EP4173113A1 - Système de transfert de puissance sans fil à haute fréquence à haute puissance - Google Patents

Système de transfert de puissance sans fil à haute fréquence à haute puissance

Info

Publication number
EP4173113A1
EP4173113A1 EP21833645.1A EP21833645A EP4173113A1 EP 4173113 A1 EP4173113 A1 EP 4173113A1 EP 21833645 A EP21833645 A EP 21833645A EP 4173113 A1 EP4173113 A1 EP 4173113A1
Authority
EP
European Patent Office
Prior art keywords
wireless
power
wireless power
receiver
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21833645.1A
Other languages
German (de)
English (en)
Inventor
Alberto Peralta
Pavel Shostak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nucurrent Inc
Original Assignee
Nucurrent Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/914,405 external-priority patent/US11005308B1/en
Priority claimed from US16/914,403 external-priority patent/US11476724B2/en
Priority claimed from US16/914,406 external-priority patent/US11469626B2/en
Application filed by Nucurrent Inc filed Critical Nucurrent Inc
Publication of EP4173113A1 publication Critical patent/EP4173113A1/fr
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/60Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices

Definitions

  • the present disclosure generally relates to systems and methods for wireless transfer of electrical power and/or electrical data signals, and, more particularly, to high frequency wireless power transfer at elevated power levels, while maintaining communications fidelity.
  • Wireless connection systems are used in a variety of applications for the wireless transfer of electrical energy, electrical power, electromagnetic energy, electrical data signals, among other known wirelessly transmittable signals.
  • Such systems often use inductive wireless power transfer, which occurs when magnetic fields created by a transmitting element induce an electric field, and hence, an electric current, in a receiving element.
  • These transmitting and receiving elements will often take the form of coiled wires and/or antennas.
  • Transmission of one or more of electrical energy, electrical power, electromagnetic energy and/or electronic data signals from one of such coiled antennas to another generally, operates at an operating frequency and/or an operating frequency range.
  • the operating frequency may be selected for a variety of reasons, such as, but not limited to, power transfer characteristics, power level characteristics, self-resonant frequency restraints, design requirements, adherence to standards bodies’ required characteristics (e.g. electromagnetic interference (EMI) requirements, specific absorption rate (SAR) requirements, among other things), bill of materials (BOM), and/or form factor constraints, among other things.
  • EMI electromagnetic interference
  • SAR specific absorption rate
  • BOM bill of materials
  • self-resonating frequency generally refers to the resonant frequency of a passive component (e.g., an inductor) due to the parasitic characteristics of the component.
  • wireless power transfer related communications e.g., validation procedures, electronic characteristics data communications, voltage data, current data, device type data, among other contemplated data communications
  • other circuitry such as an optional Near Field Communications (NFC) antenna utilized to compliment the wireless power system and/or additional Bluetooth chipsets for data communications, among other known communications circuits and/or antennas.
  • NFC Near Field Communications
  • additional antennas and/or circuitry can give rise to several disadvantages. For instance, using additional antennas and/or circuitry can be inefficient and/or can increase the BOM of a wireless power system, which raises the cost for putting wireless power into an electronic device. Further, in some such systems, out of band communications caused by such additional antennas may result in interference, such as out of band cross-talk between such antennas. Further yet, inclusion of such additional antennas and/or circuitry can result in worsened EMI, as introduction of the additional system will cause greater harmonic distortion, in comparison to a system wherein both a wireless power signal and a data signal are within the same channel. Still further, inclusion of additional antennas and/or circuitry hardware, for communications, may increase the area within a device, for which the wireless power systems and/or components thereof reside, complicating a build of an end product.
  • legacy hardware and/or hardware based on legacy devices may be leveraged to implement both wireless power transfer and data transfer, either simultaneously or in an alternating manner.
  • current communications antennas and/or circuits for high frequency communications when leveraged for wireless power transfer, have much lower power level capabilities than lower frequency wireless power transfer systems, such as the Wireless Power Consortium’s Qi standard devices. Utilizing higher power levels in current high frequency circuits may result in damage to the legacy equipment.
  • wireless communications may be degraded when wireless power transfer exceeds low power levels (e.g., 300 mW transferred and below).
  • low power levels e.g. 300 mW transferred and below.
  • wireless power transfer may not be feasible.
  • Wireless transmission systems disclosed herein may include a damping circuit, which is configured for damping an AC wireless signal during transmission of the AC wireless signal and associated data signals.
  • the damping circuit may be configured to reduce rise and fall times during OOK signal transmission, such that the rate of the data signals may not only be compliant and/or legible but may also achieve faster data rates and/or enhanced data ranges, when compared to legacy systems.
  • Damping circuits of the present disclosure may include one or more of a damping diode, a damping capacitor, a damping resistor, or any combinations thereof for further enhancing signal characteristics and/or signal quality.
  • the damping resistor is in electrical series with the damping transistor 63 and has a resistance value (ohms) configured such that it dissipates at least some power from the power signal. Such dissipation may serve to accelerate rise and fall times in an amplitude shift keying signal, an OOK signal, and/or combinations thereof.
  • the value of the damping resistor is selected, configured, and/or designed such that the damping resistor dissipates the minimum amount of power to achieve the fastest rise and/or fall times in an in-band signal allowable and/or satisfy standards limitations for minimum rise and/or fall times; thereby achieving data fidelity at maximum efficiency (less power lost to resistance) as well as maintaining data fidelity when the system is unloaded and/or under lightest load conditions.
  • the damping capacitor may be configured to smooth out transition points in an in-band signal and limit overshoot and/or undershoot conditions in such a signal.
  • the diode is positioned such that a current cannot flow out of the damping circuit, when a damping transistor is in an off state.
  • the diode may prevent power efficiency loss in an AC power signal when the damping circuit is not active.
  • the wireless receiver systems disclosed herein utilize a voltage isolation circuit, which may have the capability to achieve proper data communications fidelity at greater receipt power levels at the load, when compared to other high frequency wireless power transmission systems.
  • the wireless receiver systems with the voltage isolation circuits, are capable of receiving power from the wireless transmission system that has an output power at levels over 1 W of power, whereas legacy high frequency systems may be limited to receipt from output levels of only less than 1 W of power.
  • the poller (receiver system) often utilizes a microprocessor from the NTAG family of microprocessors, which was initially designed for very low power data communications.
  • NTAG microprocessors without protection or isolation, may not adequately and/or efficiently receive wireless power signals at output levels over 1 W.
  • inventors of the present application have found, in experimental results, that when utilizing voltage isolation circuits as disclosed herein, the NTAG chip may be utilized and/or retrofitted for wireless power transfer and wireless communications, either independently or simultaneously.
  • the voltage isolation circuits disclosed herein may utilize inexpensive components (e.g., isolation capacitors) to modify functionality of legacy, inexpensive microprocessors (e.g., an NTAG family microprocessor), for new uses and/or improved functionality.
  • legacy, inexpensive microprocessors e.g., an NTAG family microprocessor
  • controllers may be used as the receiver controller 38 that may be more capable of receipt at higher voltage levels and/or voltage swings, such controllers may be cost prohibitive, in comparison to legacy controllers. Accordingly, the systems and methods herein allow for use of less costly components, for high power high frequency wireless power transfer.
  • a wireless power transfer system includes a wireless power transmission system and a wireless power receiver system.
  • the wireless power transmission system includes a transmitter antenna, a transmitter controller, and an amplifier.
  • the transmitter antenna is configured to couple with at least one other antenna and transmit alternating current (AC) wireless signals to the at least one antenna, the AC wireless signals including wireless power signals and wireless data signals.
  • the transmitter controller is configured to (i) provide a driving signal for driving the transmitter antenna based on an operating frequency for the wireless power transfer system and (ii) perform one or more of encoding the wireless data signals, decoding the wireless data signals, receiving the wireless data signals, or transmitting the wireless data signals.
  • the amplifier includes at least one transistor that is configured to receive the driving signal at a gate of the at least one transistor and invert a direct power (DC) input power signal to generate the AC wireless signal at the operating frequency.
  • the amplifier further includes a damping circuit that is configured to dampen the AC wireless signals during transmission of the wireless data signals, wherein the damping circuit includes at least a damping transistor that is configured to receive, from the transmitter controller, a damping signal for switching the transistor to control damping during transmission of the wireless data signals.
  • the wireless receiver system includes a receiver antenna, a power conditioning system, and a receiver controller. The receiver antenna is configured for coupling with the transmitter antenna and receiving the AC wireless signals from the transmitter antenna, the receiver antenna operating based on the operating frequency.
  • the power conditioning system is configured to (i) receive the wireless power signals, (ii) convert the wireless power signal from an AC wireless power signal to a DC wireless power signal, and (iii) provide the DC power signal to, at least, a load associated with the wireless power receiver system.
  • the receiver controller is configured to perform one or more of encoding the wireless data signals, decoding the wireless data signals, receiving the wireless data signals, or transmitting the wireless data signals.
  • the damping circuit further includes a damping resistor that is in electrical series with the damping transistor and is configured for dissipating at least some power from the power signal.
  • the damping circuit further includes a damping capacitor that is in electrical series with, at least, the damping transistor.
  • the damping circuit further includes a diode that is in electrical series with, at least, the damping transistor and is configured for preventing power efficiency loss in the wireless power signal when the damping circuit is not active.
  • the wireless power transmission system further includes a filter circuit including, at least, a filter capacitor and a filter inductor, wherein the filter circuit is configured based on a filter quality factor.
  • the filter quality factor (/FILTER) is defined as
  • a wireless power transfer system includes a wireless power transmission system and a wireless power receiver system.
  • the wireless power transmission system includes a transmitter antenna, a transmitter controller, and an amplifier.
  • the transmitter antenna is configured to couple with at least one other antenna and transmit alternating current (AC) wireless signals to the at least one antenna, the AC wireless signals including wireless power signals and wireless data signals.
  • the transmitter controller is configured to (i) provide a driving signal for driving the transmitter antenna based on an operating frequency for the wireless power transfer system and (ii) perform one or more of encoding the wireless data signals, decoding the wireless data signals, receiving the wireless data signals, or transmitting the wireless data signals.
  • the amplifier includes at least one transistor that is configured to receive the driving signal at a gate of the at least one transistor and invert a direct power (DC) input power signal to generate the AC wireless signal at the operating frequency.
  • the wireless receiver system includes a receiver antenna, a power conditioning system, and a receiver controller.
  • the receiver antenna is configured for coupling with the transmitter antenna and receiving the AC wireless signals from the transmitter antenna, the receiver antenna operating based on the operating frequency.
  • the power conditioning system is configured to (i) receive the wireless power signals, (ii) convert the wireless power signal from an AC wireless power signal to a DC wireless power signal, and (iii) provide the DC power signal to, at least, a load associated with the wireless power receiver system.
  • the receiver controller is configured to perform one or more of encoding the wireless data signals, decoding the wireless data signals, receiving the wireless data signals, or transmitting the wireless data signals.
  • the voltage isolation circuit includes at least two capacitors, wherein the at least two capacitors are in electrical parallel with respect to the controller capacitor.
  • the voltage isolation circuit is configured to (i) regulate the AC wireless power signal to have a voltage input range for input to the receiver controller and (ii) isolate a controller voltage at the receiver controller from a load voltage at the load associated with the wireless receiver system.
  • the wireless power receiver further includes a capacitor configured for scaling the AC wireless power signal at the controller voltage, as altered and received from the voltage isolation circuit.
  • the wireless power receiver further includes a shunt capacitor in electrical parallel with the receiver antenna.
  • a first capacitance (CISOl) of a first capacitor of the at least two capacitors and a second capacitance (CIS02) of a second capacitor of the at least two capacitors are configured such that: wherein CTOTAL is a total capacitance for the voltage isolation circuit, and wherein CTOTAL is a constant configured for the voltage input range for input to the controller.
  • the values for the first capacitance and the second capacitance are set such that: S02 — ⁇ TOTAL * (1 + ty) ⁇
  • t v is in a scaling factor in a range of about 3 to about 10.
  • the NFC-DC system includes a poller and a listener.
  • the listener includes a transmitter antenna, a transmitter controller, and an amplifier.
  • the transmitter antenna is configured to couple with at least one other antenna and transmit alternating current (AC) wireless signals to the at least one antenna, the AC wireless signals including wireless power signals and wireless data signals.
  • AC alternating current
  • the transmitter controller is configured to (i) provide a driving signal for driving the transmitter antenna based on an operating frequency for the wireless power transfer system and (ii) perform one or more of encoding the wireless data signals, decoding the wireless data signals, receiving the wireless data signals, or transmitting the wireless data signals.
  • the amplifier includes at least one transistor that is configured to receive the driving signal at a gate of the at least one transistor and invert a direct power (DC) input power signal to generate the AC wireless signal at the operating frequency.
  • the poller includes a receiver antenna, a power conditioning system, and a receiver controller.
  • the receiver antenna is configured for coupling with the transmitter antenna and receiving the AC wireless signals from the transmitter antenna, the receiver antenna operating based on the operating frequency.
  • the power conditioning system is configured to (i) receive the wireless power signals, (ii) convert the wireless power signal from an AC wireless power signal to a DC wireless power signal, and (iii) provide the DC power signal to, at least, a load associated with the wireless power receiver system.
  • the receiver controller is configured to perform one or more of encoding the wireless data signals, decoding the wireless data signals, receiving the wireless data signals, or transmitting the wireless data signals.
  • the operating frequency is in a range of about 13.553 MHz to about 13.567 MHz.
  • an output power of the wireless power signals are at a power greater than about 1 Watt.
  • the listener further includes a damping circuit configured for damping the wireless signal during transmission of the wireless data signals, the damping circuit including, at least, a damping transistor configured for receiving a damping signal from the controller, the damping signal configured for switching the transistor to control damping during transmission of the wireless data signals.
  • the listener further includes a filter circuit including, at least, a filter capacitor and a filter inductor, the filter circuit configured for optimization based on a filter quality factor, wherein the filter quality factor (YFILTER) is defined as [0036]
  • the poller further includes a voltage isolation circuit including at least two capacitors, the at least two capacitors in electrical series, with input to the receiver controller therebetween, and configured to regulate the AC wireless power signal to have a voltage input range for input to the controller, the voltage isolation circuit configured to isolate a controller voltage at the controller from a load voltage at a load associated with the poller.
  • a first capacitance (CISOl) of a first capacitor of the at least two capacitors of the voltage isolation circuit and a second capacitance (CIS02) of a second capacitor of the at least two capacitors of the voltage isolation circuit are configured such that: wherein CTOTAL is a total capacitance for the voltage isolation circuit, and wherein CTOTAL is a constant configured for the voltage input range for input to the controller.
  • a wireless power transmission system includes a transmitter antenna, a transmitter controller, and an amplifier.
  • the transmitter antenna is configured to couple with at least one other antenna and transmit alternating current (AC) wireless signals to the at least one antenna, the AC wireless signals including wireless power signals and wireless data signals.
  • the transmitter controller is configured to (i) provide a driving signal for driving the transmitter antenna based on an operating frequency for the wireless power transfer system and (ii) perform one or more of encoding the wireless data signals, decoding the wireless data signals, receiving the wireless data signals, or transmitting the wireless data signals.
  • the amplifier includes at least one transistor that is configured to receive the driving signal at a gate of the at least one transistor and invert a direct power (DC) input power signal to generate the AC wireless signal at the operating frequency.
  • the amplifier further includes a damping circuit that is configured to dampen the AC wireless signals during transmission of the wireless data signals, wherein the damping circuit includes at least a damping transistor that is configured to receive, from the transmitter controller, a damping signal for switching the transistor to control damping during transmission of the wireless data signals.
  • the damping circuit is in electrical parallel connection with a drain of the at least one transistor.
  • the wireless data signals are in-band signals of the wireless power signals and the damping of the wireless signals is configured to reduce one or both of rise and fall times in the wireless data signals, during in-band transmission of the wireless data signals.
  • the wireless data signals are in-band on-off-keying signals of the wireless power signal.
  • the damping signal is a substantially opposite signal of the wireless data signals.
  • the damping circuit further includes a damping resistor that is in electrical series with the damping transistor and is configured for dissipating at least some power from the power signal.
  • the damping circuit further includes a damping capacitor that is in electrical series with, at least, the damping transistor.
  • the damping circuit further includes a diode that is in electrical series with, at least, the damping transistor and is configured for preventing power efficiency loss in the wireless power signal when the damping circuit is not active.
  • the wireless transmission system further includes a choke inductor connected between the DC input power source and the transistor.
  • the controller provides the damping signal to the damping transistor via a programmable pin of the controller.
  • a circuit for a wireless power transmitter is disclosed.
  • the wireless power transmission system is configured for transmitting alternating current (AC) wireless signals to a wireless power receiving system, the wireless signals including, at least, wireless power signals and wireless data signals.
  • the circuit includes an amplifier and a filter circuit.
  • the amplifier includes at least one transistor that is configured to receive the driving signal at a gate of the at least one transistor and invert a direct power (DC) input power signal to generate the AC wireless signal at the operating frequency.
  • the amplifier further includes a damping circuit that is configured to dampen the AC wireless signals during transmission of the wireless data signals, wherein the damping circuit includes at least a damping transistor that is configured to receive, from the transmitter controller, a damping signal for switching the transistor to control damping during transmission of the wireless data signals.
  • the filter includes a filter capacitor and a filter inductor, the filter circuit configured for optimization based on a filter quality factor.
  • the filter quality factor (YFILTER) is defined as
  • the damping circuit further includes a damping resistor that is in electrical series with the damping transistor and is configured for dissipating at least some power from the power signal.
  • the damping circuit further includes a damping capacitor that is in electrical series with, at least, the damping transistor.
  • the damping circuit further includes a diode that is in electrical series with, at least, the damping transistor and is configured for preventing power efficiency loss in the wireless power signal when the damping circuit is not active.
  • a listener for a Near-Field Communications Direct Charge (NFC-DC) system includes a transmitter antenna, a transmitter controller, and an amplifier.
  • the transmitter antenna is configured to couple with at least one other antenna and transmit alternating current (AC) wireless signals to the at least one antenna, the AC wireless signals including wireless power signals and wireless data signals.
  • the transmitter controller is configured to (i) provide a driving signal for driving the transmitter antenna based on an operating frequency for the wireless power transfer system and (ii) perform one or more of encoding the wireless data signals, decoding the wireless data signals, receiving the wireless data signals, or transmitting the wireless data signals.
  • the amplifier includes at least one transistor that is configured to receive the driving signal at a gate of the at least one transistor and invert a direct power (DC) input power signal to generate the AC wireless signal at the operating frequency.
  • the amplifier further includes a damping circuit that is configured to dampen the AC wireless signals during transmission of the wireless data signals, wherein the damping circuit includes at least a damping transistor that is configured to receive, from the transmitter controller, a damping signal for switching the transistor to control damping during transmission of the wireless data signals.
  • the operating frequency is in a range of about 13.553 MHz to about 13.567 MHz.
  • an output power of the wireless power signals are at a power greater than about .3 W.
  • the damping circuit is configured to damp the wireless signal such that when the wireless power signals are transmitted at greater than 1 W of wireless power, the wireless data signals are transmitted in accordance with standards established by the NFC-DC Draft Standard.
  • a wireless receiver system in accordance with another aspect of the disclosure, includes a receiver antenna, a power conditioning system, and a receiver controller.
  • the receiver antenna is configured for coupling with the transmitter antenna and receiving the AC wireless signals from the transmitter antenna, the receiver antenna operating based on the operating frequency.
  • the power conditioning system is configured to (i) receive the wireless power signals, (ii) convert the wireless power signal from an AC wireless power signal to a DC wireless power signal, and (iii) provide the DC power signal to, at least, a load associated with the wireless power receiver system.
  • the receiver controller is configured to perform one or more of encoding the wireless data signals, decoding the wireless data signals, receiving the wireless data signals, or transmitting the wireless data signals.
  • the voltage isolation circuit includes at least two capacitors, wherein the at least two capacitors are in electrical parallel with respect to the controller capacitor.
  • the voltage isolation circuit is configured to (i) regulate the AC wireless power signal to have a voltage input range for input to the receiver controller and (ii) isolate a controller voltage at the receiver controller from a load voltage at the load associated with the wireless receiver system.
  • the wireless power receiver further includes a capacitor configured for scaling the AC wireless power signal at the controller voltage, as altered and received from the voltage isolation circuit.
  • the wireless power receiver further includes a shunt capacitor in electrical parallel with the receiver antenna.
  • the controller voltage is altered at a data pin of the controller.
  • a first capacitance (CISOl) of a first capacitor of the at least two capacitors and a second capacitance (CIS02) of a second capacitor of the at least two capacitors are configured such that: wherein CTOTAL is a total capacitance for the voltage isolation circuit, and wherein CTOTAL is a constant configured for the voltage input range for input to the controller.
  • the values for the first capacitance and the second capacitance are set such that: S02 — C TOTAL * (1 + tv) ⁇
  • t v is in a scaling factor in a range of about 3 to about 10.
  • a circuit for a wireless power receiver configured for receiving an alternating current (AC) wireless signal from a wireless power transmission system, the wireless signal including, at least, wireless power signals and wireless data signals.
  • the circuit includes a voltage isolation circuit and a controller capacitor.
  • the voltage isolation circuit includes a first capacitor and a second capacitor.
  • the controller capacitor is configured for scaling the AC wireless power at the controller voltage, as altered and received from the voltage isolation circuit, the controller capacitor in series electrical connection with a data input of a controller of the wireless power receiver.
  • the first and second capacitors of the voltage isolation circuit are configured to regulate the AC wireless power signals to have a voltage input range for input to the controller, the voltage isolation circuit configured to isolate the controller voltage at the controller from a load voltage at a load associated with the wireless receiver system.
  • the controller capacitor is configured for scaling the AC wireless power at the controller voltage as altered and received from the voltage isolation circuit.
  • the circuit further includes a shunt capacitor in electrical parallel with a receiver antenna of the wireless power receiver.
  • the wireless data signals are in-band on-off-keying signals of the wireless power signal.
  • a first capacitance (CISOl) of a first capacitor of the at least two capacitors and a second capacitance (CIS02) of a second capacitor of the at least two capacitors are configured such that: wherein CTOTAL is a total capacitance for the voltage isolation circuit, and wherein CTOTAL is a constant configured for the voltage input range for input to the controller.
  • the values for the first capacitance and the second capacitance are set such that: S02 — C TOTAL * (1 + tv) ⁇
  • t v is in a scaling factor in a range of about 3 to about 10.
  • the poller includes a receiver antenna, a power conditioning system, and a receiver controller.
  • the receiver antenna is configured for coupling with the transmitter antenna and receiving the AC wireless signals from the transmitter antenna, the receiver antenna operating based on the operating frequency.
  • the power conditioning system is configured to (i) receive the wireless power signals, (ii) convert the wireless power signal from an AC wireless power signal to a DC wireless power signal, and (iii) provide the DC power signal to, at least, a load associated with the wireless power receiver system.
  • the receiver controller is configured to perform one or more of encoding the wireless data signals, decoding the wireless data signals, receiving the wireless data signals, or transmitting the wireless data signals.
  • the operating frequency is in a range of about 13.553 MHz to about 13.567 MHz.
  • the received power of the wireless power signals are at a power greater than about 300 mW.
  • a first capacitance (CISOl) of a first capacitor of the at least two capacitors and a second capacitance (CIS02) of a second capacitor of the at least two capacitors are configured such that: wherein CTOTAL is a total capacitance for the voltage isolation circuit, and wherein CTOTAL is a constant configured for the voltage input range for input to the controller.
  • the values for the first capacitance and the second capacitance are set such that:
  • the controller is an NTAG controller and the acceptable voltage input range is an acceptable voltage input range for the NTAG controller.
  • the poller further includes a voltage isolation circuit including at least two capacitors, the at least two capacitors in electrical series, with input to the receiver controller therebetween, and configured to regulate the AC wireless power signal to have a voltage input range for input to the controller, the voltage isolation circuit configured to isolate a controller voltage at the controller from a load voltage at a load associated with the poller.
  • a first capacitance (CISOl) of a first capacitor of the at least two capacitors of the voltage isolation circuit and a second capacitance (CIS02) of a second capacitor of the at least two capacitors of the voltage isolation circuit are configured such that: wherein CTOTAL is a total capacitance for the voltage isolation circuit, and wherein CTOTAL is a constant configured for the voltage input range for input to the controller.
  • FIG. 1 is a block diagram of an embodiment of a system for wirelessly transferring one or more of electrical energy, electrical power signals, electrical power, electromagnetic energy, electronic data, and combinations thereof, in accordance with the present disclosure.
  • FIG. 2 is a block diagram illustrating components of a wireless transmission system of the system of FIG. 1 and a wireless receiver system of the system of FIG. 1, in accordance with FIG. 1 and the present disclosure.
  • FIG. 3 is a block diagram illustrating components of a transmission control system of the wireless transmission system of FIG. 2, in accordance with FIG. 1, FIG. 2, and the present disclosure.
  • FIG. 4 is a block diagram illustrating components of a sensing system of the transmission control system of FIG. 3, in accordance with FIGS. 1-3 and the present disclosure.
  • FIG. 5 is a block diagram illustrating components of a power conditioning system of the wireless transmission system of FIG. 2, in accordance with FIG. 1, FIG. 2, and the present disclosure.
  • FIG. 6 is a block diagram of elements of the wireless transmission system of FIGS. 1-5, further illustrating components of an amplifier of the power conditioning system of FIG. 5 and signal characteristics for wireless power transmission, in accordance with FIGS. 1-5 and the present disclosure.
  • FIG. 7 is an electrical schematic diagram of elements of the wireless transmission system of FIGS. 1-6, further illustrating components of an amplifier of the power conditioning system of FIGS. 5-6, in accordance with FIGS. 1-6 and the present disclosure.
  • FIG. 8 is an exemplary plot illustrating rise and fall of “on” and “off’ conditions when a signal has in-band communications via on-off keying.
  • FIG. 9 is a block diagram illustrating components of a receiver control system and a receiver power conditioning system of the wireless receiver system of FIG. 2, in accordance with FIG. 1, FIG. 2, and the present disclosure.
  • FIG. 10 is a block diagram of elements of the wireless receiver system of FIGS. 1-2 and 9, further illustrating components of an amplifier of the power conditioning system of FIG.
  • FIG. 11 is an electrical schematic diagram of elements of the wireless receiver system of FIGS. 1-2 and 9-10, further illustrating components of an amplifier of the power conditioning system of FIGS. 9-10, in accordance with FIGS. 1-2, 9-10 and the present disclosure.
  • FIG. 12 is a top view of a non-limiting, exemplary antenna, for use as one or both of a transmission antenna and a receiver antenna of the system of FIGS. 1-7, 9-11 and/or any other systems, methods, or apparatus disclosed herein, in accordance with the present disclosure.
  • FIG. 13A is an isometric view of exemplary eyewear, within which the wireless power transfer systems disclosed herein may be implemented for wireless power transmission to the eyewear, in accordance with FIGS. 1-7, 9-12, and the present disclosure.
  • FIG. 13B is an isometric view of the exemplary eyewear of FIG. 13 A and an associated case for the eyewear, within which the wireless power transfer systems disclosed herein may be implemented for wireless power transmission to the eyewear, in accordance with FIGS. 1-7, 9-12, 13A, and the present disclosure.
  • FIG. 14A is an isometric view of an exemplary stylus and an associated stylus charger, within which the wireless power transfer systems disclosed herein may be implemented for wireless power transmission from the charger to the stylus, in accordance with FIGS. 1-7, 9- 12, and the present disclosure.
  • FIG. 14B is an isometric view of another exemplary stylus and an associated stylus charging surface, within which the wireless power transfer systems disclosed herein may be implemented for wireless power transmission from the charger to the stylus, in accordance with FIGS. 1-7, 9-12, and the present disclosure.
  • FIG. 15A is an isometric view of a wearable device and an associated charger for the wearable device, within which the wireless power transfer systems disclosed herein may be implemented for wireless power transmission from the charger to the wearable device, in accordance with FIGS. 1-7, 9-12, and the present disclosure.
  • FIG. 15B is a side view of the wearable device and charger of FIG. 15, in accordance with FIGS. 1-7, 9-12, 15A, and the present disclosure.
  • FIG. 16A is a side view, with cross-sectional denotations, of exemplary earbuds and an associated charging case, within which the wireless power transfer systems disclosed herein may be implemented for wireless power transmission from the charging case to the earbuds, in accordance with FIGS. 1-7, 9-12, and the present disclosure.
  • FIG. 16B is a side view of alternative exemplary earbuds and an associated charging surface, within which the wireless power transfer systems disclosed may be implemented for wireless power transmission from the charging surface to the earbuds, in accordance with FIGS. 1-7, 9-12, and the present disclosure.
  • FIG. 17 is an exemplary method for designing a system for wireless transmission of one or more of electrical energy, electrical power signals, electrical power, electrical electromagnetic energy, electronic data, and combinations thereof, in accordance with FIGS. 1- 7, 9-16, and the present disclosure.
  • FIG. 18 is a flow chart for an exemplary method for designing a wireless transmission system for the system of FIG. 17, in accordance with FIGS. 1-7, 9-17, and the present disclosure.
  • FIG. 19 is a flow chart for an exemplary method for designing a wireless receiver system for the system of FIG. 17, in accordance with FIGS. 1-7, 9-18 and the present disclosure.
  • FIG. 20 is a flow chart for an exemplary method for manufacturing a system for wireless transmission of one or more of electrical energy, electrical power signals, electrical power, electrical electromagnetic energy, electronic data, and combinations thereof, in accordance with FIGS. 1-7, 9-16 and the present disclosure.
  • FIG. 21 is a flow chart for an exemplary method for manufacturing a wireless transmission system for the system of FIG. 20, in accordance with FIGS. 1-7, 9-16, 20, and the present disclosure.
  • FIG. 22 is a flow chart for an exemplary method for designing a wireless receiver system for the system of FIG. 20, in accordance with FIGS. 1-7, 9-16, 20-21 and the present disclosure.
  • the wireless power transfer system 10 provides for the wireless transmission of electrical signals, such as, but not limited to, electrical energy, electrical power, electrical power signals, electromagnetic energy, and electronically transmittable data (“electronic data”).
  • electrical power signal refers to an electrical signal transmitted specifically to provide meaningful electrical energy for charging and/or directly powering a load
  • electroactive data signal refers to an electrical signal that is utilized to convey data across a medium.
  • the wireless power transfer system 10 provides for the wireless transmission of electrical signals via near field magnetic coupling.
  • the wireless power transfer system 10 includes a wireless transmission system 20 and a wireless receiver system 30.
  • the wireless receiver system is configured to receive electrical signals from, at least, the wireless transmission system 20.
  • the wireless transmission system 20 may be referenced as a “listener” of the NFC-DC wireless transfer system 20 and the wireless receiver system 30 may be referenced as a “poller” of the NFC-DC wireless transfer system.
  • the wireless transmission system 20 and wireless receiver system 30 may be configured to transmit electrical signals across, at least, a separation distance or gap 17.
  • a separation distance or gap such as the gap 17, in the context of a wireless power transfer system, such as the system 10, does not include a physical connection, such as a wired connection.
  • the combination of the wireless transmission system 20 and the wireless receiver system 30 create an electrical connection without the need for a physical connection.
  • the term “electrical connection” refers to any facilitation of a transfer of an electrical current, voltage, and/or power from a first location, device, component, and/or source to a second location, device, component, and/or destination.
  • An “electrical connection” may be a physical connection, such as, but not limited to, a wire, a trace, a via, among other physical electrical connections, connecting a first location, device, component, and/or source to a second location, device, component, and/or destination.
  • an “electrical connection” may be a wireless power and/or data transfer, such as, but not limited to, magnetic, electromagnetic, resonant, and/or inductive field, among other wireless power and/or data transfers, connecting a first location, device, component, and/or source to a second location, device, component, and/or destination.
  • the gap 17 may also be referenced as a “Z-Distance,” because, if one considers an antenna 21, 31 each to be disposed substantially along respective common X-Y planes, then the distance separating the antennas 21, 31 is the gap in a “Z” or “depth” direction.
  • flexible and/or non-planar coils are certainly contemplated by embodiments of the present disclosure and, thus, it is contemplated that the gap 17 may not be uniform, across an envelope of connection distances between the antennas 21, 31. It is contemplated that various tunings, configurations, and/or other parameters may alter the possible maximum distance of the gap 17, such that electrical transmission from the wireless transmission system 20 to the wireless receiver system 30 remains possible.
  • the wireless power transfer system 10 operates when the wireless transmission system 20 and the wireless receiver system 30 are coupled.
  • the terms “couples,” “coupled,” and “coupling” generally refer to magnetic field coupling, which occurs when a transmitter and/or any components thereof and a receiver and/or any components thereof are coupled to each other through a magnetic field.
  • Such coupling may include coupling, represented by a coupling coefficient (k), that is at least sufficient for an induced electrical power signal, from a transmitter, to be harnessed by a receiver.
  • Coupling of the wireless transmission system 20 and the wireless receiver system 30, in the system 10 may be represented by a resonant coupling coefficient of the system 10 and, for the purposes of wireless power transfer, the coupling coefficient for the system 10 may be in the range of about 0.01 and 0.9.
  • the wireless transmission system 20 may be associated with a host device 11, which may receive power from an input power source 12.
  • the host device 11 may be any electrically operated device, circuit board, electronic assembly, dedicated charging device, or any other contemplated electronic device.
  • Example host devices 11, with which the wireless transmission system 20 may be associated therewith include, but are not limited to including, a device that includes an integrated circuit, cases for wearable electronic devices, receptacles for electronic devices, a portable computing device, clothing configured with electronics, storage medium for electronic devices, charging apparatus for one or multiple electronic devices, dedicated electrical charging devices, activity or sport related equipment, goods, and/or data collection devices, among other contemplated electronic devices.
  • the input power source 12 may be or may include one or more electrical storage devices, such as an electrochemical cell, a battery pack, and/or a capacitor, among other storage devices.
  • the input power source 12 may be any electrical input source (e.g., any alternating current (AC) or direct current (DC) delivery port) and may include connection apparatus from said electrical input source to the wireless transmission system 20 (e.g., transformers, regulators, conductive conduits, traces, wires, or equipment, goods, computer, camera, mobile phone, and/or other electrical device connection ports and/or adaptors, such as but not limited to USB ports and/or adaptors, among other contemplated electrical components).
  • AC alternating current
  • DC direct current
  • the transmitter antenna 21 is configured to wirelessly transmit the electrical signals conditioned and modified for wireless transmission by the wireless transmission system 20 via near-field magnetic coupling (NFMC).
  • NFMC near-field magnetic coupling
  • Near-field magnetic coupling enables the transfer of signals wirelessly through magnetic induction between the transmitter antenna 21 and a receiving antenna 31 of, or associated with, the wireless receiver system 30.
  • Near-field magnetic coupling may be and/or be referred to as “inductive coupling,” which, as used herein, is a wireless power transmission technique that utilizes an alternating electromagnetic field to transfer electrical energy between two antennas.
  • Such inductive coupling is the near field wireless transmission of magnetic energy between two magnetically coupled coils that are tuned to resonate at a similar frequency. Accordingly, such near-field magnetic coupling may enable efficient wireless power transmission via resonant transmission of confined magnetic fields. Further, such near-field magnetic coupling may provide connection via “mutual inductance,” which, as defined herein is the production of an electromotive force in a circuit by a change in current in a second circuit magnetically coupled to the first.
  • the inductor coils of either the transmitter antenna 21 or the receiver antenna 31 are strategically positioned to facilitate reception and/or transmission of wirelessly transferred electrical signals through near field magnetic induction.
  • Antenna operating frequencies may comprise relatively high operating frequency ranges, examples of which may include, but are not limited to, 6.78 MHz (e.g., in accordance with the Rezence and/or Airfuel interface standard and/or any other proprietary interface standard operating at a frequency of 6.78 MHz), 13.56 MHz (e.g., in accordance with the NFC standard, defined by ISO/IEC standard 18092), 27 MHz, and/or an operating frequency of another proprietary operating mode.
  • the operating frequencies of the antennas 21, 31 may be operating frequencies designated by the International Telecommunications Union (ITU) in the Industrial, Scientific, and Medical (ISM) frequency bands, including not limited to 6.78 MHz, 13.56 MHz, and 27 MHz, which are designated for use in wireless power transfer.
  • ITU International Telecommunications Union
  • ISM Industrial, Scientific, and Medical
  • the operating frequency may be in a range of about 13.553 MHz to about 13.567 MHz.
  • the transmitting antenna and the receiving antenna of the present disclosure may be configured to transmit and/or receive electrical power having a magnitude that ranges from about 10 milliwatts (mW) to about 500 watts (W).
  • the inductor coil of the transmitting antenna 21 is configured to resonate at a transmitting antenna resonant frequency or within a transmitting antenna resonant frequency band.
  • a “resonant frequency” or “resonant frequency band” refers a frequency or frequencies wherein amplitude response of the antenna is at a relative maximum, or, additionally or alternatively, the frequency or frequency band where the capacitive reactance has a magnitude substantially similar to the magnitude of the inductive reactance.
  • the transmitting antenna resonant frequency is at a high frequency, as known to those in the art of wireless power transfer.
  • the wireless receiver system 30 may be associated with at least one electronic device 14, wherein the electronic device 14 may be any device that requires electrical power for any function and/or for power storage (e.g., via a battery and/or capacitor). Additionally, the electronic device 14 may be any device capable of receipt of electronically transmissible data.
  • the device may be, but is not limited to being, a handheld computing device, a mobile device, a portable appliance, an integrated circuit, an identifiable tag, a kitchen utility device, an electronic tool, an electric vehicle, a game console, a robotic device, a wearable electronic device (e.g., an electronic watch, electronically modified glasses, altered-reality (AR) glasses, virtual reality (VR) glasses, among other things), a portable scanning device, a portable identifying device, a sporting good, an embedded sensor, an Internet of Things (IoT) sensor, IoT enabled clothing, IoT enabled recreational equipment, industrial equipment, medical equipment, a medical device a tablet computing device, a portable control device, a remote controller for an electronic device, a gaming controller, among other things.
  • a handheld computing device e.g., a mobile device, a portable appliance, an integrated circuit, an identifiable tag, a kitchen utility device, an electronic tool, an electric vehicle, a game console, a robotic device, a wearable electronic device (e.g., an
  • arrow-ended lines are utilized to illustrate transferrable and/or communicative signals and various patterns are used to illustrate electrical signals that are intended for power transmission and electrical signals that are intended for the transmission of data and/or control instructions.
  • Solid lines indicate signal transmission of electrical energy over a physical and/or wireless power transfer, in the form of power signals that are, ultimately, utilized in wireless power transmission from the wireless transmission system 20 to the wireless receiver system 30.
  • dotted lines are utilized to illustrate electronically transmittable data signals, which ultimately may be wirelessly transmitted from the wireless transmission system 20 to the wireless receiver system 30.
  • the systems and methods herein illustrate the transmission of wirelessly transmitted energy, wireless power signals, wirelessly transmitted power, wirelessly transmitted electromagnetic energy, and/or electronically transmittable data
  • the systems, methods, and apparatus disclosed herein may be utilized in the transmission of only one signal, various combinations of two signals, or more than two signals and, further, it is contemplated that the systems, method, and apparatus disclosed herein may be utilized for wireless transmission of other electrical signals in addition to or uniquely in combination with one or more of the above mentioned signals.
  • the signal paths of solid or dotted lines may represent a functional signal path, whereas, in practical application, the actual signal is routed through additional components en route to its indicated destination.
  • a data signal routes from a communications apparatus to another communications apparatus; however, in practical application, the data signal may be routed through an amplifier, then through a transmission antenna, to a receiver antenna, where, on the receiver end, the data signal is decoded by a respective communications device of the receiver.
  • the wireless connection system 10 is illustrated as a block diagram including example sub-systems of both the wireless transmission system 20 and the wireless receiver system 30.
  • the wireless transmission system 20 may include, at least, a power conditioning system 40, a transmission control system 26, a transmission tuning system 24, and the transmission antenna 21.
  • a first portion of the electrical energy input from the input power source 12 is configured to electrically power components of the wireless transmission system 20 such as, but not limited to, the transmission control system 26.
  • a second portion of the electrical energy input from the input power source 12 is conditioned and/or modified for wireless power transmission, to the wireless receiver system 30, via the transmission antenna 21. Accordingly, the second portion of the input energy is modified and/or conditioned by the power conditioning system 40.
  • first and second portions of the input electrical energy may be modified, conditioned, altered, and/or otherwise changed prior to receipt by the power conditioning system 40 and/or transmission control system 26, by further contemplated subsystems (e.g., a voltage regulator, a current regulator, switching systems, fault systems, safety regulators, among other things).
  • subsystems e.g., a voltage regulator, a current regulator, switching systems, fault systems, safety regulators, among other things.
  • the transmission control system 26 may include a sensing system 50, a transmission controller 28, a communications system 29, a driver 48, and a memory 27.
  • the transmission controller 28 may be any electronic controller or computing system that includes, at least, a processor which performs operations, executes control algorithms, stores data, retrieves data, gathers data, controls and/or provides communication with other components and/or subsystems associated with the wireless transmission system 20, and/or performs any other computing or controlling task desired.
  • the transmission controller 28 may be a single controller or may include more than one controller disposed to control various functions and/or features of the wireless transmission system 20. Functionality of the transmission controller 28 may be implemented in hardware and/or software and may rely on one or more data maps relating to the operation of the wireless transmission system 20. To that end, the transmission controller 28 may be operatively associated with the memory 27.
  • the memory may include one or more of internal memory, external memory, and/or remote memory (e.g., a database and/or server operatively connected to the transmission controller 28 via a network, such as, but not limited to, the Internet).
  • the internal memory and/or external memory may include, but are not limited to including, one or more of a read only memory (ROM), including programmable read-only memory (PROM), erasable programmable read-only memory (EPROM or sometimes but rarely labelled EROM), electrically erasable programmable read-only memory (EEPROM), random access memory (RAM), including dynamic RAM (DRAM), static RAM (SRAM), synchronous dynamic RAM (SDRAM), single data rate synchronous dynamic RAM (SDR SDRAM), double data rate synchronous dynamic RAM (DDR SDRAM, DDR2, DDR3, DDR4), and graphics double data rate synchronous dynamic RAM (GDDR SDRAM, GDDR2, GDDR3, GDDR4, GDDR5, a flash memory, a portable memory, and the like.
  • ROM read
  • transmission control system 26 While particular elements of the transmission control system 26 are illustrated as independent components and/or circuits (e.g., the driver 48, the memory 27, the communications system 29, the sensing system 50, among other contemplated elements) of the transmission control system 26, such components may be integrated with the transmission controller 28.
  • the transmission controller 28 may be an integrated circuit configured to include functional elements of one or both of the transmission controller 28 and the wireless transmission system 20, generally.
  • the transmission controller 28 is in operative association, for the purposes of data transmission, receipt, and/or communication, with, at least, the memory 27, the communications system 29, the power conditioning system 40, the driver 48, and the sensing system 50.
  • the driver 48 may be implemented to control, at least in part, the operation of the power conditioning system 40.
  • the driver 48 may receive instructions from the transmission controller 28 to generate and/or output a generated pulse width modulation (PWM) signal to the power conditioning system 40.
  • PWM signal may be configured to drive the power conditioning system 40 to output electrical power as an alternating current signal, having an operating frequency defined by the PWM signal.
  • PWM signal may be configured to generate a duty cycle for the AC power signal output by the power conditioning system 40.
  • the duty cycle may be configured to be about 50% of a given period of the AC power signal.
  • the sensing system may include one or more sensors, wherein each sensor may be operatively associated with one or more components of the wireless transmission system 20 and configured to provide information and/or data.
  • the term “sensor” is used in its broadest interpretation to define one or more components operatively associated with the wireless transmission system 20 that operate to sense functions, conditions, electrical characteristics, operations, and/or operating characteristics of one or more of the wireless transmission system 20, the wireless receiving system 30, the input power source 12, the host device 11, the transmission antenna 21, the receiver antenna 31, along with any other components and/or subcomponents thereof.
  • the sensing system 50 may include, but is not limited to including, a thermal sensing system 52, an object sensing system 54, a receiver sensing system 56, and/or any other sensor(s) 58.
  • a condition-based maintenance sensing system a performance optimization sensing system, a state-of-charge sensing system, a temperature management sensing system, a component heating sensing system, an IoT sensing system, an energy and/or power management sensing system, an impact detection sensing system, an electrical status sensing system, a speed detection sensing system, a device health sensing system, among others.
  • the object sensing system 54 may be a foreign object detection (FOD) system.
  • FOD foreign object detection
  • Each of the thermal sensing system 52, the object sensing system 54, the receiver sensing system 56 and/or the other sensor(s) 58, including the optional additional or alternative systems, are operatively and/or communicatively connected to the transmission controller 28.
  • the thermal sensing system 52 is configured to monitor ambient and/or component temperatures within the wireless transmission system 20 or other elements nearby the wireless transmission system 20.
  • the thermal sensing system 52 may be configured to detect a temperature within the wireless transmission system 20 and, if the detected temperature exceeds a threshold temperature, the transmission controller 28 prevents the wireless transmission system 20 from operating.
  • a threshold temperature may be configured for safety considerations, operational considerations, efficiency considerations, and/or any combinations thereof.
  • the transmission controller 28 determines that the temperature within the wireless transmission system 20 has increased from an acceptable operating temperature to an undesired operating temperature (e.g., in a non limiting example, the internal temperature increasing from about 20° Celsius (C) to about 50°C, the transmission controller 28 prevents the operation of the wireless transmission system 20 and/or reduces levels of power output from the wireless transmission system 20.
  • the thermal sensing system 52 may include one or more of a thermocouple, a thermistor, a negative temperature coefficient (NTC) resistor, a resistance temperature detector (RTD), and/or any combinations thereof.
  • the transmission sensing system 50 may include the object sensing system 54.
  • the object sensing system 54 may be configured to detect one or more of the wireless receiver system 30 and/or the receiver antenna 31, thus indicating to the transmission controller 28 that the receiver system 30 is proximate to the wireless transmission system 20. Additionally or alternatively, the object sensing system 54 may be configured to detect presence of unwanted objects in contact with or proximate to the wireless transmission system 20. In some examples, the object sensing system 54 is configured to detect the presence of an undesired object. In some such examples, if the transmission controller 28, via information provided by the object sensing system 54, detects the presence of an undesired object, then the transmission controller 28 prevents or otherwise modifies operation of the wireless transmission system 20. In some examples, the object sensing system 54 utilizes an impedance change detection scheme, in which the transmission controller 28 analyzes a change in electrical impedance observed by the transmission antenna 20 against a known, acceptable electrical impedance value or range of electrical impedance values.
  • the object sensing system 54 may utilize a quality factor (Q) change detection scheme, in which the transmission controller 28 analyzes a change from a known quality factor value or range of quality factor values of the object being detected, such as the receiver antenna 31.
  • Q quality factor
  • the “quality factor” or “Q” of an inductor can be defined as (frequency (Hz) x inductance (H))/resistance (ohms), where frequency is the operational frequency of the circuit, inductance is the inductance output of the inductor and resistance is the combination of the radiative and reactive resistances that are internal to the inductor.
  • the object sensing system 54 may include one or more of an optical sensor, an electro-optical sensor, a Hall effect sensor, a proximity sensor, and/or any combinations thereof.
  • the receiver sensing system 56 is any sensor, circuit, and/or combinations thereof configured to detect presence of any wireless receiving system that may be couplable with the wireless transmission system 20.
  • the receiver sensing system 56 and the object sensing system 54 may be combined, may share components, and/or may be embodied by one or more common components.
  • wireless transmission of electrical energy, electrical power, electromagnetic energy, and/or data by the wireless transmission system 20 to said wireless receiving system is enabled.
  • continued wireless transmission of electrical energy, electrical power, electromagnetic energy, and/or data is prevented from occurring.
  • the receiver sensing system 56 may include one or more sensors and/or may be operatively associated with one or more sensors that are configured to analyze electrical characteristics within an environment of or proximate to the wireless transmission system 20 and, based on the electrical characteristics, determine presence of a wireless receiver system 30.
  • FIG. 5 a block diagram illustrating an embodiment of the power conditioning system 40 is illustrated.
  • electrical power is received, generally, as a DC power source, via the input power source 12 itself or an intervening power converter, converting an AC source to a DC source (not shown).
  • a voltage regulator 46 receives the electrical power from the input power source 12 and is configured to provide electrical power for transmission by the antenna 21 and provide electrical power for powering components of the wireless transmission system 21.
  • the voltage regulator 46 is configured to convert the received electrical power into at least two electrical power signals, each at a proper voltage for operation of the respective downstream components: a first electrical power signal to electrically power any components of the wireless transmission system 20 and a second portion conditioned and modified for wireless transmission to the wireless receiver system 30.
  • a first portion is transmitted to, at least, the sensing system 50, the transmission controller 28, and the communications system 29; however, the first portion is not limited to transmission to just these components and can be transmitted to any electrical components of the wireless transmission system 20.
  • the second portion of the electrical power is provided to an amplifier 42 of the power conditioning system 40, which is configured to condition the electrical power for wireless transmission by the antenna 21.
  • the amplifier may function as an invertor, which receives an input DC power signal from the voltage regulator 46 and generates an AC as output, based, at least in part, on PWM input from the transmission control system 26.
  • the amplifier 42 may be or include, for example, a power stage invertor, such as a dual field effect transistor power stage invertor or a quadruple field effect transistor power stage invertor.
  • the use of the amplifier 42 within the power conditioning system 40 and, in turn, the wireless transmission system 20 enables wireless transmission of electrical signals having much greater amplitudes than if transmitted without such an amplifier.
  • the addition of the amplifier 42 may enable the wireless transmission system 20 to transmit electrical energy as an electrical power signal having electrical power from about 10 mW to about 500 W.
  • the amplifier 42 may be or may include one or more class-E power amplifiers.
  • Class-E power amplifiers are efficiently tuned switching power amplifiers designed for use at high frequencies (e.g., frequencies from about 1 MHz to about 1 GHz).
  • a class-E amplifier employs a single pole switching element and a tuned reactive network between the switch and an output load (e.g., the antenna 21).
  • Class E amplifiers may achieve high efficiency at high frequencies by only operating the switching element at points of zero current (e.g., on-to-off switching) or zero voltage (off to on switching).
  • the amplifier 42 is certainly not limited to being a class-E power amplifier and may be or may include one or more of a class D amplifier, a class EF amplifier, an H invertor amplifier, and/or a push-pull invertor, among other amplifiers that could be included as part of the amplifier 42.
  • FIGS. 6 and 7 the wireless transmission system 20 is illustrated, further detailing elements of the power conditioning system 40, the amplifier 42, the tuning system 24, among other things.
  • the block diagram of the wireless transmission system 20 illustrates one or more electrical signals and the conditioning of such signals, altering of such signals, transforming of such signals, inverting of such signals, amplification of such signals, and combinations thereof.
  • DC power signals are illustrated with heavily bolded lines, such that the lines are significantly thicker than other solid lines in FIG. 6 and other figures of the instant application, AC signals are illustrated as substantially sinusoidal wave forms with a thickness significantly less bolded than that of the DC power signal bolding, and data signals are represented as dotted lines.
  • FIG. 7 illustrates sample electrical components for elements of the wireless transmission system, and subcomponents thereof, in a simplified form. Note that FIG. 7 may represent one branch or sub section of a schematic for the wireless transmission system 20 and/or components of the wireless transmission system 20 may be omitted from the schematic illustrated in FIG. 7 for clarity.
  • the input power source 11 provides an input direct current voltage (VDC), which may have its voltage level altered by the voltage regulator 46, prior to conditioning at the amplifier 42.
  • VDC direct current voltage
  • the amplifier 42 may include a choke inductor LCHOKE, which may be utilized to block radio frequency interference in VDC, while allowing the DC power signal of VDC to continue towards an amplifier transistor 48 of the amplifier 42.
  • LCHOKE may be configured as any suitable choke inductor known in the art.
  • the amplifier 48 is configured to alter and/or invert VDC to generate an AC wireless signal VAC, which, as discussed in more detail below, may be configured to carry one or both of an inbound and outbound data signal (denoted as “Data” in FIG. 6).
  • the amplifier transistor 48 may be any switching transistor known in the art that is capable of inverting, converting, and/or conditioning a DC power signal into an AC power signal, such as, but not limited to, a field- effect transistor (FET), gallium nitride (GaN) FETS, bipolar junction transistor (BJT), and/or wide-bandgap (WBG) semiconductor transistor, among other known switching transistors.
  • FET field- effect transistor
  • GaN gallium nitride
  • BJT bipolar junction transistor
  • WBG wide-bandgap
  • the amplifier transistor 48 is configured to receive a driving signal (denoted as “PWM” in FIG. 6) from at a gate of the amplifier transistor 48 (denoted as “G” in FIG. 6) and invert the DC signal VDC to generate the AC wireless signal at an operating frequency and/or an operating frequency band for the wireless power transmission system 20.
  • the driving signal may be a PWM signal configured for such inversion at the operating frequency and/or operating frequency band for the wireless power transmission system 20.
  • the driving signal is generated and output by the transmission control system 26 and/or the transmission controller 28 therein, as discussed and disclosed above.
  • the transmission controller 26, 28 is configured to provide the driving signal and configured to perform one or more of encoding wireless data signals (denoted as “Data” in FIG. 6), decoding the wireless data signals (denoted as “Data” in FIG. 6) and any combinations thereof.
  • the electrical data signals may be in band signals of the AC wireless power signal.
  • such in-band signals may be on-off-keying (OOK) signals in-band of the AC wireless power signals.
  • Type-A communications are a form of OOK, wherein the data signal is on-off-keyed in a carrier AC wireless power signal operating at an operating frequency in a range of about 13.553 MHz to about 13.567 MHz.
  • the power, current, impedance, phase, and/or voltage levels of an AC power signal are changed beyond the levels used in current and/or legacy hardware for high frequency wireless power transfer (over about 500 mW transmitted), such legacy hardware may not be able to properly encode and/or decode in-band data signals with the required fidelity for communications functions.
  • Such higher power in an AC output power signal may cause signal degradation due to increasing rise times for an OOK rise, increasing fall time for an OOK fall, overshooting the required voltage in an OOK rise, and/or undershooting the voltage in an OOK fall, among other potential degradations to the signal due to legacy hardware being ill equipped for higher power, high frequency wireless power transfer.
  • the amplifier 42 to be designed in a way that limits and/or substantially removes rise and fall times, overshoots, undershoots, and/or other signal deficiencies from an in-band data signal during wireless power transfer. This ability to limit and/or substantially remove such deficiencies allows for the systems of the instant application to provide higher power wireless power transfer in high frequency wireless power transmission systems.
  • FIG. 8 illustrates a plot for a fall and rise of an OOK in-band signal.
  • the fall time (ti) is shown as the time between when the signal is at 90% voltage (VV) of the intended full voltage (Vi) and falls to about 5% voltage (V2) of Vi.
  • the rise time (t3) is shown as the time between when the signal ends being at V2 and rises to about VT
  • Such rise and fall times may be read by a receiving antenna of the signal, and an applicable data communications protocol may include limits on rise and fall times, such that data is non- compliant and/or illegible by a receiver if rise and/or fall times exceed certain bounds.
  • the amplifier 42 includes a damping circuit 60.
  • the damping circuit 60 is configured for damping the AC wireless signal during transmission of the AC wireless signal and associated data signals.
  • the damping circuit 60 may be configured to reduce rise and fall times during OOK signal transmission, such that the rate of the data signals may not only be compliant and/or legible, but may also achieve faster data rates and/or enhanced data ranges, when compared to legacy systems.
  • the damping circuit includes, at least, a damping transistor 63, which is configured for receiving a damping signal (Vdamp) from the transmission controller 62.
  • the damping signal is configured for switching the damping transistor (on/off) to control damping of the AC wireless signal during the transmission and/or receipt of wireless data signals.
  • Such transmission of the AC wireless signals may be performed by the transmission controller 28 and/or such transmission may be via transmission from the wireless receiver system 30, within the coupled magnetic field between the antennas 21, 31.
  • the damping signal may be substantially opposite and/or an inverse to the state of the data signals.
  • the damping signals instruct the damping transistor to turn “off’ and thus the signal is not dissipated via the damping circuit 60 because the damping circuit is not set to ground and, thus, a short from the amplifier circuit and the current substantially bypasses the damping circuit 60. If the OOK data signals are in an “off’ state, then the damping signals may be “on” and, thus, the damping transistor 63 is set to an “on” state and the current flowing of VAC is damped by the damping circuit.
  • the damping circuit 60 when “on,” the damping circuit 60 may be configured to dissipate just enough power, current, and/or voltage, such that efficiency in the system is not substantially affected and such dissipation decreases rise and/or fall times in the OOK signal. Further, because the damping signal may instruct the damping transistor 63 to turn “off’ when the OOK signal is “on,” then it will not unnecessarily damp the signal, thus mitigating any efficiency losses from VAC, when damping is not needed.
  • the branch of the amplifier 42 which may include the damping circuit 60, is positioned at the output drain of the amplifier transistor 48. While it is not necessary that the damping circuit 60 be positioned here, in some examples, this may aid in properly damping the output AC wireless signal, as it will be able to damp at the node closest to the amplifier transistor 48 output drain, which is the first node in the circuit wherein energy dissipation is desired. In such examples, the damping circuit is in electrical parallel connection with a drain of the amplifier transistor 48. However, it is certainly possible that the damping circuit be connected proximate to the antenna 21, proximate to the transmission tuning system 24, and/or proximate to a filter circuit 24.
  • the damping circuit 60 is capable of functioning to properly damp the AC wireless signal for proper communications at higher power high frequency wireless power transmission, in some examples, the damping circuit may include additional components.
  • the damping circuit 60 may include one or more of a damping diode DDAMP, a damping resistor RDAMP, a damping capacitor CDAMP, and/or any combinations thereof.
  • RDAMP may be in electrical series with the damping transistor 63 and the value of RDAMP (ohms) may be configured such that it dissipates at least some power from the power signal, which may serve to accelerate rise and fall times in an amplitude shift keying signal, an OOK signal, and/or combinations thereof.
  • the value of RDAMP is selected, configured, and/or designed such that RDAMP dissipates the minimum amount of power to achieve the fastest rise and/or fall times in an in-band signal allowable and/or satisfy standards limitations for minimum rise and/or fall times; thereby achieving data fidelity at maximum efficiency (less power lost to RDAMP) as well as maintaining data fidelity when the system is unloaded and/or under lightest load conditions.
  • CDAMP may also be in series connection with one or both of the damping transistor 63 and RDAMP.
  • CDAMP may be configured to smooth out transition points in an in-band signal and limit overshoot and/or undershoot conditions in such a signal. Further, in some examples, CDAMP may be configured for ensuring the damping performed is 180 degrees out of phase with the AC wireless power signal, when the transistor is activated via the damping signal.
  • DDAMP may further be included in series with one or more of the damping transistor 63, RDAMP, CDAMP, and/or any combinations thereof.
  • DDAMP is positioned, as shown, such that a current cannot flow out of the damping circuit 60, when the damping transistor 63 is in an off state.
  • the inclusion of DDAMP may prevent power efficiency loss in the AC power signal when the damping circuit is not active or “on.” Indeed, while the damping transistor 63 is designed such that, in an ideal scenario, it serves to effectively short the damping circuit when in an “off” state, in practical terms, some current may still reach the damping circuit and/or some current may possibly flow in the opposite direction out of the damping circuit 60.
  • DDAMP may prevent such scenarios and only allow current, power, and/or voltage to be dissipated towards the damping transistor 63.
  • This configuration, including DDAMP, may be desirable when the damping circuit 60 is connected at the drain node of the amplifier transistor 48, as the signal may be a half-wave sine wave voltage and, thus, the voltage of VAC is always positive.
  • the amplifier 42 may include a shunt capacitor CSHUNT.
  • CSHUNT may be configured to shunt the AC power signal to ground and charge voltage of the AC power signal.
  • CSHUNT may be configured to maintain an efficient and stable waveform for the AC power signal, such that a duty cycle of about 50% is maintained and/or such that the shape of the AC power signal is substantially sinusoidal at positive voltages.
  • the amplifier 42 may include a filter circuit 65.
  • the filter circuit 65 may be designed to mitigate and/or filter out electromagnetic interference (EMI) within the wireless transmission system 20.
  • EMI electromagnetic interference
  • Design of the filter circuit 65 may be performed in view of impedance transfer and/or effects on the impedance transfer of the wireless power transmission 20 due to alterations in tuning made by the transmission tuning system 24.
  • the filter circuit 65 may be or include one or more of a low pass filter, a high pass filter, and/or a band pass filter, among other filter circuits that are configured for, at least, mitigating EMI in a wireless power transmission system.
  • the filter circuit 65 may include a filter inductor L 0 and a filter capacitor Co.
  • the filter circuit 65 may have a complex impedance and, thus, a resistance through the filter circuit 65 may be defined as R 0.
  • the filter circuit 65 may be designed and/or configured for optimization based on, at least, a filter quality factor /FILTER, defined as:
  • the cut off frequency (co 0 ) of the low pass filter is defined as:
  • the cutoff frequency be about 1.03-1.4 times greater than the operating frequency of the antenna.
  • Experimental results have determined that, in general, a larger /FILTER may be preferred, because the larger /FILTER can improve voltage gain and improve system voltage ripple and timing.
  • the above values for Lo and Co may be set such that /FILTER can be optimized to its highest, ideal level (e.g., when the system 10 impedance is conjugately matched for maximum power transfer), given cutoff frequency restraints and available components for the values of L 0 and Co.
  • the conditioned signal(s) from the amplifier 42 is then received by the transmission tuning system 24, prior to transmission by the antenna 21.
  • the transmission tuning system 24 may include tuning and/or impedance matching, filters (e.g. a low pass filter, a high pass filter, a “pi” or “P” filter, a “T” filter, an “L” filter, a “LL” filter, and/or an L-C trap filter, among other filters), network matching, sensing, and/or conditioning elements configured to optimize wireless transfer of signals from the wireless transmission system 20 to the wireless receiver system 30.
  • the transmission tuning system 24 may include an impedance matching circuit, which is designed to match impedance with a corresponding wireless receiver system 30 for given power, current, and/or voltage requirements for wireless transmission of one or more of electrical energy, electrical power, electromagnetic energy, and electronic data.
  • the illustrated transmission tuning system 24 includes, at least, Czi, Cz2. and (operatively associated with the antenna 21) values, all of which may be configured for impedance matching in one or both of the wireless transmission system 20 and the broader system 10. It is noted that CTX refers to the intrinsic capacitance of the antenna 21.
  • the wireless receiver system 30 is configured to receive, at least, electrical energy, electrical power, electromagnetic energy, and/or electrically transmittable data via near field magnetic coupling from the wireless transmission system 20, via the transmission antenna 21.
  • the wireless receiver system 30 includes, at least, the receiver antenna 31, a receiver tuning and filtering system 34, a power conditioning system 32, a receiver control system 36, and a voltage isolation circuit 70.
  • the receiver tuning and filtering system 34 may be configured to substantially match the electrical impedance of the wireless transmission system 20.
  • the receiver tuning and filtering system 34 may be configured to dynamically adjust and substantially match the electrical impedance of the receiver antenna 31 to a characteristic impedance of the power generator or the load at a driving frequency of the transmission antenna 20.
  • the power conditioning system 32 includes a rectifier 33 and a voltage regulator 35.
  • the rectifier 33 is in electrical connection with the receiver tuning and filtering system 34.
  • the rectifier 33 is configured to modify the received electrical energy from an alternating current electrical energy signal to a direct current electrical energy signal.
  • the rectifier 33 is comprised of at least one diode.
  • Some non-limiting example configurations for the rectifier 33 include, but are not limited to including, a full wave rectifier, including a center tapped full wave rectifier and a full wave rectifier with filter, a half wave rectifier, including a half wave rectifier with filter, a bridge rectifier, including a bridge rectifier with filter, a split supply rectifier, a single phase rectifier, a three phase rectifier, a voltage doubler, a synchronous voltage rectifier, a controlled rectifier, an uncontrolled rectifier, and a half controlled rectifier.
  • a full wave rectifier including a center tapped full wave rectifier and a full wave rectifier with filter
  • a half wave rectifier including a half wave rectifier with filter
  • a bridge rectifier including a bridge rectifier with filter
  • a split supply rectifier a single phase rectifier, a three phase rectifier, a voltage doubler, a synchronous voltage rectifier, a controlled rectifier, an uncontrolled rectifier, and a half controlled rectifier.
  • the rectifier 33 may further include a clipper circuit or a clipper device, which is a circuit or device that removes either the positive half (top half), the negative half (bottom half), or both the positive and the negative halves of an input AC signal.
  • a clipper is a circuit or device that limits the positive amplitude, the negative amplitude, or both the positive and the negative amplitudes of the input AC signal.
  • a voltage regulator 35 include, but are not limited to, including a series linear voltage regulator, a buck convertor, a low dropout (LDO) regulator, a shunt linear voltage regulator, a step up switching voltage regulator, a step down switching voltage regulator, an invertor voltage regulator, a Zener controlled transistor series voltage regulator, a charge pump regulator, and an emitter follower voltage regulator.
  • the voltage regulator 35 may further include a voltage multiplier, which is as an electronic circuit or device that delivers an output voltage having an amplitude (peak value) that is two, three, or more times greater than the amplitude (peak value) of the input voltage.
  • the voltage regulator 35 is in electrical connection with the rectifier 33 and configured to adjust the amplitude of the electrical voltage of the wirelessly received electrical energy signal, after conversion to AC by the rectifier
  • the voltage regulator 35 may an LDO linear voltage regulator; however, other voltage regulation circuits and/or systems are contemplated.
  • the direct current electrical energy signal output by the voltage regulator 35 is received at the load 16 of the electronic device 14.
  • a portion of the direct current electrical power signal may be utilized to power the receiver control system 36 and any components thereof; however, it is certainly possible that the receiver control system 36, and any components thereof, may be powered and/or receive signals from the load 16 (e.g., when the load 16 is a battery and/or other power source) and/or other components of the electronic device 14.
  • the receiver control system 36 may include, but is not limited to including, a receiver controller 38, a communications system 39 and a memory 37.
  • the receiver controller 38 may be any electronic controller or computing system that includes, at least, a processor which performs operations, executes control algorithms, stores data, retrieves data, gathers data, controls and/or provides communication with other components and/or subsystems associated with the wireless receiver system 30.
  • the receiver controller 38 may be a single controller or may include more than one controller disposed to control various functions and/or features of the wireless receiver system 30. Functionality of the receiver controller 38 may be implemented in hardware and/or software and may rely on one or more data maps relating to the operation of the wireless receiver system 30. To that end, the receiver controller 38 may be operatively associated with the memory 37.
  • the memory may include one or both of internal memory, external memory, and/or remote memory (e.g., a database and/or server operatively connected to the receiver controller 38 via a network, such as, but not limited to, the Internet).
  • the internal memory and/or external memory may include, but are not limited to including, one or more of a read only memory (ROM), including programmable read-only memory (PROM), erasable programmable read-only memory (EPROM or sometimes but rarely labelled EROM), electrically erasable programmable read-only memory (EEPROM), random access memory (RAM), including dynamic RAM (DRAM), static RAM (SRAM), synchronous dynamic RAM (SDRAM), single data rate synchronous dynamic RAM (SDR SDRAM), double data rate synchronous dynamic RAM (DDR SDRAM, DDR2, DDR3, DDR4), and graphics double data rate synchronous dynamic RAM (GDDR SDRAM, GDDR2, GDDR3, GDDR4, GDDR5, a flash memory, a portable memory, and the like.
  • ROM read
  • the receiver controller 38 may be and/or include one or more integrated circuits configured to include functional elements of one or both of the receiver controller 38 and the wireless receiver system 30, generally.
  • integrated circuits generally refers to a circuit in which all or some of the circuit elements are inseparably associated and electrically interconnected so that it is considered to be indivisible for the purposes of construction and commerce.
  • integrated circuits may include, but are not limited to including, thin-film transistors, thick-film technologies, and/or hybrid integrated circuits.
  • the receiver controller 38 may be a dedicated circuit configured to send and receive data at a given operating frequency.
  • the receiver controller 38 may be a tagging or identifier integrated circuit, such as, but not limited to, an NFC tag and/or labelling integrated circuit. Examples of such NFC tags and/or labelling integrated circuits include the NT AG® family of integrated circuits manufactured by NXP Semiconductors N. V.
  • the communications system 39 is certainly not limited to these example components and, in some examples, the communications system 39 may be implemented with another integrated circuit (e.g., integrated with the receiver controller 38), and/or may be another transceiver of or operatively associated with one or both of the electronic device 14 and the wireless receiver system 30, among other contemplated communication systems and/or apparatus. Further, in some examples, functions of the communications system 39 may be integrated with the receiver controller 38, such that the controller modifies the inductive field between the antennas 21, 31 to communicate in the frequency band of wireless power transfer operating frequency.
  • FIGS. 10 and 11 the wireless receiver system 30 is illustrated in further detail to show some example functionality of one or more of the receiver controller 38, the voltage isolation circuit 70, and the rectifier 33.
  • the block diagram of the wireless receiver system 30 illustrates one or more electrical signals and the conditioning of such signals, altering of such signals, transforming of such signals, rectifying of such signals, amplification of such signals, and combinations thereof.
  • DC power signals are illustrated with heavily bolded lines, such that the lines are significantly thicker than other solid lines in FIG. 6 and other figures of the instant application, AC signals are illustrated as substantially sinusoidal wave forms with a thickness significantly less bolded than that of the DC power signal bolding, and data signals are represented as dotted lines.
  • FIG. 11 illustrates sample electrical components for elements of the wireless transmission system, and subcomponents thereof, in a simplified form. Note that FIG. 11 may represent one branch or subsection of a schematic for the wireless receiver system 30 and/or components of the wireless receiver system 30 may be omitted from the schematic, illustrated in FIG. 11, for clarity.
  • the receiver antenna 31 receives the AC wireless signal, which includes the AC power signal (VAC) and the data signals (denoted as “Data” in FIG. 10), from the transmitter antenna 21 of the wireless transmission system 20.
  • VAC AC power signal
  • Data data signals
  • VAC will be received at the rectifier 33 and/or the broader receiver power conditioning system 32, wherein the AC wireless power signal is converted to a DC wireless power signal (VDC_REKT).
  • VDC_REKT IS then provided to, at least, the load 16 that is operatively associated with the wireless receiver system 30.
  • VDC_REKT is regulated by the voltage regulator 35 and provided as a DC input voltage (VDC_CONT) for the receiver controller 38.
  • VDC_CONT DC input voltage
  • the receiver controller 38 may be directly powered by the load 16.
  • the receiver controller 38 need not be powered by the load 16 and/or receipt of VDC_CONT, but the receiver controller 38 may harness, capture, and/or store power from VAC, as power receipt occurring in receiving, decoding, and/or otherwise detecting the data signals in-band of VAC.
  • the receiver controller 38 is configured to perform one or more of encoding the wireless data signals, decoding the wireless data signals, receiving the wireless data signals, transmitting the wireless data signals, and/or any combinations thereof.
  • the receiver controller 38 may receive and/or otherwise detect or monitor voltage levels of VAC to detect in-band ASK and/or OOK signals.
  • a controller such as the controller 38
  • large voltages and/or large voltage swings at the input of a controller may be too large for legacy microprocessor controllers to handle without disfunction or damage being done to such microcontrollers.
  • certain microcontrollers may only be operable at certain operating voltage ranges and, thus, when high frequency wireless power transfer occurs, the voltage swings at the input to such microcontrollers may be out of range or too wide of a range for consistent operation of the microcontroller.
  • VAC_MIN IAC_MIN*RLOAD_MIN
  • RLOAD MIN is the minimum resistance of the load 16 (e.g., if the load 16 is or includes a battery, when the battery of the load 16 is depleted)
  • IACJMIN is the current at RLOAD MIN
  • VACJMIN is the voltage of VAC when the load 16 is at its minimum resistance
  • PACJMIN is the optimal power level for the load 16 at its minimal resistance.
  • VACJTAX IAC_MAX*RLOAD_MAX
  • PACJ AX IAC_MAX*VLOAD_MAX (IAC_MAX) 2 *RLOAD_MAX
  • RLOAD MAX IS the maximum resistance of the load 16 (e.g., if the load 16 is or includes a battery, when the battery of the load 16 is depleted)
  • IACJMAX is the current at VACJMAX
  • VACJMAX is the voltage of VAC when the load 16 is at its minimum resistance
  • PACJMAX IS the optimal power level for the load 16 at its maximal resistance.
  • the voltage isolation circuit 70 is included to isolate the range of voltages that can be seen at a data input and/or output of the controller 38 to an isolated controller voltage (VCONT), which is a scaled version of VAC and, thus, comparably scales any voltage-based in-band data input and/or output at the controller 38. Accordingly, if a range for the AC wireless signal that is an unacceptable input range for the controller 38 is represented by
  • VAC [VAC_MIN : VACJTAX] then the voltage isolation circuit 70 is configured to isolate the controller-unacceptable voltage range from the controller 38, by setting an impedance transformation to minimize the voltage swing and provide the controller with a scaled version of VAC, which does not substantially alter the data signal at receipt.
  • a scaled controller voltage based on VAC, is VCONT, where
  • VCONT [VCONT TIN : VCONT _MAX].
  • VAC voltage swings in VAC
  • changes in coupling (k) between the antennas 21, 31, detuning of the system(s) 10, 20, 30 due to foreign objects, proximity of another receiver system 30 within a common field area may affect voltage swings in VAC, such as, but not limited to, changes in coupling (k) between the antennas 21, 31, detuning of the system(s) 10, 20, 30 due to foreign objects, proximity of another receiver system 30 within a common field area, among other things.
  • the voltage isolation circuit 70 includes at least two capacitors, a first isolation capacitor Cisoi and a second isolation capacitor Ciso2. While only two series, split capacitors are illustrated in FIG. 11, it should also be understood that the voltage isolation circuit may include additional pairs of split series capacitors.
  • Cisoi and Ciso2 are electrically in series with one another, with a node therebetween, the node providing a connection to the data input of the receiver controller 38.
  • Cisoi and Ciso2 are configured to regulate VAC to generate the acceptable voltage input range VCONT for input to the controller.
  • the voltage isolation circuit 70 is configured to isolate the controller 38 from VAC, which is a load voltage, if one considers the rectifier 33 to be part of a downstream load from the receiver controller 38.
  • the capacitance values are configured such that a parallel combination of all capacitors of the voltage isolation circuit 70 (e.g. Cisoi and C1S02) is equal to a total capacitance for the voltage isolation circuit (CTOTAL).
  • a parallel combination of all capacitors of the voltage isolation circuit 70 e.g. Cisoi and C1S02
  • CTOTAL total capacitance for the voltage isolation circuit
  • Cisoii 11 C1S02 CTOTAL, wherein CTOTAL is a constant capacitance configured for the acceptable voltage input range for input to the controller.
  • CTOTAL can be determined by experimentation and/or can be configured via mathematical derivation for a particular microcontroller embodying the receiver controller 38.
  • isolation capacitors Cisoi and C1S02 may be configured in accordance with the following relationships: r _ CTOTAL * (1 + t v ) Cisoi 7 an tv
  • Ciso2 CTOTAL * (1 + tv) ⁇ wherein t v is a scaling factor, which can be experimentally altered to determine the best scaling values for Cisoi and C1S02, for a given system.
  • t v may be mathematically derived, based on desired electrical conditions for the system. In some examples (which may be derived from experimental results), t v may be in a range of about 3 to about 10.
  • FIG. 11 further illustrates an example for the receiver tuning and filtering system 34, which may be configured for utilization in conjunction with the voltage isolation circuit 70.
  • the receiver tuning and filtering system 34 of FIG. 11 includes a controller capacitor CCONT, which is connected in series with the data input of the receiver controller 38.
  • the controller capacitor is configured for further scaling of VAC at the controller, as altered by the voltage isolation circuit 70.
  • the first and second isolation capacitors, as shown, may be connected in electrical parallel, with respect to the controller capacitor.
  • the receiver tuning and filtering system 34 includes a receiver shunt capacitor CR X SHUNT, which is connected in electrical parallel with the receiver antenna 31 .
  • CR X SHUNT is utilized for initial tuning of the impedance of the wireless receiver system 30 and/or the broader system 30 for proper impedance matching and/or CR X SHUNT is included to increase the voltage gain of a signal received by the receiver antenna 31.
  • the wireless receiver system 30, utilizing the voltage isolation circuit 70 may have the capability to achieve proper data communications fidelity at greater receipt power levels at the load 16, when compared to other high frequency wireless power transmission systems.
  • the wireless receiver system 30, with the voltage isolation circuit 70 is capable of receiving power from the wireless transmission system that has an output power at levels over 1 W of power, whereas legacy high frequency systems may be limited to receipt from output levels of only less than 1 W of power.
  • the poller receiver system
  • the poller often utilizes a microprocessor from the NTAG family of microprocessors, which was initially designed for very low power data communications.
  • NTAG microprocessors without protection or isolation, may not adequately and/or efficiently receive wireless power signals at output levels over 1 W.
  • inventors of the present application have found, in experimental results, that when utilizing voltage isolation circuits as disclosed herein, the NTAG chip may be utilized and/or retrofitted for wireless power transfer and wireless communications, either independently or simultaneously.
  • the voltage isolation circuits disclosed herein may utilize inexpensive components (e.g., isolation capacitors) to modify functionality of legacy, inexpensive microprocessors (e.g., an NTAG family microprocessor), for new uses and/or improved functionality.
  • legacy, inexpensive microprocessors e.g., an NTAG family microprocessor
  • controllers may be used as the receiver controller 38 that may be more capable of receipt at higher voltage levels and/or voltage swings, such controllers may be cost prohibitive, in comparison to legacy controllers. Accordingly, the systems and methods herein allow for use of less costly components, for high power high frequency wireless power transfer.
  • FIG. 12 illustrates an example, non-limiting embodiment of one or more of the transmission antenna 21 and the receiver antenna 31 that may be used with any of the systems, methods, and/or apparatus disclosed herein.
  • the antenna 21, 31, is a flat spiral coil configuration.
  • Non-limiting examples can be found in U.S. Patent. Nos. 9,941,743, 9,960,628, 9,941,743 all to Peralta et al.; 9,948,129, 10,063,100 to Singh et al.;
  • the antenna 21, 3 l may be constructed having a multiday er-multi -turn (MLMT) construction in which at least one insulator is positioned between a plurality of conductors.
  • MLMT multiday er-multi -turn
  • Non-limiting examples of antennas having an MLMT construction that may be incorporated within the wireless transmission system(s) 20 and/or the wireless receiver system(s) 30 may be found in U.S. Pat. Nos. 8,610,530, 8,653,927, 8,680,960, 8,692,641, 8,692,642, 8,698,590, 8,698,591, 8,707,546, 8,710,948, 8,803,649, 8,823,481, 8,823,482,
  • the antennas 21, 31 may be any antenna capable of the aforementioned higher power, high frequency wireless power transfer.
  • FIG 13 is an exemplary illustration of eyewear 130, in which the wireless receiver system 30 and/or any components thereof may be integrated within the eyewear 130, such that electronic components within and/or associated with the eyewear can receive power from a wireless transmission system 20, via the wireless receiver system 30.
  • eyewear refers to any face-wearable accessory and/or device that covers at, least in part, at least one eye of a user. Eyewear may include, but is not limited to including, eyeglasses, prescription eyeglasses, reading glasses, fashion glasses, electronic glasses, sunglasses, smart glasses with integrated electronics, speaker enabled glasses, altered reality (AR) glasses, virtual reality (VR) glasses, glasses with screens and/or projectors within or associated with lenses, among other contemplated eyewear.
  • the wireless receiver system 30 integrated with the eyewear 130 may be utilized to charge a battery or other storage device of or associated with the eyewear and/or the wireless receiver system 30 may be configured to directly power one or more components of or associated with the eyewear 130.
  • FIG. 13B illustrates the eyewear 130 of FIG. 13A combining with a receptacle 120, which includes the wireless transmission system 20 integrated and/or operatively associated with the receptacle 120.
  • the eyewear 130 and the receptacle 120 combine as an electronic eyewear system 100, which integrates the system 10 therein.
  • the receptacle 120 may be any surface, device, and/or container in which the eyewear 130 interacts such that the integrated wireless receiver system 30 and integrated wireless transmission system 20 are capable of coupling for wireless power transfer.
  • Receptacles 120 may include, but are not limited to including, cases, pouches, holders, stands, surfaces, among other things.
  • eyewear 130 and/or the receptacle 120 are merely exemplary and are not intended to limit the scope of the disclosure; other form factors for eyewear 130 and/or receptacle(s) 120 are certainly contemplated.
  • FIG. 14 is an illustration of an example stylus system 200A, which may incorporate or be operatively associated with the system 10.
  • the stylus system 200A includes, at least, a stylus 230, which includes, is integrated with, and/or is operatively associated with the wireless receiver system 30.
  • a “stylus” refers to any electronic input device which may be utilized, alone and/or in conjunction with an input computing device (e.g., a computer, a mobile device, a tablet computer, etc.) to receive input via human writing and/or simulation of human writing.
  • an input computing device e.g., a computer, a mobile device, a tablet computer, etc.
  • Example stylus include, but are not limited to including, electronic pens, electronic stylus, input devices for touch screens, stylus for gaming consoles, stylus for tablet computers, free form electronic writing and/or notating devices, among other things.
  • the wireless receiver system 30 integrated with the stylus 130 may be utilized to charge a battery or other storage device of or associated with the stylus 30 and/or the wireless receiver system 30 may be configured to directly power one or more components of or associated with the stylus 230.
  • the stylus system 220A further includes a receptacle 220, which includes the wireless transmission system 20 integrated and/or operatively associated with the receptacle 220.
  • the receptacle 220 may be any surface, device, and/or container in which the stylus 230 interacts such that the integrated wireless receiver system 30 and integrated wireless transmission system 20 are capable of coupling for wireless power transfer.
  • Receptacles 220 may include, but are not limited to including, cases, pouches, holders, stands, surfaces, among other things.
  • FIG. 14B illustrates an alternative stylus system 200B, wherein the stylus 230, and integrated wireless receiver system 30, are configured for interacting with a surface 220B, with integrated wireless transmission system 20, for the purposes of wireless power transfer from the surface 220B to the stylus 230, via the system 10.
  • the surface 220B refers to any surface configured to house our otherwise obfuscate components of the wireless transmission system 20 and provide sufficient a location for placement of the stylus 230, for wireless power transfer thereto.
  • the surface 220B may be a surface location on an electronic device (e.g., a laptop computer, a mobile device, a tablet computer, a desktop computer, a smart pad, a keyboard, a peripheral charging system, among other things), upon which the stylus 230 is placed for wireless power transfer via the system 10.
  • an electronic device e.g., a laptop computer, a mobile device, a tablet computer, a desktop computer, a smart pad, a keyboard, a peripheral charging system, among other things
  • the form-factors illustrated for the stylus 230, the receptacle 220A, and/or the surface 230B are merely exemplary and are not intended to limit the scope of the disclosure; other form factors for stylus 230, receptacle(s) 220A, and/or the surface(s) 230B are certainly contemplated.
  • FIG. 15A and 15B illustrate an example wearable device system 300, which may incorporate or be operatively associated with the system 10.
  • FIG. 15A is an isometric view of the wearable device system 300, when operatively in position for wireless power transfer
  • FIG. 15B is a side view of the system 300, in similar positioning.
  • the wearable device system 300 includes, at least, a wearable device 330, which includes, is integrated with, and/or is operatively associated with the wireless receiver system 30.
  • a “wearable device” refers to any limb-wearable (e.g., wrist-wearable, ankle-wearable, leg-wearable, shoulder- wearable, forearm-wearable, upper-arm wearable, thigh-wearable, calf-wearable, hand-attached, foot-attached, etc.) and/or body wearable (chest-wearable, neck wear-able, waist-wearable, mid section-wearable, etc.) electronic device that may require and/or benefit from receiving electrical power for some function.
  • a “wearable device” may include a strap and/or connector (e.g., the strap 302 of the wearable device 330) utilized for connecting the wearable device to a user.
  • Exemplary wearable devices include, but are not limited to including, smart watches, watches, fitness trackers, fitness bands, sleep monitors, heart rate monitors, medical devices, ankle monitors, tracking devices, industrial tracking and/or safety devices, identification devices, wearable peripherals for AR systems, wearable peripherals for VR systems, wearable peripherals for gaming consoles and/or platforms, among other wearable devices.
  • the wireless receiver system 30 integrated with the wearable device 330 may be utilized to charge a battery or other storage device of or associated with the stylus 30 and/or the wireless receiver system 30 may be configured to directly power one or more components of or associated with the wearable device.
  • the wearable device system 300 further includes a charger 320, which includes the wireless transmission system 20 integrated and/or operatively associated with the charger 320.
  • the charger 320 may be any surface, device, object, and/or container in which the wearable device 330 interacts such that the integrated wireless receiver system 30 and integrated wireless transmission system 20 are capable of coupling for wireless power transfer.
  • the charger 320 may be and/or include any surfaces, proprietary devices, multi-device chargers, integrated chargers, cases, stands, holders, receptacles, and/or pouches, among other things.
  • the form-factors illustrated for the wearable device 330 and/or the charger 320 are merely exemplary and are not intended to limit the scope of the disclosure; other form factors for the wearable device 330 and/or the charger 320 are certainly contemplated.
  • FIG. 16A is a side view of an example listening device system 400A which may incorporate or be operatively associated with the system 10.
  • the hearable listening system 400A includes, at least, one or more listening devices 430A, which include, are integrated with, and/or are operatively associated with the wireless receiver system 30.
  • a “listening device” may include any portable device designed to output sound that can be heard by a user, such as headphones, earbuds, canalphones, over ear headphones, ear-fitting headphones, headsets, digital conferencing headsets, among other listening devices. Headphones are one type of portable listening device, while portable speakers are another.
  • headphones represents a pair of small, portable listening devices that are designed to be worn on or around a user’s head. Such devices convert an electrical signal to a corresponding sound that can be heard by the device. Headphones include traditional headphones that are worn over a user’s head and include left and right listening devices connected to each other by a head band, headsets, and earbuds. Earbuds may be defined as small headphones that are designed to be fitted directly in a user’s ear.
  • the wireless receiver system 30 integrated with the listening device(s) 430A may be utilized to charge a battery or other storage device of or associated with the listening device(s) 430A and/or the wireless receiver system 30 may be configured to directly power one or more components of or associated with the listening device(s) 430 A.
  • the listening device system 400A includes a case 420, which includes the wireless transmission system 20 integrated and/or operatively associated with the case 420.
  • the case 420 may be any container, receptacle, case, housing, flexible plastic housing, cloth case, leather case, among other things, in which the listening device(s) 430A may reside, at least in part, in a manner in which the wireless receiver system 30 and the wireless transmission system 20 of the case 420 are capable of coupling for wireless power transfer.
  • the case 420 may define one or more mechanical features 402, which are configured for aligning the wireless transmission system 20 with the wireless receiver system 30 for proper placement for wireless power transfer.
  • FIG. 16B is another embodiment of an exemplary listening device system 400B, wherein listening device(s) 430B include and/or are operatively associated with the wireless receiver system 30 and a charging surface 420B is operatively associated with the wireless transmission system 20 and configured for allowing wireless power transfer over the system 10.
  • the listening device(s) 430B may comprise any of the same types of listening devices described above with reference to the listening device(s) 430A of FIG. 16A.
  • the charging surface 420B may be any surface configured to house the wireless transmission system 20, obfuscate the wireless transmission system 20, indicate presence of the wireless transmission system 20, and/or indicate a charge volume for the listening device(s) 430B.
  • the charging surface 420B may be a surface of a proprietary charger, a surface of a multidevice charger, a surface within a case and/or receptacle for the listening device(s) 430B, a surface of an electronic device (e.g., a laptop computer, a smartphone, a mobile device, a tablet computer, among other electronic devices), a consumer, private, and/or commercial table and/or countertop, and/or a desktop, among other contemplated surfaces.
  • an electronic device e.g., a laptop computer, a smartphone, a mobile device, a tablet computer, among other electronic devices
  • a consumer private, and/or commercial table and/or countertop
  • a desktop among other contemplated surfaces.
  • the form- factors illustrated for the listening devices 430A, 430B, the case 420A, and the charging surface 420B are merely exemplary and are not intended to limit the scope of the disclosure; other form factors for the listening devices 430A, 430B, the case 420A, and the charging surface 420B are certainly contemplated.
  • FIG. 17 is an example block diagram for a method 1000 of designing a system for wirelessly transferring one or more of electrical energy, electrical power, electromagnetic energy, and electronic data, in accordance with the systems, methods, and apparatus of the present disclosure.
  • the method 1000 may be utilized to design a system in accordance with any disclosed embodiments of the system 10 and any components thereof.
  • the method 1000 includes designing a wireless transmission system for use in the system 10.
  • the wireless transmission system designed at block 1200 may be designed in accordance with one or more of the aforementioned and disclosed embodiments of the wireless transmission system 20, in whole or in part and, optionally, including any components thereof.
  • Block 1200 may be implemented as a method 1200 for designing a wireless transmission system.
  • the wireless transmission system designed by the method 1200 may be designed in accordance with one or more of the aforementioned and disclosed embodiments of the wireless transmission system 20 in whole or in part and, optionally, including any components thereof.
  • the method 1200 includes designing and/or selecting a transmission antenna for the wireless transmission system, as illustrated in block 1210.
  • the designed and/or selected transmission antenna may be designed and/or selected in accordance with one or more of the aforementioned and disclosed embodiments of the transmission antenna 21, in whole or in part and including any components thereof.
  • the method 1200 also includes designing and/or tuning a transmission tuning system for the wireless transmission system, as illustrated in block 1220.
  • Such designing and/or tuning may be utilized for, but not limited to being utilized for, impedance matching, as discussed in more detail above.
  • the designed and/or tuned transmission tuning system may be designed and/or tuned in accordance with one or more of the aforementioned and disclosed embodiments of wireless transmission system 20, in whole or in part and, optionally, including any components thereof.
  • the method 1200 further includes designing a power conditioning system for the wireless transmission system, as illustrated in block 1230.
  • the power conditioning system designed may be designed with any of a plurality of power output characteristic considerations, such as, but not limited to, power transfer efficiency, maximizing a transmission gap (e.g., the gap 17), increasing output voltage to a receiver, mitigating power losses during wireless power transfer, increasing power output without degrading fidelity for data communications, optimizing power output for multiple coils receiving power from a common circuit and/or amplifier, among other contemplated power output characteristic considerations.
  • the power conditioning system may be designed in accordance with one or more of the aforementioned and disclosed embodiments of the power conditioning system 40, in whole or in part and, optionally, including any components thereof.
  • the method 1200 may involve determining and/or optimizing a connection, and any associated connection components, between the input power source 12 and the power conditioning system that is designed at block 1230.
  • determining and/or optimizing may include selecting and implementing protection mechanisms and/or apparatus, selecting and/or implementing voltage protection mechanisms, among other things.
  • the method 1200 further includes designing and/or programing a transmission control system of the wireless transmission system of the method 1000, as illustrated in block 1250.
  • the designed transmission control system may be designed in accordance with one or more of the aforementioned and disclosed embodiments of the transmission control system 26, in whole or in part and, optionally, including any components thereof.
  • Such components thereof include, but are not limited to including, the sensing system 50, the driver 41, the transmission controller 28, the memory 27, the communications system 29, the thermal sensing system 52, the object sensing system 54, the receiver sensing system 56, the other sensor(s) 58, the gate voltage regulator 43, the PWM generator 41, the frequency generator 348, in whole or in part and, optionally, including any components thereof.
  • the method 1000 includes designing a wireless receiver system for use in the system 10.
  • the wireless transmission system designed at block 1300 may be designed in accordance with one or more of the aforementioned and disclosed embodiments of the wireless receiver system 30 in whole or in part and, optionally, including any components thereof.
  • Block 1300 may be implemented as a method 1300 for designing a wireless receiver system.
  • the wireless receiver system designed by the method 1300 may be designed in accordance with one or more of the aforementioned and disclosed embodiments of the wireless receiver system 30 in whole or in part and, optionally, including any components thereof.
  • the method 1300 includes designing and/or selecting a receiver antenna for the wireless receiver system, as illustrated in block 1310.
  • the designed and/or selected receiver antenna may be designed and/or selected in accordance with one or more of the aforementioned and disclosed embodiments of the receiver antenna 31, in whole or in part and including any components thereof.
  • the method 1300 includes designing and/or tuning a receiver tuning system for the wireless receiver system, as illustrated in block 1320. Such designing and/or tuning may be utilized for, but not limited to being utilized for, impedance matching, as discussed in more detail above.
  • the designed and/or tuned receiver tuning system may be designed and/or tuned in accordance with one or more of the aforementioned and disclosed embodiments of the receiver tuning and filtering system 34 in whole or in part and/or, optionally, including any components thereof.
  • the method 1300 further includes designing a power conditioning system for the wireless receiver system, as illustrated in block 1330.
  • the power conditioning system may be designed with any of a plurality of power output characteristic considerations, such as, but not limited to, power transfer efficiency, maximizing a transmission gap (e.g., the gap 17), increasing output voltage to a receiver, mitigating power losses during wireless power transfer, increasing power output without degrading fidelity for data communications, optimizing power output for multiple coils receiving power from a common circuit and/or amplifier, among other contemplated power output characteristic considerations.
  • the power conditioning system may be designed in accordance with one or more of the aforementioned and disclosed embodiments of the power conditioning system 32 in whole or in part and, optionally, including any components thereof.
  • the method 1300 may involve determining and/or optimizing a connection, and any associated connection components, between the load 16 and the power conditioning system of block 1330.
  • determining may include selecting and implementing protection mechanisms and/or apparatus, selecting and/or implementing voltage protection mechanisms, among other things.
  • the method 1300 further includes designing and/or programing a receiver control system of the wireless receiver system of the method 1300, as illustrated in block 1350.
  • the designed receiver control system may be designed in accordance with one or more of the aforementioned and disclosed embodiments of the receiver control system 36 in whole or in part and, optionally, including any components thereof.
  • Such components thereof include, but are not limited to including, the receiver controller 38, the memory 37, and the communications system 39, in whole or in part and, optionally, including any components thereof.
  • the method 1000 further includes, at block 1400, optimizing and/or tuning both the wireless transmission system and the wireless receiver system for wireless power transfer.
  • optimizing and/or tuning includes, but is not limited to including, controlling and/or tuning parameters of system components to match impedance, optimize and/or set voltage and/or power levels of an output power signal, among other things and in accordance with any of the disclosed systems, methods, and apparatus herein.
  • the method 1000 includes optimizing and/or tuning one or both of the wireless transmission system and the wireless receiver system for data communications, in view of system characteristics necessary for wireless power transfer.
  • Such optimizing and/or tuning includes, but is not limited to including, optimizing power characteristics for concurrent transmission of electrical power signals and electrical data signals, tuning quality factors of antennas for different transmission schemes, among other things and in accordance with any of the disclosed systems, methods, and apparatus herein.
  • FIG. 20 is an example block diagram for a method 2000 for manufacturing a system for wirelessly transferring one or both of electrical power signals and electrical data signals, in accordance with the systems, methods, and apparatus of the present disclosure. To that end, the method 2000 may be utilized to manufacture a system in accordance with any disclosed embodiments of the system 10 and any components thereof.
  • the method 2000 includes manufacturing a wireless transmission system for use in the system 10.
  • the wireless transmission system manufactured at block 2200 may be designed in accordance with one or more of the aforementioned and disclosed embodiments of the wireless transmission system 20 in whole or in part and, optionally, including any components thereof.
  • Block 2200 may be implemented as a method 2200 for manufacturing a wireless transmission system.
  • the wireless transmission system manufactured by the method 2200 may be manufactured in accordance with one or more of the aforementioned and disclosed embodiments of the wireless transmission system 20 in whole or in part and, optionally, including any components thereof.
  • the method 2200 includes manufacturing a transmission antenna for the wireless transmission system, as illustrated in block 2210.
  • the manufactured transmission system may be built and/or tuned in accordance with one or more of the aforementioned and disclosed embodiments of the transmission antenna 21, in whole or in part and including any components thereof.
  • the method 2200 also includes building and/or tuning a transmission tuning system for the wireless transmission system, as illustrated in block 2220.
  • Such building and/or tuning may be utilized for, but not limited to being utilized for, impedance matching, as discussed in more detail above.
  • the built and/or tuned transmission tuning system may be designed and/or tuned in accordance with one or more of the aforementioned and disclosed embodiments of the transmission tuning system 24, in whole or in part and, optionally, including any components thereof.
  • the method 2200 further includes selecting and/or connecting a power conditioning system for the wireless transmission system, as illustrated in block 2230.
  • the power conditioning system manufactured may be designed with any of a plurality of power output characteristic considerations, such as, but not limited to, power transfer efficiency, maximizing a transmission gap (e.g., the gap 17), increasing output voltage to a receiver, mitigating power losses during wireless power transfer, increasing power output without degrading fidelity for data communications, optimizing power output for multiple coils receiving power from a common circuit and/or amplifier, among other contemplated power output characteristic considerations.
  • the power conditioning system may be designed in accordance with one or more of the aforementioned and disclosed embodiments of the power conditioning system 40 in whole or in part and, optionally, including any components thereof.
  • the method 2200 involve determining and/or optimizing a connection, and any associated connection components, between the input power source 12 and the power conditioning system of block 2230. Such determining may include selecting and implementing protection mechanisms and/or apparatus, selecting and/or implementing voltage protection mechanisms, among other things.
  • the method 2200 further includes assembling and/or programing a transmission control system of the wireless transmission system of the method 2000, as illustrated in block 2250.
  • the assembled transmission control system may be assembled and/or programmed in accordance with one or more of the aforementioned and disclosed embodiments of the transmission control system 26 in whole or in part and, optionally, including any components thereof.
  • Such components thereof include, but are not limited to including, the sensing system 50, the driver 41, the transmission controller 28, the memory 27, the communications system 29, the thermal sensing system 52, the object sensing system 54, the receiver sensing system 56, the other sensor(s) 58, the gate voltage regulator 43, the PWM generator 41, the frequency generator 348, in whole or in part and, optionally, including any components thereof.
  • the method 2000 includes manufacturing a wireless receiver system for use in the system 10.
  • the wireless transmission system manufactured at block 2300 may be designed in accordance with one or more of the aforementioned and disclosed embodiments of the wireless receiver system 30 in whole or in part and, optionally, including any components thereof.
  • Block 2300 may be implemented as a method 2300 for manufacturing a wireless receiver system.
  • the wireless receiver system manufactured by the method 2300 may be designed in accordance with one or more of the aforementioned and disclosed embodiments of the wireless receiver system 30 in whole or in part and, optionally, including any components thereof.
  • the method 2300 includes manufacturing a receiver antenna for the wireless receiver system, as illustrated in block 2310.
  • the manufactured receiver antenna may be manufactured, designed, and/or selected in accordance with one or more of the aforementioned and disclosed embodiments of the receiver antenna 31 in whole or in part and including any components thereof.
  • the method 2300 includes building and/or tuning a receiver tuning system for the wireless receiver system, as illustrated in block 2320.
  • Such building and/or tuning may be utilized for, but not limited to being utilized for, impedance matching, as discussed in more detail above.
  • the built and/or tuned receiver tuning system may be designed and/or tuned in accordance with one or more of the aforementioned and disclosed embodiments of the receiver tuning and filtering system 34 in whole or in part and, optionally, including any components thereof.
  • the method 2300 further includes selecting and/or connecting a power conditioning system for the wireless receiver system, as illustrated in block 2330.
  • the power conditioning system designed may be designed with any of a plurality of power output characteristic considerations, such as, but not limited to, power transfer efficiency, maximizing a transmission gap (e.g., the gap 17), increasing output voltage to a receiver, mitigating power losses during wireless power transfer, increasing power output without degrading fidelity for data communications, optimizing power output for multiple coils receiving power from a common circuit and/or amplifier, among other contemplated power output characteristic considerations.
  • the power conditioning system may be designed in accordance with one or more of the aforementioned and disclosed embodiments of the power conditioning system 32 in whole or in part and, optionally, including any components thereof.
  • the method 2300 may involve determining and/or optimizing a connection, and any associated connection components, between the load 16 and the power conditioning system of block 2330. Such determining may include selecting and implementing protection mechanisms and/or apparatus, selecting and/or implementing voltage protection mechanisms, among other things.
  • the method 2300 further includes assembling and/or programing a receiver control system of the wireless receiver system of the method 2300, as illustrated in block 2350.
  • the assembled receiver control system may be designed in accordance with one or more of the aforementioned and disclosed embodiments of the receiver control system 36 in whole or in part and, optionally, including any components thereof. Such components thereof include, but are not limited to including, the receiver controller 38, the memory 37, and the communications system 39, in whole or in part and, optionally, including any components thereof.
  • the method 2000 further includes, at block 2400, optimizing and/or tuning both the wireless transmission system and the wireless receiver system for wireless power transfer.
  • optimizing and/or tuning includes, but is not limited to including, controlling and/or tuning parameters of system components to match impedance, optimize and/or configure voltage and/or power levels of an output power signal, among other things and in accordance with any of the disclosed systems, methods, and apparatus herein.
  • the method 2000 includes optimizing and/or tuning one or both of the wireless transmission system and the wireless receiver system for data communications, in view of system characteristics necessary for wireless power transfer, as illustrated at block 2500.
  • Such optimizing and/or tuning includes, but is not limited to including, optimizing power characteristics for concurrent transmission of electrical power signals and electrical data signals, tuning quality factors of antennas for different transmission schemes, among other things and in accordance with any of the disclosed systems, methods, and apparatus herein.
  • the systems, methods, and apparatus disclosed herein are designed to operate in an efficient, stable and reliable manner to satisfy a variety of operating and environmental conditions.
  • the systems, methods, and/or apparatus disclosed herein are designed to operate in a wide range of thermal and mechanical stress environments so that data and/or electrical energy is transmitted efficiently and with minimal loss.
  • the system 10 may be designed with a small form factor using a fabrication technology that allows for scalability, and at a cost that is amenable to developers and adopters.
  • the systems, methods, and apparatus disclosed herein may be designed to operate over a wide range of frequencies to meet the requirements of a wide range of applications.
  • the material may be a polymer, a sintered flexible ferrite sheet, a rigid shield, or a hybrid shield, wherein the hybrid shield comprises a rigid portion and a flexible portion.
  • the magnetic shield may be composed of varying material compositions.
  • materials may include, but are not limited to, zinc comprising ferrite materials such as manganese-zinc, nickel-zinc, copper-zinc, magnesium-zinc, and combinations thereof.
  • the phrase “at least one of’ preceding a series of items, with the term “and” or “or” to separate any of the items, modifies the list as a whole, rather than each member of the list (i.e., each item).
  • the phrase “at least one of’ does not require selection of at least one of each item listed; rather, the phrase allows a meaning that includes at least one of any one of the items, and/or at least one of any combination of the items, and/or at least one of each of the items.
  • phrases “at least one of A, B, and C” or “at least one of A, B, or C” each refer to only A, only B, or only C; any combination of A, B, and C; and/or at least one of each of A, B, and C.
  • a processor configured to monitor and control an operation or a component may also mean the processor being programmed to monitor and control the operation or the processor being operable to monitor and control the operation.
  • a processor configured to execute code can be construed as a processor programmed to execute code or operable to execute code.
  • a phrase such as “an aspect” does not imply that such aspect is essential to the subject technology or that such aspect applies to all configurations of the subject technology.
  • a disclosure relating to an aspect may apply to all configurations, or one or more configurations.
  • An aspect may provide one or more examples of the disclosure.
  • a phrase such as an “aspect” may refer to one or more aspects and vice versa.
  • a phrase such as an “embodiment” does not imply that such embodiment is essential to the subject technology or that such embodiment applies to all configurations of the subject technology.
  • a disclosure relating to an embodiment may apply to all embodiments, or one or more embodiments.
  • An embodiment may provide one or more examples of the disclosure.
  • a phrase such an “embodiment” may refer to one or more embodiments and vice versa.
  • a phrase such as a “configuration” does not imply that such configuration is essential to the subject technology or that such configuration applies to all configurations of the subject technology.
  • a disclosure relating to a configuration may apply to all configurations, or one or more configurations.
  • a configuration may provide one or more examples of the disclosure.
  • a phrase such as a “configuration” may refer to one or more configurations and vice versa.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Transmitters (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

Des systèmes de transfert de puissance sans fil divulgués ici comportent un ou plusieurs circuits permettant de faciliter un transfert de puissance élevé à des fréquences élevées. De tels systèmes de transfert de puissance sans fil peuvent comporter un circuit d'amortissement, configuré pour amortir un signal de puissance sans fil de sorte que la fidélité de communication soit maintenue à une puissance élevée. En outre ou en variante, de tels systèmes de transfert de puissance sans fil peuvent comporter des circuits d'isolation de tension permettant d'isoler des composants des systèmes de récepteur sans fil à partir de signaux à haute tension destinés à une charge associée au récepteur. L'utilisation de tels systèmes permet un transfert de puissance sans fil à haute fréquence, comme 13,56 MHz, à des tensions supérieures à 1 Watt, tout en maintenant la fidélité de communications en bande associées au signal de puissance sans fil de puissance supérieure.
EP21833645.1A 2020-06-28 2021-06-28 Système de transfert de puissance sans fil à haute fréquence à haute puissance Pending EP4173113A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US16/914,405 US11005308B1 (en) 2020-06-28 2020-06-28 Wireless power transmitter for high fidelity communications and high power transfer
US16/914,403 US11476724B2 (en) 2020-06-28 2020-06-28 Higher power high frequency wireless power transfer system
US16/914,406 US11469626B2 (en) 2020-06-28 2020-06-28 Wireless power receiver for receiving high power high frequency transfer
PCT/US2021/039443 WO2022006009A1 (fr) 2020-06-28 2021-06-28 Système de transfert de puissance sans fil à haute fréquence à haute puissance

Publications (1)

Publication Number Publication Date
EP4173113A1 true EP4173113A1 (fr) 2023-05-03

Family

ID=79315467

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21833645.1A Pending EP4173113A1 (fr) 2020-06-28 2021-06-28 Système de transfert de puissance sans fil à haute fréquence à haute puissance

Country Status (3)

Country Link
EP (1) EP4173113A1 (fr)
CN (1) CN116134697A (fr)
WO (1) WO2022006009A1 (fr)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2342797A2 (fr) * 2008-09-23 2011-07-13 Powermat Ltd Association d' antenne et de recepteur de puissance inductive
US8682261B2 (en) * 2009-02-13 2014-03-25 Qualcomm Incorporated Antenna sharing for wirelessly powered devices
US9954398B2 (en) * 2014-09-26 2018-04-24 Integrated Device Technology, Inc. Suppression of audible harmonics in wireless power receivers
KR102087300B1 (ko) * 2018-12-06 2020-03-10 한국과학기술원 무선 충전과 nfc 통신을 위한 무선 안테나 및 이를 이용한 무선 단말 장치
US11005308B1 (en) * 2020-06-28 2021-05-11 Nucurrent, Inc. Wireless power transmitter for high fidelity communications and high power transfer

Also Published As

Publication number Publication date
WO2022006009A1 (fr) 2022-01-06
CN116134697A (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
US11848578B2 (en) Higher power high frequency wireless power transfer system
US12100973B2 (en) Wireless power transmitter for high fidelity communications and high power transfer
US20230292029A1 (en) On-Ear Charging For Wireless Hearables
US11942798B2 (en) Wireless charging in eyewear with enhanced positional freedom
US12100983B2 (en) Wireless power transfer system for listening devices with expandable case
WO2023164296A1 (fr) Charge sur oreille pour aides auditives sans fil
US20230276162A1 (en) On-Ear Charging For Wireless Hearables
US12100982B2 (en) Wireless power transfer system for listening devices
US11722179B2 (en) Wireless power transmission systems and methods for selectively signal damping for enhanced communications fidelity
WO2022006009A1 (fr) Système de transfert de puissance sans fil à haute fréquence à haute puissance
US20240147123A1 (en) Through headband wireless power transfer system for wearable communication devices
US20240146112A1 (en) Through earcup wireless power transfer system for wearable communication devices
US20240146107A1 (en) Computing device based wireless power transmitters for wearable communication devices
US20240146106A1 (en) Wireless power transfer system for wearable communication devices with attachable power source
US20240147122A1 (en) Wireless power transfer system for wearable communication devices
US11870509B2 (en) Wireless power transmitter for high fidelity communications at high power transfer
US11489555B2 (en) Wireless power transmitter for high fidelity communications with amplitude shift keying
US11711112B2 (en) Wireless power transmission systems and methods with selective signal damping active mode
US11695449B2 (en) Wireless power transmission systems and methods with signal damping operating modes
WO2023076690A1 (fr) Système de transfert d'énergie sans fil pour dispositifs d'écoute
WO2024092231A1 (fr) Système de transfert d'énergie sans fil pour dispositifs de communication à porter sur soi

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230127

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)