EP4175929A1 - Method for manufacturing an environmental barrier - Google Patents

Method for manufacturing an environmental barrier

Info

Publication number
EP4175929A1
EP4175929A1 EP21740159.5A EP21740159A EP4175929A1 EP 4175929 A1 EP4175929 A1 EP 4175929A1 EP 21740159 A EP21740159 A EP 21740159A EP 4175929 A1 EP4175929 A1 EP 4175929A1
Authority
EP
European Patent Office
Prior art keywords
precursor
manufacturing
powder
environmental barrier
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21740159.5A
Other languages
German (de)
French (fr)
Inventor
Lisa PIN
Luc Patrice BIANCHI
Sophie Olivia Michele BOUDET
Jimmy James MARTHE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Ceramics SA
Original Assignee
Safran Ceramics SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Ceramics SA filed Critical Safran Ceramics SA
Publication of EP4175929A1 publication Critical patent/EP4175929A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/6281Alkaline earth metal oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62815Rare earth metal oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62826Iron group metal oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62884Coating the powders or the macroscopic reinforcing agents by gas phase techniques
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62886Coating the powders or the macroscopic reinforcing agents by wet chemical techniques
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/15Rare earth metals, i.e. Sc, Y, lanthanides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/21Oxide ceramics
    • F05D2300/211Silica
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/603Composites; e.g. fibre-reinforced
    • F05D2300/6033Ceramic matrix composites [CMC]

Definitions

  • EBC environmental barriers
  • FR3059323 discloses an environmental barrier for a CMC (ceramic matrix composite) part of a turbomachine.
  • the CMC part can for example be a turbine part of a turbomachine.
  • the turbomachine can for example be a turbojet.
  • CMCs Under the operating conditions of aeronautical turbines, for example high temperature and corrosive environment, CMCs are generally sensitive to corrosion. Corrosion of CMC generally results in the oxidation of silicon carbide to silica. In the presence of water vapor, silica volatilizes in the form of Si (OH) 4 hydroxides. These corrosion phenomena lead to premature degradation of the CMC. Also, in order to guarantee the lifetime of CMCs, CMCs are protected against wet corrosion by an environmental barrier (EBC).
  • EBC environmental barrier
  • EBCs are usually produced by thermal spraying. However, this process generally produces a coating comprising a set of defects generating a 3D network of porosity / cracks which adversely affect the performance of the EBC.
  • the present disclosure aims to remedy at least in part these drawbacks.
  • This disclosure relates to a method of manufacturing an environmental barrier, the method comprising the following steps: coating a rare earth silicate powder with a precursor of a densifying agent to form a silicate powder.
  • rare earth coated with the precursor of the densifying agent thermal spraying of the coated powder onto a substrate to obtain an at least partially amorphous environmental barrier on the substrate; and heat treatment of crystallization and densification of the environmental barrier.
  • the precursor of the densifying agent By coating the rare earth silicate powder with a precursor of a densifying agent, the precursor of the densifying agent, and therefore the densifying agent, is distributed homogeneously.
  • the coating of the rare earth silicate powder with a precursor of the densifying agent makes it possible to obtain better distribution and better control of the dosage of the densifying agent than conventional methods of mixing / grinding.
  • the process makes it possible to obtain a homogeneous distribution in very finely dispersed form of the densifying agent in the rare earth silicate powder matrix.
  • the precursor of the densifying agent will react to form the densifying agent on the rare earth silicate powder and promote densification of the environmental barrier.
  • it can be envisaged to reduce the mass content of the densifying agent in comparison with a mixture obtained by mixing / grinding the two powders together.
  • the densifying agent obtained during the thermal spraying of the coated powder can be magnesium oxide, calcium oxide, iron oxide, yttrium oxide, mullite, silica.
  • the thermal spraying can be a plasma spraying in air, a plasma spraying under vacuum or HVOF in accordance with the acronym for "High Velocity Oxy Fuel".
  • the coating can be carried out by wet process.
  • the rare earth silicate powder can be immersed in a solution comprising a solvent and the precursor of the densifying agent, the solvent can be evaporated to form an agglomerated coated powder and the coated powder. agglomerated can be deagglomerated to form the coated powder.
  • the deagglomeration of the agglomerated powder can comprise a step of heat treatment of the agglomerated powder at a temperature of between 250 ° C (degree Celsius) and 600 ° C for 1 h (hour) to 4 h.
  • the rare earth silicate powder can be fluidized in a solution comprising a solvent and the precursor of the densifying agent.
  • the coating can be carried out by gas.
  • the precursor of the densifying agent can be an organometallic precursor.
  • the organometallic precursor can be a metal nitrate, a metal acetate, a metal chloride, a metal alkoxide or a metal phosphorus.
  • the organometallic precursor can be a metal salt of magnesium, iron, aluminum and / or silicon and / or aluminophosphate and / or a sol of magnesia, of oxide of iron, boehmite, silica.
  • the use of a metal salt makes it possible to reduce the loss of silica during the thermal spraying of a rare earth silicate powder by the preferential oxidation of the metal salt which is placed outside the particle.
  • the oxidizing species of the plasma will therefore react preferentially with the metal salt and form a protective oxide matrix around the rare earth silicate powder, thus limiting the volatilization of the silica.
  • the precursor of the densifying agent can be the densifying agent.
  • the precursor of the densifying agent can be magnesium oxide or silica, the densifying agent being the same as the precursor.
  • silica When silica is present as a precursor of the densifying agent, the silica present in the outer layer of the powder particles will "saturate" the plasma and thus avoid or reduce the volatilization of the silica present in the powder of rare earth silicate.
  • the coated powder can have a core-shell structure.
  • a core-shell structure can be obtained, also called "core-shell” in English, in which the powder particles comprise a core of rare earth silicate powder coated by an outer layer (or shell) formed by the precursor of the densifying agent.
  • the envelope may have a thickness of the order of a nanometer and the distribution of the precursor of the sintering agent as well as the control of the dosage of the precursor of the sintering agent are improved.
  • the heat treatment can be carried out at a temperature greater than or equal to 1100 ° C, preferably greater than or equal to 1200 ° C and less than or equal to 1350 ° C, preferably less than or equal to 1300 ° C with a plateau greater than or equal to 5 hours and less than or equal to 50 hours.
  • the substrate may be a substrate made of a composite material with a ceramic matrix.
  • the CMC material substrate is generally made from ceramic fibers woven in 2D or 3D. These ceramic fibers can then be subjected to gas densification (also called “CVI” by the acronym for “Chemical Vapor Infiltration”), alone or in combination with another technique, such as infiltration by a melt. (also called “MI” according to the acronym for “Melt Infiltration”) in order to obtain the substrate made of CMC material.
  • CVI gas densification
  • MI infiltration
  • the environmental barrier can include a tie layer.
  • the tie layer can be made of silicon.
  • tie layer is deposited on the substrate and is between the substrate and the layer of material.
  • Figure 1 is a schematic sectional view of a substrate and an environmental barrier according to one embodiment.
  • Figure 2 is a schematic sectional view of a substrate and an environmental barrier according to a detailed embodiment.
  • Figure 3 is a schematic sectional view of a coated powder according to one embodiment.
  • FIG. 4 is a schematic sectional view of a coated powder according to another embodiment.
  • Fig. 5 is a flowchart showing the steps of a method of manufacturing an environmental barrier.
  • Figure 1 is a schematic representation of a substrate 12 covered with an environmental barrier 10.
  • the substrate 12 can be a substrate made of a composite material with a ceramic matrix.
  • the environmental barrier 10 may comprise a bonding layer 14 of silicon and a layer of yttrium disilicate 16.
  • the silica layer 18 is a silicon oxide layer formed by oxidation of the silicon bonding layer 14.
  • the yttrium disilicate layer 16 comprises a densifying agent.
  • the densifying agent can be a sintering agent and / or a healing agent.
  • the sintering agent can be magnesium oxide or iron oxide.
  • the healing agent is mullite, silica or an aluminophosphate.
  • the yttrium disilicate layer 16 may comprise between 0.1 and 5% by mass of sintering agent, for example 0.4% by mass of sintering agent.
  • the environmental barrier 10 can be obtained by the manufacturing process 100 of Figure 4.
  • the manufacturing process 100 of the environmental barrier 10 comprises a coating step 102 of a rare earth silicate powder 22 with a precursor of a densifying agent 24 to form a rare earth silicate powder 20. coated with the precursor of the densifying agent.
  • the coated powder 20 may have a core-shell structure, as shown in FIG. 3, the coated powder 20 comprising a core of rare earth silicate powder 22 coated by an outer layer (or shell) formed by the precursor. densifying agent 24.
  • the coated powder 20 may have particles formed by the precursor of the densifying agent 24 present on the surface of rare earth silicate powder 22, as shown in FIG. 4.
  • Rare earth disilicate powder Rare earth disilicate powder, magnesium acetate and distilled water.
  • the coated powder 20 is available.
  • the coated powder 20 is projected by a thermal spraying process 104 on the substrate 12 to obtain an environmental barrier 10 at least partially amorphous on the substrate 12.
  • the organometallic precursor of the densifying agent that is to say magnesium acetate, will dehydrate and s' oxidize during thermal spraying to form the densifying agent around the rare earth disilicate powder at a desired and controlled concentration.
  • a partially amorphous environmental barrier can be obtained with flattened grains (also called "splats") of rare earth disilicate and the densifying agent evenly distributed around the flattened grains of rare earth disilicate.
  • the environmental barrier 10 then undergoes a heat treatment step 106 of crystallization and densification.
  • the heat treatment 106 of crystallization and densification can include a temperature rise at 100 ° C / h (degrees Celsius per hour) up to 1300 ° C, a level of 50 hours at 1300 ° C and a drop in temperature at 100 ° C / h to room temperature, that is to say around 20 ° C.
  • the heat treatment 106 of crystallization and densification may include a temperature rise at 300 ° C / h (degrees Celsius per hour) up to 1350 ° C, a level of 5 hours at 1350 ° C and a drop in temperature to 100 ° C / h to room temperature, that is to say around 20 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

The invention relates to a method for manufacturing (100) an environmental barrier comprising the steps of coating (102) a rare earth silicate powder with a precursor of a densification agent in order to form a rare earth silicate powder coated with the precursor of the densification agent, thermally spraying (104) the coated powder onto a substrate in order to obtain an at least partially amorphous environmental barrier on the substrate, and thermally treating (106) the environmental barrier in order to crystallise and densify same.

Description

PROCEDE DE FABRICATION D'UNE BARRIERE ENVIRONNEMENTALE PROCESS FOR MANUFACTURING AN ENVIRONMENTAL BARRIER
Domaine technique Technical area
[0001] Le présent exposé concerne les barrières environnementales, aussi appelées « EBC) », conformément au sigle en anglais pour « Environmental Barrier Coating », et à leur procédé de fabrication. This presentation relates to environmental barriers, also called "EBC)", in accordance with the acronym in English for "Environmental Barrier Coating", and their manufacturing process.
Technique antérieure Prior art
[0002] On connaît de FR3059323 une barrière environnementale pour une pièce en CMC (composite à matrice céramique) d'une turbomachine. [0002] FR3059323 discloses an environmental barrier for a CMC (ceramic matrix composite) part of a turbomachine.
[0003] La pièce en CMC peut par exemple être une pièce de turbine d'une turbomachine. La turbomachine peut par exemple être un turboréacteur. [0003] The CMC part can for example be a turbine part of a turbomachine. The turbomachine can for example be a turbojet.
[0004] Dans les conditions de fonctionnement des turbines aéronautiques, par exemple température élevée et environnement corrosif, les CMC sont généralement sensibles à la corrosion. La corrosion du CMC résulte généralement en l'oxydation du carbure de silicium en silice. En présence de vapeur d'eau, la silice se volatilise sous forme d'hydroxydes Si(OH)4. Ces phénomènes de corrosion entraînent une dégradation prématurée du CMC. Aussi, afin de garantir la durée de vie des CMC, les CMC sont protégés contre la corrosion humide par une barrière environnementale (EBC). [0004] Under the operating conditions of aeronautical turbines, for example high temperature and corrosive environment, CMCs are generally sensitive to corrosion. Corrosion of CMC generally results in the oxidation of silicon carbide to silica. In the presence of water vapor, silica volatilizes in the form of Si (OH) 4 hydroxides. These corrosion phenomena lead to premature degradation of the CMC. Also, in order to guarantee the lifetime of CMCs, CMCs are protected against wet corrosion by an environmental barrier (EBC).
[0005] Les EBC sont usuellement élaborées par projection thermique. Toutefois, ce procédé produit généralement un revêtement comprenant un ensemble de défauts générant un réseau 3D de porosité/fissures qui nuisent aux performances de l'EBC. [0005] EBCs are usually produced by thermal spraying. However, this process generally produces a coating comprising a set of defects generating a 3D network of porosity / cracks which adversely affect the performance of the EBC.
[0006] D'autre part, il a été démontré que l'efficacité d'une EBC était intimement liée à son herméticité, afin de bloquer la diffusion moléculaire des espèces oxydantes et corrosives. [0006] On the other hand, it has been shown that the effectiveness of an EBC was closely linked to its hermeticity, in order to block the molecular diffusion of oxidizing and corrosive species.
[0007] Différentes solutions existent pour améliorer l'étanchéité d'une ou plusieurs couches d'une EBC, comme l'ajout d'agents de frittage ou d'agents cicatrisants. Toutefois, il peut s'avérer compliqué d'obtenir une répartition homogène des agents de frittage et/ou cicatrisants. Exposé de l'invention [0007] Various solutions exist for improving the tightness of one or more layers of an EBC, such as the addition of sintering agents or healing agents. However, it can prove to be complicated to obtain a homogeneous distribution of the sintering and / or healing agents. Disclosure of the invention
[0008] Le présent exposé vise à remédier au moins en partie à ces inconvénients. The present disclosure aims to remedy at least in part these drawbacks.
[0009] Le présent exposé concerne un procédé de fabrication d'une barrière environnementale, le procédé comprenant les étapes suivantes : enrobage d'une poudre de silicate de terre rare avec un précurseur d'un agent de densification pour former une poudre de silicate de terre rare enrobée avec le précurseur de l'agent de densification ; projection thermique de la poudre enrobée sur un substrat pour obtenir une barrière environnementale au moins partiellement amorphe sur le substrat ; et traitement thermique de cristallisation et de densification de la barrière environnementale. This disclosure relates to a method of manufacturing an environmental barrier, the method comprising the following steps: coating a rare earth silicate powder with a precursor of a densifying agent to form a silicate powder. rare earth coated with the precursor of the densifying agent; thermal spraying of the coated powder onto a substrate to obtain an at least partially amorphous environmental barrier on the substrate; and heat treatment of crystallization and densification of the environmental barrier.
[0010] Grâce à l'enrobage de la poudre de silicate de terre rare avec un précurseur d'un agent de densification, le précurseur de l'agent de densification, et donc l'agent de densification, est réparti de manière homogène. By coating the rare earth silicate powder with a precursor of a densifying agent, the precursor of the densifying agent, and therefore the densifying agent, is distributed homogeneously.
[0011] On comprend que l'enrobage de la poudre de silicate de terre rare avec un précurseur de l'agent de densification permet d'obtenir une meilleure répartition et un meilleur contrôle du dosage de l'agent de densification que des procédés classiques de mélange/broyage. Le procédé permet d'obtenir une répartition homogène et sous forme très finement dispersée de l'agent de densification dans la matrice de poudre de silicate de terre rare. It is understood that the coating of the rare earth silicate powder with a precursor of the densifying agent makes it possible to obtain better distribution and better control of the dosage of the densifying agent than conventional methods of mixing / grinding. The process makes it possible to obtain a homogeneous distribution in very finely dispersed form of the densifying agent in the rare earth silicate powder matrix.
[0012] Lors de la projection thermique, le précurseur de l'agent de densification va réagir pour former l'agent de densification sur la poudre de silicate de terre rare et favoriser la densification de la barrière environnementale. De ce fait, il peut être envisagé de réduire la teneur massique de l'agent de densification en comparaison à un mélange obtenu par mélange/broyage des deux poudres ensemble. During thermal spraying, the precursor of the densifying agent will react to form the densifying agent on the rare earth silicate powder and promote densification of the environmental barrier. As a result, it can be envisaged to reduce the mass content of the densifying agent in comparison with a mixture obtained by mixing / grinding the two powders together.
[0013] A titre d'exemples non-limitatifs, l'agent de densification obtenu lors de la projection thermique de la poudre enrobée peut être de l'oxyde de magnésium, de l'oxyde de calcium, de l'oxyde de fer, de l'oxyde d'yttrium, de la mullite, de la silice. [0014] Dans certains modes de réalisation, la projection thermique peut être une projection plasma sous air, une projection plasma sous vide ou HVOF conformément au sigle anglais pour « High Velocity Oxy Fuel ». By way of non-limiting examples, the densifying agent obtained during the thermal spraying of the coated powder can be magnesium oxide, calcium oxide, iron oxide, yttrium oxide, mullite, silica. [0014] In certain embodiments, the thermal spraying can be a plasma spraying in air, a plasma spraying under vacuum or HVOF in accordance with the acronym for "High Velocity Oxy Fuel".
[0015] Dans certains modes de réalisation, l'enrobage peut être réalisé par voie humide. [0015] In certain embodiments, the coating can be carried out by wet process.
[0016] Dans certains modes de réalisation, la poudre de silicate de terre rare peut être immergée dans une solution comprenant un solvant et le précurseur de l'agent de densification, le solvant peut être évaporé pour former une poudre enrobée agglomérée et la poudre enrobée agglomérée peut être désagglomérée pour former la poudre enrobée. In some embodiments, the rare earth silicate powder can be immersed in a solution comprising a solvent and the precursor of the densifying agent, the solvent can be evaporated to form an agglomerated coated powder and the coated powder. agglomerated can be deagglomerated to form the coated powder.
[0017] Dans certains modes de réalisation, la désagglomération de la poudre agglomérée peut comprendre une étape de traitement thermique de la poudre agglomérée à une température comprise en 250°C (degré Celsius) et 600°C pendant lh (heure) à 4h. In certain embodiments, the deagglomeration of the agglomerated powder can comprise a step of heat treatment of the agglomerated powder at a temperature of between 250 ° C (degree Celsius) and 600 ° C for 1 h (hour) to 4 h.
[0018] Dans certains modes de réalisation, la poudre de silicate de terre rare peut être fluidisée dans une solution comprenant un solvant et le précurseur de l'agent de densification. In some embodiments, the rare earth silicate powder can be fluidized in a solution comprising a solvent and the precursor of the densifying agent.
[0019] Dans certains modes de réalisation, l'enrobage peut être réalisé par voie gazeuse. In some embodiments, the coating can be carried out by gas.
[0020] Dans certains modes de réalisation, le précurseur de l'agent de densification peut être un précurseur organométallique. In some embodiments, the precursor of the densifying agent can be an organometallic precursor.
[0021] A titre d'exemples non-limitatifs, le précurseur organométallique peut être un nitrate métallique, un acétate métallique, un chlorure métallique, un alcooxyde métallique ou un phosphore métallique. By way of non-limiting examples, the organometallic precursor can be a metal nitrate, a metal acetate, a metal chloride, a metal alkoxide or a metal phosphorus.
[0022] A titre d'exemple non-limitatifs, le précurseur organométallique peut être un sel métallique de magnésium, de fer, aluminium et/ou de silicium et/ou d'aluminophosphate et/ou un sol de magnésie, d'oxyde de fer, de boehmite, de silice. By way of non-limiting example, the organometallic precursor can be a metal salt of magnesium, iron, aluminum and / or silicon and / or aluminophosphate and / or a sol of magnesia, of oxide of iron, boehmite, silica.
[0023] L'utilisation d'un sel métallique permet de réduire la perte de silice lors de la projection thermique d'une poudre de silicate de terre rare de par l'oxydation préférentielle du sel métallique qui est disposé à l'extérieur de la particule. Les espèces oxydantes du plasma vont donc réagir préférentiellement avec le sel métallique et former une gangue protectrice en oxyde autour de la poudre de silicate de terre rare, limitant ainsi la volatilisation de la silice. [0024] Dans certains modes de réalisation, le précurseur de l'agent de densification peut être l'agent de densification. The use of a metal salt makes it possible to reduce the loss of silica during the thermal spraying of a rare earth silicate powder by the preferential oxidation of the metal salt which is placed outside the particle. The oxidizing species of the plasma will therefore react preferentially with the metal salt and form a protective oxide matrix around the rare earth silicate powder, thus limiting the volatilization of the silica. In some embodiments, the precursor of the densifying agent can be the densifying agent.
[0025] A titre d'exemples non-limitatifs, le précurseur de l'agent de densification peut être de l'oxyde de magnésium ou de la silice, l'agent de densification étant le même que le précurseur. By way of non-limiting examples, the precursor of the densifying agent can be magnesium oxide or silica, the densifying agent being the same as the precursor.
[0026] Lorsque de la silice est présente comme précurseur de l'agent de densification, la silice présente dans la couche extérieure des particules de poudres va « saturer » le plasma et ainsi éviter ou réduire la volatilisation de la silice présente dans la poudre de silicate de terre rare. When silica is present as a precursor of the densifying agent, the silica present in the outer layer of the powder particles will "saturate" the plasma and thus avoid or reduce the volatilization of the silica present in the powder of rare earth silicate.
[0027] Dans certains modes de réalisation, la poudre enrobée peut présenter une structure noyau-enveloppe. [0027] In certain embodiments, the coated powder can have a core-shell structure.
[0028] On peut obtenir une structure noyau-enveloppe, aussi appelée « core-shell » en anglais, dans laquelle les particules de poudre comprennent un noyau de poudre de silicate de terre rare enrobé par une couche extérieure (ou enveloppe) formée par le précurseur de l'agent de densification. L'enveloppe peut présenter une épaisseur de l'ordre du nanomètre et la répartition du précurseur de l'agent de frittage ainsi que le contrôle du dosage du précurseur de l'agent de frittage sont améliorées. A core-shell structure can be obtained, also called "core-shell" in English, in which the powder particles comprise a core of rare earth silicate powder coated by an outer layer (or shell) formed by the precursor of the densifying agent. The envelope may have a thickness of the order of a nanometer and the distribution of the precursor of the sintering agent as well as the control of the dosage of the precursor of the sintering agent are improved.
[0029] Dans certains modes de réalisation, le traitement thermique peut être réalisé à une température supérieure ou égale à 1100°C, de préférence supérieure ou égale à 1200°C et inférieure ou égale à 1350°C, de préférence inférieure ou égale à 1300°C avec un palier supérieur ou égal à 5h et inférieur ou égal à 50h. In some embodiments, the heat treatment can be carried out at a temperature greater than or equal to 1100 ° C, preferably greater than or equal to 1200 ° C and less than or equal to 1350 ° C, preferably less than or equal to 1300 ° C with a plateau greater than or equal to 5 hours and less than or equal to 50 hours.
[0030] Dans certains modes de réalisation, le substrat peut être un substrat en matériau composite à matrice céramique. In certain embodiments, the substrate may be a substrate made of a composite material with a ceramic matrix.
[0031] Le substrat en matériau CMC est généralement réalisé à partir de fibres céramiques tissées en 2D ou en 3D. Ces fibres céramiques peuvent ensuite être soumises à une densification par voie gazeuse (aussi appelée « CVI » selon l'acronyme anglais pour « Chemical Vapor Infiltration »), seule ou en combinaison avec une autre technique, telle que l'infiltration par une masse fondue (aussi appelée « MI » selon l'acronyme anglais pour « Melt Infiltration ») afin d'obtenir le substrat en matériau CMC. The CMC material substrate is generally made from ceramic fibers woven in 2D or 3D. These ceramic fibers can then be subjected to gas densification (also called "CVI" by the acronym for "Chemical Vapor Infiltration"), alone or in combination with another technique, such as infiltration by a melt. (also called “MI” according to the acronym for “Melt Infiltration”) in order to obtain the substrate made of CMC material.
[0032] Dans certains modes de réalisation, la barrière environnementale peut comprendre une couche de liaison. [0033] A titre d'exemples non limitatifs, la couche de liaison peut être en silicium. In some embodiments, the environmental barrier can include a tie layer. By way of nonlimiting examples, the tie layer can be made of silicon.
[0034] On comprend que la couche de liaison est déposée sur le substrat et est comprise entre le substrat et la couche de matériau. It is understood that the tie layer is deposited on the substrate and is between the substrate and the layer of material.
Brève description des dessins Brief description of the drawings
[0035] D’autres caractéristiques et avantages de l’objet du présent exposé ressortiront de la description suivante de modes de réalisation, donnés à titre d’exemples non limitatifs, en référence aux figures annexées. [0035] Other characteristics and advantages of the subject of this disclosure will emerge from the following description of embodiments, given by way of non-limiting examples, with reference to the appended figures.
[0036] [Fig. 1] La figure 1 est une vue schématique en coupe d'un substrat et d'une barrière environnementale selon un mode de réalisation. [0036] [Fig. 1] Figure 1 is a schematic sectional view of a substrate and an environmental barrier according to one embodiment.
[0037] [Fig. 2] La figure 2 est une vue schématique en coupe d'un substrat et d'une barrière environnementale selon un mode de réalisation détaillé. [0037] [Fig. 2] Figure 2 is a schematic sectional view of a substrate and an environmental barrier according to a detailed embodiment.
[0038] [Fig. 3] La figure 3 est une vue schématique en coupe d'une poudre enrobée selon un mode de réalisation. [0038] [Fig. 3] Figure 3 is a schematic sectional view of a coated powder according to one embodiment.
[0039] [Fig. 4] La figure 4 est vue schématique en coupe d'une poudre enrobée selon un autre mode de réalisation. [0039] [Fig. 4] FIG. 4 is a schematic sectional view of a coated powder according to another embodiment.
[0040] [Fig. 5] La figure 5 est un ordinogramme représentant les étapes d'un procédé de fabrication d'une barrière environnementale. [0040] [Fig. 5] Fig. 5 is a flowchart showing the steps of a method of manufacturing an environmental barrier.
[0041] Sur l'ensemble des figures, les éléments en commun sont repérés par des références numériques identiques. In all of the figures, the elements in common are identified by identical numerical references.
Description détaillée detailed description
[0042] La figure 1 est une représentation schématique d'un substrat 12 recouvert d'une barrière environnementale 10. Figure 1 is a schematic representation of a substrate 12 covered with an environmental barrier 10.
[0043] A titre d'exemple non-limitatif, le substrat 12 peut être un substrat en matériau composite à matrice céramique. By way of non-limiting example, the substrate 12 can be a substrate made of a composite material with a ceramic matrix.
[0044] A titre d'exemple non-limitatif et comme représenté schématiquement sur la figure 2, la barrière environnementale 10 peut comprendre une couche de liaison 14 en silicium et une couche de disilicate d'yttrium 16. By way of non-limiting example and as shown schematically in FIG. 2, the environmental barrier 10 may comprise a bonding layer 14 of silicon and a layer of yttrium disilicate 16.
[0045] À l'interface entre la couche de liaison 14 et la couche de disilicate d'yttrium 16 est présente une couche de silice 18. La couche de silice 18 est une couche d'oxyde de silicium formée par oxydation de la couche de liaison 14 en silicium. At the interface between the tie layer 14 and the yttrium disilicate layer 16 is present a silica layer 18. The silica layer 18 is a silicon oxide layer formed by oxidation of the silicon bonding layer 14.
[0046] La couche de disilicate d'yttrium 16 comprend un agent de densification. The yttrium disilicate layer 16 comprises a densifying agent.
[0047] A titre d'exemples non-limitatifs, l'agent de densification peut être un agent de frittage et/ou un agent cicatrisant. By way of non-limiting examples, the densifying agent can be a sintering agent and / or a healing agent.
[0048] A titre d'exemples non-limitatifs, l'agent de frittage peut être de l'oxyde de magnésium, de l'oxyde de fer. By way of non-limiting examples, the sintering agent can be magnesium oxide or iron oxide.
[0049] A titre d'exemple non-limitatifs, l'agent cicatrisant est de la mullite, de la silice ou un aluminophosphate. By way of non-limiting example, the healing agent is mullite, silica or an aluminophosphate.
[0050] A titre d'exemple non limitatif, la couche de disilicate d'yttrium 16 peut comprendre entre 0,1 et 5 % en masse d'agent de frittage, par exemple 0,4 % en masse d'agent de frittage. By way of nonlimiting example, the yttrium disilicate layer 16 may comprise between 0.1 and 5% by mass of sintering agent, for example 0.4% by mass of sintering agent.
[0051] La barrière environnementale 10 peut être obtenue par le procédé de fabrication 100 de la figure 4. The environmental barrier 10 can be obtained by the manufacturing process 100 of Figure 4.
[0052] Le procédé de fabrication 100 de la barrière environnementale 10 comprend une étape d'enrobage 102 d'une poudre de silicate de terre rare 22 avec un précurseur d'un agent de densification 24 pour former une poudre 20 de silicate de terre rare enrobée avec le précurseur de l'agent de densification. The manufacturing process 100 of the environmental barrier 10 comprises a coating step 102 of a rare earth silicate powder 22 with a precursor of a densifying agent 24 to form a rare earth silicate powder 20. coated with the precursor of the densifying agent.
[0053] La poudre enrobée 20 peut présenter une structure noyau- enveloppe, comme représenté sur la figure 3, la poudre enrobée 20 comprenant un noyau de poudre de silicate de terre rare 22 enrobé par une couche extérieure (ou enveloppe) formée par le précurseur de l'agent de densification 24. The coated powder 20 may have a core-shell structure, as shown in FIG. 3, the coated powder 20 comprising a core of rare earth silicate powder 22 coated by an outer layer (or shell) formed by the precursor. densifying agent 24.
[0054] Alternativement, la poudre enrobée 20 peut présenter des particules formée par le précurseur de l'agent de densification 24 présentes sur la surface de poudre de silicate de terre rare 22, comme représenté sur la figure 4. Alternatively, the coated powder 20 may have particles formed by the precursor of the densifying agent 24 present on the surface of rare earth silicate powder 22, as shown in FIG. 4.
[0055] Ces deux types de structures peuvent être obtenus par voie humide ou par voie gazeuse. These two types of structures can be obtained by the wet route or by the gas route.
[0056] Exemple d'enrobaae Example of enrobaae
[0057] Poudre de disilicate de terre rare, acétate de magnésium et eau distillée. Rare earth disilicate powder, magnesium acetate and distilled water.
[0058] Dans 1 L (litre) d'eau distillée, dissoudre 5% massique d'acétate de magnésium (typiquement entre 0,1 et 10% massique). [0059] Verser 1 kg de poudre de disilicate de terre rare dans la solution aqueuse d'acétate de magnésium. In 1 L (liter) of distilled water, dissolve 5% by mass of magnesium acetate (typically between 0.1 and 10% by mass). Pour 1 kg of rare earth disilicate powder in the aqueous solution of magnesium acetate.
[0060] Mélanger avec un barreau magnétique. Mix with a magnetic bar.
[0061] Séchage à 90°C dans une étuve. Drying at 90 ° C in an oven.
[0062] Sur les blocs de poudre agglomérée effectuer un traitement thermique à 400°C pendant lh sous air pour que les blocs deviennent friables. On the blocks of agglomerated powder perform a heat treatment at 400 ° C for 1 hour in air so that the blocks become friable.
[0063] La poudre enrobée 20 est disponible. The coated powder 20 is available.
[0064] La poudre enrobée 20 est projetée par un procédé de projection thermique 104 sur le substrat 12 pour obtenir une barrière environnementale 10 au moins partiellement amorphe sur le substrat 12. The coated powder 20 is projected by a thermal spraying process 104 on the substrate 12 to obtain an environmental barrier 10 at least partially amorphous on the substrate 12.
[0065] Dans l'exemple du précurseur organométallique de l'agent de densification décrit ci-dessus, le précurseur organométallique de l'agent de densification, c'est-à-dire l'acétate de magnésium, va se déshydrater et s'oxyder pendant la projection thermique pour former l'agent de densification autour la poudre de disilicate de terre rare et ce, en concentration souhaitée et contrôlée. On peut obtenir une barrière environnementale 10 partiellement amorphe avec des grains aplatis (aussi appelés « splats ») de disilicate de terre rare et l'agent de densification uniformément réparti autour des grains aplatis de disilicate de terre rare. In the example of the organometallic precursor of the densifying agent described above, the organometallic precursor of the densifying agent, that is to say magnesium acetate, will dehydrate and s' oxidize during thermal spraying to form the densifying agent around the rare earth disilicate powder at a desired and controlled concentration. A partially amorphous environmental barrier can be obtained with flattened grains (also called "splats") of rare earth disilicate and the densifying agent evenly distributed around the flattened grains of rare earth disilicate.
[0066] La barrière environnementale 10 subit ensuite une étape de traitement thermique 106 de cristallisation et de densification. The environmental barrier 10 then undergoes a heat treatment step 106 of crystallization and densification.
[0067] A tire d'exemple non-limitatif, le traitement thermique 106 de cristallisation et de densification peut comprendre une montée en température à 100°C/h (degré Celsius par heure) jusqu'à 1300° C, un palier de 50 heures à 1300°C et une descente en température à 100°C/h jusqu'à température ambiante, c'est-à-dire environ 20°C. As a non-limiting example, the heat treatment 106 of crystallization and densification can include a temperature rise at 100 ° C / h (degrees Celsius per hour) up to 1300 ° C, a level of 50 hours at 1300 ° C and a drop in temperature at 100 ° C / h to room temperature, that is to say around 20 ° C.
[0068] A tire d'exemple non-limitatif, le traitement thermique 106 de cristallisation et de densification peut comprendre une montée en température à 300°C/h (degré Celsius par heure) jusqu'à 1350° C, un palier de 5 heures à 1350°C et une descente en température à 100°C/h jusqu'à température ambiante, c'est-à-dire environ 20°C. As a non-limiting example, the heat treatment 106 of crystallization and densification may include a temperature rise at 300 ° C / h (degrees Celsius per hour) up to 1350 ° C, a level of 5 hours at 1350 ° C and a drop in temperature to 100 ° C / h to room temperature, that is to say around 20 ° C.
[0069] Quoique le présent exposé ait été décrit en se référant à un exemple de réalisation spécifique, il est évident que des différentes modifications et changements peuvent être effectués sur ces exemples sans sortir de la portée générale de l’invention telle que définie par les revendications. En outre, des caractéristiques individuelles des différents modes de réalisation évoqués peuvent être combinées dans des modes de réalisation additionnels. Par conséquent, la description et les dessins doivent être considérés dans un sens illustratif plutôt que restrictif. Although the present disclosure has been described with reference to a specific embodiment, it is obvious that various modifications and changes can be made to these examples without departing from the general scope of the invention as defined by the claims. In addition, individual characteristics of the various embodiments mentioned can be combined in additional embodiments. Therefore, the description and the drawings should be taken in an illustrative rather than a restrictive sense.

Claims

REVENDICATIONS
[Revendication 1] Procédé de fabrication (100) d'une barrière environnementale (10), le procédé comprenant les étapes suivantes: enrobage (102) d'une poudre de silicate de terre rare (22) avec un précurseur d'un agent de densification (24) pour former une poudre (20) de silicate de terre rare enrobée avec le précurseur de l'agent de densification ; projection thermique (104) de la poudre enrobée (20) sur un substrat (12) pour obtenir une barrière environnementale (10) au moins partiellement amorphe sur le substrat (12) ; et traitement thermique (106) de cristallisation et de densification de la barrière environnementale (10). [Claim 1] A method of manufacturing (100) an environmental barrier (10), the method comprising the steps of: coating (102) of a rare earth silicate powder (22) with a precursor of a protective agent. densifying (24) to form a rare earth silicate powder (20) coated with the precursor of the densifying agent; thermal spraying (104) of the coated powder (20) onto a substrate (12) to obtain an at least partially amorphous environmental barrier (10) on the substrate (12); and heat treatment (106) to crystallize and densify the environmental barrier (10).
[Revendication 2] Procédé de fabrication (100) selon la revendication 1, dans lequel l'enrobage (102) est réalisé par voie humide. [Claim 2] The manufacturing method (100) according to claim 1, wherein the coating (102) is wet.
[Revendication 3] Procédé de fabrication (100) selon la revendication 2, dans lequel la poudre de silicate de terre rare (22) est immergée dans une solution comprenant un solvant et le précurseur de l'agent de densification (24), le solvant est évaporé pour former une poudre enrobée agglomérée et la poudre enrobée agglomérée est désagglomérée pour former la poudre enrobée (20). [Claim 3] The manufacturing method (100) according to claim 2, wherein the rare earth silicate powder (22) is immersed in a solution comprising a solvent and the precursor of the densifying agent (24), the solvent. is evaporated to form an agglomerated coated powder and the agglomerated coated powder is deagglomerated to form the coated powder (20).
[Revendication 4] Procédé de fabrication (100) selon la revendication 2, dans lequel la poudre de silicate de terre rare (22) est fluidisée dans une solution comprenant un solvant et le précurseur de l'agent de densification (24). [Claim 4] The manufacturing method (100) according to claim 2, wherein the rare earth silicate powder (22) is fluidized in a solution comprising a solvent and the precursor of the densifying agent (24).
[Revendication 5] Procédé de fabrication (100) selon la revendication 1, dans lequel l'enrobage (102) est réalisé par voie gazeuse. [Claim 5] The manufacturing method (100) according to claim 1, wherein the coating (102) is carried out by gas.
[Revendication 6] Procédé de fabrication (100) selon l'une quelconque des revendications 1 à 5, dans lequel le précurseur de l'agent de densification (24) est un précurseur organométallique. [Claim 6] The manufacturing method (100) according to any one of claims 1 to 5, wherein the precursor of the densifying agent (24) is an organometallic precursor.
[Revendication 7] Procédé de fabrication (100) selon l'une quelconque des revendications 1 à 6, dans lequel la poudre enrobée (20) présente une structure noyau-enveloppe. [Claim 7] The manufacturing method (100) according to any one of claims 1 to 6, wherein the coated powder (20) has a core-shell structure.
[Revendication 8] Procédé de fabrication selon l'une quelconque des revendications 1 à 7, dans lequel le substrat (12) est un substrat en matériau composite à matrice céramique. [Revendication 9] Procédé de fabrication selon l'une quelconque des revendications 1 à 8, dans lequel la barrière environnementale (10) comprend une couche de liaison (14). [Claim 8] The manufacturing method according to any one of claims 1 to 7, wherein the substrate (12) is a ceramic matrix composite material substrate. [Claim 9] The manufacturing method according to any of claims 1 to 8, wherein the environmental barrier (10) comprises a tie layer (14).
EP21740159.5A 2020-07-02 2021-06-22 Method for manufacturing an environmental barrier Pending EP4175929A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2007018A FR3112143A1 (en) 2020-07-02 2020-07-02 Manufacturing process of an environmental barrier
PCT/FR2021/051139 WO2022003273A1 (en) 2020-07-02 2021-06-22 Method for manufacturing an environmental barrier

Publications (1)

Publication Number Publication Date
EP4175929A1 true EP4175929A1 (en) 2023-05-10

Family

ID=74859954

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21740159.5A Pending EP4175929A1 (en) 2020-07-02 2021-06-22 Method for manufacturing an environmental barrier

Country Status (5)

Country Link
US (1) US20230250034A1 (en)
EP (1) EP4175929A1 (en)
CN (1) CN115803306A (en)
FR (1) FR3112143A1 (en)
WO (1) WO2022003273A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3133861B1 (en) * 2022-03-22 2024-03-29 Safran Ceram Core-shell particle with dual anti-corrosion and anti-CMAS function
US20230312424A1 (en) * 2022-03-30 2023-10-05 Honeywell International Inc. Direct bonded environmental barrier coatings for sic/sic composites and methods for preparing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140037969A1 (en) * 2012-08-03 2014-02-06 General Electric Company Hybrid Air Plasma Spray and Slurry Method of Environmental Barrier Deposition
GB201219642D0 (en) * 2012-11-01 2012-12-12 Norwegian Univ Sci & Tech Ntnu Thermal spraying of ceramic materials
US9890089B2 (en) * 2014-03-11 2018-02-13 General Electric Company Compositions and methods for thermal spraying a hermetic rare earth environmental barrier coating
FR3059323B1 (en) 2016-11-29 2019-01-25 Safran Ceramics ASSEMBLY OF A CMC PIECE ASSEMBLED ON A METALLIC ELEMENT, METHOD OF MANUFACTURING SUCH AN ASSEMBLY
CN108911791B (en) * 2018-07-24 2021-04-02 中国人民解放军国防科技大学 Environmental barrier coating and preparation method thereof
FR3084377B1 (en) * 2018-07-24 2021-10-15 Safran Ceram ELECTROPHORESIS COATING PROCESS OF A PART IN COMPOSITE MATERIAL BY AN ENVIRONMENTAL BARRIER

Also Published As

Publication number Publication date
FR3112143A1 (en) 2022-01-07
WO2022003273A1 (en) 2022-01-06
US20230250034A1 (en) 2023-08-10
CN115803306A (en) 2023-03-14

Similar Documents

Publication Publication Date Title
US10487686B2 (en) Solvent based slurry compositions for making environmental barrier coatings and environmental barrier coatings comprising the same
US9005717B2 (en) Methods for making environmental barrier coatings using sintering aids
EP2379471B1 (en) Environmental barrier for a refractory substrate containing silicon
US7638178B2 (en) Protective coating for ceramic components
EP2287135B1 (en) Solvent based environmental barrier coatings for high temperature ceramic components
US9121295B2 (en) Method for manufacturing a thermal-barrier protection and multilayer coating suitable for forming a thermal barrier
US9005716B2 (en) Method for making solvent based environmental barrier coatings using sintering aids
JP5721977B2 (en) Slurry composition for producing environmental resistant coating and environmental resistant coating comprising the same
CA2913974C (en) Environmental barrier for a refractory substrate containing silicon
EP4175929A1 (en) Method for manufacturing an environmental barrier
US20110027517A1 (en) Methods of improving surface roughness of an environmental barrier coating and components comprising environmental barrier coatings having improved surface roughness
US20210180190A1 (en) Sintered-bonded high temperature coatings for ceramic turbomachine components
JP6093105B2 (en) Method for producing environmentally resistant coating using sintering aid
JP7273810B2 (en) Components protected by environmental barriers
US20210189904A1 (en) Environmental barrier coating with porous bond coat layer
JP6039877B2 (en) Method for improving surface roughness of environmental coating and part having environmental coating with improved surface roughness
RU2754893C2 (en) Part containing substrate and external barrier
RU2719964C2 (en) Part containing coating for protection against cmas compounds
FR3112144A1 (en) Manufacturing process of an environmental barrier

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221227

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)