EP4172473A1 - Exhaust gas aftertreatment device - Google Patents

Exhaust gas aftertreatment device

Info

Publication number
EP4172473A1
EP4172473A1 EP21731764.3A EP21731764A EP4172473A1 EP 4172473 A1 EP4172473 A1 EP 4172473A1 EP 21731764 A EP21731764 A EP 21731764A EP 4172473 A1 EP4172473 A1 EP 4172473A1
Authority
EP
European Patent Office
Prior art keywords
flow path
exhaust gas
heating device
turbocharger
tubular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP21731764.3A
Other languages
German (de)
French (fr)
Inventor
Peter Hirth
Rolf BRÜCK
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vitesco Technologies GmbH
Original Assignee
Vitesco Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vitesco Technologies GmbH filed Critical Vitesco Technologies GmbH
Publication of EP4172473A1 publication Critical patent/EP4172473A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • F01N3/2026Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means directly electrifying the catalyst substrate, i.e. heating the electrically conductive catalyst substrate by joule effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/14Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having thermal insulation
    • F01N13/141Double-walled exhaust pipes or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/027Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2892Exhaust flow directors or the like, e.g. upstream of catalytic device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • F02B37/183Arrangements of bypass valves or actuators therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/16Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an electric heater, i.e. a resistance heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/20Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a flow director or deflector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2340/00Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses
    • F01N2340/06Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses characterised by the arrangement of the exhaust apparatus relative to the turbine of a turbocharger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2470/00Structure or shape of gas passages, pipes or tubes
    • F01N2470/08Gas passages being formed between the walls of an outer shell and an inner chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2470/00Structure or shape of gas passages, pipes or tubes
    • F01N2470/22Inlet and outlet tubes being positioned on the same side of the apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2470/00Structure or shape of gas passages, pipes or tubes
    • F01N2470/24Concentric tubes or tubes being concentric to housing, e.g. telescopically assembled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2490/00Structure, disposition or shape of gas-chambers
    • F01N2490/02Two or more expansion chambers in series connected by means of tubes
    • F01N2490/06Two or more expansion chambers in series connected by means of tubes the gases flowing longitudinally from inlet to outlet in opposite directions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a device with an exhaust gas turbocharger and a ring catalyst downstream of the exhaust gas turbocharger in the flow direction, the ring catalyst having a first tubular flow path, a deflection area and a second annular flow path, the tubular flow path being formed by an inner tube and the annular flow path between a is formed substantially parallel to the inner tube extending outer tube and the inner tube and the deflection area is designed to deflect the exhaust gas flow from the tubular flow path into the annular flow path.
  • catalysts are used, among other things, which enable the conversion of exhaust gas components into less harmful substances.
  • catalysts with different designs and different dimensions are known.
  • the so-called ring catalytic converter which has a central tubular flow path followed by a flow deflection and then an annular flow path, the tubular flow path being enclosed by the annular flow path.
  • a relatively long flow path for the exhaust gas can thus be implemented even with a possible short overall length of the catalytic converter. This favors, for example, the mixing of the exhaust gas for the purpose of homogenizing the exhaust gas flow, or increases the time available for converting a urea solution injected into the exhaust gas flow.
  • the flow distribution of the exhaust gas immediately downstream of the turbocharger is not optimal.
  • the conversion of the exhaust gas components on the catalytically active surfaces is adversely affected by an inhomogeneous flow distribution.
  • a homogenization of the exhaust gas flow can be achieved.
  • the exhaust gas aftertreatment can then be carried out in the annular flow path, in which corresponding catalytically active matrices are inserted into this flow path.
  • a particular disadvantage of exhaust gas aftertreatment devices of this type is that the exhaust gas cools down when it flows through the tubular flow path. As a result, the so-called light-off temperature, from which there is a noticeable conversion of the exhaust gas components to the catalytically active matrices, is reached later, which worsens the effectiveness of the exhaust gas aftertreatment, especially during a cold start.
  • An embodiment of the invention relates to a device with an exhaust gas turbocharger and a ring catalyst downstream of the exhaust gas turbocharger in the flow direction, the ring catalyst having a first tubular flow path, a deflection area and a second annular flow path, the tubular flow path being formed by an inner tube and the ring-shaped flow path is formed between an outer tube running essentially parallel to the inner tube and the inner tube, and the deflection area for deflecting the exhaust gas flow from the tubular flow path into the ring-shaped flow path is formed, the tubular flow path of the ring catalyst also having the same component as the gas outlet in the direction of flow upstream turbocharger trains.
  • the device is preferably connected downstream of an internal combustion engine, so that the exhaust gas generated by the internal combustion engine can be passed through the device.
  • the exhaust gas flowing out of the turbocharger is often strongly swirled and the exhaust gas distribution over the cross section of the exhaust pipe is uneven.
  • the exhaust gas turbocharger can have what is known as a wastegate, which represents a bypass for the exhaust gas flow around the turbine of the exhaust gas turbocharger.
  • the exhaust gas is branched off the main exhaust gas line upstream of the turbine and back into the exhaust gas line downstream of the turbine.
  • the turbocharger has a gas outlet through which the exhaust gas flows out of the turbocharger.
  • the gas outlet is formed by the tubular flow path of the ring catalytic converter downstream of the turbocharger.
  • the ring catalytic converter can thus be arranged very close behind the turbocharger, which means that the heat loss from the flowing exhaust gas, right down to the catalytically active structures, can be minimized.
  • the annular flow path has at least one catalytically active matrix.
  • a catalytically active matrix is preferably formed by a metallic matrix with a multiplicity of flow channels through which flow can flow along a main flow direction. Matrices of this type can preferably be produced by winding from a stack of layers of metallic foils which are at least partially structured. Such a matrix forms a honeycomb body. Honeycomb bodies of this type are known in many ways in the prior art. In particular, the cell density, the length and the structure of the individual flow channels can be adapted as required.
  • a plurality of honeycomb bodies can also be arranged in the annular flow path.
  • the device has a heating device.
  • a heating device is in particular an electrical heater which generates heat using the ohmic resistance.
  • a medium such as the exhaust gas
  • the heating device can be formed, for example, by a heating coil which is arranged in the exhaust gas flow.
  • the heating device can be operated independently of the operating state of the internal combustion engine, so that even when the combustion is switched off, heating can take place. tion engine, for example, before a cold start, can be done.
  • the heating device can also be arranged directly in or on the catalytically active structure in order to enable it to be heated up more quickly.
  • a preferred embodiment is characterized in that the heating device is formed by an electrically heatable catalyst.
  • An electrically heatable catalytic converter is characterized in particular by a honeycomb body through which a flow can flow, which can be heated by applying an electrical voltage.
  • a honeycomb body can itself also be catalytically active, for example through a suitable coating of the honeycomb body.
  • Such a heating disk formed by a metallic honeycomb body is preferably arranged directly adjacent to the matrix or the matrices of the main catalytic converter and thus leads to rapid heating of this.
  • a heating disk can, for example, be designed in the shape of a ring and also be arranged in the ring-shaped flow path.
  • the annular heating disk can preferably be arranged downstream or upstream of the main catalytic converter.
  • the heating disk can also be arranged in the central tubular flow path.
  • the heating device can also be activated when the internal combustion engine is not running. This is particularly advantageous in order to be able to preheat the catalytic converters even before the engine is actually started. This ensures that the catalytically active structures reach their so-called light-off temperature as quickly as possible, from which the catalytic conversion of the exhaust gases is possible. Particularly after a cold start, this leads to the legally prescribed exhaust gas values being reached more quickly. This is also and especially important in hybrid vehicles, since longer operating times with an inactive engine are to be expected here, for example in purely electric operation, so that preheating of the exhaust gas tract and especially the catalytically active structures is particularly advantageous.
  • the heating device is arranged in the area of the wastegate of the turbocharger.
  • the wastegate of the turbocharger is practically formed by one or more bypasses which run from a transfer point upstream of the turbine of the turbocharger to a transfer point downstream of the turbine. By opening the wastegate, exhaust gas can flow past the turbine.
  • the heating device is preferably arranged on or in the bypass of the wastegate in such a way that it passes through the wastegate flowing exhaust gas flows past this and is thus heated when the heating device is active.
  • the heating device heats a gaseous medium which can be conveyed by the heating device through at least partial areas of the device. This is advantageous in order to achieve optimal heat transport from the heating device to the catalytically active structures.
  • a heat transfer medium is necessary. If the internal combustion engine is operated, the medium used to transport heat can preferably be the exhaust gas. If the internal combustion engine is inactive, another medium must be used to ensure effective heating.
  • gaseous heatable medium is an air volume saturated with fuel vapor. It is also useful if the gas volume used to transport the thermal energy from the heating device to the catalytic structure is formed by an air volume from a fuel tank.
  • the exhaust gas flow can only be used as a transport medium when the internal combustion engine is being operated, it is necessary to use an alternative medium in order to be able to ensure that the catalytically active structure is heated up before the internal combustion engine is started.
  • a proportion of air originating from the fuel tank of the internal combustion engine can preferably be used.
  • the air volume saturated with fuel vapor is that the hydrocarbons contained in the air volume are beneficial in order to achieve the light-off temperature on the catalytically active structure.
  • a saturated air mixture from the fuel tank is that fuel tanks can have their own heating devices in order, for example, to prevent fuel from freezing or to preheat the fuel in a targeted manner. In the presence of such a heater, the air mixture can accordingly already have a higher temperature than the ambient air.
  • Pre-tempered air with a high proportion of hydrocarbons is therefore ideally suited to transferring the heat from a heating device to the catalytically active structures.
  • a pumping device is provided, by means of which a gas flow can be conveyed through the wastegate along the tubular flow path and the deflection region into the annular flow path.
  • a pumping device can in particular be an existing pump, such as a purge pump for rinsing the fuel tank.
  • an additional pump can be provided which enables the gas flow to be conveyed from the heating device to the catalytically active structures.
  • An existing secondary air pump can also be used
  • the heating device can also be arranged at another point outside the device and the gas flow for heat transport can be conveyed directly into the area of the catalytically active structures via an additional line.

Abstract

The invention relates to a device comprising a turbocharger and an annular catalytic converter which is mounted downstream of the turbocharger in the flow direction. The annular catalytic converter has a first tubular flow section, a deflecting region, and a second annular flow section, wherein the tubular flow section is made of an inner tube, and the annular flow section is formed between an outer tube, which runs substantially parallel to the inner tube, and the inner tube. The deflecting region is designed to deflect the flow of exhaust gas out of the tubular flow section and into the annular flow section, and the same components of the tubular flow section of the annular catalytic converter also form the gas outlet of the turbocharger mounted upstream in the flow direction.

Description

Beschreibung description
Vorrichtung zur Abgasnachbehandlung Device for exhaust aftertreatment
Technisches Gebiet Technical area
Die Erfindung betrifft eine Vorrichtung mit einem Abgasturbolader und einem dem Abgasturbolader in Strömungsrichtung nachgelagerten Ringkatalysator, wobei der Ringkatalysator eine erste rohrförmige Strömungsstrecke, einen Umlenkbereich und eine zweite ringförmige Strömungsstrecke aufweist, wobei die rohrförmige Strömungsstrecke durch ein Innenrohr gebildet ist und die ringförmige Strömungs strecke zwischen einem im Wesentlichen parallel zum Innenrohr verlaufenden Außenrohr und dem Innenrohr gebildet ist und der Umlenkbereich zur Umlenkung der Abgasströmung aus der rohrförmigen Strömungsstrecke in die ringförmige Strömungsstrecke ausgebildet ist. The invention relates to a device with an exhaust gas turbocharger and a ring catalyst downstream of the exhaust gas turbocharger in the flow direction, the ring catalyst having a first tubular flow path, a deflection area and a second annular flow path, the tubular flow path being formed by an inner tube and the annular flow path between a is formed substantially parallel to the inner tube extending outer tube and the inner tube and the deflection area is designed to deflect the exhaust gas flow from the tubular flow path into the annular flow path.
Stand der Technik State of the art
Zur Abgasnachbehandlung von Abgasen von Verbrennungsmotoren werden unter anderem Katalysatoren eingesetzt, die eine Umwandlung von Abgasbestandteilen in weniger schädliche Stoffe ermöglichen. Hierzu sind Katalysatoren in unter schiedlicher Bauweise und unterschiedlicher Dimensionierung bekannt. For exhaust gas aftertreatment of exhaust gases from internal combustion engines, catalysts are used, among other things, which enable the conversion of exhaust gas components into less harmful substances. For this purpose, catalysts with different designs and different dimensions are known.
Unter anderem ist der sogenannte Ringkatalysator bekannt, welcher eine zentrale rohrförmige Strömungsstrecke aufweist, auf welche eine Strömungsumlenkung folgt und anschließend eine ringförmige Strömungsstrecke, wobei die rohrförmige Strömungsstrecke von der ringförmigen Strömungsstrecke umschlossen ist. Es kann somit auch bei einer nur geringen möglichen Baulänge des Katalysators eine verhältnismäßig lange Strömungsstrecke für das Abgas realisiert werden. Dies begünstigt beispielsweise die Vermischung des Abgases zum Zwecke der Homo genisierung der Abgasströmung, beziehungsweise verlängert die zur Umwandlung einer in den Abgasstrom eingespritzten Harnstofflösung zur Verfügung stehende Zeit. Among other things, the so-called ring catalytic converter is known which has a central tubular flow path followed by a flow deflection and then an annular flow path, the tubular flow path being enclosed by the annular flow path. A relatively long flow path for the exhaust gas can thus be implemented even with a possible short overall length of the catalytic converter. This favors, for example, the mixing of the exhaust gas for the purpose of homogenizing the exhaust gas flow, or increases the time available for converting a urea solution injected into the exhaust gas flow.
Insbesondere in Konfigurationen mit einem vorgeschalteten Turbolader im Abgas strang ist die Strömungsverteilung des Abgases unmittelbar hinter dem Turbolader nicht optimal. Durch eine inhomogene Strömungsverteilung wird die Umsetzung des Abgasbestandteile an den katalytisch aktiven Flächen negativ beeinträchtigt. Beim Durchströmen der zentralen rohrförmigen Strömungsstrecke kann eine Ho mogenisierung der Abgasströmung erreicht werden. In der ringförmigen Strö mungsstrecke kann sodann die Abgasnachbehandlung durchgeführt werden, in dem entsprechende katalytisch aktive Matrizen in diese Strömungsstrecke einge setzt werden. Particularly in configurations with an upstream turbocharger in the exhaust line, the flow distribution of the exhaust gas immediately downstream of the turbocharger is not optimal. The conversion of the exhaust gas components on the catalytically active surfaces is adversely affected by an inhomogeneous flow distribution. When flowing through the central tubular flow path, a homogenization of the exhaust gas flow can be achieved. The exhaust gas aftertreatment can then be carried out in the annular flow path, in which corresponding catalytically active matrices are inserted into this flow path.
Nachteilig an Abgasnachbehandlungsvorrichtungen dieser Art ist insbesondere, dass es beim Durchströmen der rohrförmigen Strömungsstrecke zu einer Abküh lung des Abgases kommt. Dadurch wird die sogenannten Light-Off Temperatur, ab welcher es zu einer merklichen Umsetzung der Abgasbestandteile an den kataly tisch aktiven Matrizen kommt, später erreicht, wodurch die Wirksamkeit der Ab gasnachbehandlung, insbesondere beim Kaltstart, verschlechtert wird. A particular disadvantage of exhaust gas aftertreatment devices of this type is that the exhaust gas cools down when it flows through the tubular flow path. As a result, the so-called light-off temperature, from which there is a noticeable conversion of the exhaust gas components to the catalytically active matrices, is reached later, which worsens the effectiveness of the exhaust gas aftertreatment, especially during a cold start.
Darstellung der Erfindung, Aufgabe, Lösung, Vorteile Presentation of the invention, task, solution, advantages
Daher ist es die Aufgabe der vorliegenden Erfindung eine Vorrichtung zu schaffen, welche eine wirkungsvolle Aufheizung der katalytisch aktiven Strukturen ermöglicht. It is therefore the object of the present invention to create a device which enables the catalytically active structures to be effectively heated.
Die Aufgabe hinsichtlich der Vorrichtung wird durch eine Vorrichtung mit den Merkmalen von Anspruch 1 gelöst. The object with regard to the device is achieved by a device having the features of claim 1.
Ein Ausführungsbeispiel der Erfindung betrifft eine Vorrichtung mit einem Abgas turbolader und einem dem Abgasturbolader in Strömungsrichtung nachgelagerten Ringkatalysator, wobei der Ringkatalysator eine erste rohrförmige Strömungsstre cke, einen Um lenkbereich und eine zweite ringförmige Strömungsstrecke aufweist, wobei die rohrförmige Strömungsstrecke durch ein Innenrohr gebildet ist und die ringförmige Strömungsstrecke zwischen einem im Wesentlichen parallel zum In nenrohr verlaufenden Außenrohr und dem Innenrohr gebildet ist und der Umlenk bereich zur Umlenkung der Abgasströmung aus der rohrförmigen Strömungsstre cke in die ringförmige Strömungsstrecke ausgebildet ist, wobei die rohrförmige Strömungsstrecke des Ringkatalysators bauteilgleich auch den Gasauslass des in Strömungsrichtung vorgelagerten Turboladers ausbildet. An embodiment of the invention relates to a device with an exhaust gas turbocharger and a ring catalyst downstream of the exhaust gas turbocharger in the flow direction, the ring catalyst having a first tubular flow path, a deflection area and a second annular flow path, the tubular flow path being formed by an inner tube and the ring-shaped flow path is formed between an outer tube running essentially parallel to the inner tube and the inner tube, and the deflection area for deflecting the exhaust gas flow from the tubular flow path into the ring-shaped flow path is formed, the tubular flow path of the ring catalyst also having the same component as the gas outlet in the direction of flow upstream turbocharger trains.
Die Vorrichtung ist bevorzugt einem Verbrennungsmotor nachgeschaltet, so dass das vom Verbrennungsmotor erzeugte Abgas durch die Vorrichtung geleitet werden kann. Das aus dem Turbolader strömende Abgas ist oftmals stark verwirbelt und die Abgasverteilung über den Querschnitt der Abgasleitung ist ungleichmäßig. Der Abgasturbolader kann ein sogenanntes Wastegate aufweisen, welches einen By pass für den Abgasstrom um die Turbine des Abgasturboladers herum darstellt. Das Abgas wird hierbei stromaufwärts der Turbine aus der Hauptabgasleitung abgezweigt und stromabwärts der Turbine wieder in die Abgasleitung zurückge führt. The device is preferably connected downstream of an internal combustion engine, so that the exhaust gas generated by the internal combustion engine can be passed through the device. The exhaust gas flowing out of the turbocharger is often strongly swirled and the exhaust gas distribution over the cross section of the exhaust pipe is uneven. The exhaust gas turbocharger can have what is known as a wastegate, which represents a bypass for the exhaust gas flow around the turbine of the exhaust gas turbocharger. The exhaust gas is branched off the main exhaust gas line upstream of the turbine and back into the exhaust gas line downstream of the turbine.
Der Turbolader weist einen Gasauslass auf, durch welchen das Abgas aus dem Turbolader ausströmt. Hierdurch strömt sowohl das durch das Wastegate strö mende Abgas als auch das durch die Turbine strömende Abgas. Der Gasauslass ist in der erfindungsgemäßen Ausführung durch die rohrförmige Strömungsstrecke des dem Turbolader nachgelagerten Ringkatalysators gebildet. Der Ringkatalysator kann somit sehr dicht hinter dem Turbolader angeordnet werden, wodurch der Wärmeverlust des strömenden Abgases bis hin zu den katalytisch aktiven Struk turen minimiert werden kann. The turbocharger has a gas outlet through which the exhaust gas flows out of the turbocharger. As a result, both the exhaust gas flowing through the wastegate and the exhaust gas flowing through the turbine flow. In the embodiment according to the invention, the gas outlet is formed by the tubular flow path of the ring catalytic converter downstream of the turbocharger. The ring catalytic converter can thus be arranged very close behind the turbocharger, which means that the heat loss from the flowing exhaust gas, right down to the catalytically active structures, can be minimized.
Besonders vorteilhaft ist es, wenn die ringförmige Strömungsstrecke zumindest eine katalytisch aktive Matrix aufweist. Eine katalytisch aktive Matrix ist bevorzugt durch eine metallische Matrix mit einer Vielzahl entlang einer Hauptdurchströ- mungsrichtung durchström baren Strömungskanälen gebildet. Matrizen solcher Art können bevorzugt aus einem Lagenstapel aus metallischen Folien, welche zu mindest teilweise strukturiert sind, durch Aufwickeln erzeugt. Eine solche Matrix bildet einen Wabenkörper. Wabenkörper dieser Art sind in vielfältiger Weise im Stand der Technik bekannt. Insbesondere die Zelldichte, die Länge, und die Struktur der einzelnen Strömungskanäle kann bedarfsgerecht angepasst werden. It is particularly advantageous if the annular flow path has at least one catalytically active matrix. A catalytically active matrix is preferably formed by a metallic matrix with a multiplicity of flow channels through which flow can flow along a main flow direction. Matrices of this type can preferably be produced by winding from a stack of layers of metallic foils which are at least partially structured. Such a matrix forms a honeycomb body. Honeycomb bodies of this type are known in many ways in the prior art. In particular, the cell density, the length and the structure of the individual flow channels can be adapted as required.
Je nach dem beabsichtigten Anwendungszweck können auch mehrere Waben körper in der ringförmigen Strömungsstrecke angeordnet sein. Depending on the intended application, a plurality of honeycomb bodies can also be arranged in the annular flow path.
Auch ist es vorteilhaft, wenn die Vorrichtung eine Heizeinrichtung aufweist. Eine Heizeinrichtung ist insbesondere eine elektrische Heizung, welche unter Ausnut zung des Ohmschen Widerstandes Wärme erzeugt. Hierbei kann beispielsweise ein Medium, wie beispielsweise das Abgas, erhitzt werden, welches anschließend die Wärmeenergie auf die Matrix überträgt. Die Heizeinrichtung kann etwa durch eine Heizspirale gebildet sein, die in dem Abgasstrom angeordnet ist. Die Heizein richtung kann unabhängig von dem Betriebszustand des Verbrennungsmotors betrieben werden, so dass auch eine Aufheizung bei abgeschaltetem Verbren- nungsmotor, beispielsweise vor einem Kaltstart, erfolgen kann. Die Heizeinrichtung kann auch direkt in oder an der katalytisch aktiven Struktur angeordnet sein, um eine schnellere Aufheizung dieser zu ermöglichen. It is also advantageous if the device has a heating device. A heating device is in particular an electrical heater which generates heat using the ohmic resistance. Here, for example, a medium, such as the exhaust gas, can be heated, which then transfers the thermal energy to the matrix. The heating device can be formed, for example, by a heating coil which is arranged in the exhaust gas flow. The heating device can be operated independently of the operating state of the internal combustion engine, so that even when the combustion is switched off, heating can take place. tion engine, for example, before a cold start, can be done. The heating device can also be arranged directly in or on the catalytically active structure in order to enable it to be heated up more quickly.
Ein bevorzugtes Ausführungsbeispiel ist dadurch gekennzeichnet, dass die Heiz einrichtung durch einen elektrisch beheizbaren Katalysator gebildet ist. Ein elektrisch beheizbarer Katalysator zeichnet sich insbesondere durch einen durch- strömbaren Wabenkörper aus, der durch das Anlegen einer elektrischen Spannung erwärmt werden kann. Ein solches Wabenkörper kann selbst auch katalytisch aktiv sein, beispielsweise durch eine geeignete Beschichtung des Wabenkörpers. Eine solche durch einen metallischen Wabenkörper gebildete Heizscheibe ist bevorzugt direkt benachbart zu der Matrix beziehungsweise den Matrizen des Hauptkataly sators angeordnet und führt somit zu einer schnellen Erwärmung dieser. Eine Heizscheibe kann beispielsweise ringförmig ausgebildet sein und ebenfalls in der ringförmigen Strömungsstrecke angeordnet sein. Die ringförmige Heizscheibe kann bevorzug stromabwärts oder stromaufwärts des Hauptkatalysators angeordnet sein. In einer alternativen Ausgestaltung kann die Heizscheibe auch in der zentralen rohrförmigen Strömungsstrecke angeordnet sein. A preferred embodiment is characterized in that the heating device is formed by an electrically heatable catalyst. An electrically heatable catalytic converter is characterized in particular by a honeycomb body through which a flow can flow, which can be heated by applying an electrical voltage. Such a honeycomb body can itself also be catalytically active, for example through a suitable coating of the honeycomb body. Such a heating disk formed by a metallic honeycomb body is preferably arranged directly adjacent to the matrix or the matrices of the main catalytic converter and thus leads to rapid heating of this. A heating disk can, for example, be designed in the shape of a ring and also be arranged in the ring-shaped flow path. The annular heating disk can preferably be arranged downstream or upstream of the main catalytic converter. In an alternative embodiment, the heating disk can also be arranged in the central tubular flow path.
Auch ist es zu bevorzugen, wenn die Heizeinrichtung auch bei stehendem Ver brennungsmotor aktivierbar ist. Dies ist insbesondere vorteilhaft, um bereits vor dem eigentlichen Start des Motors eine Vorheizung der Katalysatoren erreichen zu können. Dadurch kann sichergestellt werden, dass die katalytisch aktiven Struktu ren schnellstmöglich ihre sogenannten Light-Off Temperatur erreichen, ab welcher die katalytische Umsetzung der Abgase ermöglicht ist. Dies führt insbesondere nach einem Kaltstart zu einem schnelleren Erreichen der gesetzlich vorgeschrie benen Abgaswerte. Auch und insbesondere bei Hybridfahrzeugen ist diese wichtig, da hier längere Betriebszeiten mit inaktivem Motor zu erwarten sind, beispielsweise bei rein elektrischem Betrieb, so dass eine Vorheizung des Abgastrakts und speziell den katalytisch aktiven Strukturen besonders vorteilhaft ist. It is also preferable if the heating device can also be activated when the internal combustion engine is not running. This is particularly advantageous in order to be able to preheat the catalytic converters even before the engine is actually started. This ensures that the catalytically active structures reach their so-called light-off temperature as quickly as possible, from which the catalytic conversion of the exhaust gases is possible. Particularly after a cold start, this leads to the legally prescribed exhaust gas values being reached more quickly. This is also and especially important in hybrid vehicles, since longer operating times with an inactive engine are to be expected here, for example in purely electric operation, so that preheating of the exhaust gas tract and especially the catalytically active structures is particularly advantageous.
Darüber hinaus ist es vorteilhaft, wenn die Heizeinrichtung im Bereich des Wastegates des Turboladers angeordnet ist. Das Wastegate des Turboladers ist praktisch durch einen oder mehrere Bypässe gebildet, welche von einer Übertritts stelle stromaufwärts der Turbine des Turboladers hin zu einer Übertrittsstelle stromabwärts der Turbine verlaufen. Durch das Öffnen des Wastegates kann so Abgas an der Turbine vorbei strömen. Bevorzugt ist die Heizeinrichtung derart am oder in dem Bypass des Wastegates angeordnet, dass das durch das Wastegate strömende Abgas an dieser vorbeiströmt und bei aktiver Heizeinrichtung so erwärmt wird. In addition, it is advantageous if the heating device is arranged in the area of the wastegate of the turbocharger. The wastegate of the turbocharger is practically formed by one or more bypasses which run from a transfer point upstream of the turbine of the turbocharger to a transfer point downstream of the turbine. By opening the wastegate, exhaust gas can flow past the turbine. The heating device is preferably arranged on or in the bypass of the wastegate in such a way that it passes through the wastegate flowing exhaust gas flows past this and is thus heated when the heating device is active.
Weiterhin ist es vorteilhaft, wenn die Heizeinrichtung ein gasförmiges Medium aufheizt, welches von der Heizeinrichtung durch zumindest Teilbereiche der Vor richtung förderbar ist. Dies ist vorteilhaft, um einen optimalen Wärmetransport von der Heizeinrichtung auf die katalytisch aktiven Strukturen zu erreichen. Mit Aus nahme des Falls, in dem eine Heizeinrichtung direkt mit der katalytisch aktiven Struktur in wärmeleitenden Kontakt steht, ist ein Wärmeübertragungsmedium notwendig. Sofern der Verbrennungsmotors betrieben wird, kann das zum Wär metransport genutzte Medium bevorzugt das Abgas sein. Sofern der Verbren nungsmotor inaktiv ist, ist der Einsatz eines anderen Mediums notwendig, um eine effektive Aufheizung sicherzustellen. Furthermore, it is advantageous if the heating device heats a gaseous medium which can be conveyed by the heating device through at least partial areas of the device. This is advantageous in order to achieve optimal heat transport from the heating device to the catalytically active structures. With the exception of the case in which a heating device is in direct thermal contact with the catalytically active structure, a heat transfer medium is necessary. If the internal combustion engine is operated, the medium used to transport heat can preferably be the exhaust gas. If the internal combustion engine is inactive, another medium must be used to ensure effective heating.
Auch ist es zweckmäßig, wenn das gasförmige aufheizbare Medium ein mit Kraft stoffdampf gesättigtes Luftvolumen ist. Weiterhin ist es zweckmäßig, wenn das zum Transport der Wärmeenergie von der Heizeinrichtung zur katalytischen Struktur genutzte Gasvolumen durch ein Luftvolumen aus einem Kraftstofftank gebildet ist. It is also useful if the gaseous heatable medium is an air volume saturated with fuel vapor. It is also useful if the gas volume used to transport the thermal energy from the heating device to the catalytic structure is formed by an air volume from a fuel tank.
Da der Abgasstrom als Transportmedium nur dann genutzt werden kann, wenn der Verbrennungsmotor betrieben wird, ist es notwendig ein alternatives Medium zu nutzen, um eine Aufheizung der katalytisch aktiven Struktur vor dem Start des Verbrennungsmotors sicherstellen zu können. Hierfür kann bevorzugt ein aus dem Kraftstofftank des Verbrennungsmotors stammender Luftanteil verwendet werden. Besonders vorteilhaft an dem mit Kraftstoffdampf gesättigten Luftvolumen ist, dass die im Luftvolumen enthaltenen Kohlenwasserstoffe günstig sind, um die Light-Off Temperatur an der katalytisch aktiven Struktur zu erreichen. Since the exhaust gas flow can only be used as a transport medium when the internal combustion engine is being operated, it is necessary to use an alternative medium in order to be able to ensure that the catalytically active structure is heated up before the internal combustion engine is started. For this purpose, a proportion of air originating from the fuel tank of the internal combustion engine can preferably be used. What is particularly advantageous about the air volume saturated with fuel vapor is that the hydrocarbons contained in the air volume are beneficial in order to achieve the light-off temperature on the catalytically active structure.
Ein weiterer Vorteil an einem gesättigten Luftgemisch aus dem Kraftstofftank ist, dass Kraftstofftanks über eigene Heizvorrichtungen verfügen können, um bei spielsweise das Einfrieren von Kraftstoff zu vermeiden oder den Kraftstoff gezielt vorzuheizen. Das Luftgemisch kann bei Vorhandensein einer solchen Heizung entsprechend schon eine höhere Temperatur als die Umgebungsluft aufweisen. Another advantage of a saturated air mixture from the fuel tank is that fuel tanks can have their own heating devices in order, for example, to prevent fuel from freezing or to preheat the fuel in a targeted manner. In the presence of such a heater, the air mixture can accordingly already have a higher temperature than the ambient air.
Vortemperierte Luft mit einem hohen Anteil von Kohlenwasserstoffen ist somit op timal geeignet, um die Wärme einer Heizeinrichtung auf die katalytisch aktiven Strukturen zu übertragen. Darüber hinaus ist es vorteilhaft, wenn eine Pumpvorrichtung vorgesehen ist, durch welche ein Gasstrom durch das Wastegate entlang der rohrförmigen Strömungs strecke und des Umlenkbereichs in die ringförmige Strömungsstrecke förderbar ist. Ein Pumpvorrichtung kann insbesondere eine bereits vorhandene Pumpe sein, wie beispielsweise eine Purge-Pump zum Spülen des Kraftstofftanks. Alternativ kann eine zusätzliche Pumpe vorgesehen werden, die das Fördern des Gasstroms von der Heizeinrichtung zu den katalytisch aktiven Strukturen ermöglicht. Weiterhin kann auch eine bereits vorhandene Sekundärluftpumpe genutzt werden Pre-tempered air with a high proportion of hydrocarbons is therefore ideally suited to transferring the heat from a heating device to the catalytically active structures. In addition, it is advantageous if a pumping device is provided, by means of which a gas flow can be conveyed through the wastegate along the tubular flow path and the deflection region into the annular flow path. A pumping device can in particular be an existing pump, such as a purge pump for rinsing the fuel tank. Alternatively, an additional pump can be provided which enables the gas flow to be conveyed from the heating device to the catalytically active structures. An existing secondary air pump can also be used
In einer alternativen Ausgestaltung kann die Heizeinrichtung auch an einer anderen Stelle außerhalb der Vorrichtung angeordnet sein und der Gasstrom zum Wär metransport kann über eine zusätzliche Leitung direkt in den Bereich der katalytisch aktiven Strukturen gefördert werden. In an alternative embodiment, the heating device can also be arranged at another point outside the device and the gas flow for heat transport can be conveyed directly into the area of the catalytically active structures via an additional line.
Vorteilhafte Weiterbildungen der vorliegenden Erfindung sind in den Unteransprü chen beschrieben. Advantageous developments of the present invention are described in the subclaims.

Claims

Patentansprüche Claims
1. Vorrichtung mit einem Abgasturbolader und einem dem Abgasturbolader in Strömungsrichtung nachgelagerten Ringkatalysator, wobei der Ringkataly sator eine erste rohrförmige Strömungsstrecke, einen Um lenkbereich und eine zweite ringförmige Strömungsstrecke aufweist, wobei die rohrförmige Strömungsstrecke durch ein Innenrohr gebildet ist und die ringförmige Strömungsstrecke zwischen einem im Wesentlichen parallel zum Innenrohr verlaufenden Außenrohr und dem Innenrohr gebildet ist und der Umlenk bereich zur Umlenkung der Abgasströmung aus der rohrförmigen Strö mungsstrecke in die ringförmige Strömungsstrecke ausgebildet ist, d a d u r c h g e k e n n z e i c h n e t , dass die rohrförmige Strömungsstrecke des Ringkatalysators bauteilgleich auch den Gasauslass des in Strömungsrichtung vorgelagerten Turboladers ausbildet. 1. Device with an exhaust gas turbocharger and a ring catalyst downstream of the exhaust gas turbocharger in the direction of flow, the ring catalyst having a first tubular flow path, a deflection area and a second annular flow path, the tubular flow path being formed by an inner tube and the annular flow path between an in The outer tube running parallel to the inner tube and the inner tube is formed and the deflection area is designed to deflect the exhaust gas flow from the tubular Strö flow path into the annular flow path, characterized in that the tubular flow path of the ring catalytic converter also forms the gas outlet of the upstream turbocharger in the flow direction.
2. Vorrichtung nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass die ringförmige Strömungsstrecke zumindest eine katalytisch aktive Matrix aufweist. 2. Device according to claim 1, d a d u r c h g e k e n n z e i c h n e t that the annular flow path has at least one catalytically active matrix.
3. Vorrichtung nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass die Vorrichtung eine Heizeinrichtung aufweist. 3. Device according to one of the preceding claims, d a d u r c h g e k e n n z e i c h n e t that the device has a heating device.
4. Vorrichtung nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass die Heizeinrichtung durch einen elektrisch beheizbaren Katalysator gebildet ist. 4. Device according to one of the preceding claims, d a d u r c h g e k e n n z e i c h n e t that the heating device is formed by an electrically heatable catalyst.
5. Vorrichtung nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass die Heizeinrichtung auch bei ste hendem Verbrennungsmotor aktivierbar ist. 5. Device according to one of the preceding claims, d a d u r c h g e k e n n z e i c h n e t that the heating device can be activated even when the internal combustion engine is standing.
6. Vorrichtung nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass die Heizeinrichtung im Bereich des Wastegates des Turboladers angeordnet ist. 6. Device according to one of the preceding claims, d a d u r c h g e k e n n z e i c h n e t that the heating device is arranged in the region of the wastegate of the turbocharger.
7. Vorrichtung nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass die Heizeinrichtung ein gasförmiges Medium aufheizt, welches von der Heizeinrichtung durch zumindest Teilbe reiche der Vorrichtung förderbar ist. 7. Device according to one of the preceding claims, characterized in that the heating device is a gaseous Medium heats up, which can be conveyed by the heating device through at least partial areas of the device.
8. Vorrichtung nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass das gasförmige aufheizbare Medium ein mit Kraftstoffdampf gesättigtes Luftvolumen ist. 8. Device according to one of the preceding claims, d a d u r c h g e k e n n z e i c h n e t that the gaseous heatable medium is an air volume saturated with fuel vapor.
9. Vorrichtung nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass eine Pumpvorrichtung vorgesehen ist, durch welche ein Gasstrom durch das Wastegate entlang der rohrför migen Strömungsstrecke und des Umlenkbereichs in die ringförmige Strö mungsstrecke förderbar ist. 9. Device according to one of the preceding claims, d a d u r c h e k e n n z e i c h n e t that a pumping device is provided through which a gas flow through the wastegate along the tubular flow path and the deflection area in the annular flow path can be conveyed.
10. Vorrichtung nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass das zum Transport der Wärmeener gie von der Heizeinrichtung zur katalytischen Struktur genutzte Gasvolumen durch ein Luftvolumen aus einem Kraftstofftank gebildet ist. 10. Device according to one of the preceding claims, d a d u r c h g e k e n n z e i c h n e t that the gas volume used to transport the thermal energy from the heating device to the catalytic structure is formed by a volume of air from a fuel tank.
EP21731764.3A 2020-06-30 2021-06-09 Exhaust gas aftertreatment device Withdrawn EP4172473A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020208084 2020-06-30
PCT/EP2021/065421 WO2022002542A1 (en) 2020-06-30 2021-06-09 Exhaust gas aftertreatment device

Publications (1)

Publication Number Publication Date
EP4172473A1 true EP4172473A1 (en) 2023-05-03

Family

ID=76392380

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21731764.3A Withdrawn EP4172473A1 (en) 2020-06-30 2021-06-09 Exhaust gas aftertreatment device

Country Status (4)

Country Link
US (1) US20230332528A1 (en)
EP (1) EP4172473A1 (en)
CN (1) CN115917126A (en)
WO (1) WO2022002542A1 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008048796A1 (en) * 2008-09-24 2010-03-25 Emitec Gesellschaft Für Emissionstechnologie Mbh Emission control system for diesel engines
DE102009056183A1 (en) * 2009-11-27 2011-06-01 Emitec Gesellschaft Für Emissionstechnologie Mbh Exhaust gas purification component with deflection surface and method for its production
EP2453113B1 (en) * 2010-11-10 2015-03-11 Volvo Car Corporation Exhaust-gas aftertreatment device
DE102016201557B3 (en) * 2016-02-02 2017-06-08 Ford Global Technologies, Llc Exhaust after-treatment device with catalyst and their arrangement in a motor vehicle
DE102017201468A1 (en) * 2017-01-31 2018-08-02 Continental Automotive Gmbh Turbocharger for an internal combustion engine
DE102017111125A1 (en) * 2017-05-22 2018-11-22 Volkswagen Aktiengesellschaft Exhaust after-treatment system for an internal combustion engine
DE102017222235A1 (en) * 2017-12-08 2019-06-13 Continental Automotive Gmbh Method and device for heating an exhaust gas purification system of an internal combustion engine
DE102018129130B4 (en) * 2018-11-20 2023-03-23 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Turbine control device for exhaust gas turbochargers

Also Published As

Publication number Publication date
CN115917126A (en) 2023-04-04
US20230332528A1 (en) 2023-10-19
WO2022002542A1 (en) 2022-01-06

Similar Documents

Publication Publication Date Title
DE102010022940B4 (en) Exhaust particulate filter system, exhaust treatment system and method for regenerating an exhaust gas filter
DE102014110592B4 (en) aftertreatment component
EP2356322B1 (en) Arrangement and method for cleaning an exhaust gas flow of an internal combustion engine by separating particles
EP2691618B1 (en) Compact exhaust-gas treatment unit with mixing region, and method for mixing an exhaust gas
EP2326807B1 (en) Exhaust gas purification system for diesel engines
DE202012011764U1 (en) Mixer for aftertreatment of exhaust gases
EP3805533B1 (en) Exhaust gas heating element
DE102005011657B4 (en) Electric evaporator tube for an exhaust system of an internal combustion engine and exhaust system of an internal combustion engine with such an evaporator tube
DE102017111125A1 (en) Exhaust after-treatment system for an internal combustion engine
DE102017113712A1 (en) Exhaust gas aftertreatment system and method for exhaust aftertreatment of an internal combustion engine
EP3899219A1 (en) Method for operating a drive device and corresponding drive device
DE102018122875A1 (en) Device and method for exhaust gas aftertreatment of an internal combustion engine
WO2020260331A1 (en) Exhaust gas aftertreatment device
DE102020105829B4 (en) Exhaust gas aftertreatment system for an internal combustion engine and method for exhaust gas aftertreatment
DE102017222235A1 (en) Method and device for heating an exhaust gas purification system of an internal combustion engine
EP4172473A1 (en) Exhaust gas aftertreatment device
DE102020115714A1 (en) Exhaust aftertreatment system and method for exhaust aftertreatment of an internal combustion engine
WO2020182705A1 (en) Exhaust gas aftertreatment device, and method for operating the device
EP1383991B1 (en) Vehicle with internal combustion engine, fuel cell and catalyst
DE102020119057B3 (en) Exhaust tract for an internal combustion engine
AT524011A1 (en) Motor vehicle with an internal combustion engine powered by carbon-free fuel with an exhaust system connected thereto
DE102019115155A1 (en) Exhaust aftertreatment system and process for exhaust aftertreatment of an internal combustion engine
DE102017010267A1 (en) Internal combustion engine, in particular diesel engine, with exhaust aftertreatment
DE102020214870B3 (en) Device for exhaust aftertreatment
EP4155513B1 (en) Exhaust gas guide housing

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230130

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20230819