EP4177471A1 - Hydraulic pump - Google Patents

Hydraulic pump Download PDF

Info

Publication number
EP4177471A1
EP4177471A1 EP22205926.3A EP22205926A EP4177471A1 EP 4177471 A1 EP4177471 A1 EP 4177471A1 EP 22205926 A EP22205926 A EP 22205926A EP 4177471 A1 EP4177471 A1 EP 4177471A1
Authority
EP
European Patent Office
Prior art keywords
rotor
vane pump
pump
axis
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP22205926.3A
Other languages
German (de)
French (fr)
Other versions
EP4177471B1 (en
Inventor
Gaëtan FAGOT
Benoît MARY
Laurent Jeannerod
Marco GONZALEZ
Fabien LIGERET
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETIM
SERV
Thales SA
Original Assignee
CETIM SA
Cetim
Serv
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETIM SA, Cetim, Serv, Thales SA filed Critical CETIM SA
Publication of EP4177471A1 publication Critical patent/EP4177471A1/en
Application granted granted Critical
Publication of EP4177471B1 publication Critical patent/EP4177471B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D3/00Axial-flow pumps
    • F04D3/02Axial-flow pumps of screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C11/00Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations
    • F04C11/005Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations of dissimilar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/102Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member the two members rotating simultaneously around their respective axes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/12Combinations of two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/181Axial flow rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • F04D29/24Vanes
    • F04D29/242Geometry, shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/548Specially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C11/00Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations
    • F04C11/008Enclosed motor pump units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/10Stators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/60Shafts

Definitions

  • the invention relates to a hydraulic pump for converting mechanical energy into hydraulic energy.
  • a hydraulic fluid conveyed by the hydraulic pump can in particular be used as a source of energy in a hydraulic motor or more simply to convey fluid, for example used to transport heat or to lubricate certain mechanical components. More precisely, certain components, such as electrical machines, for example, need to be cooled during their operation.
  • a hydraulic fluid can circulate in parts of an electrical machine to take heat there and transport it to an exchanger to be evacuated there.
  • the main parameters to take into account when choosing a hydraulic pump to ensure fluid circulation are: pressure and flow rate. These two parameters are of course linked. Indeed, for a given pump, it is possible to define a curve linking these two parameters for a given speed of rotation. The operating point on this curve is defined according to the hydraulic circuit and in particular its differences in height and its pressure drops.
  • Positive displacement gear pumps are widely used for hydraulic fluid circulation. They deliver a flow that varies little depending on the pressure, unlike centrifugal pumps. Gear pumps are simpler and more robust than piston pumps.
  • the atmospheric pressure can be very low at high altitude and lead to difficulties in maintaining the circulation of the fluid. Indeed, part of the circuit, in particular present in a tank serving as a buffer tank, can be left at the surrounding pressure. When flying at high altitude, the low pressure may cause the hydraulic pump to lose prime. Other undesirable phenomena such as cavitation may also appear.
  • turboprops operate in very high speed ranges, typically between 12,000 and 30,000 revolutions per minute. To date, to drive a hydraulic pump by means of the shaft of a turboprop, it is necessary to provide a speed reducer.
  • the invention aims to overcome all or part of the problems mentioned above by proposing a hydraulic pump which can be directly driven, without a speed reducer, by a shaft which can rotate at high speed, typically up to 30,000 revolutions per minute and which can operate in a environment with very low pressure typically when the atmospheric pressure corresponds to an altitude higher than 10000 m.
  • a helix pitch of the blades, defined along the first axis, advantageously increases in the direction of an outlet of the vane pump.
  • an extrados line is advantageously longer than a corresponding intrados line, the intrados and extrados lines both being defined on the same cylindrical surface around the first axis.
  • the stator of the vane pump may comprise a cavity in which the rotor of the vane pump rotates, a section of the cavity, and a section of the rotor of the vane pump, advantageously have a diameter decreasing in the direction of the outlet of the vane pump. the vane pump, the sections being defined perpendicular to the first axis.
  • the vane pump rotor may include a shaft extending along the first axis, the vanes extending primarily radially around the vane pump shaft, a diameter of the vane pump shaft, defined perpendicular to the first axis, advantageously increases in the direction of the outlet of the vane pump.
  • Each of the vanes advantageously has a leading edge approaching the outlet of the vane pump when its distance from the first axis increases.
  • the example described relates to a hydraulic pump 10 intended to be implemented in the aeronautical field and mainly to circulate a hydraulic fluid, in particular oil for cooling an electric machine driven by the shaft of a turboprop .
  • the hydraulic pump 10 is driven directly, that is to say without a speed reducer, by the shaft of the turboprop.
  • the hydraulic pump 10 is intended to operate in a very high speed range, typically being able to reach a speed of the order of 30,000 revolutions per minute.
  • the invention is not limited to the aeronautical field and can be implemented in any other field.
  • the main interest of the invention remains the possibility of reaching very high speeds of rotation and of allowing operation in an environment where the inlet pressure of the pump can drop well below the conventional atmospheric pressure at the level of the floor.
  • FIG 1 represents an example of a hydraulic pump 10 according to the invention.
  • the hydraulic pump 10 is driven by a motor shaft 12 rotating relative to a casing 14 around an axis 16.
  • the figure 1 is a sectional view in a plane containing the pin 16.
  • a bearing with two bearings 18 guides the rotation of the motor shaft 12 with respect to the housing 14 about a pin 16.
  • the hydraulic pump 10 comprises two pumps mounted in series: a vane pump 20 and a trochoid pump 22.
  • the vane pump 20 allows the boosting of the trochoid pump 22.
  • the vane pump 20 and the trochoid pump 22 are driven by the same motor shaft 12.
  • the casing 14 can be made of several mechanical parts, two in the example shown: a first flange 14a and a second flange 14b.
  • the transition piece 28 is nested in the flange 14a. It is also possible to nest the transition piece 28 in the flange 14b.
  • the two flanges 14a and 14b as well as the transition piece 28 are all three integral with each other.
  • any other type of holding in position of the flanges 14a, 14b and of the transition piece 28 is possible within the scope of the invention.
  • the function fulfilled by the transition piece 28 will be called the transition zone 28 of the casing 14.
  • the trochoid pump 22 comprises a rotor with external teeth 30 driven in rotation by the shaft 12 around the axis 16.
  • the rotor with external teeth 30 is secured to the shaft 12.
  • the rotor with external teeth 30 and the shaft 12 can be made in the same mechanical part.
  • the trochoid pump 22 also comprises a rotor with internal teeth 32 which can rotate freely in the casing 14 about an axis 34 offset from the axis 12 and parallel thereto.
  • the casing 14 comprises a cylindrical cavity 36 of axis 34 forming the stator of the trochoid pump 22.
  • the rotor with external teeth 30 comprises six teeth and the rotor with internal teeth 32 comprises seven teeth in the example represented.
  • the rotor with external teeth 30 rotates the rotor with internal teeth 32. More generally, the rotor with external teeth 30 comprises fewer teeth than the rotor with internal teeth 32.
  • the difference in the number of teeth creates an interdental space which sucks the fluid into a zone 38 where the teeth separate and discharges it into a zone 40 where the teeth meet during the rotation of the two rotors 30 and 32.
  • the suction and discharge zones are represented respectively on the right and on the left of the figure. In practice, the suction zone 38 corresponds to an opening 42 made in the transition zone 28 and the discharge zone 40 corresponds to an opening 44 made in the housing 14 and communicating with the discharge duct 26.
  • FIG. 3 represents a rotor 46 of the vane pump 20.
  • the rotor 46 is integral with the shaft 12.
  • the rotor 46 and the externally toothed rotor 30 of the trochoid pump 22 are therefore driven in rotation relative to the housing 14 around the shaft 16 by the same shaft 12.
  • the rotor 46 of the vane pump 20 can be made directly with the shaft 12 or made in a separate mechanical part, as shown in the figures. figure 1 And 3 .
  • the rotor 46 is immobilized with respect to the shaft 12 for example by means of a key 48.
  • the separate production of the shaft 12 and the rotor 46 makes it possible to avoid making a shaft 12 that is too complex.
  • the rotor 46 rotates in a cavity 50 forming the stator of the vane pump 20.
  • the cavity 50 has a shape of revolution around the axis 16.
  • the cavity 50 is made in the transition piece 28 It is recalled that the transition piece 28 and the flanges 14a, 14b are integral with each other.
  • Rotor 46 includes several propeller-shaped blades.
  • the rotor 46 comprises four blades 52, 54, 56 and 58.
  • Another number of blades can be envisaged. The number of blades depends in particular on the desired pitch of the propeller. This pitch can be fixed and identical for all the blades.
  • the pitch of the propeller can then increase towards the outlet of the vane pump 20 in order to increase the fluid pressure gradually before reaching the trochoid pump 22.
  • picture 3 the variation in pitch can be visualized by dimensions extending parallel to the axis 16.
  • a first dimension c1 separates the vanes 52 and 54 as close as possible to the inlet duct 24 and a second dimension c2, greater than the dimension c1, separates the blades 54 and 56 closer to the opening 42 made in the transition piece 28.
  • FIG. 4 represents an example of the profile of the blades 52, 54, 56 and 58.
  • This profile is a section of a blade by a cylindrical surface 60 of axis 16 represented flat.
  • the profile extends between a leading edge 62 located closest to the inlet duct 24 and a trailing edge 64 located closest to the transition piece 28.
  • the profile is asymmetrical. More specifically, an extrados line 66 is longer than a corresponding intrados line 68.
  • the designations of intrados and extrados are defined by similarity to those used for an airplane wing.
  • the lower surface corresponds to the face of the blade where the fluid pressure is the highest and the upper surface corresponds to the face of the blade where the fluid pressure is the lowest.
  • the cavity 50 forming the stator of the vane pump 20 is of revolution around the axis 16. Between the vanes 52, 54, 56, 58 and the cavity 50, a functional clearance is provided to allow rotation of the vanes. This functional clearance is as low as possible to limit leaks and improve the efficiency of the vane pump 20.
  • the functional clearance is in particular a function of the manufacturing tolerances of the various mechanical parts and of the possible thermal expansions during operation. It is possible to produce a cylindrical cavity 50 over the entire length of the cavity 50 defined along the axis 26 and swept by the blades. Alternatively and advantageously, the section of the cavity 50, defined perpendicular to the axis 16, has a diameter D decreasing in the direction of the opening 42 forming the outlet of the vane pump 20.
  • the decrease in diameter D is advantageously continuous in order to to limit load losses.
  • the radial dimensions of the blades 52, 54, 56, 58 follow this decrease. It is considered that for any section, the nominal diameters of the blades and of the cavity 50 are equal to the functional clearances.
  • This evolution of the diameter D makes it possible to reduce the passage section of the fluid from upstream to downstream of the vane pump 20. This reduction in passage section makes it possible to increase the speed of the fluid and therefore its pressure during its transit in the vane pump 20. This makes it possible to improve the efficiency of the vane pump 20.
  • the rotor 46 of the vane pump 20 comprises a shaft 70 integral with the shaft 12.
  • the shaft 70 and the shaft 12 can be made in a single mechanical part or two separate mechanical parts.
  • the shaft 70 is of revolution around the axis 16. From the shaft 70 extend radially, around the axis 16, the vanes 52, 54, 56 and 58.
  • the shaft 70 and the vanes 52, 54, 56, 58 form the rotor 46 of the vane pump 20.
  • the outer diameter d of the shaft 70, defined perpendicular to the axis 16, can be constant over the entire area where the vanes 52, 54, 56 and 58 are implanted.
  • the outer diameter d of the shaft 70 can increase in the direction of the outlet of the vane pump 20. This change in the diameter d of the shaft 70 contributes to the reduction in the fluid passage section in the direction of the outlet. of the vane pump 20.
  • the outside diameter d increases continuously in the direction of the outlet of the vane pump 20 in order to limit pressure drops.
  • the fluid is in direct contact on the one hand with the shaft 70 and on the other hand with the cavity 50.
  • Increasing the diameter d of the shaft 70 and/or reducing the diameter D of the cavity 50 in the direction of the outlet of the vane pump 20 makes it possible to better adapt to the definition of the trochoid pump 22 and more precisely at the position of the opening 42 of the transition piece 28 forming both the outlet of the vane pump 20 and the suction zone 38 of the trochoid pump 22.
  • the leading edge 62 of the blades 52, 54, 56 and 58 of the vane pump 20 can extend perpendicular to the axis 16. Alternatively, it is possible to incline the leading edge with respect to a direction perpendicular to axis 16. Specifically, leading edge 62 approaches the outlet of vane pump 20 as its distance from axis 16 increases. This inclination can be constant and the leading edge 62 can form a straight segment as shown in the picture 3 . The inclination of the line segment is represented by an angle a. It is also possible to tilt the leading edge 62 progressively when its distance from the axis 16 increases. This inclination makes it possible to improve the penetration of the fluid into the vane pump 20 to limit the risk of cavitation and its potentially destructive effects.
  • the transition piece 28 comprises a ramp 72 making it possible to guide the fluid leaving the vane pump 20 before reaching the opening 42.
  • the ramp 72 is located between the vane pump 20 and the trochoid pump 22 on the side of the vane pump 20.
  • the fluid runs along the ramp 72 until reaching the opening 42.
  • the ramp 72 is advantageously in the shape of a helix developing in the same direction as the helix shape of the blades 52, 54, 56 and 58 in order to limit the pressure losses between the two pumps 20 and 22.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Rotary Pumps (AREA)

Abstract

L'invention concerne une pompe hydraulique comprenant :- un carter (14),- une pompe à aube (20) comprenant un rotor mobile en rotation par rapport au carter (14) autour d'un premier axe (16) le rotor (46) comprenant plusieurs aubes en forme d'hélice,- une zone de transition (28) appartenant au carter (14) et possédant, du côté de la pompe à aube (20), une rampe en forme d'hélice se développant dans le même sens que la forme en hélice des aubes,- une pompe trochoïde (22) comprenant un rotor à denture externe solidaire du rotor de la pompe à aube (20), et un rotor à denture interne mobile en rotation par rapport au carter (14) autour d'un second axe parallèle et décalé du premier axe (16), la pompe trochoïde (22) étant alimentée par la pompe à aube (20) au travers de la zone de transition (28) en longeant la rampe.The invention relates to a hydraulic pump comprising:- a casing (14),- a vane pump (20) comprising a rotor movable in rotation relative to the casing (14) around a first axis (16), the rotor (46 ) comprising several propeller-shaped vanes, - a transition zone (28) belonging to the casing (14) and having, on the side of the vane pump (20), a propeller-shaped ramp developing in the same meaning that the helical shape of the vanes, - a trochoid pump (22) comprising a rotor with external teeth fixed to the rotor of the vane pump (20), and a rotor with internal teeth movable in rotation relative to the casing (14) around a second axis parallel and offset from the first axis (16), the trochoid pump (22) being fed by the vane pump (20) through the transition zone (28) along the ramp.

Description

L'invention concerne une pompe hydraulique destinée à transformer de l'énergie mécanique en énergie hydraulique. Un fluide hydraulique véhiculé par la pompe hydraulique peut notamment être utilisé comme source d'énergie dans un moteur hydraulique ou plus simplement pour véhiculer du fluide, par exemple utilisé pour transporter de la chaleur ou pour lubrifier certains composants mécaniques. Plus précisément, certains organes, comme par exemple des machines électriques, ont besoin d'être refroidies lors de leur fonctionnement. Un fluide hydraulique peut circuler dans des parties d'une machine électrique pour y prélever de la chaleur et la transporter vers un échangeur pour y être évacuée.The invention relates to a hydraulic pump for converting mechanical energy into hydraulic energy. A hydraulic fluid conveyed by the hydraulic pump can in particular be used as a source of energy in a hydraulic motor or more simply to convey fluid, for example used to transport heat or to lubricate certain mechanical components. More precisely, certain components, such as electrical machines, for example, need to be cooled during their operation. A hydraulic fluid can circulate in parts of an electrical machine to take heat there and transport it to an exchanger to be evacuated there.

Les paramètres principaux à prendre en compte dans le choix d'une pompe hydraulique pour assurer la circulation de fluide sont : la pression et le débit. Ces deux paramètres sont bien entendu liés. En effet, pour une pompe donnée, on peut définir une courbe reliant ces deux paramètres pour une vitesse de rotation donnée. Le point de fonctionnement sur cette courbe est défini en fonction du circuit hydraulique et notamment de ses différences de hauteur et de ses pertes de charge.The main parameters to take into account when choosing a hydraulic pump to ensure fluid circulation are: pressure and flow rate. These two parameters are of course linked. Indeed, for a given pump, it is possible to define a curve linking these two parameters for a given speed of rotation. The operating point on this curve is defined according to the hydraulic circuit and in particular its differences in height and its pressure drops.

Les pompes volumétriques à engrenages sont largement utilisées pour la circulation de fluide hydraulique. Elles délivrent un débit variant peu en fonction de la pression contrairement aux pompes centrifuges. Les pompes à engrenage sont plus simples et plus robustes que les pompes à piston.Positive displacement gear pumps are widely used for hydraulic fluid circulation. They deliver a flow that varies little depending on the pressure, unlike centrifugal pumps. Gear pumps are simpler and more robust than piston pumps.

Dans la famille des pompes à engrenage, il est possible de distinguer les pompes à engrenage externe où deux roues à denture externe tournent dans une chambre et les pompes à engrenage interne possédant deux rotors imbriqués, l'un à denture interne et l'autre à denture externe engrenant l'un dans l'autre. Le rotor interne possède moins de dents que le rotor externe. Cette différence de nombre de dents permet de créer des cavités mobiles entre les dents, cavités qui déplacent le fluide. Les pompes à engrenage interne sont plus compactes que les pompes à engrenage externe. En effet, dans une pompe à engrenage externe, les deux roues dentées sont disposées côte à côte alors que dans une pompe à engrenage interne, les deux roues dentées sont disposées l'une dans l'autre. Dans une pompe à engrenage interne, il est possible de prévoir une excroissance du stator en forme de croissant séparant localement les deux rotors. Une pompe sans cette excroissance est souvent appelée pompe trochoïde ou « gerotor », l'appellation « gerotor » étant plus spécifique de la littérature anglo-saxonne.Within the family of gear pumps, it is possible to distinguish between external gear pumps where two wheels with external teeth rotate in a chamber and internal gear pumps with two interlocking rotors, one with internal teeth and the other with external teeth meshing with each other. The inner rotor has fewer teeth than the outer rotor. This difference in the number of teeth makes it possible to create mobile cavities between the teeth, cavities which move the fluid. Internal gear pumps are more compact than external gear pumps. Indeed, in an external gear pump, the two toothed wheels are arranged side by side whereas in an internal gear pump, the two toothed wheels are arranged one inside the other. In an internal gear pump, it is possible to provide a protrusion of the crescent-shaped stator locally separating the two rotors. A pump without this protuberance is often called a trochoid pump or "gerotor", the name "gerotor" being more specific to Anglo-Saxon literature.

Dans certaines utilisations particulières, comme par exemple en aéronautique, la pression atmosphérique peut être très basse en haute altitude et entrainer des difficultés de maintien de la circulation du fluide. En effet, une partie du circuit, notamment présent dans une bâche servant de réservoir tampon peut être laissée à la pression environnante. En cas de vol en haute altitude, la faible pression peut entrainer le désamorçage de la pompe hydraulique. D'autres phénomènes indésirables tels de la cavitation que peuvent également apparaitre.In certain particular uses, such as for example in aeronautics, the atmospheric pressure can be very low at high altitude and lead to difficulties in maintaining the circulation of the fluid. Indeed, part of the circuit, in particular present in a tank serving as a buffer tank, can be left at the surrounding pressure. When flying at high altitude, the low pressure may cause the hydraulic pump to lose prime. Other undesirable phenomena such as cavitation may also appear.

Par ailleurs, les pompes à engrenage fonctionnent bien à basse vitesse. Cependant, en aéronautique, les turbopropulseurs fonctionnent dans des plages de vitesse très élevées, typiquement entre 12000 et 30000 tours par minute. A ce jour, pour entrainer une pompe hydraulique au moyen de l'arbre d'un turbopropulseur, il est nécessaire de prévoir un réducteur de vitesse.Also, gear pumps work well at low speeds. However, in aeronautics, turboprops operate in very high speed ranges, typically between 12,000 and 30,000 revolutions per minute. To date, to drive a hydraulic pump by means of the shaft of a turboprop, it is necessary to provide a speed reducer.

L'invention vise à pallier tout ou partie des problèmes cités plus haut en proposant une pompe hydraulique pouvant être directement entrainée, sans réducteur de vitesse par un arbre pouvant tourner à grande vitesse, typiquement jusqu'à 30000 tours par minute et pouvant fonctionner dans un environnement à très basse pression typiquement lorsque la pression atmosphérique correspond à une altitude supérieure à 10000 m.The invention aims to overcome all or part of the problems mentioned above by proposing a hydraulic pump which can be directly driven, without a speed reducer, by a shaft which can rotate at high speed, typically up to 30,000 revolutions per minute and which can operate in a environment with very low pressure typically when the atmospheric pressure corresponds to an altitude higher than 10000 m.

A cet effet, l'invention a pour objet une pompe hydraulique, comprenant :

  • un carter,
  • une pompe à aube comprenant un rotor mobile en rotation par rapport au carter autour d'un premier axe, le rotor comprenant plusieurs aubes en forme d'hélice,
  • une zone de transition appartenant au carter, et possédant, du côté de la pompe à aube, une rampe en forme d'hélice se développant dans le même sens que la forme en hélice des aubes,
  • une pompe trochoïde comprenant un rotor à denture externe solidaire du rotor de la pompe à aube, et un rotor à denture interne mobile en rotation par rapport au carter autour d'un second axe parallèle et décalé du premier axe, la pompe trochoïde étant alimentée par la pompe à aube au travers de la zone de transition en longeant la rampe.
To this end, the subject of the invention is a hydraulic pump, comprising:
  • a crankcase,
  • a vane pump comprising a rotor movable in rotation relative to the casing around a first axis, the rotor comprising several vanes in the form of a propeller,
  • a transition zone belonging to the casing, and having, on the side of the vane pump, a helix-shaped ramp developing in the same direction as the helix shape of the blades,
  • a trochoid pump comprising a rotor with external teeth integral with the rotor of the vane pump, and a rotor with internal teeth that can rotate relative to the housing around a second axis parallel and offset from the first axis, the trochoid pump being powered by the vane pump through the transition zone along the ramp.

Un pas d'hélice des aubes, défini le long du premier axe, est avantageusement croissant en direction d'une sortie de la pompe à aube.A helix pitch of the blades, defined along the first axis, advantageously increases in the direction of an outlet of the vane pump.

Pour chaque aube, une ligne d'extrados est avantageusement plus longue qu'une ligne d'intrados correspondante, les lignes d'intrados et d'extrados étant définies toutes deux sur une même surface cylindrique autour du premier axe.For each blade, an extrados line is advantageously longer than a corresponding intrados line, the intrados and extrados lines both being defined on the same cylindrical surface around the first axis.

Le stator de la pompe à aube peut comprendre une cavité dans laquelle le rotor de la pompe à aube tourne, une section de la cavité, et une section du rotor de la pompe à aube, possèdent avantageusement un diamètre décroissant en direction de la sortie de la pompe à aube, les sections étant définie perpendiculairement au premier axe.The stator of the vane pump may comprise a cavity in which the rotor of the vane pump rotates, a section of the cavity, and a section of the rotor of the vane pump, advantageously have a diameter decreasing in the direction of the outlet of the vane pump. the vane pump, the sections being defined perpendicular to the first axis.

Le rotor de la pompe à aube peut comprendre un arbre s'étendant selon le premier axe, les aubes s'étendant principalement radialement autour de l'arbre de la pompe à aube, un diamètre de l'arbre de la pompe à aube, défini perpendiculairement au premier axe, croit avantageusement en direction de la sortie de la pompe à aube.The vane pump rotor may include a shaft extending along the first axis, the vanes extending primarily radially around the vane pump shaft, a diameter of the vane pump shaft, defined perpendicular to the first axis, advantageously increases in the direction of the outlet of the vane pump.

Chacune des aubes possède avantageusement un bord d'attaque se rapprochant de la sortie de la pompe à aube lorsque sa distance au premier axe augmente.Each of the vanes advantageously has a leading edge approaching the outlet of the vane pump when its distance from the first axis increases.

L'invention sera mieux comprise et d'autres avantages apparaîtront à la lecture de la description détaillée d'un mode de réalisation donné à titre d'exemple, description illustrée par le dessin joint dans lequel :

  • la figure 1 représente en coupe longitudinale un exemple de pompe hydraulique conforme à l'invention ;
  • la figure 2 représente en coupe transversale une pompe trochoïde appartenant à la pompe de la figure 1 ;
  • la figure 3 représente en vue longitudinale le rotor d'une pompe à aubes appartenant à la pompe de la figure 1 ;
  • la figure 4 représente une forme asymétrique que peut prendre des aubes de la pompe à aube ;
  • la figure 5 représente en perspective une pièce de transition appartenant à la pompe de la figure 1 ;
  • Par souci de clarté, les mêmes éléments porteront les mêmes repères dans les différentes figures.
The invention will be better understood and other advantages will appear on reading the detailed description of an embodiment given by way of example, description illustrated by the attached drawing in which:
  • there figure 1 shows in longitudinal section an example of a hydraulic pump according to the invention;
  • there figure 2 shows in cross section a trochoid pump belonging to the pump of the figure 1 ;
  • there picture 3 shows in longitudinal view the rotor of a vane pump belonging to the pump of the figure 1 ;
  • there figure 4 represents an asymmetrical shape that the vanes of the vane pump can take;
  • there figure 5 shows in perspective a transition piece belonging to the pump of the figure 1 ;
  • For the sake of clarity, the same elements will bear the same references in the different figures.

L'exemple décrit se rapporte à une pompe hydraulique 10 destinée à être mise en œuvre dans le domaine aéronautique et principalement pour faire circuler un fluide hydraulique, notamment de l'huile permettant de refroidir une machine électrique entraînée par l'arbre d'un turbopropulseur. La pompe hydraulique 10 est entrainée directement, c'est-à-dire sans réducteur de vitesse, par l'arbre du turbopropulseur. Autrement dit, la pompe hydraulique 10 est destinée à fonctionner dans une plage de vitesse très élevée, pouvant typiquement atteindre une vitesse de l'ordre de 30000 tours par minutes.The example described relates to a hydraulic pump 10 intended to be implemented in the aeronautical field and mainly to circulate a hydraulic fluid, in particular oil for cooling an electric machine driven by the shaft of a turboprop . The hydraulic pump 10 is driven directly, that is to say without a speed reducer, by the shaft of the turboprop. In other words, the hydraulic pump 10 is intended to operate in a very high speed range, typically being able to reach a speed of the order of 30,000 revolutions per minute.

L'invention n'est pas limitée au domaine aéronautique et peut être mise en œuvre dans tout autre domaine. L'intérêt principal de l'invention reste la possibilité d'atteindre des vitesses de rotation très élevée et de permettre un fonctionnement dans un environnement où la pression d'entrée de la pompe peut descendre bien en dessous de la pression atmosphérique classique au niveau du sol.The invention is not limited to the aeronautical field and can be implemented in any other field. The main interest of the invention remains the possibility of reaching very high speeds of rotation and of allowing operation in an environment where the inlet pressure of the pump can drop well below the conventional atmospheric pressure at the level of the floor.

La figure 1 représente un exemple de pompe hydraulique 10 conforme à l'invention. La pompe hydraulique 10 est entrainée par un arbre moteur 12 tournant par rapport à un carter 14 autour d'un axe 16. La figure 1 est une vue en coupe dans un plan contenant l'axe 16. Un palier à deux roulements 18 guide la rotation de l'arbre moteur 12 par rapport au carter 14 autour d'un axe 16. La pompe hydraulique 10 comprend deux pompes montées en série : une pompe à aube 20 et une pompe trochoïde 22. La pompe à aube 20 permet le gavage de la pompe trochoïde 22. La pompe à aube 20 et la pompe trochoïde 22 sont entraînées par le même arbre moteur 12. Sur la figure 1, on distingue un conduit d'admission 24 réalisé dans le carter 14 et formant l'entrée de la pompe à aube 20 et un conduit de refoulement 26, également réalisé dans le carter 14 et formant la sortie de la pompe trochoïde 22. Une pièce de transition 28 forme à la fois la sortie de pompe à aube 20 et l'entrée de la pompe trochoïde 22. En pratique, le carter 14 peut être réalisé en plusieurs pièces mécaniques, deux dans l'exemple représenté : un premier flasque 14a et un second flasque 14b. La pièce de transition 28 est imbriquée dans la flasque 14a. Il est également possible d'imbriquer la pièce de transition 28 dans le flasque 14b. Les deux flasques 14a et 14b ainsi que la pièce de transition 28 sont tous trois solidaires les uns des autres. Tout autre type de maintien en position des flasques 14a, 14b et de la pièce de transition 28 est possible dans le cadre de l'invention. Pour faciliter la fabrication où l'assemblage des flasques 14a, 14b et de la pièce de transition 28, il est possible de prévoir de remplir les fonctions de ces pièces en un plus grand nombre ou un plus petit nombre de pièces mécaniques. Par la suite, on ne distinguera pas les deux flasques 14a, 14b et la pièce de transition 28 qui conjointement forment le carter 14. La fonction remplie par la pièce de transition 28 sera appelée zone de transition 28 du carter 14.There figure 1 represents an example of a hydraulic pump 10 according to the invention. The hydraulic pump 10 is driven by a motor shaft 12 rotating relative to a casing 14 around an axis 16. The figure 1 is a sectional view in a plane containing the pin 16. A bearing with two bearings 18 guides the rotation of the motor shaft 12 with respect to the housing 14 about a pin 16. The hydraulic pump 10 comprises two pumps mounted in series: a vane pump 20 and a trochoid pump 22. The vane pump 20 allows the boosting of the trochoid pump 22. The vane pump 20 and the trochoid pump 22 are driven by the same motor shaft 12. On the figure 1 , there is an inlet duct 24 made in the casing 14 and forming the inlet of the vane pump 20 and a discharge duct 26, also made in the casing 14 and forming the outlet of the trochoid pump 22. transition 28 forms both the vane pump outlet 20 and the inlet of the trochoid pump 22. In practice, the casing 14 can be made of several mechanical parts, two in the example shown: a first flange 14a and a second flange 14b. The transition piece 28 is nested in the flange 14a. It is also possible to nest the transition piece 28 in the flange 14b. The two flanges 14a and 14b as well as the transition piece 28 are all three integral with each other. Any other type of holding in position of the flanges 14a, 14b and of the transition piece 28 is possible within the scope of the invention. To facilitate the manufacture where the assembly of the flanges 14a, 14b and of the transition piece 28, it is possible to provide for fulfilling the functions of these parts in a larger number or a smaller number of mechanical parts. Thereafter, the two flanges 14a, 14b and the transition piece 28 which together form the casing 14 will not be distinguished. The function fulfilled by the transition piece 28 will be called the transition zone 28 of the casing 14.

La figure 2 représente la pompe trochoïde 22 en coupe dans un plan perpendiculaire à l'axe 16. La pompe trochoïde 22 comprend un rotor à denture externe 30 entrainé en rotation par l'arbre 12 autour de l'axe 16. Le rotor à denture externe 30 est solidaire de l'arbre 12. En pratique, le rotor à denture externe 30 et l'arbre 12 peuvent être réalisés dans une même pièce mécanique. La pompe trochoïde 22 comprend également un rotor à denture interne 32 pouvant tourner librement dans le carter 14 autour d'un axe 34 décalé de l'axe 12 et parallèle à celuici. Le carter 14 comprend une cavité cylindrique 36 d'axe 34 formant le stator de la pompe trochoïde 22.There figure 2 represents the trochoid pump 22 in section in a plane perpendicular to the axis 16. The trochoid pump 22 comprises a rotor with external teeth 30 driven in rotation by the shaft 12 around the axis 16. The rotor with external teeth 30 is secured to the shaft 12. In practice, the rotor with external teeth 30 and the shaft 12 can be made in the same mechanical part. The trochoid pump 22 also comprises a rotor with internal teeth 32 which can rotate freely in the casing 14 about an axis 34 offset from the axis 12 and parallel thereto. The casing 14 comprises a cylindrical cavity 36 of axis 34 forming the stator of the trochoid pump 22.

Le rotor à denture externe 30 comprend six dents et le rotor à denture interne 32 comprend sept dents dans l'exemple représenté. Le rotor à denture externe 30 entraine en rotation le rotor à denture interne 32. De façon plus générale, le rotor à denture externe 30 comprend moins de dents que le rotor à denture interne 32. La différence de nombre de dents crée un espace interdentaire qui aspire le fluide dans une zone 38 où les dents se séparent et le refoule dans une zone 40 où les dents se rejoignent lors de la rotation des deux rotors 30 et 32. Sur la figure 2, les zones d'aspiration et de refoulement sont représentées respectivement à droite et à gauche de la figure. En pratique, la zone d'aspiration 38 correspond à une ouverture 42 réalisée dans la zone de transition 28 et la zone de refoulement 40 correspond à une ouverture 44 réalisée dans le carter 14 et communiquant avec le conduit de refoulement 26.The rotor with external teeth 30 comprises six teeth and the rotor with internal teeth 32 comprises seven teeth in the example represented. The rotor with external teeth 30 rotates the rotor with internal teeth 32. More generally, the rotor with external teeth 30 comprises fewer teeth than the rotor with internal teeth 32. The difference in the number of teeth creates an interdental space which sucks the fluid into a zone 38 where the teeth separate and discharges it into a zone 40 where the teeth meet during the rotation of the two rotors 30 and 32. On the picture 2 , the suction and discharge zones are represented respectively on the right and on the left of the figure. In practice, the suction zone 38 corresponds to an opening 42 made in the transition zone 28 and the discharge zone 40 corresponds to an opening 44 made in the housing 14 and communicating with the discharge duct 26.

La figure 3 représente un rotor 46 de la pompe à aube 20. Le rotor 46 est solidaire de l'arbre 12. Le rotor 46 et le rotor à denture externe 30 de la pompe trochoïde 22 sont donc entrainés en rotation par rapport au carter 14 autour de l'axe 16 par le même arbre 12. Le rotor 46 de la pompe à aube 20 peut être directement réalisé avec l'arbre 12 ou réalisé dans une pièce mécanique séparée, comme représenté sur les figures 1 et 3. Le rotor 46 est immobilisé par rapport à l'arbre 12 par exemple au moyen d'une clavette 48. La réalisation séparée de l'arbre 12 et du rotor 46 permet d'éviter de réaliser un arbre 12 trop complexe.There picture 3 represents a rotor 46 of the vane pump 20. The rotor 46 is integral with the shaft 12. The rotor 46 and the externally toothed rotor 30 of the trochoid pump 22 are therefore driven in rotation relative to the housing 14 around the shaft 16 by the same shaft 12. The rotor 46 of the vane pump 20 can be made directly with the shaft 12 or made in a separate mechanical part, as shown in the figures. figure 1 And 3 . The rotor 46 is immobilized with respect to the shaft 12 for example by means of a key 48. The separate production of the shaft 12 and the rotor 46 makes it possible to avoid making a shaft 12 that is too complex.

Le rotor 46 tourne dans une cavité 50 formant le stator de la pompe à aube 20. La cavité 50 possède une forme de révolution autour de l'axe 16. Dans l'exemple représenté, la cavité 50 est réalisée dans la pièce de transition 28. On rappelle que la pièce de transition 28 et les flasques 14a, 14b sont solidaires les uns des autres.The rotor 46 rotates in a cavity 50 forming the stator of the vane pump 20. The cavity 50 has a shape of revolution around the axis 16. In the example shown, the cavity 50 is made in the transition piece 28 It is recalled that the transition piece 28 and the flanges 14a, 14b are integral with each other.

Le rotor 46 comprend plusieurs aubes en forme d'hélice. Dans l'exemple représenté, le rotor 46 comprend quatre aubes 52, 54, 56 et 58. Un autre nombre d'aubes peut être envisagé. Le nombre d'aubes dépend notamment du pas souhaité de l'hélice. Ce pas peut être fixe et identique pour toutes les aubes. Alternativement, il est avantageux de faire varier le pas d'hélice de chaque aube entre l'entrée et la sortie de la pompe à aube 20. Un pas plus faible en entrée permet d'éviter les variations brutales de pression du fluide entre le conduit d'admission 24 et les aubes. En effet, pour permettre à la pompe hydraulique 10 de fonctionner avec une pression de fluide faible au niveau du conduit d'admission 24, il est avantageux de limiter la variation de pression de fluide au niveau de l'entrée de la pompe à aube 20, notamment pour éviter le risque de cavitation. Le pas de l'hélice peut ensuite croitre en direction de la sortie de la pompe à aube 20 afin d'augmenter la pression de fluide progressivement avant d'atteindre la pompe trochoïde 22. Sur la figure 3, la variation de pas peut être visualisée par des cotes s'étendant parallèlement à l'axe 16. Une première cote c1 sépare les aubes 52 et 54 au plus près du conduit d'admission 24 et une seconde cote c2, supérieure à la cote c1, sépare les aubes 54 et 56 plus près de l'ouverture 42 réalisée dans la pièce de transition 28.Rotor 46 includes several propeller-shaped blades. In the example represented, the rotor 46 comprises four blades 52, 54, 56 and 58. Another number of blades can be envisaged. The number of blades depends in particular on the desired pitch of the propeller. This pitch can be fixed and identical for all the blades. Alternatively, it is advantageous to vary the propeller pitch of each vane between the inlet and the outlet of the vane pump 20. A smaller pitch at the inlet makes it possible to avoid sudden variations in fluid pressure between the conduit 24 inlet and vanes. Indeed, to allow the hydraulic pump 10 to operate with low fluid pressure at the inlet duct 24, it is advantageous to limit the fluid pressure variation at the inlet of the vane pump 20 , in particular to avoid the risk of cavitation. The pitch of the propeller can then increase towards the outlet of the vane pump 20 in order to increase the fluid pressure gradually before reaching the trochoid pump 22. picture 3 , the variation in pitch can be visualized by dimensions extending parallel to the axis 16. A first dimension c1 separates the vanes 52 and 54 as close as possible to the inlet duct 24 and a second dimension c2, greater than the dimension c1, separates the blades 54 and 56 closer to the opening 42 made in the transition piece 28.

La figure 4 représente un exemple de profil des aubes 52, 54, 56 et 58. Ce profil est une coupe d'une aube par une surface cylindrique 60 d'axe 16 représentée à plat. Le profil s'étend entre un bord d'attaque 62 situé au plus près du conduit d'admission 24 et un bord de fuite 64 situé au plus près de la pièce de transition 28. Le profil est asymétrique. Plus précisément, une ligne d'extrados 66 est plus longue qu'une ligne d'intrados 68 correspondante. Les appellations d'intrados et d'extrados sont définies par similitude avec celles utilisées pour une aile d'avion. L'intrados correspond à la face de l'aube où la pression du fluide est la plus élevée et l'extrados correspond à la face de l'aube où la pression du fluide est la plus basse. Parmi les profils asymétriques, il est possible de choisir un profil défini par « National Advisory Committee for Aeronautics » connu par son acronyme NACA. La mise en œuvre d'un tel profil asymétrique permet d'augmenter la vitesse de rotation de la pompe à aube 20 en limitant les risques de cavitation pour obtenir l'augmentation de pression et le débit souhaités. D'autres profils sont bien entendu possibles.There figure 4 represents an example of the profile of the blades 52, 54, 56 and 58. This profile is a section of a blade by a cylindrical surface 60 of axis 16 represented flat. The profile extends between a leading edge 62 located closest to the inlet duct 24 and a trailing edge 64 located closest to the transition piece 28. The profile is asymmetrical. More specifically, an extrados line 66 is longer than a corresponding intrados line 68. The designations of intrados and extrados are defined by similarity to those used for an airplane wing. The lower surface corresponds to the face of the blade where the fluid pressure is the highest and the upper surface corresponds to the face of the blade where the fluid pressure is the lowest. Among the asymmetrical profiles, it is possible to choose a profile defined by the “National Advisory Committee for Aeronautics” known by its acronym NACA. The implementation of such an asymmetrical profile makes it possible to increase the speed of rotation of the pump blade 20 by limiting the risks of cavitation to obtain the increase in pressure and the desired flow rate. Other profiles are of course possible.

La cavité 50 formant le stator de la pompe à aube 20 est de révolution autour de l'axe 16. Entre les aubes 52, 54, 56, 58 et la cavité 50, un jeu fonctionnel est prévu pour permettre la rotation des aubes. Ce jeu fonctionnel est le plus faible possible pour limiter les fuites et améliorer le rendement de la pompe à aube 20. Le jeu fonctionnel est notamment fonction des tolérances de fabrication des différentes pièces mécaniques et des dilatations thermiques possibles lors du fonctionnement. Il est possible de réaliser une cavité 50 cylindrique sur toute la longueur de la cavité 50 définie le long de l'axe 26 et balayée par les aubes. Alternativement et avantageusement, la section de la cavité 50, définie perpendiculairement à l'axe 16, possède un diamètre D décroissant en direction de l'ouverture 42 formant la sortie de la pompe à aube 20. La décroissance du diamètre D est avantageusement continue afin de limiter les pertes de charge. Les dimensions radiales des aubes 52, 54, 56, 58 suivent cette décroissance. On considère que pour toute section, les diamètres nominaux des aubes et de la cavité 50 sont égaux aux jeux fonctionnels près. Cette évolution du diamètre D permet de réduire la section de passage du fluide de l'amont vers l'aval de la pompe à aube 20. Cette réduction de section de passage permet d'augmenter la vitesse du fluide et donc sa pression lors de son transit dans la pompe à aube 20. Ceci permet d'améliorer l'efficacité de la pompe à aube 20.The cavity 50 forming the stator of the vane pump 20 is of revolution around the axis 16. Between the vanes 52, 54, 56, 58 and the cavity 50, a functional clearance is provided to allow rotation of the vanes. This functional clearance is as low as possible to limit leaks and improve the efficiency of the vane pump 20. The functional clearance is in particular a function of the manufacturing tolerances of the various mechanical parts and of the possible thermal expansions during operation. It is possible to produce a cylindrical cavity 50 over the entire length of the cavity 50 defined along the axis 26 and swept by the blades. Alternatively and advantageously, the section of the cavity 50, defined perpendicular to the axis 16, has a diameter D decreasing in the direction of the opening 42 forming the outlet of the vane pump 20. The decrease in diameter D is advantageously continuous in order to to limit load losses. The radial dimensions of the blades 52, 54, 56, 58 follow this decrease. It is considered that for any section, the nominal diameters of the blades and of the cavity 50 are equal to the functional clearances. This evolution of the diameter D makes it possible to reduce the passage section of the fluid from upstream to downstream of the vane pump 20. This reduction in passage section makes it possible to increase the speed of the fluid and therefore its pressure during its transit in the vane pump 20. This makes it possible to improve the efficiency of the vane pump 20.

Alternativement ou en complément à la forme de la cavité 50, il est également possible d'agir sur le diamètre intérieur des aubes. Plus précisément, le rotor 46 de la pompe à aube 20 comprend un arbre 70 solidaire de l'arbre 12. Comme on l'a vu précédemment, l'arbre 70 et l'arbre 12 peuvent être réalisés en une seule pièce mécanique ou en deux pièces mécaniques séparées. L'arbre 70 est de révolution autour de l'axe 16. De l'arbre 70 s'étendent radialement, autour de l'axe 16, les aubes 52, 54, 56 et 58. L'arbre 70 et les aubes 52, 54, 56, 58 forment le rotor 46 de la pompe à aube 20. Le diamètre extérieur d de l'arbre 70, défini perpendiculairement à l'axe 16, peut être constant sur toute la zone où les aubes 52, 54, 56 et 58 sont implantées. Alternativement, le diamètre extérieur d de l'arbre 70 peut croitre en direction de la sortie de la pompe à aube 20. Cette évolution du diamètre d de l'arbre 70 contribue à la réduction de section de passage du fluide en direction de la sortie de la pompe à aube 20. Avantageusement le diamètre extérieur d croit de façon continue en direction de la sortie de la pompe à aube 20 afin de limiter les pertes de charge.Alternatively or in addition to the shape of the cavity 50, it is also possible to act on the inside diameter of the blades. More specifically, the rotor 46 of the vane pump 20 comprises a shaft 70 integral with the shaft 12. As seen above, the shaft 70 and the shaft 12 can be made in a single mechanical part or two separate mechanical parts. The shaft 70 is of revolution around the axis 16. From the shaft 70 extend radially, around the axis 16, the vanes 52, 54, 56 and 58. The shaft 70 and the vanes 52, 54, 56, 58 form the rotor 46 of the vane pump 20. The outer diameter d of the shaft 70, defined perpendicular to the axis 16, can be constant over the entire area where the vanes 52, 54, 56 and 58 are implanted. Alternatively, the outer diameter d of the shaft 70 can increase in the direction of the outlet of the vane pump 20. This change in the diameter d of the shaft 70 contributes to the reduction in the fluid passage section in the direction of the outlet. of the vane pump 20. Advantageously the outside diameter d increases continuously in the direction of the outlet of the vane pump 20 in order to limit pressure drops.

Dans la pompe à aube 20, le fluide est en contact direct d'une part avec l'arbre 70 et d'autre part avec la cavité 50.In the vane pump 20, the fluid is in direct contact on the one hand with the shaft 70 and on the other hand with the cavity 50.

Le fait d'augmenter le diamètre d de l'arbre 70 et/ou de réduire le diamètre D de la cavité 50 en direction de la sortie de la pompe à aube 20 permet de mieux s'adapter à la définition de la pompe trochoïde 22 et plus précisément à la position de l'ouverture 42 de la pièce de transition 28 formant à la fois la sortie de la pompe à aube 20 et la zone d'aspiration 38 de la pompe trochoïde 22.Increasing the diameter d of the shaft 70 and/or reducing the diameter D of the cavity 50 in the direction of the outlet of the vane pump 20 makes it possible to better adapt to the definition of the trochoid pump 22 and more precisely at the position of the opening 42 of the transition piece 28 forming both the outlet of the vane pump 20 and the suction zone 38 of the trochoid pump 22.

Le bord d'attaque 62 des aubes 52, 54, 56 et 58 de la pompe à aube 20 peut s'étendre perpendiculairement à l'axe 16. Alternativement, il est possible d'incliner le bord d'attaque par rapport à une direction perpendiculaire à l'axe 16. Plus précisément, le bord d'attaque 62 se rapproche de la sortie de la pompe à aube 20 lorsque sa distance à l'axe 16 augmente. Cette inclinaison peut être constante et le bord d'attaque 62 peut former un segment de droite comme représenté sur la figure 3. L'inclinaison du segment de droite est représentée par un angle a. Il est également possible d'incliner le bord d'attaque 62 de façon évolutive lorsque sa distance à l'axe 16 augmente. Cette inclinaison permet d'améliorer la pénétration du fluide dans la pompe à aube 20 pour limiter le risque de cavitation et ses effets potentiellement destructeurs.The leading edge 62 of the blades 52, 54, 56 and 58 of the vane pump 20 can extend perpendicular to the axis 16. Alternatively, it is possible to incline the leading edge with respect to a direction perpendicular to axis 16. Specifically, leading edge 62 approaches the outlet of vane pump 20 as its distance from axis 16 increases. This inclination can be constant and the leading edge 62 can form a straight segment as shown in the picture 3 . The inclination of the line segment is represented by an angle a. It is also possible to tilt the leading edge 62 progressively when its distance from the axis 16 increases. This inclination makes it possible to improve the penetration of the fluid into the vane pump 20 to limit the risk of cavitation and its potentially destructive effects.

La figure 5 représente en perspective la pièce de transition 28. On distingue l'ouverture 42 formant la sortie de la pompe à aube 20 et la zone d'aspiration 38 de la pompe trochoïde 22. La pièce de transition 28 comprend une rampe 72 permettant de guider le fluide en sortie de la pompe à aube 20 avant d'atteindre l'ouverture 42. Autrement dit la rampe 72 est située entre la pompe à aube 20 et la pompe trochoïde 22 du côté de la pompe à aube 20. Le fluide longe la rampe 72 jusqu'à atteindre l'ouverture 42. La rampe 72 est avantageusement en forme en d'hélice se développant dans le même sens que la forme en hélice des aubes 52, 54, 56 et 58 afin de limiter les pertes de charges entre les deux pompes 20 et 22.There figure 5 shows in perspective the transition piece 28. We can distinguish the opening 42 forming the outlet of the vane pump 20 and the suction zone 38 of the trochoid pump 22. The transition piece 28 comprises a ramp 72 making it possible to guide the fluid leaving the vane pump 20 before reaching the opening 42. In other words the ramp 72 is located between the vane pump 20 and the trochoid pump 22 on the side of the vane pump 20. The fluid runs along the ramp 72 until reaching the opening 42. The ramp 72 is advantageously in the shape of a helix developing in the same direction as the helix shape of the blades 52, 54, 56 and 58 in order to limit the pressure losses between the two pumps 20 and 22.

Claims (8)

Pompe hydraulique, comprenant : - un carter (14), - une pompe à aube (20) comprenant un rotor (46) mobile en rotation par rapport au carter (14) autour d'un premier axe (16), le rotor (46) comprenant plusieurs aubes (52, 54, 56, 58) en forme d'hélice, - une zone de transition (28) appartenant au carter (14) et possédant, du côté de la pompe à aube (20), une rampe (72) en forme d'hélice se développant dans le même sens que la forme en hélice des aubes (52, 54, 56, 58), - une pompe trochoïde (22) comprenant un rotor à denture externe (30) solidaire du rotor (46) de la pompe à aube (20), et un rotor à denture interne (32) mobile en rotation par rapport au carter (14) autour d'un second axe (34) parallèle et décalé du premier axe (16), la pompe trochoïde (22) étant alimentée par la pompe à aube (20) au travers de la zone de transition (28) en longeant la rampe (72). Hydraulic pump, including: - a casing (14), - a vane pump (20) comprising a rotor (46) rotatable relative to the housing (14) around a first axis (16), the rotor (46) comprising several vanes (52, 54, 56, 58 ) propeller-shaped, - a transition zone (28) belonging to the casing (14) and having, on the side of the vane pump (20), a ramp (72) in the form of a helix developing in the same direction as the helix shape of the blades (52, 54, 56, 58), - a trochoid pump (22) comprising a rotor with external teeth (30) secured to the rotor (46) of the vane pump (20), and a rotor with internal teeth (32) rotatable relative to the housing (14) around a second axis (34) parallel and offset from the first axis (16), the trochoid pump (22) being supplied by the vane pump (20) through the transition zone (28) along the ramp ( 72). Pompe hydraulique selon la revendication 1, dans laquelle un pas d'hélice des aubes (52, 54, 56, 58) étant défini le long du premier axe (16) est croissant en direction d'une sortie (42) de la pompe à aube (20).A hydraulic pump according to claim 1, wherein a helical pitch of the vanes (52, 54, 56, 58) being defined along the first axis (16) is increasing towards an outlet (42) of the dawn (20). Pompe hydraulique selon l'une des revendications précédentes, dans laquelle pour chaque aube (52, 54, 56, 58), une ligne d'extrados (66) est plus longue qu'une ligne d'intrados (68) correspondante, les lignes d'intrados et d'extrados étant définies toutes deux sur une même surface cylindrique (60) autour du premier axe (16).Hydraulic pump according to one of the preceding claims, in which for each blade (52, 54, 56, 58), an extrados line (66) is longer than a corresponding intrados line (68), the lines intrados and extrados both being defined on the same cylindrical surface (60) around the first axis (16). Pompe hydraulique selon l'une des revendications précédentes, dans laquelle le stator de la pompe à aube (20) comprend une cavité (50) dans laquelle le rotor (46) de la pompe à aube (20) tourne, une section de la cavité, et une section du rotor (46) de la pompe à aube (20), possèdent un diamètre (D) décroissant en direction de la sortie (42) de la pompe à aube (20), les sections étant définie perpendiculairement au premier axe (16).Hydraulic pump according to one of the preceding claims, in which the stator of the vane pump (20) comprises a cavity (50) in which the rotor (46) of the vane pump (20) rotates, a section of the cavity , and a section of the rotor (46) of the vane pump (20), have a diameter (D) decreasing in the direction of the outlet (42) of the vane pump (20), the sections being defined perpendicular to the first axis (16). Pompe hydraulique selon la revendication 4, dans laquelle le diamètre (D) décroit de façon continue.Hydraulic pump according to Claim 4, in which the diameter (D) decreases continuously. Pompe hydraulique selon l'une des revendications précédentes, dans laquelle le rotor (46) de la pompe à aube (20) comprend un arbre (70) s'étendant selon le premier axe (16), les aubes (52, 54, 56, 58) s'étendant principalement radialement autour de l'arbre (70) de la pompe à aube (20), un diamètre (d) de l'arbre (70) de la pompe à aube (20), défini perpendiculairement au premier axe (16), croit en direction de la sortie (42) de la pompe à aube (20).Hydraulic pump according to one of the preceding claims, in which the rotor (46) of the vane pump (20) comprises a shaft (70) extending along the first axis (16), the vanes (52, 54, 56 , 58) extending mainly radially around the shaft (70) of the vane pump (20), a diameter (d) of the shaft (70) of the vane pump (20), defined perpendicular to the first axis (16), believes in the direction of the outlet (42) of the vane pump (20). Pompe hydraulique selon la revendication 6, dans laquelle le diamètre (d) de l'arbre (70) croit de façon continue.Hydraulic pump according to claim 6, in which the diameter (d) of the shaft (70) increases continuously. Pompe hydraulique selon l'une des revendications précédentes, dans laquelle chacune des aubes (52, 54, 56, 58) possède un bord d'attaque (62) se rapprochant de la sortie (42) de la pompe à aube (20) lorsque sa distance au premier axe (16) augmente.Hydraulic pump according to one of the preceding claims, in which each of the vanes (52, 54, 56, 58) has a leading edge (62) approaching the outlet (42) of the vane pump (20) when its distance from the first axis (16) increases.
EP22205926.3A 2021-11-08 2022-11-07 Hydraulic pump Active EP4177471B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR2111834A FR3128976B1 (en) 2021-11-08 2021-11-08 Hydraulic pump

Publications (2)

Publication Number Publication Date
EP4177471A1 true EP4177471A1 (en) 2023-05-10
EP4177471B1 EP4177471B1 (en) 2024-10-23

Family

ID=80786823

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22205926.3A Active EP4177471B1 (en) 2021-11-08 2022-11-07 Hydraulic pump

Country Status (3)

Country Link
US (1) US12012956B2 (en)
EP (1) EP4177471B1 (en)
FR (1) FR3128976B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050191186A1 (en) * 2003-06-09 2005-09-01 Goodrich Control Systems Limited Aeronautical generator
US20170211577A1 (en) * 2014-08-04 2017-07-27 Imo Industries, Inc. Dual integrated organic working fluid pump
DE102018212497A1 (en) * 2018-07-26 2020-01-30 Eckerle Technologies GmbH Fluid delivery device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2713244A (en) * 1951-12-20 1955-07-19 Niles Bement Pond Co Compound gear and centrifugal pump
US4789299A (en) * 1987-10-30 1988-12-06 Kris Demetrius Liquid and air pump B
DE4038438A1 (en) * 1990-12-01 1992-06-04 Bosch Gmbh Robert Fuel delivery unit for vehicular internal combustion engine - has two pumps directly coupled by dovetail projections from hub into notched pinion without intermediate follower
US6247892B1 (en) * 1999-07-26 2001-06-19 Impsa International Inc. Continuous flow rotary pump
PL196178B3 (en) * 2000-07-19 2007-12-31 Zniszczynski Andrzej Displacement-type fluid-flow machine
PL214431B1 (en) * 2007-02-01 2013-07-31 Andrzej Zniszczynski Impeller-displacement machine with internal compression
WO2012053066A1 (en) * 2010-10-20 2012-04-26 日本オイルポンプ株式会社 Pump device
DE102017213507A1 (en) * 2017-08-03 2019-02-07 KSB SE & Co. KGaA Impeller for wastewater pump
US20190345955A1 (en) * 2018-05-10 2019-11-14 Mp Pumps Inc. Impeller pump

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050191186A1 (en) * 2003-06-09 2005-09-01 Goodrich Control Systems Limited Aeronautical generator
US20170211577A1 (en) * 2014-08-04 2017-07-27 Imo Industries, Inc. Dual integrated organic working fluid pump
DE102018212497A1 (en) * 2018-07-26 2020-01-30 Eckerle Technologies GmbH Fluid delivery device

Also Published As

Publication number Publication date
US20230151812A1 (en) 2023-05-18
US12012956B2 (en) 2024-06-18
EP4177471B1 (en) 2024-10-23
FR3128976B1 (en) 2023-11-24
FR3128976A1 (en) 2023-05-12

Similar Documents

Publication Publication Date Title
WO2020084271A1 (en) Turbomachine with unducted twin propellers
CA2047975C (en) Device for multiphased pumping or compression and use thereof
FR3066532B1 (en) AIRBOARD TURBOMACHINE EXIT OUTPUT AUBE, COMPRISING A LUBRICANT COOLING PASS WITH FLOW-MAKING FLUID DISRUPTORS OF SIMPLIFIED MANUFACTURING
EP3247924B1 (en) Integration of a pump on a pinion shank
EP0781929A1 (en) Device for pumping or compressing a multi-phase fluid comprising tandem blading
EP3775497B1 (en) Turbomachine blade comprising an internal fluid flow passage equipped with a plurality of optimally arranged disruptive elements
FR3063767A1 (en) OUTPUT DIRECTOR FOR AIRCRAFT TURBOMACHINE WITH IMPROVED LUBRICANT COOLING FUNCTION
BE1025560A1 (en) MANUFACTURING METHOD AND LUBRICATING GROUP FOR TURBOMACHINE
EP4073366B1 (en) Aeronautic propulsion system with low leakage rate and improved propulsion efficiency
EP4177471B1 (en) Hydraulic pump
EP4073371B1 (en) Aeronautical propulsion system having a low leakage flow rate and improved propulsion efficiency
FR3090033A1 (en) DAWN DIRECTION AND BIFURCATION DIRECTOR SET FOR TURBOMACHINE
WO2021116621A1 (en) Aero-propulsion system with improved propulsion efficiency
FR3104644A1 (en) Aeronautical propulsion system with improved propulsive efficiency
CA2585300C (en) Combination helical rotor pump
EP4229286B1 (en) Aeronautical propulsion system with improved propulsion efficiency
FR3069290B1 (en) ROTODYNAMIC MACHINE COMPRISING AXIAL HELICO RADIO IMPELLERS WITH INTERFACIAL SLIDING CONTROL
WO2023156741A1 (en) Fuel control system
FR3136504A1 (en) Abradable element for a turbomachine turbine, comprising cells having different inclinations
WO2023198981A1 (en) Stator part having a fin, in a turbine engine
FR3046406A1 (en) DEVICE FOR CONTROLLING THE ORIENTATION OF BLOWER BLADES OF A TURBOPROPULSEUR
FR3104212A1 (en) TURBOMACHINE WITH CONTRAROTARY TURBINE FOR AN AIRCRAFT

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20231107

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240527

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SERV

Owner name: THALES

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SERV

Owner name: CETIM

Owner name: THALES

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH