EP4189136A1 - Method for identifying substrates which are faulty or have been incorrectly inserted into a cvd reactor - Google Patents

Method for identifying substrates which are faulty or have been incorrectly inserted into a cvd reactor

Info

Publication number
EP4189136A1
EP4189136A1 EP21746480.9A EP21746480A EP4189136A1 EP 4189136 A1 EP4189136 A1 EP 4189136A1 EP 21746480 A EP21746480 A EP 21746480A EP 4189136 A1 EP4189136 A1 EP 4189136A1
Authority
EP
European Patent Office
Prior art keywords
substrates
patterns
values
susceptor
compared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21746480.9A
Other languages
German (de)
French (fr)
Inventor
Utz Herwig Hahn
Martin Dauelsberg
Thomas Schmitt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aixtron SE
Original Assignee
Aixtron SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aixtron SE filed Critical Aixtron SE
Publication of EP4189136A1 publication Critical patent/EP4189136A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4586Elements in the interior of the support, e.g. electrodes, heating or cooling devices
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67288Monitoring of warpage, curvature, damage, defects or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68764Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a movable susceptor, stage or support, others than those only rotating on their own vertical axis, e.g. susceptors on a rotating caroussel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68771Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by supporting more than one semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30148Semiconductor; IC; Wafer

Definitions

  • the invention relates to a method for detecting defective substrates or substrates incorrectly inserted into a CVD reactor using one or more optical sensors that detect properties of the surfaces of the substrates before or during a treatment process of the substrates inside a CVD reactor housing which patterns are obtained, which can also be compared with reference patterns, and a CVD reactor with a programmable computing device.
  • US 2016/0125589 A1 describes a device and a method for determining an incorrect position of a substrate in a CVD reactor, with optical measurement values being obtained at a number of different locations. The optical measured values are compared with one another as a sample.
  • US 2019/0172739 A1 describes a method with which a substrate rotating on a susceptor is optically observed in order to determine its position on the susceptor.
  • US 2015/0376782 A1 describes a CVD reactor with a susceptor, in which substrates are arranged in a circle around an axis of rotation of the susceptor. In order to determine an inclined position of the susceptor relative to a plane of rotation, values of a distance are determined with optical sensors during the rotation of the susceptor.
  • US 2010/0216261 A1 describes a method for determining a lateral position of a substrate on a susceptor.
  • US 2019/0096773 A1 describes a method with which an incorrect position of a substrate on a susceptor in a CVD reactor can be detected using optical sensors.
  • US 2019/0188840 A1 discloses a method in which defective substrates or substrates arranged incorrectly on a susceptor can be detected.
  • DE 102013114412 A1, DE 102018125531 A1, DE 102015100640 A1 or DE 102015100640 A1 describe CVD reactors for depositing semiconductor layers on substrates.
  • a susceptor arranged in a reactor housing there are several substrates which are regularly arranged there and which are coated by feeding reactive gases into a process chamber.
  • a heater used to heat the susceptor is controlled using signals from sensors. Some of these sensors measure the tempera ture of the surface of the substrates.
  • the devices also have further optical sensors with which the layer thickness of the deposited layer can be determined in situ during the deposition process. This he follows in particular by reflection measurements.
  • the prior art also includes US 2016/125589,
  • the invention is based on the object of recognizing the generic method for recognizing faulty substrates or substrates that have been incorrectly inserted into a CVD reactor, and to carry them out using simple means.
  • the reference patterns used to identify defective or incorrectly inserted substrates by comparison with the patterns obtained during a deposition process are obtained during the same deposition process.
  • the comparison pattern is obtained from the same patterns, and in particular calculated, with which the comparison pattern is compared.
  • the comparison sample is calculated during the treatment process.
  • the comparison pattern can be permanently updated.
  • the treatment process is preferably a coating process in which layers, in particular monocrystalline layers, are deposited on a substrate by feeding reactive gases into a process chamber of the CVD reactor.
  • the reactive gases can be hydrides of main group V and organometallic compounds of III. main group act. However, reactive gases of main group IV or II. and VI. main group are used.
  • the reactive gases decompose pyrolytically in the gas phase within the process chamber or on the surface of the substrate, so that layers are deposited on the substrate.
  • a Susceptor on which the substrates are in a regular arrangement, for example in a circular arrangement around a center is heated with a heating device.
  • One or more sensors are provided with which the temperature of the susceptor can be measured in order to use the measured values supplied by the one or more sensors to control the temperature of the susceptor. Sensors can also be provided with which, if appropriate, only the surface temperatures of the substrates are measured. These sensors are preferably permanently connected to the housing of the CVD reactor.
  • the susceptor can be rotated about an axis of rotation. During this rotation, the substrates move below a measuring point of the sensors, so that the measuring point moves on an arc of a circle over the susceptor and the substrates arranged on the susceptor.
  • measured values are continuously recorded, with which on the one hand the temperature and/or the temperature distribution on the surface of the substrates can be determined, or on the other hand with which the layer thickness of the layers deposited on the substrates can be permanently measured.
  • the sensors can be one or more pyrometers.
  • the pyrometers can be sensitive in the UV range and/or in the IR range.
  • the measurements can be reflection measurements.
  • the continuously recorded measured values provide a measurement curve that has structures that follow one another over time and that indicate the characteristic properties of the substrates. To date, these structures have been used to determine the lateral temperature distribution or the homogeneity of growth.
  • these structures are used to detect defective substrates or substrates that have been used incorrectly in the CVD reactor.
  • patterns are formed from the measured values. This can be done using the known methods of image recognition, Fourier transformation, noise analysis or the like. To recognize the errors, the patterns are placed one below the other compared.
  • a comparison pattern is calculated from the measured values recorded during a complete rotation of the susceptor and the measured values formed therefrom, which is compared with all the individual patterns recorded during the same rotation of the susceptor.
  • a measurement curve can be recorded during one or more rotations of the susceptor, which has structures arranged one after the other in time, with each structure being acquired while the measurement point moves over one of the substrates.
  • Patterns can be calculated from these structures, which can each be assigned to an individual substrate. These patterns can change during the treatment process, ie in particular when depositing a layer on the substrates, in that they are updated with the current measured values after each rotation of the susceptor or after a few rotations. It can be provided that mutually comparable values are formed from the patterns. These values can be scalars or vectors or matrices. A characteristic value or an average value can be formed from the values. The values can have the property that a numeric distance between the values can be specified. Provision can be made for the values of the individual patterns to be compared with the characteristic value and for a substrate to be regarded as defective if its assigned value is at a distance from the characteristic value that is greater than a threshold value.
  • At least one technological variable for example a layer thickness or a temperature
  • at least one sensor measures measured values supplies, which can be plotted in the form of a measurement curve, the measurement curve having structures that can be assigned to each of the substrates, the structures having mutually comparable patterns from which mutually comparable values are obtained, wherein only the Comparable values obtained from the measured values recorded at the same time can be compared with one another or with an average value formed from the measured values recorded at the same time.
  • the method can be carried out both during a treatment process in which a number of substrates are thermally treated at the same time and before a treatment process, for example during a heating phase. It can be provided that measured values are used which have been recorded during a plurality of complete rotations of the susceptor. As the susceptor rotates around its axis of rotation, the measuring point moves through an azimuthal angle of 360 degrees during one revolution. During this rotation, measured values are recorded for each of the substrates that lie on the azimuthal angles assigned to them. After each revolution, these readings can be updated or average readings for each substrate can be obtained.
  • the invention also relates to a CVD reactor with a susceptor that can be heated by a heating device. On the susceptor are storage places for substrates. Process gas can be fed into a process chamber of the CVD reactor through a gas inlet element. Sensors are provided see, with which the optical properties of the substrates can be measured.
  • an electronic computing device is assigned to the CVD reactor, which is programmed in such a way that defective substrates or substrates used incorrectly in the CVD reactor are recognized. The procedure corresponds to the procedure described above.
  • Fig. 2 shows the section along the line II-II (a plan view of the sus ceptor 2), the susceptor having 7 storage locations for one substrate 3 each,
  • FIG. 3 schematically shows the course of a signal S, which is recorded by a sensor 6 during one rotation of the susceptor 2, a susceptor being used here which has five support locations for substrates 3 arranged around an axis of rotation A.
  • the horizontal axis, labeled t, represents either time or the azimuthal angle of the measurement site on the susceptor.
  • FIG. 1 shows a CVD reactor with a reactor housing 1 which is gas-tight. Located within the reactor housing between a process chamber ceiling 4 and a susceptor 2 is a process chamber into which 8 reactive gases are fed through a gas inlet element. The susceptor 2 is heated with a heating device 9 from below. On the susceptor 2 lie conditions multiple substrates 3. The substrates 3 are each Weil in a pocket 12 in the embodiment. The substrate holder 13 can float on a gas cushion which causes the substrate holder 13 to rotate about its axis. A beam path 7 of an optical sensor 6 , which is firmly connected to the housing 1 , runs through a passage opening 5 within the process chamber ceiling 4 .
  • the beam path 7 impinges on a measuring point 10 on the substrate 3.
  • the temperature of the substrate 3 can be measured with the sensor 6.
  • the sensor 6 or another sensor can measure another optical property, for example the reflectance, of the substrate 3 in order to continuously measure the layer thickness of the layers deposited on the substrates 3 during the deposition process .
  • the susceptor 2 rotates about the axis of rotation A, so that the measuring point 10 moves on a circular path 11 over substrates 3 arranged in a circle about the axis of rotation A.
  • the circular path 11 can run through the center of the substrate 3 or the center of the pocket 12 or the substrate holder 13 .
  • the substrates 3 can be arranged in a hexagonally dense arrangement or otherwise distributed over the entire surface of the susceptor 2 .
  • the gas inlet element 8 can have the shape of a showerhead.
  • Suitable means are provided with which a measuring point 10 of an optical sensor migrates over the substrates 3, for example the beam path can be correspondingly controlled via deflection elements.
  • At least one of the one or more optical sensors 6 can be used to control the heater 9 or other actuators of the CVD reactor.
  • the at least one sensor 6 delivers a signal that can have the form shown in FIG.
  • this signal originates from a device in which five substrates 3 are arranged on the susceptor 2 in a uniform arrangement around the axis of rotation A. While the measurement point 10 moves across a substrate 3, a characteristic measurement curve section is formed, which has a certain pattern a, b, c, d, e. If all the substrates 3 are of substantially the same quality and are properly arranged on the susceptor 2, for example lying correctly in pockets 12 machined into the top of the susceptor 2 to accommodate the substrates 3, then the patterns a, b , c, d, e essentially the same or similar. In FIG. 3, these are the patterns a, b, c and e.
  • the curve portion constituting the pattern d is different from the other patterns.
  • the pattern d is considered to be different according to the invention.
  • the pattern d can thus correspond to a substrate 3 which is faulty or which is incorrectly inserted into the pocket 12 .
  • values La, Lb, Lc, Ld, Le can be assigned to each of the patterns a, b, c, d, e. These values can be determined by Fourier analysis, image recognition, noise analysis or the like. It can be provided that an average value Lm is formed from the values.
  • a distance Aa, Ab, Ac, Ad, Ae between one of the values La, Lb, Lc, Ld, Le and the mean value Lm exceeds a threshold value Ls, a warning can be issued that one of the substrates 3 has been used incorrectly or incorrectly is.
  • exceeding the threshold value can also lead to a coating process being aborted.
  • sensor signals S which are obtained from a pyrometer for measuring the temperature of the surface of the substrate, can be used. It is also possible to use sensor signals S which come from other optical sensors, for example sensors with which the layer thickness of the layers deposited on the substrates 3 is measured.
  • the threshold values can change dynamically.
  • the method of machine learning can be used to determine the threshold values. Provision can be made for the measured values recorded by the sensors, for example spectra, to be stored in a database and for the threshold values to be determined from such historical data.
  • the method according to the invention can be used to determine whether substrates 3 are broken or whether substrates 3 are not lying properly in their associated pockets 12 or whether substrate holders 13, which are mounted on gas poles and carry one or more substrates 3, not turning properly on the gas cushions.
  • FIG. 3 is also to be understood in such a way that t indicates an azimuthal angle and FIG. 3 shows the measurement curve of a complete rotation of the susceptor.
  • Individualized and/or averaged patterns a, b, c, d, e can be determined for each substrate 3 from a number of such measurement curves recorded one after the other, or from a number of patterns a, b, c, d, e determined one after the other in time characteristic values La, Lb, Lc, Ld, Le are formed, which are each calculated from a plurality of patterns which are each assigned individually to a substrate.
  • at least one technological variable for example a layer thickness or a temperature
  • a method which is characterized in that by repeatedly walking over the measuring point 10 over the plurality of substrates 3 from the plurality of patterns a, b, c, d, e individually assigned to each substrate 3, one substrate 3 associated value La, Lb, Lc, Ld, Le is formed, and the values La, Lb, Lc, Ld, Le are compared with one another.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

The invention relates to a method for identifying substrates (3) which are faulty or have been incorrectly inserted in a CVD reactor, with the aid of one or more optical sensors (3), which sense properties of the surfaces of the substrates, for example layer thickness or temperature, before or during a treatment process of the substrates (3) within the CVD reactor housing (1). The measurement values provided by the sensors (3) can be plotted in the form of a measurement curve, and patterns are obtained from the measurement curve, each pattern corresponding to one of the substrates (3). The patterns are compared with each other or with a mean (Lm) calculated from the patterns.

Description

Beschreibung description
Verfahren zum Erkennen fehlerhafter oder fehlerhaft in einen CVD-Reaktor eingesetzte Substrate Method for detecting defective or incorrectly inserted substrates in a CVD reactor
Gebiet der Technik field of technology
[0001] Die Erfindung betrifft ein Verfahren zum Erkennen fehlerhafter oder fehlerhaft in einen CVD-Reaktor eingesetzte Substrate mithilfe ein oder mehre- rer optischer Sensoren, die vor oder während eines Behandlungsprozesses der Substrate innerhalb eines CVD-Reaktorgehäuses Eigenschaften der Oberflächen der Substrate erfassen, aus denen Muster gewonnen werden, die zusätzlich mit Vergleichsmustern verglichen werden können, sowie einen CVD-Reaktor mit einer programmierbaren Recheneinrichtung. The invention relates to a method for detecting defective substrates or substrates incorrectly inserted into a CVD reactor using one or more optical sensors that detect properties of the surfaces of the substrates before or during a treatment process of the substrates inside a CVD reactor housing which patterns are obtained, which can also be compared with reference patterns, and a CVD reactor with a programmable computing device.
Stand der Technik [0002] Die US 2016 / 0125589 Al beschreibt eine V orrichtung und ein Verfah ren zum BesÜmmen einer Fehllage eines Substrates in einem CVD-Reaktor, wo bei an mehreren voneinander verschiedenen Stellen optische Messwerte ge wonnen werden. Die opüschen Messwerte werden als Muster miteinander ver glichen. [0003] Die US 2019/ 0172739 Al beschreibt ein Verfahren, mit dem ein auf ei nem Suszeptor rotierendes Substrat opüsch beobachtet wird, um dessen Lage auf dem Suszeptor zu ermitteln. PRIOR ART [0002] US 2016/0125589 A1 describes a device and a method for determining an incorrect position of a substrate in a CVD reactor, with optical measurement values being obtained at a number of different locations. The optical measured values are compared with one another as a sample. [0003] US 2019/0172739 A1 describes a method with which a substrate rotating on a susceptor is optically observed in order to determine its position on the susceptor.
[0004] Die US 2015/ 0376782 Al beschreibt einen CVD-Reaktor mit einem Sus zeptor, bei dem Substrate kreisförmig um eine Drehachse des Suszeptors ange- ordnet sind. Um eine Neigungslage des Suszeptors gegenüber einer Drehebene zu ermitteln, werden mit opüschen Sensoren während der Drehung des Sus zeptors Werte eines Abstandes ermittelt. [0005] Die US 2010/ 0216261 Al beschreibt ein Verfahren zum Bestimmen ei ner lateralen Position eines Substrates auf einem Suszeptor. [0004] US 2015/0376782 A1 describes a CVD reactor with a susceptor, in which substrates are arranged in a circle around an axis of rotation of the susceptor. In order to determine an inclined position of the susceptor relative to a plane of rotation, values of a distance are determined with optical sensors during the rotation of the susceptor. [0005] US 2010/0216261 A1 describes a method for determining a lateral position of a substrate on a susceptor.
[0006] Die US 2019/ 0096773 Al beschreibt ein Verfahren, mit dem unter Ver wendung optischer Sensoren eine Fehllage eines Substrates auf einem Suszep- tor in einem CVD-Reaktor erkannt werden kann. [0006] US 2019/0096773 A1 describes a method with which an incorrect position of a substrate on a susceptor in a CVD reactor can be detected using optical sensors.
[0007] Aus der US 2019/ 0188840 Al ist ein Verfahren bekannt, bei dem fehler hafte oder fehlerhaft auf einem Suszeptor angeordnete Substrate erkannt wer den können. [0007]US 2019/0188840 A1 discloses a method in which defective substrates or substrates arranged incorrectly on a susceptor can be detected.
[0008] Die DE 102013114412 Al, DE 102018125531 Al, DE 102015100640 Al oder DE 102015100640 Al beschreiben CVD-Reaktoren zum Abscheiden von Halbleiterschichten auf Substraten. Auf einem in einem Reaktorgehäuse angeord neten Suszeptor befinden sich mehrere, dort regelmäßig angeordnete Substrate, die durch Einspeisen von reaktiven Gasen in eine Prozesskammer beschichtet werden. Eine Heizeinrichtung, mit der der Suszeptor beheizt wird, wird mithilfe von Signalen von Sensoren geregelt. Einige dieser Sensoren messen die Tempera tur der Oberfläche der Substrate. Die Vorrichtungen weisen darüber hinaus wei tere optische Sensoren auf, mit denen während des Abscheideprozesses die Schichtdicke der abgeschiedenen Schicht in situ bestimmt werden kann. Dies er folgt insbesondere durch Reflexionsmessungen. [0009] Zum Stand der Technik gehören ferner die US 2016/125589, DE 102013114412 A1, DE 102018125531 A1, DE 102015100640 A1 or DE 102015100640 A1 describe CVD reactors for depositing semiconductor layers on substrates. On a susceptor arranged in a reactor housing there are several substrates which are regularly arranged there and which are coated by feeding reactive gases into a process chamber. A heater used to heat the susceptor is controlled using signals from sensors. Some of these sensors measure the tempera ture of the surface of the substrates. The devices also have further optical sensors with which the layer thickness of the deposited layer can be determined in situ during the deposition process. This he follows in particular by reflection measurements. The prior art also includes US 2016/125589,
EP 2684979 Al, JP 2010258383 A, US 2004/143412 Al, US 2003/218144 Al und DE 69828973 T2. Zusammenfassung der Erfindung EP 2684979 A1, JP 2010258383 A, US 2004/143412 A1, US 2003/218144 A1 and DE 69828973 T2. Summary of the Invention
[0010] Der Erfindung liegt die Aufgabe zugrunde, das gattungsgemäße Ver fahren zum Erkennen fehlerhafter oder fehlerhaft in einen CVD-Reaktor einge setzte Substrate zu erkennen, und mit einfachen Mitteln durchzuführen. The invention is based on the object of recognizing the generic method for recognizing faulty substrates or substrates that have been incorrectly inserted into a CVD reactor, and to carry them out using simple means.
[0011] Gelöst wird die Aufgabe durch die in den Ansprüchen angegebenen Merkmale. Die Unter ansprüche stellen nicht nur vorteilhafte Weiterbildungen der im Hauptanspruch angegebenen technischen Lösung, sondern auch eigen ständige Lösungen der Aufgabe dar. The object is achieved by the features specified in the claims. The subclaims not only represent advantageous developments of the technical solution specified in the main claim, but also independent solutions to the problem.
[0012] Zunächst und im Wesentlichen wird vorgeschlagen, dass die Ver gleichsmuster, die verwendet werden, um durch Vergleich mit den während ei- nes Abscheideprozesses gewonnenen Mustern fehlerhafte oder fehlerhaft ein gesetzte Substrate zu erkennen, während desselben Abscheideprozesses ge wonnen werden. Das Vergleichsmuster wird aus denselben Mustern gewonnen und insbesondere berechnet, mit denen das Vergleichsmuster verglichen wird. Die Berechnung des Vergleichsmusters erfolgt während des Behandlungspro- zesses. [0012]First and foremost, it is proposed that the reference patterns used to identify defective or incorrectly inserted substrates by comparison with the patterns obtained during a deposition process are obtained during the same deposition process. The comparison pattern is obtained from the same patterns, and in particular calculated, with which the comparison pattern is compared. The comparison sample is calculated during the treatment process.
[0013] Das Vergleichsmuster kann permanent aktualisiert werden. Bei dem Behandlungsprozess handelt es sich bevorzugt um einen Beschichtungsprozess, bei dem durch Einspeisen reaktiver Gase in eine Prozesskammer des CVD- Reaktors Schichten, insbesondere einkristalline Schichten, auf einem Substrat abgeschieden werden. Bei den reaktiven Gasen kann es sich um Hydride der V. Hauptgruppe und metallorganische Verbindungen der III. Hauptgruppe han deln. Es können aber auch reaktive Gase der IV. Hauptgruppe oder der II. und VI. Hauptgruppe verwendet werden. Die reaktiven Gase zerlegen sich pyroly tisch in der Gasphase innerhalb der Prozesskammer oder auf der Oberfläche des Substrates, sodass auf den Substraten Schichten abgeschieden werden. Ein Suszeptor, auf dem die Substrate in regelmäßiger Anordnung, beispielsweise in einer kreisförmigen Anordnung um ein Zentrum liegen, wird mit einer Heiz einrichtung beheizt. Es sind ein oder mehrere Sensoren vorgesehen, mit denen die Temperatur des Suszeptors gemessen werden kann, um mit den von den ein oder mehreren Sensoren gelieferten Messwerten die Temperatur des Sus zeptors zu regeln. Es können ferner Sensoren vorgesehen sein, mit denen gege benenfalls auch nur die Oberflächentemperaturen der Substrate gemessen wer den. Diese Sensoren sind bevorzugt fest mit dem Gehäuse des CVD-Reaktors verbunden. Der Suszeptor kann um eine Drehachse gedreht werden. Bei dieser Drehung wandern die Substrate unterhalb eines Messpunktes der Sensoren, so- dass der Messpunkt auf einer Kreisbogenlinie über den Suszeptor und die auf dem Suszeptor angeordneten Substrate wandert. Bei dieser Messung werden kontinuierlich Messwerte aufgenommen, mit denen einerseits die Temperatur und/ oder die Temperaturverteilung auf der Oberfläche der Substrate ermittelt werden kann, oder andererseits mit denen permanent die Schichtdicke der auf den Substraten abgeschiedenen Schichten gemessen werden kann. Bei den Sen soren kann es sich um ein oder mehrere Pyrometer handeln. Die Pyrometer können im UV-Bereich und/ oder im IR-Bereich sensibel sein. Bei den Messun gen kann es sich um Reflexionsmessungen handeln. Indem der Messpunkt während der Messung über die Substrate wandert, liefern die kontinuierlich aufgenommenen Messwerte eine Messkurve, die zeitlich aufeinanderfolgende Strukturen besitzt, die charakteristische Eigenschaften der Substrate angeben. Diese Strukturen werden bislang dazu verwendet, um die laterale Temperatur verteilung beziehungsweise die Homogenität des Wachstums zu ermitteln. Er findungsgemäß werden diese Strukturen verwendet, um fehlerhafte oder feh lerhaft in den CVD-Reaktor eingesetzte Substrate zu erkennen. Hierzu werden aus den Messwerten Muster gebildet. Dies kann mit den bekannten Methoden der Bilderkennung, der Fourier-Transformation, der Rauschanalyse oder der gleichen erfolgen. Zum Erkennen der Fehler werden die Muster untereinander verglichen. Es ist insbesondere vorgesehen, dass aus den während einer voll ständigen Drehung des Suszeptors aufgenommenen Messwerten und daraus gebildeten Messwerten ein Vergleichsmuster berechnet wird, das mit allen ein zelnen, während derselben Drehung des Suszeptors aufgenommenen Mustern verglichen wird. Mit dem mindestens einen Sensor kann während ein oder mehrerer Drehungen des Suszeptors eine Messkurve aufgenommen werden, die zeitlich hintereinander angeordnete Strukturen aufweist, wobei jede Struk tur während des Wanderns des Messpunktes über eines der Substrate gewon nen wird. Aus diesen jeweils einem individuellen Substrat zuordenbaren Struk turen können Muster berechnet werden. Diese Muster können sich während des Behandlungsprozesses, also insbesondere beim Abscheiden einer Schicht auf die Substrate ändern, indem sie nach jeder oder nach einigen Drehungen des Suszeptors mit den aktuellen Messwerten aktualisiert werden. Es kann vor gesehen sein, dass aus den Mustern untereinander vergleichbare Werte gebildet werden. Diese Werte können Scalare oder Vektoren oder Matrizen sein. Aus den Werten kann ein charakterisüscher Wert oder ein Mittelwert gebildet wer den. Die Werte können die Eigenschaft haben, dass ein numerischer Abstand zwischen den Werten angegeben werden kann. Es kann vorgesehen sein, dass die Werte der einzelnen Muster mit dem charakteristischen Wert verglichen werden und ein Substrat als fehlerhaft angesehen wird, dessen zugeordneter Wert einen über einem Schwellwert hegenden Abstand vom charakteristischen Wert besitzt. Es kann ferner vorgesehen sein, dass ein zweiter Schwellwert defi niert wird und bei einem Überschreiten eines Abstandes dieses zweiten Schwellwertes der Abscheideprozess abgebrochen wird. Es kann ferner vorge sehen sein, dass der mindestens eine Schwellwert durch maschinelles Lernen ermittelt wird. Es kann auch vorgesehen sein, dass die Muster beziehungsweise die daraus gewonnenen Werte nicht mit einem charakterisüschen Wert vergli chen werden, sondern dass die Muster beziehungsweise die daraus gewonne nen Werte untereinander verglichen werden. Es kann ferner vorgesehen sein, dass der Abscheideprozess nicht abgebrochen wird, wenn ein Abstand einen Schwellwert überschreitet, sondern lediglich eine Warnung abgegeben wird.The comparison pattern can be permanently updated. The treatment process is preferably a coating process in which layers, in particular monocrystalline layers, are deposited on a substrate by feeding reactive gases into a process chamber of the CVD reactor. The reactive gases can be hydrides of main group V and organometallic compounds of III. main group act. However, reactive gases of main group IV or II. and VI. main group are used. The reactive gases decompose pyrolytically in the gas phase within the process chamber or on the surface of the substrate, so that layers are deposited on the substrate. A Susceptor on which the substrates are in a regular arrangement, for example in a circular arrangement around a center is heated with a heating device. One or more sensors are provided with which the temperature of the susceptor can be measured in order to use the measured values supplied by the one or more sensors to control the temperature of the susceptor. Sensors can also be provided with which, if appropriate, only the surface temperatures of the substrates are measured. These sensors are preferably permanently connected to the housing of the CVD reactor. The susceptor can be rotated about an axis of rotation. During this rotation, the substrates move below a measuring point of the sensors, so that the measuring point moves on an arc of a circle over the susceptor and the substrates arranged on the susceptor. During this measurement, measured values are continuously recorded, with which on the one hand the temperature and/or the temperature distribution on the surface of the substrates can be determined, or on the other hand with which the layer thickness of the layers deposited on the substrates can be permanently measured. The sensors can be one or more pyrometers. The pyrometers can be sensitive in the UV range and/or in the IR range. The measurements can be reflection measurements. As the measuring point moves over the substrate during the measurement, the continuously recorded measured values provide a measurement curve that has structures that follow one another over time and that indicate the characteristic properties of the substrates. To date, these structures have been used to determine the lateral temperature distribution or the homogeneity of growth. According to the invention, these structures are used to detect defective substrates or substrates that have been used incorrectly in the CVD reactor. For this purpose, patterns are formed from the measured values. This can be done using the known methods of image recognition, Fourier transformation, noise analysis or the like. To recognize the errors, the patterns are placed one below the other compared. In particular, it is provided that a comparison pattern is calculated from the measured values recorded during a complete rotation of the susceptor and the measured values formed therefrom, which is compared with all the individual patterns recorded during the same rotation of the susceptor. With the at least one sensor, a measurement curve can be recorded during one or more rotations of the susceptor, which has structures arranged one after the other in time, with each structure being acquired while the measurement point moves over one of the substrates. Patterns can be calculated from these structures, which can each be assigned to an individual substrate. These patterns can change during the treatment process, ie in particular when depositing a layer on the substrates, in that they are updated with the current measured values after each rotation of the susceptor or after a few rotations. It can be provided that mutually comparable values are formed from the patterns. These values can be scalars or vectors or matrices. A characteristic value or an average value can be formed from the values. The values can have the property that a numeric distance between the values can be specified. Provision can be made for the values of the individual patterns to be compared with the characteristic value and for a substrate to be regarded as defective if its assigned value is at a distance from the characteristic value that is greater than a threshold value. Provision can also be made for a second threshold value to be defined and for the separation process to be terminated if a distance from this second threshold value is exceeded. Provision can also be made for the at least one threshold value to be determined by machine learning. It can also be provided that the patterns or the values obtained from them are not compared with a characteristic value, but that the patterns or the values obtained from them are compared with one another. It can also be provided that the deposition process is not aborted when a distance exceeds the threshold, only a warning is issued.
Bei einem Ausführungsbeispiel der Erfindung kann vorgesehen sein, dass mit zumindest einem Sensor zumindest eine technologische Größe, beispielsweise eine Schichtdicke oder eine Temperatur, an den auf dem sich unter dem zumin dest einen Sensor drehenden Suszeptor aufliegenden Substraten gemessen wird, dass der mindestens eine Sensor Messwerte liefert, die in Form einer Messkurve aufgetragen werden können, wobei die Messkurve jedem der Sub strate zuordenbare Strukturen aufweist, wobei die Strukturen untereinander vergleichbare Muster aufweisen, aus denen untereinander vergleichbare Werte gewonnen werden, wobei zur Ermittlung eines fehlerhaften oder fehlerhaft an geordneten Substrates nur die aus den gleichzeitig aufgenommenen Messwer ten gewonnenen vergleichbaren Werte untereinander oder mit einem aus den gleichzeitig auf genommenen Messwerten gebildeten Mittelwert verglichen werden. Das Verfahren kann sowohl während eines Behandlungsprozesses, bei dem mehrere Substrate gleichzeitig thermisch behandelt werden, als auch vor einem Behandlungsprozess, beispielsweise während einer Aufheizphase durch geführt werden. Es kann vorgesehen sein, dass Messwerte verwendet werden, die während einer Mehrzahl vollständiger Drehungen des Suszeptors aufge nommen worden sind. Die Messstelle wandert während der Drehung des Sus zeptors um seine Drehachse während eines Umlaufs über einen azimutalen Winkel von 360 Grad. Während dieses Umlaufs werden für jedes der Substrate, die auf ihnen zugeordneten azimutalen Winkeln liegen, Messwerte auf genom men. Nach jeder Umdrehung können diese Messwerte aktualisiert werden oder es können Mittelwerte für die Messwerte jedes Substrates gewonnen werden. In one exemplary embodiment of the invention, it can be provided that at least one technological variable, for example a layer thickness or a temperature, is measured with at least one sensor on the substrate lying on the susceptor rotating under the at least one sensor, so that the at least one sensor measures measured values supplies, which can be plotted in the form of a measurement curve, the measurement curve having structures that can be assigned to each of the substrates, the structures having mutually comparable patterns from which mutually comparable values are obtained, wherein only the Comparable values obtained from the measured values recorded at the same time can be compared with one another or with an average value formed from the measured values recorded at the same time. The method can be carried out both during a treatment process in which a number of substrates are thermally treated at the same time and before a treatment process, for example during a heating phase. It can be provided that measured values are used which have been recorded during a plurality of complete rotations of the susceptor. As the susceptor rotates around its axis of rotation, the measuring point moves through an azimuthal angle of 360 degrees during one revolution. During this rotation, measured values are recorded for each of the substrates that lie on the azimuthal angles assigned to them. After each revolution, these readings can be updated or average readings for each substrate can be obtained.
[0014] Die Erfindung betrifft darüber hinaus einen CVD-Reaktor mit einem Suszeptor, der von einer Heizeinrichtung beheizbar ist. Auf dem Suszeptor sind Lagerplätze für Substrate. Durch ein Gaseinlassorgan kann Prozessgas in eine Prozesskammer des CVD-Reaktors eingespeist werden. Es sind Sensoren vorge- sehen, mit denen optische Eigenschaften der Substrate gemessen werden kön nen. Dem CVD-Reaktor ist darüber hinaus eine elektronische Recheneinrich tung zugeordnet, die so programmiert ist, dass fehlerhafte oder fehlerhaft in den CVD-Reaktor eingesetzte Substrate erkannt werden. Das Verfahren ent- spricht dem zuvor beschriebenen Verfahren. The invention also relates to a CVD reactor with a susceptor that can be heated by a heating device. On the susceptor are storage places for substrates. Process gas can be fed into a process chamber of the CVD reactor through a gas inlet element. Sensors are provided see, with which the optical properties of the substrates can be measured. In addition, an electronic computing device is assigned to the CVD reactor, which is programmed in such a way that defective substrates or substrates used incorrectly in the CVD reactor are recognized. The procedure corresponds to the procedure described above.
Kurze Beschreibung der Zeichnungen Brief description of the drawings
[0015] Ein Ausführungsbeispiel der Erfindung wird nachfolgend anhand bei gefügter Zeichnungen erläutert. Es zeigen: An embodiment of the invention is explained below with reference to attached drawings. Show it:
Fig. 1 schematisch den Querschnitt eines CVD-Reaktors zur Durch führung des Verfahrens, 1 schematically shows the cross section of a CVD reactor for carrying out the method,
Fig. 2 den Schnitt gemäß der Linie II-II (eine Draufsicht auf den Sus zeptor 2), wobei der Suszeptor 7 Lagerplätze für jeweils ein Substrat 3 aufweist, Fig. 2 shows the section along the line II-II (a plan view of the sus ceptor 2), the susceptor having 7 storage locations for one substrate 3 each,
Fig. 3 schematisch den Verlauf eines Signales S, welches von einem Sensor 6 während einer Umdrehung des Suszeptors 2 aufge- nommen wird, wobei hier ein Suszeptor verwendet wird, der fünf um eine Drehachse A angeordnete Auflageplätze für Sub strate 3 besitzt. Die horizontale Achse, die mit t bezeichnet ist, repräsentiert entweder die Zeit oder den azimutalen Winkel der Messstelle auf dem Suszeptor. 3 schematically shows the course of a signal S, which is recorded by a sensor 6 during one rotation of the susceptor 2, a susceptor being used here which has five support locations for substrates 3 arranged around an axis of rotation A. The horizontal axis, labeled t, represents either time or the azimuthal angle of the measurement site on the susceptor.
Beschreibung der Ausführungsformen [0016] Die Figur 1 zeigt einen CVD-Reaktor mit einem Reaktorgehäuse 1, wel ches gasdicht ist. Innerhalb des Reaktorgehäuses befindet sich zwischen einer Prozesskammerdecke 4 und einem Suszeptor 2 eine Prozesskammer, in die durch ein Gaseinlassorgan 8 reaktive Gase eingespeist werden. Der Suszeptor 2 wird von unten mit einer Heizeinrichtung 9 beheizt. Auf dem Suszeptor 2 lie gen mehrere Substrate 3. Die Substrate 3 liegen beim Ausführungsbeispiel je weils in einer Tasche 12. Die Tasche 12 wird von einem Substrathalter 13 ausge bildet, der in einer Vertiefung 14 des Suszeptors 2 liegt. Der Substrathalter 13 kann auf einem Gaspolster schweben, das den Substrathalter 13 in eine Drehbe wegung um seine Achse versetzt. Durch eine Durchtrittsöffnung 5 innerhalb der Prozesskammerdecke 4 verläuft ein Strahlengang 7 eines optischen Sen sors 6, der fest mit dem Gehäuse 1 verbunden ist. Der Strahlengang 7 trifft auf eine Messstelle 10 auf dem Substrat 3. Mit dem Sensor 6 kann die Temperatur des Substrates 3 gemessen werden. Es ist aber auch möglich, dass mit dem Sen sor 6 oder einem weiteren Sensor eine andere optische Eigenschaft, beispiels weise die Reflektanz, des Substrates 3 gemessen werden kann, um während des Abscheideprozesses laufend die Schichtdicke der auf den Substraten 3 abge schiedenen Schichten zu messen. DESCRIPTION OF THE EMBODIMENTS FIG. 1 shows a CVD reactor with a reactor housing 1 which is gas-tight. Located within the reactor housing between a process chamber ceiling 4 and a susceptor 2 is a process chamber into which 8 reactive gases are fed through a gas inlet element. The susceptor 2 is heated with a heating device 9 from below. On the susceptor 2 lie conditions multiple substrates 3. The substrates 3 are each Weil in a pocket 12 in the embodiment. The substrate holder 13 can float on a gas cushion which causes the substrate holder 13 to rotate about its axis. A beam path 7 of an optical sensor 6 , which is firmly connected to the housing 1 , runs through a passage opening 5 within the process chamber ceiling 4 . The beam path 7 impinges on a measuring point 10 on the substrate 3. The temperature of the substrate 3 can be measured with the sensor 6. FIG. However, it is also possible for the sensor 6 or another sensor to measure another optical property, for example the reflectance, of the substrate 3 in order to continuously measure the layer thickness of the layers deposited on the substrates 3 during the deposition process .
[0017] Während des Beschichtungsverfahrens dreht sich der Suszeptor 2 um die Drehachse A, sodass die Messstelle 10 auf einer kreisförmigen Bahn 11 über kreisförmig um die Drehachse A angeordnete Substrate 3 wandert. Die kreisför mige Bahn 11 kann durch den Mittelpunkt des Substrates 3 beziehungsweise den Mittelpunkt der Tasche 12 oder des Substrathalters 13 verlaufen. During the coating process, the susceptor 2 rotates about the axis of rotation A, so that the measuring point 10 moves on a circular path 11 over substrates 3 arranged in a circle about the axis of rotation A. The circular path 11 can run through the center of the substrate 3 or the center of the pocket 12 or the substrate holder 13 .
[0018] Bei anderen, nicht dargestellten Ausführungsbeispielen können die Substrate 3 in einer hexagonal dichtesten Anordnung oder anderweitig über die gesamte Fläche des Suszeptors 2 verteilt angeordnet sein. Das Gaseinlassor gan 8 kann bei diesen Ausführungsbeispielen die Form eines Showerheads auf weisen. Es sind geeignete Mittel vorgesehen, mit denen eine Messstelle 10 eines optischen Sensors über die Substrate 3 wandert, beispielsweise kann der Strah lengang über Umlenkelemente entsprechend gesteuert werden. [0019] Zumindest einer der ein oder mehreren optischen Sensoren 6 kann dazu verwendet werden, um die Heizeinrichtung 9 oder andere Stellglieder des CVD-Reaktors zu regeln. In other exemplary embodiments, which are not shown, the substrates 3 can be arranged in a hexagonally dense arrangement or otherwise distributed over the entire surface of the susceptor 2 . In these exemplary embodiments, the gas inlet element 8 can have the shape of a showerhead. Suitable means are provided with which a measuring point 10 of an optical sensor migrates over the substrates 3, for example the beam path can be correspondingly controlled via deflection elements. At least one of the one or more optical sensors 6 can be used to control the heater 9 or other actuators of the CVD reactor.
[0020] Während einer Umdrehung des Suszeptors 2 liefert der mindestens eine Sensor 6 ein Signal, das etwa die in der Figur 3 dargestellte Form haben kann. Anders als in der Figur 2 dargestellt, entstammt dieses Signal von einer Vorrichtung bei der auf dem Suszeptor 2 fünf Substrate 3 in einer gleichmäßi gen Anordnung um die Drehachse A angeordnet sind. Während der Mess punkt 10 über ein Substrat 3 wandert, bildet sich ein charakteristischer Mess- kurvenabschnitt, der ein gewisses Muster a, b, c, d, e aufweist. Haben alle Sub strate 3 eine im Wesentlichen gleiche Qualität und sind ordnungsgemäß auf dem Suszeptor 2 angeordnet, beispielsweise liegen korrekt in Taschen 12, die in die Oberseite des Suszeptors 2 eingearbeitet sind, um die Substrate 3 aufzuneh men, so sind die Muster a, b, c, d, e im Wesentlichen gleich oder ähnlich. In der Figur 3 handelt es sich dabei um die Muster a, b, c und e. During one revolution of the susceptor 2, the at least one sensor 6 delivers a signal that can have the form shown in FIG. In contrast to what is shown in FIG. 2, this signal originates from a device in which five substrates 3 are arranged on the susceptor 2 in a uniform arrangement around the axis of rotation A. While the measurement point 10 moves across a substrate 3, a characteristic measurement curve section is formed, which has a certain pattern a, b, c, d, e. If all the substrates 3 are of substantially the same quality and are properly arranged on the susceptor 2, for example lying correctly in pockets 12 machined into the top of the susceptor 2 to accommodate the substrates 3, then the patterns a, b , c, d, e essentially the same or similar. In FIG. 3, these are the patterns a, b, c and e.
[0021] Der das Muster d bildende Kurvenabschnitt unterscheidet sich von den anderen Mustern. Durch einen Vergleich der Muster a, b, c, d, e untereinander wird erfindungsgemäß das Muster d als abweichend angesehen. Das Muster d kann somit zu einem Substrat 3 korrespondieren, das fehlerhaft ist oder fehler- haft in die Tasche 12 eingesetzt ist. The curve portion constituting the pattern d is different from the other patterns. By comparing the patterns a, b, c, d, e with each other, the pattern d is considered to be different according to the invention. The pattern d can thus correspond to a substrate 3 which is faulty or which is incorrectly inserted into the pocket 12 .
[0022] Zur Ermittlung des fehlerhaften oder fehlerhaft eingesetzten Substra tes 3 können jedem der Muster a, b, c, d, e Werte La, Lb, Lc, Ld, Le zugeordnet werden. Diese Werte können durch eine Fourier- Analyse, eine Bilderkennung, eine Rauschanalyse oder dergleichen ermittelt werden. Es kann vorgesehen sein, dass aus den Werten ein Mittelwert Lm gebildet wird. To determine the faulty or incorrectly used substrate 3, values La, Lb, Lc, Ld, Le can be assigned to each of the patterns a, b, c, d, e. These values can be determined by Fourier analysis, image recognition, noise analysis or the like. It can be provided that an average value Lm is formed from the values.
Lm = (La +Lb + Lc + Ld + Le) / 5 Mit diesem Mittelwert können alle Werte verglichen werden. Lm = (La +Lb + Lc + Ld + Le) / 5 All values can be compared with this mean value.
Aa La - Lm Aa La - Lm
Ab Lb - Lm From Lb - Lm
Ac Lc - Lm Ac Lc - Lm
Ad Ld - Lm Ad Ld - Lm
Ae Le - Lm Ae Le-Lm
Überschreitet ein Abstand Aa, Ab, Ac, Ad, Ae zwischen einem der Werte La, Lb, Lc, Ld, Le und dem Mittelwert Lm einen Schwellwert Ls, so kann eine War nung ausgegeben werden, dass eines der Substrate 3 fehlerhaft oder fehlerhaft eingesetzt ist. Die Überschreitung des Schwellwertes kann aber auch dazu füh ren, dass ein Beschichtungsprozess abgebrochen wird. If a distance Aa, Ab, Ac, Ad, Ae between one of the values La, Lb, Lc, Ld, Le and the mean value Lm exceeds a threshold value Ls, a warning can be issued that one of the substrates 3 has been used incorrectly or incorrectly is. However, exceeding the threshold value can also lead to a coating process being aborted.
[0023] Erfindungsgemäß können nicht nur Sensorsignale S, die von einem Py rometer zur Messung der Temperatur der Oberfläche des Substrates gewonnen werden, verwendet werden. Es ist auch möglich, Sensorsignale S zu verwen- den, die von anderen optischen Sensoren, beispielsweise Sensoren, mit denen die Schichtdicke der auf den Substraten 3 abgeschiedenen Schichten gemessen werden, kommen. According to the invention, not only sensor signals S, which are obtained from a pyrometer for measuring the temperature of the surface of the substrate, can be used. It is also possible to use sensor signals S which come from other optical sensors, for example sensors with which the layer thickness of the layers deposited on the substrates 3 is measured.
[0024] Die Schwellwerte können sich dynamisch ändern. Zur Ermittlung der Schwellwerte kann insbesondere die Methode des maschinellen Lernens ver- wendet werden. Es kann vorgesehen sein, dass die von den Sensoren aufge nommenen Messwerte, beispielsweise Spektren, in einer Datenbank abgespei chert werden und aus solchen historischen Daten die Schwellwerte ermittelt werden. [0025] Mit dem erfindungsgemäßen Verfahren lässt sich ermitteln, ob Sub strate 3 gebrochen sind oder ob Substrate 3 nicht ordnungsgemäß in den ihnen zugeordneten Taschen 12 einliegen oder ob Substrathalter 13, die auf Gaspols tern gelagert sind und die ein oder mehreren Substrate 3 tragen, sich nicht ord- nungsgemäß auf den Gaspolstern drehen. The threshold values can change dynamically. In particular, the method of machine learning can be used to determine the threshold values. Provision can be made for the measured values recorded by the sensors, for example spectra, to be stored in a database and for the threshold values to be determined from such historical data. The method according to the invention can be used to determine whether substrates 3 are broken or whether substrates 3 are not lying properly in their associated pockets 12 or whether substrate holders 13, which are mounted on gas poles and carry one or more substrates 3, not turning properly on the gas cushions.
[0026] Die Figur 3 ist auch so zu verstehen, dass t einen azimutalen Winkel an gibt und die Figur 3 die Messkurve einer vollständigen Drehung des Suszeptors wiedergibt. Aus mehreren derartigen, hintereinander aufgenommenen Mess kurven können für jedes Substrat 3 individualisierte und/ oder gemittelte Mus- ter a, b, c, d, e ermittelt werden oder aus mehreren, zeitlich hintereinander er mittelten Mustern a, b, c, d, e charakteristische Werte La, Lb, Lc, Ld, Le gebildet werden, die jeweils aus einer Mehrzahl von jeweils einem Substrat individuell zugeordneten Mustern berechnet werden. FIG. 3 is also to be understood in such a way that t indicates an azimuthal angle and FIG. 3 shows the measurement curve of a complete rotation of the susceptor. Individualized and/or averaged patterns a, b, c, d, e can be determined for each substrate 3 from a number of such measurement curves recorded one after the other, or from a number of patterns a, b, c, d, e determined one after the other in time characteristic values La, Lb, Lc, Ld, Le are formed, which are each calculated from a plurality of patterns which are each assigned individually to a substrate.
[0027] Die vorstehenden Ausführungen dienen der Erläuterung der von der Anmeldung insgesamt erfassten Erfindungen, die den Stand der Technik zu mindest durch die folgenden Merkmalskombinationen jeweils auch eigenstän dig weiterbilden, wobei zwei, mehrere oder alle dieser Merkmalskombinatio nen auch kombiniert sein können, nämlich: The above explanations serve to explain the inventions covered by the application as a whole, which also independently develop the state of the art at least through the following combinations of features, whereby two, several or all of these combinations of features can also be combined, namely:
[0028] Ein Verfahren, das dadurch gekennzeichnet ist, dass die Vergleichs- muster aus den während desselben Behandlungsprozesses gewonnenen Mus tern a, b, c, d, e gebildet werden. [0028] A method which is characterized in that the reference patterns are formed from the patterns a, b, c, d, e obtained during the same treatment process.
[0029] Ein Verfahren, das dadurch gekennzeichnet ist, dass mehrere gleichar tige Substrate 3 in einer regelmäßigen Anordnung auf einem Suszeptor 2 ange ordnet sind. [0030] Ein Verfahren, das dadurch gekennzeichnet ist, dass die Substrate 3 auf zumindest einem Kreisbogen um eine Drehachse A des Suszeptors 3 angeord net sind und der zumindest eine optische Sensor 6 derart ortsfest dem Reaktor gehäuse 1 zugeordnet ist, dass ein Messpunkt 10 als Folge einer Relativdrehung des Suszeptors 2 gegenüber dem Reaktorgehäuse 1 auf einer kreisförmigen Bahn 11 über die Substrate 3 wandert. A method which is characterized in that a plurality of substrates 3 of the same type are arranged in a regular arrangement on a susceptor 2 . A method which is characterized in that the substrates 3 are arranged on at least one arc of a circle around an axis of rotation A of the susceptor 3 and the at least one optical sensor 6 is assigned to the reactor housing 1 in such a stationary manner that a measuring point 10 is Follow a relative rotation of the susceptor 2 relative to the reactor housing 1 on a circular path 11 over the substrates 3 migrates.
[0031] Ein Verfahren, das dadurch gekennzeichnet ist, dass die Muster a, b, c, d, e aus den während des Wanderns des Messpunktes 10 über die Oberfläche des Substrates 3 gewonnenen Messwerten gewonnen werden und aus den bei zumindest einer vollständigen oder aus mehreren vollständigen Drehung des Suszeptors 3 gewonnenen Muster a, b, c, d, e jeweils ein zugeordneter Wert La, Lb, Lc, Ld, Le gebildet wird, wobei die zugeordneten Werte untereinander ver gleichbar sind, und zur Erkennung eines Fehlers die so gebildeten Werte La, Lb, Lc, Ld, Le untereinander verglichen werden. [0032] Ein Verfahren, das dadurch gekennzeichnet ist, dass die Muster a, b, c, d, e aus Reflexionswerten oder Temperaturmesswerten gewonnen werden. A method which is characterized in that the patterns a, b, c, d, e are obtained from the measured values obtained during the migration of the measuring point 10 over the surface of the substrate 3 and from the at least one complete or from several complete rotations of the susceptor 3 obtained patterns a, b, c, d, e respectively an assigned value La, Lb, Lc, Ld, Le is formed, wherein the assigned values are mutually comparable, and to detect a fault, the thus formed Values La, Lb, Lc, Ld, Le can be compared with each other. A method which is characterized in that the patterns a, b, c, d, e are obtained from reflection values or temperature measurement values.
[0033] Ein Verfahren, das dadurch gekennzeichnet ist, dass die Muster a, b, c, d, e durch Aufbereitung der von dem mindestens einen Sensor 6 gelieferten Signale berechnet werden, wobei bei der Berechnung Methoden der Bilderken- nung, der Fourier-Transformation, der Rauschanalyse oder dergleichen ver wendet werden. A method which is characterized in that the patterns a, b, c, d, e are calculated by processing the signals supplied by the at least one sensor 6, methods of image recognition, Fourier transformation, noise analysis or the like.
[0034] Ein Verfahren, das dadurch gekennzeichnet ist, dass aus den zugeord neten Werten La, Lb, Lc, Ld, Le ein charakteristischer Wert oder Mittelwert Lm gebildet wird, mit dem alle Werte La, Lb, Lc, Ld, Le verglichen werden und ein Fehler festgestellt wird, wenn ein Abstand eines der Werte La, Lb, Lc, Ld, Le zum charakteristischen Wert oder Mittelwert Lm oberhalb eines Schwellwer tes Ls liegt. A method which is characterized in that a characteristic value or mean value Lm is formed from the assigned values La, Lb, Lc, Ld, Le, with which all values La, Lb, Lc, Ld, Le are compared and an error is detected when a distance is one of La, Lb, Lc, Ld, Le to the characteristic value or mean value Lm is above a threshold value Ls.
[0035] Ein Verfahren, das dadurch gekennzeichnet ist, dass die Muster a, b, c, d, e aus Messwerten gewonnen werden, die zur Steuerung des CVD-Reaktors und/ oder zur Steuerung eine Heizeinrichtung 9 zur Beheizung des Suszep- tors 2 gewonnen werden. [0035] A method which is characterized in that the patterns a, b, c, d, e are obtained from measured values which are used to control the CVD reactor and/or to control a heating device 9 for heating the susceptor 2 be won.
[0036] Ein Verfahren, das dadurch gekennzeichnet ist, dass mit dem zumin dest einen Sensor 6 zumindest eine technologische Größe, beispielsweise eine Schichtdicke oder eine Temperatur an den auf dem sich unter dem zumindest einen Sensor 6 drehenden Suszeptor 2 aufliegenden Substraten 3 gemessen wird, wobei der zumindest eine Sensor 6 Messwerte liefert, die in Form einer Messkurve aufgetragen werden können, wobei die Messkurve jedem Substrat 3 zuordenbare Strukturen mit untereinander vergleichbaren Mustern aufweist, wobei aus den Mustern untereinander vergleichbare Werte La, Lb, Lc, Ld, Le gewonnen werden, die mit einem aus den gleichzeitig aufgenommenen Mess werten gebildeten Mittelwert verglichen werden. A method which is characterized in that at least one technological variable, for example a layer thickness or a temperature, is measured on the substrates 3 lying on the susceptor 2 rotating under the at least one sensor 6 with the at least one sensor 6, wherein the at least one sensor 6 delivers measured values that can be plotted in the form of a measurement curve, the measurement curve having structures which can be assigned to each substrate 3 and have patterns that are comparable with one another, with values La, Lb, Lc, Ld, Le that are comparable with one another being obtained from the patterns , which are compared with an average value formed from the measured values recorded at the same time.
[0037] Ein Verfahren, das dadurch gekennzeichnet ist, dass aus durch mehrfa ches Überwandern des Messpunktes 10 über die mehreren Substrate 3 aus den mehreren, jedem Substrat 3 individuell zugeordneten Mustern a, b, c, d, e je- weils ein einem Substrat 3 zugeordneter Wert La, Lb, Lc, Ld, Le gebildet wird, und die Werte La, Lb, Lc, Ld, Le untereinander verglichen werden. [0037] A method which is characterized in that by repeatedly walking over the measuring point 10 over the plurality of substrates 3 from the plurality of patterns a, b, c, d, e individually assigned to each substrate 3, one substrate 3 associated value La, Lb, Lc, Ld, Le is formed, and the values La, Lb, Lc, Ld, Le are compared with one another.
[0038] Alle offenbarten Merkmale sind (für sich, aber auch in Kombination un tereinander) erfindungswesentlich. In die Offenbarung der Anmeldung wird hiermit auch der Offenbarungsinhalt der zugehörigen/ beigefügten Prioritäts- unterlagen (Abschrift der Voranmeldung) vollinhaltlich mit einbezogen, auch zu dem Zweck, Merkmale dieser Unterlagen in Ansprüche vorliegender An meldung mit aufzunehmen. Die Unteransprüche charakterisieren, auch ohne die Merkmale eines in Bezug genommenen Anspruchs, mit ihren Merkmalen eigenständige erfinderische Weiterbildungen des Standes der Technik, insbe- sondere um auf Basis dieser Ansprüche Teilanmeldungen vorzunehmen. Die in jedem Anspruch angegebene Erfindung kann zusätzlich ein oder mehrere der in der vorstehenden Beschreibung, insbesondere mit Bezugsziffern versehene und/ oder in der Bezugsziffernliste angegebene Merkmale aufweisen. Die Erfin dung betrifft auch Gestaltungsformen, bei denen einzelne der in der vorstehen- den Beschreibung genannten Merkmale nicht verwirklicht sind, insbesondere soweit sie erkennbar für den jeweiligen Verwendungszweck entbehrlich sind oder durch andere technisch gleichwirkende Mittel ersetzt werden können. All disclosed features are (by themselves, but also in combination with one another) essential to the invention. The disclosure content of the associated/attached priority documents (copy of the prior application) is hereby also fully included in the disclosure of the application for the purpose of including features of these documents in claims of the present application. The subclaims, even without the features of a referenced claim, characterize with their features independent inventive developments of the prior art, in particular for making divisional applications on the basis of these claims. The invention specified in each claim can additionally have one or more of the features specified in the above description, in particular with reference numbers and/or specified in the list of reference numbers. The invention also relates to designs in which some of the features mentioned in the above description are not implemented, especially if they are clearly superfluous for the respective intended use or can be replaced by other technically equivalent means.
Liste der Bezugszeichen List of References
1 Reaktorgehäuse A Drehachse1 Reactor housing A axis of rotation
2 Suszeptor S Sensorsignal2 Susceptor S sensor signal
3 Substrat 3 substrate
4 Prozesskammerdecke 4 process chamber ceiling
5 Durchtrittsöffnung a Muster5 passage opening a pattern
6 optischer Sensor b Muster6 optical sensor b pattern
7 Strahlengang c Muster7 beam path c pattern
8 Gaseinlassorgan d Muster8 gas inlet element d pattern
9 Heizeinrichtung e Muster9 heating device e pattern
10 Messstelle t Zeit 10 measuring point t time
11 kreisförmige Bahn 11 circular track
12 Tasche 12 pocket
13 Substrathalter La Wert13 substrate holder La Wert
14 Vertiefung Lb Wert14 Deep Lb Value
Lc WertLc value
Ld WertLd value
Le WertLe value
Lm MittelwertLm mean
Ls Schwellwert L's threshold

Claims

Ansprüche Expectations
1. Verfahren zum Erkennen fehlerhafter oder fehlerhaft in einen CVD- Reaktor eingesetzte Substrate (3) während eines Behandlungsprozesses, wobei optische Eigenschaften der Oberflächen der Substrate (3) erfasst werden, und während des Behandlungsprozesses daraus gewonnene Muster (a, b, c, d, e) verglichen werden, dadurch gekennzeichnet, dass die optischen Eigenschaften aus einer Messkurve ermittelt werden, die mit ei nem während des Behandlungsprozesses über die Oberflächen mehrerer Substrate (3) wandernden Messpunkt (10) gewonnen werden, wobei aus den während desselben Behandlungsprozesses gewonnenen Mustern (a, b, c, d, e) ein Vergleichsmuster gebildet wird und die Muster (a, b, c, d, e) mit dem Vergleichsmuster verglichen werden. 1. Method for detecting defective substrates (3) or substrates (3) used incorrectly in a CVD reactor during a treatment process, wherein optical properties of the surfaces of the substrates (3) are recorded, and patterns (a, b, c, d , e) are compared, characterized in that the optical properties are determined from a measurement curve obtained with a measurement point (10) moving across the surfaces of a plurality of substrates (3) during the treatment process, from the patterns obtained during the same treatment process (a, b, c, d, e) a master pattern is formed and the patterns (a, b, c, d, e) are compared with the master pattern.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die opüschen Eigenschaften mithilfe ein oder mehrerer optischer Sensoren (6) erfasst werden. 2. The method according to claim 1, characterized in that the optical properties are detected using one or more optical sensors (6).
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass meh rere gleicharüge Substrate (3) in einer regelmäßigen Anordnung auf einem Suszeptor (2) angeordnet sind. 3. The method according to claim 1 or 2, characterized in that several identical substrates (3) are arranged in a regular arrangement on a susceptor (2).
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die Sub strate (3) auf zumindest einem Kreisbogen um eine Drehachse (A) des Sus- zeptors (3) angeordnet sind und der zumindest eine opüsche Sensor (6) derart ortsfest dem Reaktorgehäuse (1) zugeordnet ist, dass ein Mess punkt (10) als Folge einer RelaÜvdrehung des Suszeptors (2) gegenüber dem Reaktorgehäuse (1) auf einer kreisförmigen Bahn (11) über die Sub strate (3) wandert. 4. The method according to claim 3, characterized in that the substrates (3) are arranged on at least one arc of a circle around an axis of rotation (A) of the susceptor (3) and the at least one optical sensor (6) is stationary in this way on the reactor housing ( 1) is assigned that a measuring point (10) migrates as a result of a relative rotation of the susceptor (2) relative to the reactor housing (1) on a circular path (11) over the substrate (3).
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekenn zeichnet, dass die Muster (a, b, c, d, e) aus den während des Wanderns des Messpunktes (10) über die Oberfläche des Substrates (3) gewonnenen Messwerten gewonnen werden und aus den bei zumindest einer vollstän- digen oder aus mehreren vollständigen Drehung des Suszeptors (3) ge wonnenen Muster (a, b, c, d, e) jeweils ein zugeordneter Wert (La, Lb, Lc, Ld, Le) gebildet wird, wobei die zugeordneten Werte untereinander ver gleichbar sind, und zur Erkennung eines Fehlers die so gebildeten Werte (La, Lb, Lc, Ld, Le) untereinander verglichen werden. 5. The method according to any one of the preceding claims, characterized in that the patterns (a, b, c, d, e) are obtained from the measured values obtained during the migration of the measuring point (10) over the surface of the substrate (3) and an assigned value (La, Lb, Lc, Ld, Le) is formed from the patterns (a, b, c, d, e) obtained from at least one complete rotation or from several complete rotations of the susceptor (3), the assigned values being comparable with one another, and the values formed in this way (La, Lb, Lc, Ld, Le) being compared with one another in order to identify an error.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekenn zeichnet, dass die Muster (a, b, c, d, e) aus Reflexionswerten oder Tempe raturmesswerten gewonnen werden. 6. Method according to one of the preceding claims, characterized in that the patterns (a, b, c, d, e) are obtained from reflection values or measured temperature values.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekenn zeichnet, dass die Muster (a, b, c, d, e) durch Aufbereitung der von dem mindestens einen Sensor (6) gelieferten Signale berechnet werden, wobei bei der Berechnung Methoden der Bilderkennung, der Fourier-Transfor mation, der Rauschanalyse oder dergleichen verwendet werden. 7. The method according to any one of the preceding claims, characterized in that the patterns (a, b, c, d, e) are calculated by processing the signals supplied by the at least one sensor (6), the calculation using image recognition methods , Fourier transform, noise analysis or the like can be used.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekenn zeichnet, dass aus den zugeordneten Werten (La, Lb, Lc, Ld, Le) ein cha- rakteristischer Wert oder Mittelwert (Lm) gebildet wird, mit dem alle8. The method according to any one of the preceding claims, characterized in that a characteristic value or mean value (Lm) is formed from the associated values (La, Lb, Lc, Ld, Le) with which all
Werte (La, Lb, Lc, Ld, Le) verglichen werden und ein Fehler festgestellt wird, wenn ein Abstand eines der Werte (La, Lb, Lc, Ld, Le) zum charakte ristischen Wert oder Mittelwert (Lm) oberhalb eines Schwellwertes (Ls) liegt. Values (La, Lb, Lc, Ld, Le) are compared and an error is detected if a distance of one of the values (La, Lb, Lc, Ld, Le) to the characteristic value or mean value (Lm) is above a threshold value ( Ls) lies.
9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekenn zeichnet, dass die Muster (a, b, c, d, e) aus Messwerten gewonnen werden, die zur Steuerung des CVD-Reaktors und/ oder zur Steuerung eine Heiz einrichtung (9) zur Beheizung des Suszeptors (2) gewonnen werden. 9. The method as claimed in one of the preceding claims, characterized in that the patterns (a, b, c, d, e) are obtained from measured values which are used to control the CVD reactor and/or to control a heating device (9). for heating the susceptor (2).
10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekenn zeichnet, dass mit dem zumindest einen Sensor (6) zumindest eine techno logische Größe, beispielsweise eine Schichtdicke oder eine Temperatur an den auf dem sich unter dem zumindest einen Sensor (6) drehenden Sus- zeptor (2) aufliegenden Substraten (3) gemessen wird, wobei der zumin- dest eine Sensor (6) Messwerte liefert, die in Form einer Messkurve aufge tragen werden können, wobei die Messkurve jedem Substrat (3) zuorden bare Strukturen mit untereinander vergleichbaren Mustern aufweist, wo bei aus den Mustern untereinander vergleichbare Werte (La, Lb, Lc, Ld, Le) gewonnen werden, die mit einem aus den gleichzeitig aufgenomme- nen Messwerten gebildeten Mittelwert verglichen werden. 10. The method according to any one of the preceding claims, characterized in that with the at least one sensor (6) at least one technological variable, for example a layer thickness or a temperature on the suspension rotating under the at least one sensor (6) ceptor (2) overlying substrates (3) is measured, with the at least one sensor (6) delivering measured values that can be applied in the form of a measurement curve, the measurement curve being assignable to each substrate (3) with patterns that can be compared with one another values (La, Lb, Lc, Ld, Le) which are comparable to one another are obtained from the samples and compared with an average value formed from the measured values recorded at the same time.
11. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass aus durch mehrfaches Überwandern des Messpunktes (10) über die mehreren Substrate aus den mehreren, jedem Substrat (3) individuell zugeordneten Mustern (a, b, c, d, e) jeweils ein ei nem Substrat (3) zugeordneter Wert (La, Lb, Lc, Ld, Le) gebildet wird, und die Werte (La, Lb, Lc, Ld, Le) untereinander verglichen werden. 11. The method according to one or more of the preceding claims, characterized in that from the multiple patterns (a, b, c, d, e ) a value (La, Lb, Lc, Ld, Le) assigned to a substrate (3) is formed, and the values (La, Lb, Lc, Ld, Le) are compared with one another.
12. CVD-Reaktor mit einem Reaktorgehäuse (1), einem darin angeordneten, von einer Heizeinrichtung (9) beheizbaren Suszeptor (2), der zu beschich tende Substrate (3) trägt, und mit einem optischen Sensor (6) zur Ermitt- lung optischer Eigenschaften der Oberflächen der Substrate (3) sowie einer Recheneinrichtung die die von den optischen Sensoren (6) erfassten Mess werte auswertet, dadurch gekennzeichnet, dass die Recheneinrichtung derart programmiert ist, dass sie fehlerhafte oder fehlerhaft in einen CVD- Reaktor eingesetzte Substrate unter Verwendung eines Verfahrens gemäß den Ansprüchen 1 bis 11 erkennt. 12. CVD reactor with a reactor housing (1), a susceptor (2) which is arranged therein and can be heated by a heating device (9) and which carries substrates (3) to be coated, and with an optical sensor (6) for detection optical properties of the surfaces of the substrates (3) and one Computing device which evaluates the measured values detected by the optical sensors (6), characterized in that the computing device is programmed in such a way that it recognizes substrates that are defective or incorrectly inserted into a CVD reactor using a method according to claims 1 to 11.
13. Verfahren oder CVD-Reaktor, gekennzeichnet durch eines oder mehrere der kennzeichnenden Merkmale eines der vorhergehenden Ansprüche. 13. Method or CVD reactor, characterized by one or more of the characterizing features of one of the preceding claims.
EP21746480.9A 2020-07-28 2021-07-20 Method for identifying substrates which are faulty or have been incorrectly inserted into a cvd reactor Pending EP4189136A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020119873.6A DE102020119873A1 (en) 2020-07-28 2020-07-28 Method for detecting faulty or incorrectly used substrates in a CVD reactor
PCT/EP2021/070262 WO2022023122A1 (en) 2020-07-28 2021-07-20 Method for identifying substrates which are faulty or have been incorrectly inserted into a cvd reactor

Publications (1)

Publication Number Publication Date
EP4189136A1 true EP4189136A1 (en) 2023-06-07

Family

ID=77071574

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21746480.9A Pending EP4189136A1 (en) 2020-07-28 2021-07-20 Method for identifying substrates which are faulty or have been incorrectly inserted into a cvd reactor

Country Status (8)

Country Link
US (1) US20230295807A1 (en)
EP (1) EP4189136A1 (en)
JP (1) JP2023535209A (en)
KR (1) KR20230048078A (en)
CN (1) CN116034184A (en)
DE (1) DE102020119873A1 (en)
TW (1) TW202221162A (en)
WO (1) WO2022023122A1 (en)

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6099596A (en) 1997-07-23 2000-08-08 Applied Materials, Inc. Wafer out-of-pocket detection tool
US6737663B2 (en) 2002-05-22 2004-05-18 Taiwan Semiconductor Manufacturing Co., Ltd. Apparatus and method for detecting tilt angle of a wafer platform
US6950774B2 (en) 2003-01-16 2005-09-27 Asm America, Inc. Out-of-pocket detection system using wafer rotation as an indicator
DE102009010555A1 (en) 2009-02-25 2010-09-02 Siltronic Ag Method for detecting a misalignment of a semiconductor wafer during a thermal treatment
JP5184431B2 (en) 2009-04-28 2013-04-17 シャープ株式会社 MOCVD equipment
WO2011106064A1 (en) * 2010-02-24 2011-09-01 Veeco Instruments Inc. Processing methods and apparatus with temperature distribution control
JPWO2012120941A1 (en) 2011-03-09 2014-07-17 大陽日酸株式会社 Vapor growth equipment
DE102011053498A1 (en) * 2011-09-12 2013-03-14 Aixtron Se Method and device for determining the deformation of a substrate
US9508612B2 (en) * 2012-03-15 2016-11-29 Applied Materials, Inc. Method to detect wafer arcing in semiconductor manufacturing equipment
JP6114708B2 (en) * 2013-05-27 2017-04-12 東京エレクトロン株式会社 Substrate desorption detection apparatus and substrate desorption detection method, and substrate processing apparatus and substrate processing method using the same
DE102013114412A1 (en) 2013-12-18 2015-06-18 Aixtron Se Apparatus and method for controlling the temperature in a process chamber of a CVD reactor using two temperature sensor means
US10196741B2 (en) 2014-06-27 2019-02-05 Applied Materials, Inc. Wafer placement and gap control optimization through in situ feedback
US9959610B2 (en) 2014-10-30 2018-05-01 Applied Materials, Inc. System and method to detect substrate and/or substrate support misalignment using imaging
DE102015100640A1 (en) 2015-01-19 2016-07-21 Aixtron Se Apparatus and method for the thermal treatment of substrates
DE102015106737A1 (en) * 2015-04-30 2016-11-03 Brodmann Technologies GmbH Method and device for assessing the surface quality according to the angle-resolved scattered light measuring method with automatic position detection of the workpiece
JP6945367B2 (en) * 2017-07-05 2021-10-06 東京エレクトロン株式会社 Board warp monitoring device, board processing device using this, and board warpage monitoring method
KR102491575B1 (en) 2017-09-28 2023-01-25 삼성전자주식회사 Method for inspecting a semiconductor substrate and method for manufacturing a semiconductor device
JP6493498B1 (en) 2017-12-01 2019-04-03 株式会社Sumco Method of measuring mounting position of semiconductor wafer and method of manufacturing semiconductor epitaxial wafer
KR20190073756A (en) 2017-12-19 2019-06-27 삼성전자주식회사 Semiconductor defect classification device, method for classifying defect of semiconductor, and semiconductor defect classification system
DE102018125531A1 (en) 2018-10-15 2020-04-16 Aixtron Se Device and method for controlling the temperature in a CVD reactor

Also Published As

Publication number Publication date
CN116034184A (en) 2023-04-28
DE102020119873A1 (en) 2022-02-03
WO2022023122A1 (en) 2022-02-03
KR20230048078A (en) 2023-04-10
US20230295807A1 (en) 2023-09-21
TW202221162A (en) 2022-06-01
JP2023535209A (en) 2023-08-16

Similar Documents

Publication Publication Date Title
EP1856730B1 (en) Method for positioning a wafer
DE112010004736B4 (en) RECORDING FOR CVD AND METHOD OF MAKING A FILM USING SAME
DE102009010555A1 (en) Method for detecting a misalignment of a semiconductor wafer during a thermal treatment
DE112009000345T5 (en) Apparatus and method for batchwise non-contact material characterization
DE102012101717A1 (en) Method and device for controlling the surface temperature of a susceptor of a substrate coating device
DE112014001376T5 (en) Susceptor support shaft with uniformity lenses for an EPI process
DE102010016471A1 (en) Apparatus and method for simultaneously depositing multiple semiconductor layers in multiple process chambers
DE112013003275T5 (en) Temperature control for GaN based materials
DE10056029A1 (en) Controlling surface temperature of substrates supported by carriers on dynamic gas cushions in process chamber of CVD reactor comprises varying gas stream producing gas cushions from average value of optically measured surface temperatures
WO2013037780A1 (en) Method and device for determining the deformation of a substrate
EP3810827A1 (en) Arrangement for measuring the surface temperature of a susceptor in a cvd reactor
DE102004025150B4 (en) Orientation of a semiconductor substrate on a rotating device
DE102017130551A1 (en) Apparatus and method for obtaining information about layers deposited in a CVD process
WO2020048981A2 (en) Method for setting up or operating a cvd reactor
EP4189136A1 (en) Method for identifying substrates which are faulty or have been incorrectly inserted into a cvd reactor
EP1952437B1 (en) Transporting apparatus for disc-shaped workpieces
WO2021018693A2 (en) Gas distributor for a cvd reactor
WO2018001720A1 (en) Method and device for producing coated semiconductor wafers
WO2014198912A1 (en) Measurement object, method for the production thereof and device for the thermal treatment of substrates
Potrepka et al. Characterization of IrOx sputtering for IrO2 and IrO2/Pt bottom-electrode piezoelectric micro-electro-mechanical systems applications
EP0763148B1 (en) Reactor and process for coating flat substrates
DE102007061777B4 (en) Process for vacuum coating of substrates to be coated and vacuum coating equipment
DE102010009795A1 (en) Uniformly coating substrates with metallic back contacts by depositing vaporized evaporation products in process chamber of continuous coating system and annealing process, comprises carrying out annealing process during coating process
EP3996130B1 (en) Method for depositing an epitaxial layer on a substrate wafer
Schmidt et al. Impact of Non‐Stoichiometric Phases and Grain Boundaries on the Nanoscale Forming and Switching of HfOx Thin Films

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230209

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)