of the preceding claims, in which the various sources of X-radiation (14, 16) are evenly distributed around the orifice (22; 34, 36, 38, 40, 42, 44, 46 ).
5. Dispositif d’imagerie selon l’une des revendications précédentes, dans lequel chaque source de rayonnement X (14, 16) comprend une cathode froide émettant un faisceau d’électrons par effet de champ. 5. Imaging device according to one of the preceding claims, in which each X-radiation source (14, 16) comprises a cold cathode emitting an electron beam by field effect.
6. Dispositif d’imagerie selon l’une des revendications précédentes, comprenant un module de pilotage des sources de rayonnement X (14, 16) configuré pour faire émettre simultanément plusieurs sources parmi les sources de rayonnement X (14, 16). 6. Imaging device according to one of the preceding claims, comprising a module for controlling the sources of x-radiation (14, 16) configured to simultaneously emit multiple ones of the x-radiation sources (14, 16).
7. Dispositif d’imagerie selon l’une des revendications précédentes, comprenant un module de pilotage des sources de rayonnement X (14, 16) configuré pour faire émettre séquentiellement une ou plusieurs sources parmi les sources de rayonnement X (14, 16). 7. Imaging device according to one of the preceding claims, comprising an X-ray source control module (14, 16) configured to sequentially emit one or more sources from among the X-ray sources (14, 16).
8. Dispositif d’imagerie selon l’une des revendications 6 ou 7, dans lequel, chaque source de rayonnement X (14, 16) est configurée pour éclairer à un instant donné la totalité de la zone d’analyse (12). 8. Imaging device according to one of claims 6 or 7, wherein each X-ray source (14, 16) is configured to illuminate the entire analysis area (12) at a given time.
9. Dispositif selon l’une des revendications précédentes, dans lequel la plaque absorbante comprend plusieurs orifices (34, 36, 38, 40, 42, 44, 46), le dispositif d’imagerie comprenant un module de traitement (50) de signaux issus du détecteur (24), le module de traitement (50) étant configuré pour extraire l’information utile représentant l’image de l’objet à imager. 9. Device according to one of the preceding claims, in which the absorbent plate comprises several orifices (34, 36, 38, 40, 42, 44, 46), the imaging device comprising a signal processing module (50) from the detector (24), the processing module (50) being configured to extract the useful information representing the image of the object to be imaged.
EP21719636.9A 2020-07-30 2021-04-19 Backscattered x-photon imaging device Pending EP4189373A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2008069A FR3113132B1 (en) 2020-07-30 2020-07-30 Backscattered X photon imaging device
PCT/EP2021/060136 WO2022022868A1 (en) 2020-07-30 2021-04-19 Backscattered x-photon imaging device

Publications (1)

Publication Number Publication Date
EP4189373A1 true EP4189373A1 (en) 2023-06-07

Family

ID=73497902

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21719636.9A Pending EP4189373A1 (en) 2020-07-30 2021-04-19 Backscattered x-photon imaging device

Country Status (6)

Country Link
US (1) US20230293126A1 (en)
EP (1) EP4189373A1 (en)
CN (1) CN115997256A (en)
AU (1) AU2021314651A1 (en)
FR (1) FR3113132B1 (en)
WO (1) WO2022022868A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11409019B1 (en) * 2021-04-19 2022-08-09 Micro-X Limited Device for producing high resolution backscatter images

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2008013595A (en) * 2006-04-21 2009-03-06 American Science & Eng Inc X-ray imaging of baggage and personnel using arrays of discrete sources and multiple collimated beams.
US20140241494A1 (en) * 2014-01-17 2014-08-28 Visuray Intech Ltd (Bvi) System and Method for Reconstructing the Surface Topography of an Object Embedded Within a Scattering Medium
FR3069098B1 (en) 2017-07-11 2020-11-06 Thales Sa COMPACT IONIZING RAY GENERATOR SOURCE, ASSEMBLY INCLUDING SEVERAL SOURCES AND PROCESS FOR REALIZING THE SOURCE

Also Published As

Publication number Publication date
US20230293126A1 (en) 2023-09-21
FR3113132A1 (en) 2022-02-04
CN115997256A (en) 2023-04-21
FR3113132B1 (en) 2022-12-02
WO2022022868A1 (en) 2022-02-03
AU2021314651A1 (en) 2023-03-16

Similar Documents

Publication Publication Date Title
EP1869500B1 (en) Device for limiting decoding artefact appearance for an encoded mask gamma camera
US20150055745A1 (en) Phase Contrast Imaging Using Patterned Illumination/Detector and Phase Mask
FR2877829A1 (en) SLOT SCAN CONFIGURATION BASED ON FLAT PANEL DETECTOR.
FR2471178A1 (en) RADIOGRAPHY APPARATUS
WO2009153229A1 (en) Improved gamma-ray imaging device for precise location of irradiating sources in space
US9568437B2 (en) Inspection device
WO2014154556A1 (en) Detector for detecting the traces of ionizing particles
EP0795763A1 (en) Method for cross-sectional imaging
EP4189373A1 (en) Backscattered x-photon imaging device
FR2526575A1 (en) RADIOLOGICAL IMAGE PROCESSING METHOD FOR CORRECTING SAID IMAGE OF DEFECTS DUE TO DIFFUSED RADIATION
FR3071788A1 (en) DRIVER OBSERVATION SYSTEM AND METHOD OF SEIZING IT BY THE SYSTEM AND METHOD FOR MANUFACTURING THE SYSTEM
GB1579265A (en) Tomography
EP3583447A1 (en) Method for calibrating a gamma spectrometer and device enabling such a calibration
WO2020150634A1 (en) Quantum-limited extended ultraviolet / x-ray coherent diffraction imaging
US11047805B2 (en) Inspection device and detector
FR2803394A1 (en) X-RAY IMAGE DETECTION SYSTEM FOR SCANNING X-RAY GENERATOR
EP0585172A1 (en) X-ray image acquisition method and device for performing the process
US20010052583A1 (en) Radiation image read-out method and apparatus
FR2798551A1 (en) RADIOLOGY DEVICE COMPRISING ENHANCED IMAGING MEANS FOR IMPROVED IMAGES
WO2021008819A1 (en) Microscopy system
FR2641179A1 (en) Apparatus for restoration of X-ray image
FR2625332A1 (en) Detector for gamma camera, scanner and digital radiology
EP0226484B1 (en) Scanning radiologic apparatus
FR3137767A1 (en) Plenoptic X-ray imager with diffraction crystals
FR2658714A1 (en) PERFECTED TOMOGRAPHER WITH GAMMA RADIUS DETECTION.

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230215

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)