EP4172276A1 - Thermally conductive silicone compositions - Google Patents

Thermally conductive silicone compositions

Info

Publication number
EP4172276A1
EP4172276A1 EP21740116.5A EP21740116A EP4172276A1 EP 4172276 A1 EP4172276 A1 EP 4172276A1 EP 21740116 A EP21740116 A EP 21740116A EP 4172276 A1 EP4172276 A1 EP 4172276A1
Authority
EP
European Patent Office
Prior art keywords
thermally conductive
filler
organopolysiloxane
conductive filler
organopolysiloxane composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21740116.5A
Other languages
German (de)
French (fr)
Inventor
Aurélie PELLE
Lucile FAUVRE
Julie DUBOIS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elkem Silicones France SAS
Original Assignee
Elkem Silicones France SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elkem Silicones France SAS filed Critical Elkem Silicones France SAS
Publication of EP4172276A1 publication Critical patent/EP4172276A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/04Compounds of zinc
    • C09C1/043Zinc oxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/40Compounds of aluminium
    • C09C1/407Aluminium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/12Treatment with organosilicon compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • C08J2383/07Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K2003/023Silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to novel organopolysiloxane compositions crosslinking by polyaddition, intended to produce thermally conductive elements in particular for the automotive field, in particular for the field of electric vehicles.
  • Thermally conductive silicone elastomers are well known for their remarkable properties of heat transfer, thermal resistance to hot and cold, and electrical insulation. They are used in particular in electrical and electronic applications, and in the automotive industry. In particular in the automotive field, thermally conductive silicone elastomers are used in the batteries of electric vehicles and hybrid vehicles (“EV” and “HEV” according to English terminology) to remove heat from the cells of battery packs and of on-board electronics.
  • EV electric vehicles and hybrid vehicles
  • Thermally conductive silicone formulations have been described in the prior art. As early as 1981, US Pat. No. 4,292,223 described thermally conductive elastomers comprising organopolysiloxanes, a particulate filler and a viscosity modifier.
  • the particulate filler comprises silica and a thermally conductive metal powder.
  • the content by weight of metal powder is however only from 0.5: 1 to 2.5: 1, in powder / polymer mass ratio, and the maximum thermal conductivity obtained is only 11.7.10 4 cal / s. .cm. ° C, or 0.5 W / mK, which is not sufficient for the desired applications.
  • metal oxide powders have been employed to improve the thermal conductivity of elastomers, for example aluminum trihydrate (ATH), aluminum oxide and / or magnesium oxide (see for example the application US Patent 2019/0161666).
  • elastomers for example aluminum trihydrate (ATH), aluminum oxide and / or magnesium oxide.
  • ATH aluminum trihydrate
  • aluminum oxide aluminum oxide
  • magnesium oxide see for example the application US Patent 2019/0161666
  • thermally conductive fillers at very high concentration is responsible for increasing the density of the elastomer.
  • the density of the elastomeric material is a very important property.
  • thermally conductive elastomer material the density of which is preferably less than 4 g / cm 3 , more preferably less than 3 g / cm 3 , more preferably less than 2.5 g / cm 3 , and even more preferably less than 2 g / cm 3 .
  • Patent application JP 2000-063670 describes a thermally conductive silicone elastomer containing metallic silicon as thermally conductive filler.
  • Patent EP 1,788,031 also describes the use of metallic silicon powder in silicone elastomers as a thermally conductive filler in order to obtain high thermal conductivity and good storage stability.
  • the maximum thermal conductivity obtained in this document is between 0.6 W / mK and 1.0 W / mK
  • the patent application JP 2007-311628 describes a thermally conductive elastomer film in which a silicon powder metallic is used as a thermally conductive filler and electrical insulator.
  • said metallic silicon powder has a particle size of less than 20 ⁇ m.
  • Patent application KR 20120086249 describes a method of preparing a thermally conductive silicone elastomer containing a thermally conductive powder filler and a hollow filler made of organic resin. According to this document, use will preferably be made of a thermally conductive powder having particles with a diameter of between 3 and 15 ⁇ m. It is specified that the silicone elastomer obtained can have a thermoconductivity of between 0.15 W / mK and 3.0 W / m. K. However, in the examples, the thermal conductivity does not exceed 0.41 W / mK
  • patent JP524573 describes thermally conductive heat-sealing rolls and bands using a silicone elastomer layer comprising a metallic silicon powder.
  • the thermal conductivity obtained is 2 W / m.K.
  • thermally conductive silicone elastomer having both a high thermal conductivity, preferably greater than 2.0 W / mK or 3.0 W / mK, and a low density, preferably less than 3 g /. cm 3 or 2 g / cm 3 .
  • this silicone elastomer it is necessary for this silicone elastomer to have a consistency allowing its implementation and its use in the desired technical fields. Indeed, the inventors have observed that the composition could become powdery if the fillers were poorly chosen, and the preparation of the elastomer then became impossible.
  • the object of the present invention is to provide a novel thermally conductive organopolysiloxane composition, solving the above-mentioned problems, and having both high thermal conductivity, low density, and good processability.
  • the present invention relates to an organopolysiloxane composition X comprising:
  • organopolysiloxane A having, per molecule, at least two C2-C6 alkenyl groups bonded to silicon
  • organopolysiloxane B having, per molecule, at least two SiH units
  • thermally conductive filler D comprises at least 40% by weight of metallic silicon, said thermally conductive filler D comprises between 3% and 22% of particles having a diameter less than or equal to 2 ⁇ m, and the particle size distribution is such that the d90 / d10 ratio of said filler is greater than or equal to 20.
  • Another subject of the present invention relates to a two-component system P precursor of the organopoly siloxane composition X as defined above and comprising the constituents A, B, C, and D as defined above, said two-component system.
  • component P being characterized in that it is presented in two distinct parts PI and P2 intended to be mixed to form said organopolysiloxane composition X, and in that one of the parts PI or P2 comprises catalyst C and does not include l organopolysiloxane B, while the other part PI or P2 comprises organopolysiloxane B and does not include catalyst C.
  • Another subject of the present invention relates to a silicone elastomer capable of being obtained by crosslinking and / or curing of the organopolysiloxane composition X as defined above, as well as the use of the silicone elastomer as a thermally conductive coating material. or filling, in particular for the automotive field, in particular for the field of electric vehicles.
  • Another object of the present invention relates to a process for preparing a silicone elastomer comprising the following steps: a) providing a two-component system P comprising all the components of the organopolysiloxane composition X as defined above; b) mixing the two parts of said two-component system P to obtain the organopolysiloxane composition X; and c) allowing said organopolysiloxane composition X to crosslink and / or harden to obtain said silicone elastomer.
  • At least one organopolysiloxane A having, per molecule, at least two C2-C6 alkenyl groups bonded to silicon
  • thermally conductive filler D comprises at least 40% by weight of metallic silicon, said thermally conductive filler D comprises between 3% and 22% of particles having a diameter less than or equal to 2 mhi, and the size distribution of the particles is such that the d90 / d10 ratio of said filler is greater than or equal to 20.
  • all the viscosities of the silicone oils referred to in the present disclosure correspond to a dynamic viscosity quantity at 25 ° C called “Newtonian”, that is to say the dynamic viscosity which is measured, in a manner known per se, with a Brookfield viscometer at a sufficiently low shear rate gradient so that the measured viscosity is independent of the speed gradient.
  • organopolysiloxane composition X comprising at least the following components A, B, C, and D:
  • organopolysiloxane A having, per molecule, at least two C 1 -G alkenyl groups, bonded to silicon
  • organopolysiloxane B having, per molecule, at least two SiH units
  • the organopolysiloxane A having, per molecule, at least two C2-C6 alkenyl groups bonded to silicon, can in particular be formed:
  • Y is C2-C6 alkenyl, preferably vinyl
  • R 1 c SiO ( 4- C ) / 2 in which R 1 has the same meaning as above and c 0, 1, 2 or 3.
  • organopolysiloxanes A can have a linear structure, essentially consisting of “D” siloxyl units chosen from the group consisting of siloxyl units Y2S1O2 / 2, YR 1 Si0 2/2 and R ⁇ SIIOM, and end siloxyl units “M” chosen. among the group formed by YR / SiOi siloxyl units. Y2R 1 SiOi / 2 and R '; SiO 2- The symbols Y and R 1 are as described above.
  • terminal "M” units mention may be made of trimethylsiloxy, dimethylphenylsiloxy, dimethylvinylsiloxy or dimethylhexenylsiloxy groups.
  • D units mention may be made of dimethylsiloxy, methylphenylsiloxy, methylvinylsiloxy, methylbutenylsiloxy, methylhexenylsiloxy, methyldecenylsiloxy or methyldecadienylsiloxy groups.
  • linear organopolysiloxanes which may be organopolysiloxanes A according to the invention are:
  • organopolysiloxane A contains terminal dimethylvinylsilyl units and even more preferably organopolysiloxane A is a poly (dimethylsiloxane) with dimethylvinylsilyl ends.
  • Silicone oil generally has a viscosity of between 1 mPa.s and 2,000,000 mPa.s.
  • said organopolysiloxanes A are oils with a dynamic viscosity of between 20 mPa.s and 100,000 mPa.s, preferably between 20 mPa.s and 80,000 mPa.s at 25 ° C, and more preferably between 100 mPa.s and 50,000 mPa.s.
  • the organopolysiloxanes A can also contain “T” siloxyl units (R'SiCLi) and / or “Q” siloxyl units (S1O4 / 2).
  • the R 1 symbols are as described above.
  • the organopolysiloxanes A then exhibit a branched structure. Examples of branched organopolysiloxanes which may be organopolysiloxanes A according to the invention are:
  • the organopolysiloxane composition X does not comprise branched organopolysiloxanes or resins comprising C2-C6 alkenyl units.
  • the organopolysiloxane compound A has a content by mass of alkenyl unit of between 0.001% and 30%, preferably between 0.01% and 10%, preferably between 0.02 and 5%.
  • the organopolysiloxane composition X preferably comprises from 5% to 30% of organopolysiloxane A, more preferably from 8% to 15% by weight of organopolysiloxane A, relative to the total weight of the organopolysiloxane composition X.
  • the organopolysiloxane composition X can comprise a single organopolysiloxane A or a mixture of several organopolysiloxanes A having, for example, different viscosities and / or different structures.
  • Organopolysiloxane B is an organohydrogenpolysiloxane compound comprising per molecule at least two, and preferably at least three, hydrogenosilyl functions or Si — H units.
  • the organopolysiloxane composition X can comprise a single organohydrogenpolysiloxane B or a mixture of several organohydrogenpolysiloxanes B having, for example, different viscosities and / or different structures.
  • the organohydrogenpolysiloxane B can advantageously be an organopolysiloxane comprising at least two, preferably at least three, siloxyl units of the following formula: in which :
  • R 2 radicals which are identical or different, represent a monovalent radical having 1 to 12 carbon atoms
  • R 2 f SiO ( 4-f> / 2 in which R 2 has the same meaning as above, and f 0, 1, 2, or 3.
  • R 2 can represent a monovalent radical chosen from the group consisting of alkyl groups having 1 to 8 carbon atoms, optionally substituted by at least one halogen atom such as chlorine or fluorine, cycloalkyl groups having from 3 to 8 carbon atoms and aryl groups having 6 to 12 carbon atoms.
  • R 2 can advantageously be chosen from the group consisting of methyl, ethyl, propyl, 3,3,3-trifluoropropyl, xylyl, tolyl and phenyl.
  • the organohydrogenpolysiloxane B can have a linear, branched or cyclic structure.
  • the degree of polymerization is preferably greater than or equal to 2. Generally, it is less than 5000.
  • linear polymers they consist essentially of siloxyl units chosen from the units of the following formulas D: R 2 2 Si0 2/2 or D ': R 2 HSi0 2/2 , and of siloxyl units terminals chosen from the units of the following formulas M: R 2 3SiOi / 2 or M ': R 2 2HSiOi / 2 where R 2 has the same meaning as above.
  • organohydrogenpolysiloxanes which may be organopolysiloxanes B according to the invention comprising at least two hydrogen atoms bonded to a silicon atom are:
  • organohydrogenpolysiloxane B has a branched structure
  • it is preferably chosen from the group consisting of the silicone resins of the following formulas:
  • T siloxyl unit of formula R 2 3 SiOi / 2
  • Q siloxyl unit of formula S1O4 / 2 where R 2 has the same meaning as above.
  • the organohydrogenpolysiloxane compound B has a mass content of hydrogenosilyl Si — H functions of between 0.2% and 91%, more preferably between 3% and 80%, and even more preferably between 15% and 70%.
  • the molar ratio of the hydrogenosilyl Si-H functions to the alkenes functions can advantageously be between 0.2 and 20, preferably between 0.5 and 15, more preferably between 0.5 and 10, and even more preferably between 0.5 and 5.
  • the viscosity of the organohydrogenpolysiloxane B is between 1 mPa.s and 5000 mPa.s, more preferably between 1 mPa.s and 2000 mPa.s and even more preferably between 5 mPa.s and 1000 mPa.s.
  • the organopolysiloxane composition X preferably comprises from 0.1% to 10% of organohydrogenopolysiloxane B, and more preferably from 0.5% to 5% by weight, relative to the total weight of the organopolysiloxane composition X.
  • the hydrosilylation catalyst C can in particular be chosen from platinum and rhodium compounds but also from silicon compounds such as those described in patent applications WO 2015/004396 and WO 2015/004397, germanium compounds such as those described. in patent applications WO 2016/075414 or complexes of nickel, cobalt or iron such as those described in patent applications WO 2016/071651, WO 2016/071652 and WO 2016/071654.
  • Catalyst C is preferably a compound derived from at least one metal belonging to the platinum group. These catalysts are well known.
  • catalyst C is a compound derived from platinum.
  • the quantity by weight of catalyst C, calculated by weight of platinum metal is generally between 2 ppm and 400 ppm by weight, preferably between 5 ppm and 200 ppm by weight, based on the total weight of composition X.
  • catalyst C is a Karstedt platinum.
  • the organopolysiloxane composition X according to the present invention is characterized in that it comprises a thermally conductive filler D.
  • a thermally conductive filler D This can consist of a single filler or of a mixture of fillers having a different chemical nature and / or a structure different and / or different grain size.
  • the thermally conductive filler D consists of a mixture of at least two fillers or at least three fillers having a different chemical nature and / or particle size.
  • the thermally conductive filler D consists of a single filler.
  • the total weight of the thermally conductive filler D in the organopolysiloxane composition X is preferably greater than 70%, more preferably greater than 75%, and even more preferably between 80% and 95%, by weight relative to the weight total composition organopolysiloxane X. According to a particularly advantageous embodiment of the present invention, the total weight of the thermally conductive filler D in the organopolysiloxane composition X is greater than or equal to 85%. This particularly high content of thermally conductive filler makes it possible to achieve very high thermal conductivities.
  • Said thermally conductive filler D comprises at least 40% by weight of metallic silicon, preferably at least 50% by weight, more preferably at least 60% by weight, more preferably at least 70% by weight, and most preferably at least 60% by weight. even more preferred at least 80% by weight.
  • the thermally conductive filler D comprises between 60% and 99.99% by weight of metallic silicon, preferably between 65% and 99.95% by weight, more preferably between 70% and 99, 9% by weight, more preferably between 70% and 99% by weight, more preferably between 75% and 97% by weight, more preferably between 80% and 95% by weight.
  • the thermally conductive filler D may contain one or more other fillers of a different nature known to those skilled in the art for their thermally conductive properties, in particular from metals, alloys, metal oxides, metal hydroxides, metal nitrides. , metallic carbides, metallic silicides, carbon, soft magnetic alloys and ferrites.
  • the thermal conductivity of these charges is preferably greater than 10 W / mK, more preferably greater than 20 W / mK, and even more preferably greater than 50 W / mK
  • They may in particular be chosen from the group consisting of l 'alumina, aluminum trihydrate (ATH), aluminum, silicon carbide, silicon nitride, magnesium oxide, magnesium carbonate, boron nitride, zinc oxide, nitride aluminum, and carbon, for example carbon black, diamond, carbon nanotubes, graphite and graphene.
  • the thermally conductive filler D may comprise, in addition to metallic silicon, a thermally conductive filler chosen from the group consisting of an alumina filler, an aluminum trihydrate (ATH) filler, an aluminum filler, a filler. silica, zinc oxide filler, aluminum nitride filler, boron nitride filler, and mixtures thereof.
  • the thermally conductive filler D can comprise, in addition to metallic silicon, in addition to metallic silicon, a thermally conductive filler chosen from the group consisting of an alumina filler, an aluminum trihydrate (ATH) filler. , a zinc oxide filler, a silica filler, and mixtures thereof.
  • the thermally conductive filler D can comprise between 0.01% and 60% by weight of thermally conductive filler which is not metallic silicon, preferably between 0.05% and 50% by weight, more preferably between 0, 1% and 40% by weight, more preferably between 1% and 30% by weight, more preferably between 3% and 25% by weight, more preferably between 5% and 20% by weight.
  • the thermally conductive filler D comprises 100% by weight of metallic silicon, i.e. the thermally conductive filler D consists of metallic silicon, to the exclusion of any other thermally conductive filler of a different chemical nature.
  • the thermally conductive filler D preferably:
  • the organopolysiloxane composition X does not contain alumina, and / or
  • the organopolysiloxane composition X does not contain aluminum trihydrate (ATH), and / or
  • the organopolysiloxane composition X does not contain zinc oxide, and / or
  • the organopolysiloxane composition X does not contain silica.
  • the thermally conductive filler D according to the invention has certain particle size characteristics.
  • the thermally conductive filler D comprises between 3% and 22% (by volume) of particles having a diameter less than or equal to 2 ⁇ m (micrometers). More preferably, the thermally conductive filler D comprises between 3% and 20% (by volume) of particles having a diameter less than or equal to 2 ⁇ m (micrometers). Even more preferably, the thermally conductive filler D comprises between 6% and 18% (by volume) of particles having a diameter less than or equal to 2 ⁇ m.
  • the size distribution of the particles is such that the d90 / d10 ratio of said filler is greater than or equal to 20. More preferably, the size distribution of the particles is such that the d90 / d10 ratio of said filler. charge is greater than or equal to 30.
  • the d90 / d10 ratio of said charge may advantageously be less than 200, preferably less than 100.
  • the particle size distribution of the charges is measured by a laser diffraction method.
  • the content of particles having a diameter less than or equal to 2 ⁇ m is a volume content, obtained by summing the volume of all the particles having a diameter measured by laser diffraction less than or equal to 2 ⁇ m.
  • “D90” corresponds to the characteristic diameter corresponding to 90% of the cumulative frequency by volume of the particle size distribution of the filler.
  • “D10” corresponds to the characteristic diameter corresponding to 10% of the cumulative frequency by volume of the particle size distribution of the filler.
  • the thermally conductive charge (s) may have a specific surface area, measured according to BET methods, of at least 0.1 m 2 / g. Typically, the specific surface is less than or equal to 3000 m 2 / g.
  • the thermally conductive filler (s) can have a specific surface area, measured according to the BET methods, between 0.1 m 2 / g and 100 m 2 / g, or even between 0.1 m 2 / g and
  • the thermally conductive filler D can have any shape known to those skilled in the art, for example a spherical shape, a needle shape, a disc shape, a rod shape, or else an undefined shape.
  • the thermally conductive filler has a spherical shape or an undefined shape. When different thermally conductive fillers are used in mixtures, the latter may have the same shape or different shapes.
  • the thermally conductive filler of metallic silicon is a powder obtained by chemical reduction of silica then grinding in a crusher or an industrial grinder.
  • the thermally conductive filler of metallic silicon is a powder obtained from fragments of metallic silicon wafers and chips from the semiconductor industry, which have been finely cut or ground.
  • the thermally conductive filler in metallic silicon is a spherical powder obtained by melting metallic silicon at high temperature, by atomizing the molten silicon, then by cooling or by solidifying the spherical particles obtained.
  • the metallic silicon can be monocrystalline or polycrystalline.
  • the classification of the thermally conductive filler in metallic silicon can be carried out according to methods known to those skilled in the art, for example by dry classification or by wet classification, or by a succession of several classification steps of the same or different type.
  • the thermally conductive silicon metal filler is typically greater than 50%, or greater than 80%, or greater than 95% (by weight) pure.
  • the surface of a metallic silicon filler can be covered with a silicon oxide layer.
  • the appearance of this silicon oxide layer can be natural or caused by certain treatments. It can advantageously give the load better thermal stability.
  • the thermally conductive fillers made of metallic silicon can be used as such or they can undergo a surface treatment.
  • Said surface treatment typically aims to improve the dispersibility of the filler in the organopolysiloxane composition and / or to improve the thermal stability of the composition.
  • the heat treatment can improve the physical stability of the composition, avoiding the phenomena of settling or exudation, or even an increase in viscosity.
  • Said surface treatment can be a heat treatment, a chemical treatment, a physical treatment, or their combinations, in particular the combination of a chemical treatment and a chemical treatment.
  • the thermally conductive filler made of metallic silicon can be treated with organosilicon compounds usually used for this use.
  • the organopolysiloxane composition X according to the invention can therefore comprise an agent for treating the thermally conductive filler E.
  • these agents are:
  • organosiloxanes in particular methylpolysiloxanes such as hexamethyldisiloxane and 1 ’octamethylcy clotetrasiloxane,
  • organosilazanes in particular methylpolysilazanes such as hexamethyldisilazane, divinyltetramethyldisilazane and hexamethylcyclotrisilazane,
  • chlorosilanes such as dimethyldichlorosilane, trimethylchlorosilane, methylvinyldichlorosilane and dimethylvinylchlorosilane,
  • - alkoxysilanes such as methyltrimethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, ethyltrimethoxysilane, n-propyltrimethoxysilane, octyltrimethoxysilane, vinyltrimethoxysilane, dimethylvinylethoxysilane, vinyltri (2-methoxyethoxy) silane, vinyltriacetoxysilane, allyltrimethoxysilane, the butenyltrimethoxysilane, hexenyltrimethoxysilane, gamma-methacryloxyproyltrimethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, diphenyldimethoxysilane, trimethylmethoxy and trimethylethoxysilane.
  • the thermally conductive filler made of metallic silicon can be treated with an alkoxysilane, in particular octyltrimethoxysilane, or with an organosilazane, in particular hexamethyldisilazane (HMDZ) and divinyltetramethyldisilazane, or a mixture of these, in particular a mixture of these HMDZ and divinyltetramethyldisilazane.
  • HMDZ hexamethyldisilazane
  • divinyltetramethyldisilazane or a mixture of these, in particular a mixture of these HMDZ and divinyltetramethyldisilazane.
  • water can typically be added.
  • the organopolysiloxane composition X preferably comprises from 0.1% to 5% of an agent for treating the thermally conductive filler E, and more preferably from 1% to 3% by weight, relative to the total weight of the organopolysiloxane composition X.
  • a heat treatment of the thermally conductive filler in metallic silicon can consist in subjecting said filler to a temperature of between 100 ° C and 200 ° C for a period of between 1 hour and 4 hours.
  • a physical treatment agent can be an organopolysiloxane comprising in OH groups.
  • the surface treatment can be carried out before incorporation of the thermally conductive filler in the organopolysiloxane composition.
  • the treatment of the thermally conductive filler can be carried out in situ, during the preparation of the organopolysiloxane composition.
  • the organopolysiloxane composition X according to the present invention can optionally comprise other components.
  • the organopolysiloxane composition X according to the present invention can optionally comprise a filler E which is not a thermally conductive filler.
  • the organopolysiloxane composition X according to the present invention can optionally comprise a crosslinking inhibitor F.
  • the function of the inhibitor F is to slow the hydrosilylation reaction.
  • the crosslinking inhibitor F can be chosen from the following compounds:
  • organopolysiloxane advantageously cyclic, and substituted by at least one alkenyl, tetramethylvinyltetrasiloxane being particularly preferred
  • R 1 is a linear or branched alkyl radical, or a phenyl radical
  • R 2 is a hydrogen atom, a linear or branched alkyl radical, or a phenyl radical,
  • R 1 and R 2 the total number of carbon atoms contained in R 1 and R 2 being at least 5, preferably 9 to 20.
  • Said alcohols are preferably chosen from those having a boiling point greater than 250 ° C. Mention may be made, by way of examples, of the following products which are commercially available: 1-ethynyl-l-cyclohexanol, methyl-3-dodécyne-l-ol-3, trimethyl-3,7,1 l-dodécyne -1-ol-3, diphenyl-1, 1-propyne-2-ol-1, ethyl-3-ethyl-6-nonyne-1-ol-3 and methyl-3-pentadecyne-1-ol-3.
  • the crosslinking inhibitor F is 1-ethynyl-1-cyclohexanol.
  • the presence of the inhibitor may or may not be necessary. If necessary, such a crosslinking inhibitor can typically be present in an amount of 3000 ppm at most, preferably at a rate of 100 ppm to 2000 ppm relative to the total weight of the organopolysiloxane composition X.
  • the organopolysiloxane composition X according to the present invention can optionally comprise other additives traditionally used in this technical field by a person skilled in the art, for example an adhesion promoter, a dye, a fire retardant, a rheological agent such as a thixotropic agent, etc.
  • additives traditionally used in this technical field by a person skilled in the art, for example an adhesion promoter, a dye, a fire retardant, a rheological agent such as a thixotropic agent, etc.
  • the organopolysiloxane composition X according to the present invention can contain a low level of volatile organic compounds, typically less than 100 pgC / g, preferably less than 70 pgC / g, or even less than 50 pgC / g.
  • the organopolysiloxane compounds used in the composition according to the present invention can preferably be chosen from the compounds themselves containing a low level of volatile organic compounds.
  • the organopolysiloxane composition X according to the invention comprises:
  • organopolysiloxane A having, per molecule, at least two C2-C6 alkenyl groups bonded to silicon
  • organopolysiloxane B having, per molecule, at least two SiH units
  • the percentages and ppm are percentages and ppm by mass.
  • the quantity by weight of catalyst C is calculated by weight of platinum metal.
  • a subject of the present invention is also the silicone elastomer obtained or capable of being obtained by crosslinking and / or curing of the organopolysiloxane composition X such as defined above, the process for obtaining said elastomer, as well as the intermediate compositions used during this process for obtaining.
  • the organopolysiloxane composition X as defined above is particularly suitable for the preparation of a silicone elastomer having thermally conductive properties.
  • said elastomer is prepared from a two-component system P comprising all the components of the organopolysiloxane composition X.
  • the present invention also relates to a two-component system P precursor of the organopolysiloxane composition X as defined above, comprising at least the components A, B, C, and D, said two-component system P being characterized in that it is in two distinct PI and P2 parts intended to be mixed to form said organopolysiloxane composition X, and in that one of the PI or P2 parts comprises catalyst C and does not include organopolysiloxane B , while the other PI or P2 part comprises the organopolysiloxane B and does not include the catalyst C.
  • Another object of the present invention consists of a process for preparing a silicone elastomer comprising the following steps: a) providing a two-component system P comprising all the components of the organopolysiloxane composition X as defined above; b) mixing the two parts of said two-component system P to obtain the organopolysiloxane composition X; and c) allowing said organopolysiloxane composition X to crosslink and / or harden to obtain said silicone elastomer.
  • the PI part comprises:
  • organopolysiloxane A having, per molecule, at least two C2-C6 alkenyl groups bonded to silicon
  • part P2 optionally the treatment agent for the thermally conductive load E, and part P2 includes:
  • organopolysiloxane A having, per molecule, at least two C2-C6 alkenyl groups bonded to silicon
  • organopolysiloxane B having, per molecule, at least two SiH units
  • the thermally conductive filler D can be present in part PI, in part P2 or in both parts PI and P2, with identical or different contents between parts PI and P2.
  • the thermally conductive filler D can be present in part PI and in part P2, in an identical content.
  • the total content of thermally conductive filler D remains invariable in the organopolysiloxane composition X regardless of the rate of mixing of the parts PI and P2.
  • the PI part, the P2 part or the two PI and P2 parts can be obtained from an intermediate composition comprising all or part of the organopolysiloxane A and all or part of the thermally conductive filler D, as well as optionally the treatment agent for the thermally conductive filler E.
  • a subject of the present invention is also an intermediate composition comprising:
  • At least one organopolysiloxane A having, per molecule, at least two C2-C6 alkenyl groups bonded to silicon
  • thermally conductive filler D comprises at least 40% by weight of metallic silicon, said thermally conductive filler D comprises between 3% and 22% of particles having a diameter less than or equal to 2 ⁇ m, and the particle size distribution is such that the d90 / d10 ratio of said filler is greater than or equal to 20.
  • Said organopolysiloxane A and said thermally conductive filler D are preferably as described above.
  • the total weight of the thermally conductive filler D in the intermediate composition is greater than 70%, more preferably greater than 75%, and more preferably greater than 80%, and even more preferably between 85% and 98% by weight relative to the total weight of the intermediate composition.
  • This intermediate composition particularly rich in thermally conductive filler D, makes it possible, after dilution with other components, to easily obtain the organopolysiloxane composition X or precursor parts PI and / or P2.
  • the intermediate composition according to the present invention can be obtained by mixing at least the organopolysiloxane A and the thermally conductive filler D by means of a device known to those skilled in the art, for example a Z-arm mixer or a butterfly mixer. .
  • the thermally conductive filler D can undergo a treatment surface treatment, which can be heat treatment, chemical treatment, or a combination of heat treatment and chemical treatment.
  • the intermediate composition may optionally comprise an agent for treating the thermally conductive filler E, as described above. Heat treatment can be performed on the thermally conductive filler before it is mixed into the intermediate composition.
  • the intermediate composition can be subjected to a heat treatment after mixing the organopolysiloxane A, the thermally conductive filler D, and optionally the treatment agent for the thermally conductive filler E.
  • the organopolysiloxane composition X as well as the parts PI and P2 of the two-component system P precursor of the organopolysiloxane composition X, have good processability. Indeed, despite the presence of a very high thermally conductive filler content, said compositions are advantageously pasty and non-powdery, which makes them easy to handle, in particular extrudable. It is to the credit of the inventors to have succeeded in determining the good characteristics of the thermally conductive filler allowing this technical result to be achieved.
  • the silicone elastomer which is the subject of the present invention, obtained or capable of being obtained by crosslinking and / or curing of the organopolysiloxane composition X advantageously exhibits a thermal conduction greater than or equal to 1 W / mK, preferably greater than or equal to 1.5 W / mK, more preferably greater than or equal to 2 W / mK, more preferably greater than or equal to 3 W / mK, and even more preferably between 3 W / mK and 7 W / mK
  • said silicone elastomer advantageously has a density of less than or equal to 4 g / cm 3 , preferably less than or equal to 3 g / cm 3 , more preferably less than 2 g / cm 3 .
  • the silicone elastomer according to the present invention can easily be recycled after use.
  • this elastomer preferably contains a very high silicon element content, in particular when the thermally conductive filler itself contains a very high metallic silicon content.
  • the used silicone elastomer can advantageously be recycled using combustion furnaces.
  • Said silicone elastomer can advantageously be used as a thermally conductive material in various technical fields, in particular in the field of electronics, in electrical applications, and in the automotive field.
  • Said silicone elastomer can advantageously be used as a thermally conductive coating material (ie “potting” according to English terminology) or filling (ie “gap-filler” according to English terminology. Anglo-Saxon), in particular for batteries, for example the batteries of electric vehicles and hybrid vehicles, but also stationary batteries.
  • the silicone elastomer according to the invention can advantageously be used as a thermally conductive material in 5G devices.
  • the particle size distribution of the fillers is measured by a laser diffraction method:
  • - "d10" corresponds to the characteristic diameter corresponding to 10% of the cumulative frequency by volume of the particle size distribution of the filler.
  • - "d50" corresponds to the characteristic diameter corresponding to 50% of the cumulative frequency by volume of the particle size distribution of the filler.
  • - "d90" corresponds to the characteristic diameter corresponding to 90% of the cumulative frequency by volume of the particle size distribution of the filler.
  • - "d100" corresponds to the characteristic diameter corresponding to 100% of the cumulative frequency by volume of the particle size distribution of the filler.
  • the content of particles having a diameter less than or equal to 2 ⁇ m is a volume content, obtained by summing the volume of all the particles having a diameter measured by laser diffraction less than or equal to 2 ⁇ m.
  • Silicone compositions corresponding to parts PI and P2 were prepared according to the following protocol:
  • thermally conductive filler D the silicone oil A and the catalyst C were mixed in a Speed Mixer at 1800 rpm according to the concentration indicated in Table 1 below.
  • concentration of thermally conductive fillers is 85%.
  • thermally conductive filler D silicone oil A, silicone oils B 1 and B2, and G 1-ethynyl-l-cyclohexanol F were mixed in a Speed Mixer at 1800 rpm depending on the concentration shown in Table 1 below.
  • concentration of thermally conductive fillers is 85%.
  • Examples 1 to 17 were carried out by following the manufacturing protocol described above, by varying the thermally conductive load D as described in Table 2 and Table 3 below.
  • Examples 18 to 22 were carried out by mixing with the Speed Mixer (stirring for 2 times 2 minutes at 1800 revolutions per minute) 85% of thermally conductive fillers D with 15% of silicone oil A, by varying the thermally conductive load D as described. in Table 4 below.
  • the processability of the compositions obtained was visually evaluated as described above.
  • the thermal conductivity and the density of an elastomeric material which could be obtained from the exemplified compositions were estimated by calculation.
  • Step 1 Manufacture of an intermediate composition 89% of thermally conductive fillers D, 9% of silicone oil A and 2% of octyltrimethoxysilane
  • Step 2 Manufacture of the PI and P2 parts
  • For part P2 Dilution of the mash obtained in step 1 with silicone oil A, silicone oils B1 and B2, and G 1-ethynyl-l-cyclohexanol F. according to the concentration indicated in the table 5 below.
  • the concentration of thermally conductive fillers is 85%. Said dilutions are obtained by mixing in a Speed Mixer at 1800 revolutions per minute. The PI and P2 parts had very good processability.
  • Step 3 Manufacture of the thermally conductive silicone composition and of the thermally conductive silicone elastomer
  • step 2 The PI and P2 parts obtained in step 2 were mixed in a ratio of 1: 1 with the Speed Mixer. The resulting mixture was degassed in vacuo, then poured into a mold. The mixture contained in the mold was then placed in a heating press, at a pressure of 2 bars, at 100 ° C., for 30 minutes.
  • the thermal conductivity of the elastomer was measured according to the transient plane source method (TPS method for "transient place source”) as described in standard ISO 22007-2 ("Determination of thermal conductivity and effusivity thermal. Part 2: Transient planar source (hot disk) method ”) using a Hot Disc TPS 2200 device.
  • TPS method transient plane source method
  • the thermal conductivity of the elastomer was equal to 3.42 W / mK
  • the density of l elastomer was 1.94 g / cm 3 .

Abstract

The present invention relates to organopolysiloxane compositions comprising an organopolysiloxane having, per molecule, at least two alkenyl groups, an organopolysiloxane having, per molecule, at least two SiH units, a hydrosilylation catalyst, and a thermally conductive filler, the thermally conductive filler comprising at least 40% by weight of metallic silicon, and a specific particle size distribution. The invention further relates to a silicone elastomer which can be obtained by cross-linking and/or curing the composition, as well as its use as a thermally conductive material for coating or filling, in particular for the automotive field, in particular for the field of electric vehicles.

Description

DESCRIPTION DESCRIPTION
TITRE : COMPOSITIONS SILICONES THERMOCONDUCTRICES TITLE: THERMOCONDUCTIVE SILICONE COMPOSITIONS
Domaine technique La présente invention concerne de nouvelles compositions organopolysiloxaniques réticulant par polyaddition, destinées à produire des éléments thermoconducteurs notamment pour le domaine de Lautomobile, en particulier pour le domaine des véhicules électriques. Technical field The present invention relates to novel organopolysiloxane compositions crosslinking by polyaddition, intended to produce thermally conductive elements in particular for the automotive field, in particular for the field of electric vehicles.
Etat de la technique antérieure Les élastomères silicones thermoconducteurs sont bien connus pour leurs propriétés remarquables de transfert de chaleur, de résistance thermique au chaud et au froid, et d’isolation électrique. Ils sont utilisés notamment dans les applications électriques et électroniques, et dans les domaines de l’automobile. En particulier dans le domaine automobile, les élastomères silicones thermoconducteurs sont utilisés au niveau des batteries des véhicules électriques et des véhicules hybrides (« EV » et « HEV » selon la terminologie anglo-saxonne) pour évacuer la chaleur des cellules des blocs-batteries et de l’électronique embarquée. STATE OF THE PRIOR ART Thermally conductive silicone elastomers are well known for their remarkable properties of heat transfer, thermal resistance to hot and cold, and electrical insulation. They are used in particular in electrical and electronic applications, and in the automotive industry. In particular in the automotive field, thermally conductive silicone elastomers are used in the batteries of electric vehicles and hybrid vehicles (“EV” and “HEV” according to English terminology) to remove heat from the cells of battery packs and of on-board electronics.
Des formulations de silicones thermoconductrices ont été décrites dans l’art antérieur. Dès 1981, le brevet US 4,292,223 décrivait des élastomères thermoconducteurs comprenant des organopolysiloxanes, une charge particulaire et un modifiant de viscosité. La charge particulaire comprend de la silice et une poudre métallique thermoconductrice. La teneur en poids en poudre métallique n’est toutefois que de 0,5:1 à 2,5:1, en rapport massique poudre/polymère, et la conductivité thermique maximale obtenue n’est que de 11,7.104 cal/s.cm.°C, soit 0,5 W/m.K, ce qui n’est pas suffisant pour les applications désirées. Actuellement, il est souhaitable d’obtenir une conductivité thermique supérieure à 2,0 W/m.K, de préférence d’au moins 3,0 W/m.K. Thermally conductive silicone formulations have been described in the prior art. As early as 1981, US Pat. No. 4,292,223 described thermally conductive elastomers comprising organopolysiloxanes, a particulate filler and a viscosity modifier. The particulate filler comprises silica and a thermally conductive metal powder. The content by weight of metal powder is however only from 0.5: 1 to 2.5: 1, in powder / polymer mass ratio, and the maximum thermal conductivity obtained is only 11.7.10 4 cal / s. .cm. ° C, or 0.5 W / mK, which is not sufficient for the desired applications. Currently, it is desirable to achieve thermal conductivity greater than 2.0 W / mK, preferably at least 3.0 W / mK
Traditionnellement, on emploie des poudres d’oxydes métalliques pour améliorer la thermoconductivité des élastomères, par exemple du trihydrate d’aluminium (ATH), de l’oxyde d’aluminium et/ou de l’oxyde de magnésium (voir par exemple la demande de brevet US 2019/0161666). Cependant, l’addition de ces charges thermoconductrices à très haute concentration est responsable de l’augmentation de la densité de l’élastomère. Pour les domaines d’application visés, tels que l’automobile, la densité du matériau élastomère est une propriété très importante. Il est souhaitable d’obtenir un matériau élastomère thermoconducteur dont la densité est de préférence inférieure à 4 g/cm3, plus préférentiellement inférieure à 3 g/cm3, plus préférentiellement inférieure à 2,5 g/cm3, et encore plus préférentiellement inférieure à 2 g/cm3. La demande de brevet JP 2000-063670 décrit un élastomère silicone thermoconducteur contenant du silicium métallique comme charge thermoconductrice. Le brevet EP 1.788.031 décrit également Lutilisation de poudre de silicium métallique dans les élastomères silicones en tant que charge thermoconductrice pour obtenir une conductivité thermique élevée et une bonne stabilité au stockage. Toutefois, la conductivité thermique maximale obtenue dans ce document est comprise entre 0,6 W/m.K et 1,0 W/m.K. De la même manière, la demande de brevet JP 2007-311628 décrit un film élastomère thermoconducteur dans lequel une poudre de silicium métallique est utilisée comme charge thermoconductrice et isolant électrique. De préférence, ladite poudre de silicium métallique a une granulométrie de moins de 20 pm. La demande de brevet KR 20120086249 décrit une méthode de préparation d’un élastomère silicone thermoconducteur contenant une charge thermoconductrice en poudre et une charge creuse en résine organique. Selon ce document, on utilisera de préférence une poudre thermoconductrice ayant des particules de diamètre compris entre 3 et 15 pm. Il est précis que G élastomère silicone obtenu peut avoir une thermoconductivité comprise entre 0,15 W/m.K et 3,0 W/m. K. Toutefois, dans les exemples, la conductivité thermique ne dépasse pas 0,41 W/m.K. Traditionally, metal oxide powders have been employed to improve the thermal conductivity of elastomers, for example aluminum trihydrate (ATH), aluminum oxide and / or magnesium oxide (see for example the application US Patent 2019/0161666). However, the addition of these thermally conductive fillers at very high concentration is responsible for increasing the density of the elastomer. For the intended fields of application, such as the automobile, the density of the elastomeric material is a very important property. It is desirable to obtain a thermally conductive elastomer material, the density of which is preferably less than 4 g / cm 3 , more preferably less than 3 g / cm 3 , more preferably less than 2.5 g / cm 3 , and even more preferably less than 2 g / cm 3 . Patent application JP 2000-063670 describes a thermally conductive silicone elastomer containing metallic silicon as thermally conductive filler. Patent EP 1,788,031 also describes the use of metallic silicon powder in silicone elastomers as a thermally conductive filler in order to obtain high thermal conductivity and good storage stability. However, the maximum thermal conductivity obtained in this document is between 0.6 W / mK and 1.0 W / mK In the same way, the patent application JP 2007-311628 describes a thermally conductive elastomer film in which a silicon powder metallic is used as a thermally conductive filler and electrical insulator. Preferably, said metallic silicon powder has a particle size of less than 20 µm. Patent application KR 20120086249 describes a method of preparing a thermally conductive silicone elastomer containing a thermally conductive powder filler and a hollow filler made of organic resin. According to this document, use will preferably be made of a thermally conductive powder having particles with a diameter of between 3 and 15 μm. It is specified that the silicone elastomer obtained can have a thermoconductivity of between 0.15 W / mK and 3.0 W / m. K. However, in the examples, the thermal conductivity does not exceed 0.41 W / mK
Dans un autre domaine technique, le brevet JP524573 décrit des rouleaux et des bandes thermosoudants conducteurs thermiques utilisant une couche élastomère silicone comprenant une poudre de silicium métallique. La thermoconductivité obtenue est de 2 W/m.K. In another technical field, patent JP524573 describes thermally conductive heat-sealing rolls and bands using a silicone elastomer layer comprising a metallic silicon powder. The thermal conductivity obtained is 2 W / m.K.
Il serait souhaitable de disposer d’un élastomère silicone thermoconducteur ayant à la fois une haute conductivité thermique, de préférence supérieure à 2,0 W/m.K ou 3,0 W/m.K, et une faible densité, de préférence inférieure à 3 g/cm3 ou à 2 g/cm3. En outre, Il est nécessaire que cet élastomère silicone ait une consistance permettant sa mise en œuvre et son utilisation dans les domaines techniques désirés. En effet, les inventeurs ont constatés que la composition pouvait devenir poudreuse si les charges étaient mal choisies, et la préparation de l’élastomère devenait alors impossible. It would be desirable to have a thermally conductive silicone elastomer having both a high thermal conductivity, preferably greater than 2.0 W / mK or 3.0 W / mK, and a low density, preferably less than 3 g /. cm 3 or 2 g / cm 3 . In addition, it is necessary for this silicone elastomer to have a consistency allowing its implementation and its use in the desired technical fields. Indeed, the inventors have observed that the composition could become powdery if the fillers were poorly chosen, and the preparation of the elastomer then became impossible.
L’objet de la présente invention est de proposer une nouvelle composition organopolysiloxanique thermoconductrice, résolvant les problèmes mentionnés ci-dessus, et possédant à la fois une haute conductivité thermique, une faible densité, et une bonne processabilité. The object of the present invention is to provide a novel thermally conductive organopolysiloxane composition, solving the above-mentioned problems, and having both high thermal conductivity, low density, and good processability.
Résumé de l’invention Summary of the invention
La présente invention a pour objet une composition organopolysiloxanique X comprenant :The present invention relates to an organopolysiloxane composition X comprising:
- au moins un organopolysiloxane A présentant, par molécule, au moins deux groupes alcényles en C2-C6 liés au silicium, - au moins un organopolysiloxane B présentant, par molécule, au moins deux motifs SiH,- at least one organopolysiloxane A having, per molecule, at least two C2-C6 alkenyl groups bonded to silicon, - at least one organopolysiloxane B having, per molecule, at least two SiH units,
- une quantité catalytiquement efficace d’au moins un catalyseur d’hydrosilylation C, et- a catalytically effective amount of at least one hydrosilylation catalyst C, and
- une charge thermoconductrice D, caractérisée en ce que ladite charge thermoconductrice D comprend au moins 40% en poids de silicium métallique, ladite charge thermoconductrice D comprend entre 3% et 22% de particules ayant un diamètre inférieur ou égal à 2 pm, et la distribution de taille des particules est telle que le ratio d90/dl0 de ladite charge est supérieur ou égal à 20. a thermally conductive filler D, characterized in that said thermally conductive filler D comprises at least 40% by weight of metallic silicon, said thermally conductive filler D comprises between 3% and 22% of particles having a diameter less than or equal to 2 μm, and the particle size distribution is such that the d90 / d10 ratio of said filler is greater than or equal to 20.
Un autre objet de la présente invention concerne un système bi-composant P précurseur de la composition organopoly siloxanique X telle que définie ci-dessus et comprenant les constituants A, B, C, et D tels que définis ci-dessus, ledit système bi-composant P étant caractérisé en ce qu’il se présente en deux parties PI et P2 distinctes destinées à être mélangées pour former ladite composition organopolysiloxanique X, et en ce que l’une des parties PI ou P2 comprend le catalyseur C et ne comprend pas l’organopolysiloxane B, tandis que l’autre partie PI ou P2 comprend l’organopolysiloxane B et ne comprend pas le catalyseur C. Another subject of the present invention relates to a two-component system P precursor of the organopoly siloxane composition X as defined above and comprising the constituents A, B, C, and D as defined above, said two-component system. component P being characterized in that it is presented in two distinct parts PI and P2 intended to be mixed to form said organopolysiloxane composition X, and in that one of the parts PI or P2 comprises catalyst C and does not include l organopolysiloxane B, while the other part PI or P2 comprises organopolysiloxane B and does not include catalyst C.
Un autre objet de la présente invention concerne un élastomère silicone susceptible d’être obtenu par réticulation et/ou durcissement de la composition organopolysiloxanique X telle que définie ci-dessus, ainsi que l’utilisation de l’élastomère silicone comme matériau thermoconducteur d’emobage ou de remplissage, notamment pour le domaine de l’automobile, en particulier pour le domaine des véhicules électriques. Another subject of the present invention relates to a silicone elastomer capable of being obtained by crosslinking and / or curing of the organopolysiloxane composition X as defined above, as well as the use of the silicone elastomer as a thermally conductive coating material. or filling, in particular for the automotive field, in particular for the field of electric vehicles.
Un autre objet de la présente invention concerne un procédé de préparation d’un élastomère silicone comprenant les étapes suivantes : a) fournir un système bi-composant P comprenant l’ensemble des composants de la composition organopolysiloxanique X telle que définie ci-dessus ; b) mélanger les deux parties dudit système bi-composant P pour obtenir la composition organopolysiloxanique X ; et c) laisser réticuler et/ou durcir ladite composition organopolysiloxanique X pour obtenir ledit élastomère silicone. Another object of the present invention relates to a process for preparing a silicone elastomer comprising the following steps: a) providing a two-component system P comprising all the components of the organopolysiloxane composition X as defined above; b) mixing the two parts of said two-component system P to obtain the organopolysiloxane composition X; and c) allowing said organopolysiloxane composition X to crosslink and / or harden to obtain said silicone elastomer.
Enfin, la présente invention a pour objet une composition intermédiaire comprenant : Finally, the present invention relates to an intermediate composition comprising:
- au moins un organopolysiloxane A présentant, par molécule, au moins deux groupes alcényles en C2-C6 liés au silicium, et - at least one organopolysiloxane A having, per molecule, at least two C2-C6 alkenyl groups bonded to silicon, and
- une charge thermoconductrice D, caractérisée en ce que ladite charge thermoconductrice D comprend au moins 40% en poids de silicium métallique, ladite charge thermoconductrice D comprend entre 3% et 22% de particules ayant un diamètre inférieur ou égal à 2 mhi, et la distribution de taille des particules est telle que le ratio d90/dl0 de ladite charge est supérieur ou égal à 20. - a thermally conductive filler D, characterized in that said thermally conductive filler D comprises at least 40% by weight of metallic silicon, said thermally conductive filler D comprises between 3% and 22% of particles having a diameter less than or equal to 2 mhi, and the size distribution of the particles is such that the d90 / d10 ratio of said filler is greater than or equal to 20.
Description détaillée de l’invention Detailed description of the invention
Sauf indication contraire, toutes les viscosités des huiles silicones dont il est question dans le présent exposé correspondent à une grandeur de viscosité dynamique à 25°C dite « Newtonienne », c’est-à-dire la viscosité dynamique qui est mesurée, de manière connue en soi, avec un viscosimètre Brookfield à un gradient de vitesse de cisaillement suffisamment faible pour que la viscosité mesurée soit indépendante du gradient de vitesse. Unless otherwise indicated, all the viscosities of the silicone oils referred to in the present disclosure correspond to a dynamic viscosity quantity at 25 ° C called “Newtonian”, that is to say the dynamic viscosity which is measured, in a manner known per se, with a Brookfield viscometer at a sufficiently low shear rate gradient so that the measured viscosity is independent of the speed gradient.
La composition organopolysiloxanique X selon la présente invention comprenant au moins les composants A, B, C, et D suivants : The organopolysiloxane composition X according to the present invention comprising at least the following components A, B, C, and D:
- un organopolysiloxane A présentant, par molécule, au moins deux groupes alcényles en Ci- G, liés au silicium, - an organopolysiloxane A having, per molecule, at least two C 1 -G alkenyl groups, bonded to silicon,
- un organopolysiloxane B présentant, par molécule, au moins deux motifs SiH, - an organopolysiloxane B having, per molecule, at least two SiH units,
- un catalyseur d’hydrosilylation C, et - a hydrosilylation catalyst C, and
- une charge thermoconductrice D. - a thermally conductive load D.
L’organopolysiloxane A présentant, par molécule, au moins deux groupes alcényles en C2-C6 liés au silicium, peut être notamment formé : The organopolysiloxane A having, per molecule, at least two C2-C6 alkenyl groups bonded to silicon, can in particular be formed:
- d’au moins deux motifs siloxyle de formule suivante : YaR1 bSiO(4-a-b)/2 dans laquelle : - at least two siloxyl units of the following formula: Y a R 1 b SiO ( 4- ab ) / 2 in which:
Y est un alcényle en C2-C6, de préférence vinyle, Y is C2-C6 alkenyl, preferably vinyl,
R1 est un groupe hydrocarboné monovalent ayant de 1 à 12 atomes de carbone, de préférence choisi parmi les groupes alkyles ayant de 1 à 8 atomes de carbone tels que les groupes méthyle, éthyle, propyle, les groupes cycloalkyles ayant de 3 à 8 atomes de carbone et les groupes aryle ayant de 6 à 12 atomes de carbone, et a=l ou 2, b=0, 1 ou 2 et la somme a+b=l, 2 ou 3 ; et R 1 is a monovalent hydrocarbon group having 1 to 12 carbon atoms, preferably chosen from alkyl groups having 1 to 8 carbon atoms such as methyl, ethyl, propyl, cycloalkyl groups having 3 to 8 atoms carbon and aryl groups having 6 to 12 carbon atoms, and a = 1 or 2, b = 0, 1 or 2 and the sum of a + b = 1, 2 or 3; and
- éventuellement de motifs de formule suivante : R1 cSiO(4-C)/2 dans laquelle R1 a la même signification que ci-dessus et c = 0, 1, 2 ou 3. - optionally of units of the following formula: R 1 c SiO ( 4- C ) / 2 in which R 1 has the same meaning as above and c = 0, 1, 2 or 3.
Il est entendu dans les formules ci-dessus que, si plusieurs groupes R1 sont présents, ils peuvent être identiques ou différents les uns des autres. It is understood in the above formulas that, if several R 1 groups are present, they may be the same or different from each other.
Ces organopolysiloxanes A peuvent présenter une structure linéaire, essentiellement constitués de motifs siloxyles « D » choisis parmi le groupe constitué par les motifs siloxyles Y2S1O2/2, YR1Si02/2 et R^SÎOM, et de motifs siloxyles « M » terminaux choisis parmi le groupe constitué par les motifs siloxyles YR/SiOi . Y2R1SiOi/2 et R ' ;SiO 2- Les symboles Y et R1 sont tels que décrits ci-dessus. These organopolysiloxanes A can have a linear structure, essentially consisting of “D” siloxyl units chosen from the group consisting of siloxyl units Y2S1O2 / 2, YR 1 Si0 2/2 and R ^ SIIOM, and end siloxyl units “M” chosen. among the group formed by YR / SiOi siloxyl units. Y2R 1 SiOi / 2 and R '; SiO 2- The symbols Y and R 1 are as described above.
A titre d’exemples de motifs « M » terminaux, on peut citer les groupes triméthylsiloxy, diméthylphénylsiloxy, diméthylvinylsiloxy ou diméthylhexènylsiloxy. As examples of terminal "M" units, mention may be made of trimethylsiloxy, dimethylphenylsiloxy, dimethylvinylsiloxy or dimethylhexenylsiloxy groups.
A titre d’exemples de motifs « D », on peut citer les groupes diméthylsiloxy, méthylphénylsiloxy, méthylvinylsiloxy, méthylbutènylsiloxy, méthylhexènylsiloxy, méthyldécènylsiloxy ou méthyldécadiènylsiloxy. As examples of "D" units, mention may be made of dimethylsiloxy, methylphenylsiloxy, methylvinylsiloxy, methylbutenylsiloxy, methylhexenylsiloxy, methyldecenylsiloxy or methyldecadienylsiloxy groups.
Des exemples d’organopolysiloxanes linéaires pouvant être des organopolysiloxanes A selon l’invention sont : Examples of linear organopolysiloxanes which may be organopolysiloxanes A according to the invention are:
- un poly(diméthylsiloxane) à extrémités diméthylvinylsilyles ; - a poly (dimethylsiloxane) with dimethylvinylsilyl ends;
- un poly(diméthylsiloxane-co-méthylphénylsiloxane) à extrémités diméthyl-vinylsilyles ;- a poly (dimethylsiloxane-co-methylphenylsiloxane) with dimethyl-vinylsilyl ends;
- unpoly(diméthylsiloxane-co-méthylvinylsiloxane) à extrémités diméthyl-vinylsilyles ;- unpoly (dimethylsiloxane-co-methylvinylsiloxane) with dimethyl-vinylsilyl ends;
- un poly(diméthylsiloxane-co-méthylvinylsiloxane) à extrémités triméthyl-silyles ; et- a poly (dimethylsiloxane-co-methylvinylsiloxane) with trimethyl-silyl ends; and
- un poly(méthylvinylsiloxane) cycliques. - a cyclic poly (methylvinylsiloxane).
Dans la forme la plus recommandée, l’organopolysiloxane A contient des motifs diméthylvinylsilyles terminaux et encore plus préférentiellement l’organopolysiloxane A est un poly(diméthylsiloxane) à extrémités diméthylvinylsilyles. In the most recommended form, organopolysiloxane A contains terminal dimethylvinylsilyl units and even more preferably organopolysiloxane A is a poly (dimethylsiloxane) with dimethylvinylsilyl ends.
Une huile silicone a généralement une viscosité comprise entre 1 mPa.s et 2.000.000 mPa.s. De préférence, lesdits organopolysiloxanes A sont des huiles de viscosité dynamique comprise entre 20 mPa.s et 100.000 mPa.s, de préférence entre 20 mPa.s et 80.000 mPa.s à 25°C, et plus préférentiellement entre 100 mPa.s et 50.000 mPa.s. Silicone oil generally has a viscosity of between 1 mPa.s and 2,000,000 mPa.s. Preferably, said organopolysiloxanes A are oils with a dynamic viscosity of between 20 mPa.s and 100,000 mPa.s, preferably between 20 mPa.s and 80,000 mPa.s at 25 ° C, and more preferably between 100 mPa.s and 50,000 mPa.s.
Optionnellement, les organopolysiloxanes A peuvent en outre contenir des motifs siloxyles « T » (R'SiCLi) et/ou des motifs siloxyles « Q » (S1O4/2). Les symboles R1 sont tels que décrits ci-dessus. Les organopolysiloxanes A présentent alors une structure branchée. Des exemples d’organopolysiloxanes branchés pouvant être des organopolysiloxanes A selon l’invention sont : Optionally, the organopolysiloxanes A can also contain “T” siloxyl units (R'SiCLi) and / or “Q” siloxyl units (S1O4 / 2). The R 1 symbols are as described above. The organopolysiloxanes A then exhibit a branched structure. Examples of branched organopolysiloxanes which may be organopolysiloxanes A according to the invention are:
- un poly(diméthylsiloxane)(méthylsiloxane) à extrémités triméthylsilyles et diméthylvinylsilyles, constituée de motifs « M » triméthylsiloxy, « M » diméthylvinylsiloxy, « D » diméthylsiloxy et « T » méthylsiloxy ; - a poly (dimethylsiloxane) (methylsiloxane) with trimethylsilyl and dimethylvinylsilyl ends, consisting of “M” trimethylsiloxy, “M” dimethylvinylsiloxy, “D” dimethylsiloxy and “T” methylsiloxy units;
- une résine constituée de motifs « M » triméthylsiloxy, « M » diméthylvinylsiloxy et « Q » ; eta resin consisting of “M” trimethylsiloxy, “M” dimethylvinylsiloxy and “Q” units; and
- une résine constituée de motifs « M » triméthylsiloxy, « D » méthylvinylsiloxy et « Q ». Toutefois, selon un mode de réalisation, la composition organopolysiloxanique X ne comprend pas d’organopolysiloxanes branchés ou résines comprenant des motifs alcényles en C2-C6. De préférence, le composé organopolysiloxane A a une teneur massique en motif alcényle comprise entre 0,001% et 30%, de préférence entre 0,01% et 10%, de préférence entre 0,02 et 5%. a resin consisting of “M” trimethylsiloxy, “D” methylvinylsiloxy and “Q” units. However, according to one embodiment, the organopolysiloxane composition X does not comprise branched organopolysiloxanes or resins comprising C2-C6 alkenyl units. Preferably, the organopolysiloxane compound A has a content by mass of alkenyl unit of between 0.001% and 30%, preferably between 0.01% and 10%, preferably between 0.02 and 5%.
La composition organopolysiloxanique X comprend de préférence de 5% à 30% d’organopolysiloxane A, plus préférentiellement de 8% à 15% en poids d’organopolysiloxane A, par rapport au poids total de la composition organopolysiloxanique X. The organopolysiloxane composition X preferably comprises from 5% to 30% of organopolysiloxane A, more preferably from 8% to 15% by weight of organopolysiloxane A, relative to the total weight of the organopolysiloxane composition X.
La composition organopolysiloxanique X peut comprendre un seul organopolysiloxane A ou un mélange de plusieurs organopolysiloxanes A ayant par exemple des viscosités différentes et/ou des structures différentes. The organopolysiloxane composition X can comprise a single organopolysiloxane A or a mixture of several organopolysiloxanes A having, for example, different viscosities and / or different structures.
L’organopolysiloxane B est un composé organohydrogénopolysiloxane comprenant par molécule au moins deux, et de préférence au moins trois, fonctions hydrogénosilyles ou motifs Si-H. La composition organopolysiloxanique X peut comprendre un seul organohydrogénopolysiloxane B ou un mélange de plusieurs organohydrogénopolysiloxanes B ayant par exemple des viscosités différentes et/ou des structures différentes. L’organohydrogénopolysiloxane B peut avantageusement être un organopolysiloxane comprenant au moins deux, de préférence au moins trois, motifs siloxyles de formule suivante : dans laquelle : Organopolysiloxane B is an organohydrogenpolysiloxane compound comprising per molecule at least two, and preferably at least three, hydrogenosilyl functions or Si — H units. The organopolysiloxane composition X can comprise a single organohydrogenpolysiloxane B or a mixture of several organohydrogenpolysiloxanes B having, for example, different viscosities and / or different structures. The organohydrogenpolysiloxane B can advantageously be an organopolysiloxane comprising at least two, preferably at least three, siloxyl units of the following formula: in which :
- les radicaux R2, identiques ou différents, représentent un radical monovalent ayant de 1 à 12 atomes de carbone, - the R 2 radicals, which are identical or different, represent a monovalent radical having 1 to 12 carbon atoms,
- d=l ou 2, e=0, 1 ou 2 et d+e=l, 2 ou 3 ; et éventuellement d’autres motifs de formule suivante : R2 fSiO(4-f>/2 dans laquelle R2 a la même signification que ci-dessus, et f = 0, 1, 2, ou 3. - d = 1 or 2, e = 0, 1 or 2 and d + e = l, 2 or 3; and optionally other units of the following formula: R 2 f SiO ( 4-f> / 2 in which R 2 has the same meaning as above, and f = 0, 1, 2, or 3.
II est entendu dans les formules ci-dessus que, si plusieurs groupes R2 sont présents, ils peuvent être identiques ou différents les uns des autres. Préférentiellement R2 peut représenter un radical monovalent choisi dans le groupe constitué par les groupes alkyles ayant 1 à 8 atomes de carbone, éventuellement substitué par au moins un atome d’halogène tel que le chlore ou le fluor, les groupes cycloalkyles ayant de 3 à 8 atomes de carbone et les groupes aryles ayant de 6 à 12 atomes de carbone. R2 peut avantageusement être choisi dans le groupe constitué par le méthyle, l’éthyle, le propyle, le 3,3,3-trifluoropropyle, le xylyle, le tolyle et le phényle. It is understood in the above formulas that, if several R 2 groups are present, they can be identical or different from each other. Preferably, R 2 can represent a monovalent radical chosen from the group consisting of alkyl groups having 1 to 8 carbon atoms, optionally substituted by at least one halogen atom such as chlorine or fluorine, cycloalkyl groups having from 3 to 8 carbon atoms and aryl groups having 6 to 12 carbon atoms. R 2 can advantageously be chosen from the group consisting of methyl, ethyl, propyl, 3,3,3-trifluoropropyl, xylyl, tolyl and phenyl.
Dans la formule ci-dessus, le symbole d est préférentiellement égal à 1. L’organohydrogénopolysiloxane B peut présenter une structure linéaire, ramifiée, ou cyclique. Le degré de polymérisation est de préférence supérieur ou égal à 2. Généralement, il est inférieur à 5000. Lorsqu’il s’agit de polymères linéaires, ceux-ci sont essentiellement constitués de motifs siloxyles choisis parmi les motifs de formules suivantes D : R2 2Si02/2 ou D’ : R2HSi02/2, et de motifs siloxyles terminaux choisis parmi les motifs de formules suivantes M : R23SiOi/2 ou M’ : R22HSiOi/2 où R2 a la même signification que ci-dessus. In the above formula, the symbol d is preferably equal to 1. The organohydrogenpolysiloxane B can have a linear, branched or cyclic structure. The degree of polymerization is preferably greater than or equal to 2. Generally, it is less than 5000. When it comes to linear polymers, they consist essentially of siloxyl units chosen from the units of the following formulas D: R 2 2 Si0 2/2 or D ': R 2 HSi0 2/2 , and of siloxyl units terminals chosen from the units of the following formulas M: R 2 3SiOi / 2 or M ': R 2 2HSiOi / 2 where R 2 has the same meaning as above.
Des exemples d’organohydrogénopolysiloxanes pouvant être des organopolysiloxanes B selon l’invention comprenant au moins deux atomes d’hydrogène lié à un atome de silicium sont :Examples of organohydrogenpolysiloxanes which may be organopolysiloxanes B according to the invention comprising at least two hydrogen atoms bonded to a silicon atom are:
- un poly(diméthylsiloxane) à extrémités hydrogénodiméthylsilyles ; - a poly (dimethylsiloxane) with hydrogenodimethylsilyl ends;
- un poly(diméthylsiloxane-co-méthylhydrogénosiloxane) à extrémités triméthyl-silyles ;- a poly (dimethylsiloxane-co-methylhydrogenosiloxane) with trimethyl-silyl ends;
- un poly(diméthylsiloxane-co-méthylhydrogénosiloxane) à extrémités hydrogénodiméthylsilyles ; - a poly (dimethylsiloxane-co-methylhydrogenosiloxane) with hydrogenodimethylsilyl ends;
- un poly(méthylhydrogénosiloxane) à extrémités triméthylsilyles ; et - a poly (methylhydrogenosiloxane) with trimethylsilyl ends; and
- un poly(méthylhydrogénosiloxane) cyclique. - a cyclic poly (methylhydrogenosiloxane).
Lorsque l’organohydrogénopolysiloxane B présente une structure ramifiée, il est choisi de préférence parmi le groupe constitué par les résines silicones de formules suivantes : When the organohydrogenpolysiloxane B has a branched structure, it is preferably chosen from the group consisting of the silicone resins of the following formulas:
- M’Q où les atomes d’hydrogène liés à des atomes de silicium sont portés par les groupes M,- M’Q where the hydrogen atoms bonded to silicon atoms are carried by the M groups,
- MM’Q où les atomes d’hydrogène liés à des atomes de silicium sont portés par une partie des motifs M, - MM'Q where the hydrogen atoms bonded to silicon atoms are carried by part of the M units,
- MD’Q où les atomes d’hydrogène liés à des atomes de silicium sont portés par les groupes D,- MD’Q where the hydrogen atoms bonded to silicon atoms are carried by the D groups,
- MDD’Q où les atomes d’hydrogène liés à des atomes de silicium sont portés par une partie des groupes D, - MDD’Q where the hydrogen atoms bonded to silicon atoms are carried by part of the D groups,
- MM’TQ où les atomes d’hydrogène liés à des atomes de silicium sont portés par une partie des motifs M, - MM'TQ where the hydrogen atoms bonded to silicon atoms are carried by part of the M units,
- MM’DD’Q où les atomes d’hydrogène liés à des atomes de silicium sont portés par une partie des motifs M et D, - MM'DD'Q where the hydrogen atoms bonded to silicon atoms are carried by part of the M and D units,
- et leurs mélanges, avec M,M’, D et D’ tels que définis précédemment, T : motif siloxyle de formule R2 3SiOi/2 et Q : motif siloxyle de formule S1O4/2 où R2 a la même signification que ci-dessus. - and their mixtures, with M, M ', D and D' as defined above, T: siloxyl unit of formula R 2 3 SiOi / 2 and Q: siloxyl unit of formula S1O4 / 2 where R 2 has the same meaning as above.
De préférence, le composé organohydrogénopolysiloxane B a une teneur massique en fonctions hydrogénosilyle Si-H comprise entre 0,2% et 91%, plus préférentiellement entre 3% et 80%, et encore plus préférentiellement entre 15% et 70%. Preferably, the organohydrogenpolysiloxane compound B has a mass content of hydrogenosilyl Si — H functions of between 0.2% and 91%, more preferably between 3% and 80%, and even more preferably between 15% and 70%.
En considérant l’ensemble de la composition organopolysiloxanique X, le ratio molaire des fonctions hydrogénosilyles Si-H sur les fonctions alcènes peut avantageusement être compris entre 0,2 et 20, de préférence entre 0,5 et 15, plus préférentiellement entre 0,5 et 10, et encore plus préférentiellement entre 0,5 et 5. De préférence, la viscosité de l’organohydrogénopolysiloxane B est comprise entre 1 mPa.s et 5000 mPa.s, plus préférentiellement entre 1 mPa.s et 2000 mPa.s et encore plus préférentiellement entre 5 mPa.s et 1000 mPa.s. Considering the whole of the organopolysiloxane composition X, the molar ratio of the hydrogenosilyl Si-H functions to the alkenes functions can advantageously be between 0.2 and 20, preferably between 0.5 and 15, more preferably between 0.5 and 10, and even more preferably between 0.5 and 5. Preferably, the viscosity of the organohydrogenpolysiloxane B is between 1 mPa.s and 5000 mPa.s, more preferably between 1 mPa.s and 2000 mPa.s and even more preferably between 5 mPa.s and 1000 mPa.s.
La composition organopolysiloxanique X comprend de préférence de 0,1% à 10% d’organohydrogénopolysiloxane B, et plus préférentiellement de 0,5% à 5% en poids, par rapport au poids total de la composition organopolysiloxanique X. The organopolysiloxane composition X preferably comprises from 0.1% to 10% of organohydrogenopolysiloxane B, and more preferably from 0.5% to 5% by weight, relative to the total weight of the organopolysiloxane composition X.
Le catalyseur d’hydrosilylation C peut notamment être choisi parmi les composés du platine et du rhodium mais aussi parmi des composés de silicium comme ceux décrits dans les demandes de brevet WO 2015/004396 et WO 2015/004397, des composés de germanium comme ceux décrits dans les demandes de brevet WO 2016/075414 ou des complexes de nickel, cobalt ou fer comme ceux décrits dans les demandes de brevet WO 2016/071651, WO 2016/071652 et WO 2016/071654. Le catalyseur C est de préférence un composé dérivé d’au moins un métal appartenant au groupe du platine. Ces catalyseurs sont bien connus. On peut, en particulier, utiliser les complexes du platine et d’un produit organique décrit dans les brevets US 3,159,601, US 3,159,602, US 3,220,972 et les brevets européens EP 0.057.459, EP 0.188.978 et EP 0.190.530, les complexes du platine et d’organosiloxanes vinylés décrits dans les brevets US 3,419,593, US 3,715,334, US 3,377,432 et US 3,814,730. The hydrosilylation catalyst C can in particular be chosen from platinum and rhodium compounds but also from silicon compounds such as those described in patent applications WO 2015/004396 and WO 2015/004397, germanium compounds such as those described. in patent applications WO 2016/075414 or complexes of nickel, cobalt or iron such as those described in patent applications WO 2016/071651, WO 2016/071652 and WO 2016/071654. Catalyst C is preferably a compound derived from at least one metal belonging to the platinum group. These catalysts are well known. It is possible, in particular, to use the complexes of platinum and of an organic product described in US patents 3,159,601, US 3,159,602, US 3,220,972 and European patents EP 0.057.459, EP 0.188.978 and EP 0.190.530, the complexes platinum and vinylated organosiloxanes described in US Patents 3,419,593, US 3,715,334, US 3,377,432 and US 3,814,730.
Préférentiellement, le catalyseur C est un composé dérivé du platine. Dans ce cas, la quantité pondérale de catalyseur C, calculée en poids de platine-métal, est généralement comprise entre 2 ppm et 400 ppm massiques, de préférence entre 5 ppm et 200 ppm massiques, basée sur le poids total de la composition X. Preferably, catalyst C is a compound derived from platinum. In this case, the quantity by weight of catalyst C, calculated by weight of platinum metal, is generally between 2 ppm and 400 ppm by weight, preferably between 5 ppm and 200 ppm by weight, based on the total weight of composition X.
Préférentiellement le catalyseur C est un platine de Karstedt. Preferably, catalyst C is a Karstedt platinum.
La composition organopolysiloxanique X selon la présente invention se caractérise par le fait qu’elle comprend une charge thermoconductrice D. Celle-ci peut être constituée d’une seule charge ou d’une mélange de charges ayant une nature chimique différentes et/ou une structure différente et/ou une granulométrie différente. Selon un mode de réalisation préféré de la présente invention, la charge thermoconductrice D est constituée d’un mélanges d’au moins deux charges ou d’au moins trois charges ayant une nature chimique et/ou une granulométrie différente. Selon un autre mode de réalisation préféré de la présente invention, la charge thermoconductrice D est constituée d’une seule charge. The organopolysiloxane composition X according to the present invention is characterized in that it comprises a thermally conductive filler D. This can consist of a single filler or of a mixture of fillers having a different chemical nature and / or a structure different and / or different grain size. According to a preferred embodiment of the present invention, the thermally conductive filler D consists of a mixture of at least two fillers or at least three fillers having a different chemical nature and / or particle size. According to another preferred embodiment of the present invention, the thermally conductive filler D consists of a single filler.
Le poids total de la charge thermoconductrice D dans la composition organopolysiloxanique X est de préférence supérieur à 70%, de façon plus préférée supérieur à 75%, et de façon encore plus préférée compris entre 80% et 95%, en poids par rapport au poids total de la composition organopolysiloxanique X. Selon un mode de réalisation particulièrement avantageux de la présente invention, le poids total de la charge thermoconductrice D dans la composition organopolysiloxanique X est supérieur ou égal à 85%. Cette teneur particulièrement élevée en charge thermoconductrice permet d’atteindre des conductivités thermiques très élevées.The total weight of the thermally conductive filler D in the organopolysiloxane composition X is preferably greater than 70%, more preferably greater than 75%, and even more preferably between 80% and 95%, by weight relative to the weight total composition organopolysiloxane X. According to a particularly advantageous embodiment of the present invention, the total weight of the thermally conductive filler D in the organopolysiloxane composition X is greater than or equal to 85%. This particularly high content of thermally conductive filler makes it possible to achieve very high thermal conductivities.
Ladite charge thermoconductrice D comprend au moins 40% en poids de silicium métallique, de façon préférée au moins 50% en poids, de façon plus préférée au moins 60% en poids, de façon plus préférée au moins 70% en poids, et de façon encore plus préférée au moins 80% en poids. Said thermally conductive filler D comprises at least 40% by weight of metallic silicon, preferably at least 50% by weight, more preferably at least 60% by weight, more preferably at least 70% by weight, and most preferably at least 60% by weight. even more preferred at least 80% by weight.
Selon un premier mode de réalisation, la charge thermoconductrice D comprend entre 60% et 99,99% en poids de silicium métallique, de façon préférée entre 65% et 99,95% en poids, de façon plus préférée entre 70% et 99,9% en poids, de façon plus préférée entre 70% et 99% en poids, de façon plus préférée entre 75% et 97% en poids, de façon plus préférée entre 80% et 95% en poids. According to a first embodiment, the thermally conductive filler D comprises between 60% and 99.99% by weight of metallic silicon, preferably between 65% and 99.95% by weight, more preferably between 70% and 99, 9% by weight, more preferably between 70% and 99% by weight, more preferably between 75% and 97% by weight, more preferably between 80% and 95% by weight.
Outre le silicium métallique, la charge thermoconductrice D peut contenir une ou plusieurs autres charges de nature différente connues par l’homme du métier pour ses propriétés thermoconductrices, notamment parmi les métaux, les alliages, les oxydes métalliques, les hydroxydes métalliques, les nitrures métalliques, les carbures métalliques, les siliciures métalliques, le carbone, les alliages magnétiques doux et les ferrites. La conductivité thermique de ces charges est de préférence supérieure à 10 W/m.K, de façon plus préférée supérieure à 20 W/m.K, et de façon encore plus préférée supérieure à 50 W/m.K. Elles pourront notamment être choisies dans le groupe constitué par l’alumine, le trihydrate d’aluminium (ATH), l’aluminium, le carbure de silicium, le nitrure de silicium, l’oxyde de magnésium, le carbonate de magnésium, le nitrure de bore, l’oxyde de zinc, le nitrure d’aluminium, et le carbone, par exemple noir de carbone, diamant, nanotubes de carbone, graphite et graphène. De préférence, la charge thermoconductrice D peut comprendre, en plus du silicium métallique, une charge thermoconductrice choisie dans le groupe constitué par une charge d’alumine, une charge de trihydrate d’aluminium (ATH), une charge d’aluminium, une charge de silice, une charge d’oxyde de zinc, une charge de nitrure d’aluminium, une charge de nitrure de bore, et leurs mélanges. De façon encore plus préférée, la charge thermoconductrice D peut comprendre, en plus du silicium métallique, en plus du silicium métallique, une charge thermoconductrice choisie dans le groupe constitué par une charge d’alumine, une charge de trihydrate d’aluminium (ATH), une charge d’oxyde de zinc, une charge de silice, et leurs mélanges. La charge thermoconductrice D peut comprendre entre 0,01% et 60% en poids, de charge thermoconductrice qui n’est pas du silicium métallique, de façon préférée entre 0,05% et 50% en poids, de façon plus préférée entre 0,1% et 40% en poids, de façon plus préférée entre 1% et 30% en poids, de façon plus préférée entre 3% et 25% en poids, de façon plus préférée entre 5% et 20% en poids. In addition to metallic silicon, the thermally conductive filler D may contain one or more other fillers of a different nature known to those skilled in the art for their thermally conductive properties, in particular from metals, alloys, metal oxides, metal hydroxides, metal nitrides. , metallic carbides, metallic silicides, carbon, soft magnetic alloys and ferrites. The thermal conductivity of these charges is preferably greater than 10 W / mK, more preferably greater than 20 W / mK, and even more preferably greater than 50 W / mK They may in particular be chosen from the group consisting of l 'alumina, aluminum trihydrate (ATH), aluminum, silicon carbide, silicon nitride, magnesium oxide, magnesium carbonate, boron nitride, zinc oxide, nitride aluminum, and carbon, for example carbon black, diamond, carbon nanotubes, graphite and graphene. Preferably, the thermally conductive filler D may comprise, in addition to metallic silicon, a thermally conductive filler chosen from the group consisting of an alumina filler, an aluminum trihydrate (ATH) filler, an aluminum filler, a filler. silica, zinc oxide filler, aluminum nitride filler, boron nitride filler, and mixtures thereof. Even more preferably, the thermally conductive filler D can comprise, in addition to metallic silicon, in addition to metallic silicon, a thermally conductive filler chosen from the group consisting of an alumina filler, an aluminum trihydrate (ATH) filler. , a zinc oxide filler, a silica filler, and mixtures thereof. The thermally conductive filler D can comprise between 0.01% and 60% by weight of thermally conductive filler which is not metallic silicon, preferably between 0.05% and 50% by weight, more preferably between 0, 1% and 40% by weight, more preferably between 1% and 30% by weight, more preferably between 3% and 25% by weight, more preferably between 5% and 20% by weight.
Selon un autre mode de réalisation, la charge thermoconductrice D comprend 100% en poids de silicium métallique, i.e. la charge thermoconductrice D est constituée de silicium métallique, à G exclusion de toute autre charge thermoconductrice de nature chimique différente. Ainsi, de préférence : According to another embodiment, the thermally conductive filler D comprises 100% by weight of metallic silicon, i.e. the thermally conductive filler D consists of metallic silicon, to the exclusion of any other thermally conductive filler of a different chemical nature. Thus, preferably:
- la composition organopolysiloxanique X ne contient pas d’alumine, et/ou - the organopolysiloxane composition X does not contain alumina, and / or
- la composition organopolysiloxanique X ne contient pas de trihydrate d’aluminium (ATH), et/ou - the organopolysiloxane composition X does not contain aluminum trihydrate (ATH), and / or
- la composition organopolysiloxanique X ne contient pas d’oxyde de zinc, et/ou - the organopolysiloxane composition X does not contain zinc oxide, and / or
- la composition organopolysiloxanique X ne contient pas de silice. - the organopolysiloxane composition X does not contain silica.
La charge thermoconductrice D selon l’invention possède certaines caractéristiques de granulométrie. The thermally conductive filler D according to the invention has certain particle size characteristics.
D’une part, la charge thermoconductrice D comprend entre 3% et 22% (en volume) de particules ayant un diamètre inférieur ou égal à 2 pm (micromètres). De façon plus préférée, la charge thermoconductrice D comprend entre 3% et 20% (en volume) de particules ayant un diamètre inférieur ou égal à 2 pm (micromètres). De façon encore plus préférée, la charge thermoconductrice D comprend entre 6% et 18% (en volume) de particules ayant un diamètre inférieur ou égal à 2 pm. On the one hand, the thermally conductive filler D comprises between 3% and 22% (by volume) of particles having a diameter less than or equal to 2 µm (micrometers). More preferably, the thermally conductive filler D comprises between 3% and 20% (by volume) of particles having a diameter less than or equal to 2 μm (micrometers). Even more preferably, the thermally conductive filler D comprises between 6% and 18% (by volume) of particles having a diameter less than or equal to 2 μm.
D’autre part, la distribution de taille des particules est telle que le ratio d90/dl0 de ladite charge est supérieur ou égal à 20. De façon plus préférée, la distribution de taille des particules est telle que le ratio d90/dl0 de ladite charge est supérieur ou égal à 30. Le ratio d90/dl0 de ladite charge peut être avantageusement inférieur à 200, de préférence inférieur à 100. On the other hand, the size distribution of the particles is such that the d90 / d10 ratio of said filler is greater than or equal to 20. More preferably, the size distribution of the particles is such that the d90 / d10 ratio of said filler. charge is greater than or equal to 30. The d90 / d10 ratio of said charge may advantageously be less than 200, preferably less than 100.
Dans le présent texte, la granulométrie des charges est mesurée par une méthode de diffraction laser. La teneur en particules ayant un diamètre inférieur ou égal à 2 pm est une teneur volumique, obtenue en sommant le volume de toutes les particules ayant un diamètre mesuré par diffraction laser inférieur ou égal à 2 pm. « d90 » correspond au diamètre caractéristique correspondant à 90% de la fréquence cumulée en volume de la distribution granulométrique de la charge. « dlO » correspond au diamètre caractéristique correspondant à 10% de la fréquence cumulée en volume de la distribution granulométrique de la charge. In the present text, the particle size distribution of the charges is measured by a laser diffraction method. The content of particles having a diameter less than or equal to 2 μm is a volume content, obtained by summing the volume of all the particles having a diameter measured by laser diffraction less than or equal to 2 μm. “D90” corresponds to the characteristic diameter corresponding to 90% of the cumulative frequency by volume of the particle size distribution of the filler. “D10” corresponds to the characteristic diameter corresponding to 10% of the cumulative frequency by volume of the particle size distribution of the filler.
La ou les charges thermoconductrices peuvent avoir une surface spécifique, mesurée selon les méthodes BET, d’au moins 0,1 m2/g. Typiquement, la surface spécifique est inférieure ou égale à 3000 m2/g. De façon préférée, la ou les charges thermoconductrices peuvent avoir une surface spécifique, mesurée selon les méthodes BET entre 0, 1 m2/g et 100 m2/g, voire entre 0, 1 m2/g et La charge thermoconductrice D peut avoir n’importe quelle forme connue de l’homme du métier, par exemple une forme sphérique, une forme en aiguille, une forme de disque, une forme de bâtonnet, ou bien une forme indéfinie. De préférence, la charge thermoconductrice à une forme sphérique ou une forme indéfinie. Lorsque différentes charges thermoconductrices sont utilisées en mélanges, celle-ci peuvent avoir la même forme ou des formes différentes. The thermally conductive charge (s) may have a specific surface area, measured according to BET methods, of at least 0.1 m 2 / g. Typically, the specific surface is less than or equal to 3000 m 2 / g. Preferably, the thermally conductive filler (s) can have a specific surface area, measured according to the BET methods, between 0.1 m 2 / g and 100 m 2 / g, or even between 0.1 m 2 / g and The thermally conductive filler D can have any shape known to those skilled in the art, for example a spherical shape, a needle shape, a disc shape, a rod shape, or else an undefined shape. Preferably, the thermally conductive filler has a spherical shape or an undefined shape. When different thermally conductive fillers are used in mixtures, the latter may have the same shape or different shapes.
En ce qui concerne la charge thermoconductrice en silicium métallique, celle-ci peut être obtenue par toute méthode bien connue de l’homme du métier. Selon un premier mode de réalisation, la charge thermoconductrice en silicium métallique est une poudre obtenue par réduction chimique de silice puis broyage dans un concasseur ou un broyeur industriel. Selon un second mode de réalisation, la charge thermoconductrice en silicium métallique est une poudre obtenue à partir de fragments de tranches de silicium métallique et de puces provenant de l’industrie des semi-conducteurs, qui ont été finement découpés ou broyés. Selon un troisième mode de réalisation, la charge thermoconductrice en silicium métallique est une poudre sphérique obtenue en faisant fondre à haute température du silicium métallique, en atomisant le silicium fondu, puis en refroidissant ou en solidifiant les particules sphériques obtenues. Le silicium métallique peut être monocristallin ou polycristallin. La classification de la charge thermoconductrice en silicium métallique peut être réalisée selon les méthodes connues de l’homme du métier, par exemple par classification sèche ou par classification humide, ou par une succession de plusieurs étapes de classification de type identique ou différent. As regards the thermally conductive filler of metallic silicon, this can be obtained by any method well known to those skilled in the art. According to a first embodiment, the thermally conductive filler in metallic silicon is a powder obtained by chemical reduction of silica then grinding in a crusher or an industrial grinder. According to a second embodiment, the thermally conductive filler of metallic silicon is a powder obtained from fragments of metallic silicon wafers and chips from the semiconductor industry, which have been finely cut or ground. According to a third embodiment, the thermally conductive filler in metallic silicon is a spherical powder obtained by melting metallic silicon at high temperature, by atomizing the molten silicon, then by cooling or by solidifying the spherical particles obtained. The metallic silicon can be monocrystalline or polycrystalline. The classification of the thermally conductive filler in metallic silicon can be carried out according to methods known to those skilled in the art, for example by dry classification or by wet classification, or by a succession of several classification steps of the same or different type.
La charge thermoconductrice en silicium métallique est typiquement pure à plus de 50%, ou à plus de 80%, ou à plus de 95% (en poids). Toutefois, il est connu que la surface d’une charge de silicium métallique peut être couverte d’une couche d’oxyde de silicium. L’apparition de cette couche d’oxyde de silicium peut être naturelle ou provoquée par certains traitements. Elle peut avantageusement conférer à la charge une meilleure stabilité thermique. The thermally conductive silicon metal filler is typically greater than 50%, or greater than 80%, or greater than 95% (by weight) pure. However, it is known that the surface of a metallic silicon filler can be covered with a silicon oxide layer. The appearance of this silicon oxide layer can be natural or caused by certain treatments. It can advantageously give the load better thermal stability.
La ou les charges thermoconductrices en silicium métalliques peuvent être utilisées telles quelles ou elles peuvent subir un traitement de surface. Ledit traitement de surface a typiquement pour objectif d’améliorer la dispersibilité de la charge dans la composition organopolysiloxanique et/ou d’améliorer la stabilité thermique de la composition. De plus, le traitement thermique peut permettre d’améliorer la stabilité physique de la composition, en évitant les phénomènes de décantation ou d’exsudation, ou encore d’augmentation de la viscosité. The thermally conductive fillers made of metallic silicon can be used as such or they can undergo a surface treatment. Said surface treatment typically aims to improve the dispersibility of the filler in the organopolysiloxane composition and / or to improve the thermal stability of the composition. In addition, the heat treatment can improve the physical stability of the composition, avoiding the phenomena of settling or exudation, or even an increase in viscosity.
Ledit traitement de surface peut être un traitement thermique, un traitement chimique, un traitement physique, ou leurs combinaisons, notamment la combinaison d’un traitement chimique et d’un traitement chimique. Selon de mode de réalisation préféré, la charge thermoconductrice en silicium métallique peut être traitée par des composés organosiliciques habituellement utilisés pour cet usage. La composition organopolysiloxanique X selon l’invention peut donc comprendre un agent de traitement de la charge thermoconductrice E. Parmi ces agents figurent : Said surface treatment can be a heat treatment, a chemical treatment, a physical treatment, or their combinations, in particular the combination of a chemical treatment and a chemical treatment. According to a preferred embodiment, the thermally conductive filler made of metallic silicon can be treated with organosilicon compounds usually used for this use. The organopolysiloxane composition X according to the invention can therefore comprise an agent for treating the thermally conductive filler E. Among these agents are:
- les organosiloxanes, notamment les méthylpolysiloxanes tels que l’hexaméthyldisiloxane et 1 ’ octaméthylcy clotétrasiloxane, - organosiloxanes, in particular methylpolysiloxanes such as hexamethyldisiloxane and 1 ’octamethylcy clotetrasiloxane,
- les organosilazanes, notamment les méthylpolysilazanes tels que l’hexaméthyldisilazane, le divinyltétraméthyldisilazane et l’hexaméthylcyclotrisilazane, - organosilazanes, in particular methylpolysilazanes such as hexamethyldisilazane, divinyltetramethyldisilazane and hexamethylcyclotrisilazane,
- les chlorosilanes tels que le diméthyldichlorosilane, le triméthylchlorosilane, le méthylvinyldichlorosilane et le diméthylvinylchlorosilane, - chlorosilanes such as dimethyldichlorosilane, trimethylchlorosilane, methylvinyldichlorosilane and dimethylvinylchlorosilane,
- les alcoxysilanes tels que le méthyltriméthoxysilane, le méthyltriéthoxysilane, le phenyltriméthoxysilane, l’éthyltriméthoxysilane, le n-propyltriméthoxysilane, l’octyltriméthoxysilane, le vinyltriméthoxysilane, le diméthylvinyléthoxysilane, le vinyltri(2- méthoxyéthoxy)silane, le vinyltriacétoxysilane, l’allyltriméthoxysilane, le butènyltriméthoxysilane, l’hexènyltriméthoxysilane, le gamma- méthacryloxyproyltriméthoxysilane, le diméthyldiméthoxysilane, le diméthyldiéthoxysilane, le diphenyldiméthoxysilane, le triméthylméthoxysilane, et le triméthyléthoxysilane. - alkoxysilanes such as methyltrimethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, ethyltrimethoxysilane, n-propyltrimethoxysilane, octyltrimethoxysilane, vinyltrimethoxysilane, dimethylvinylethoxysilane, vinyltri (2-methoxyethoxy) silane, vinyltriacetoxysilane, allyltrimethoxysilane, the butenyltrimethoxysilane, hexenyltrimethoxysilane, gamma-methacryloxyproyltrimethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, diphenyldimethoxysilane, trimethylmethoxy and trimethylethoxysilane.
De façon plus préférée, la charge thermoconductrice en silicium métallique peut être traitée par un alcoxysilane, notamment l’octyltriméthoxysilane, ou par un organosilazane, notamment l’hexaméthyldisilazane (HMDZ) et le divinyltétraméthyldisilazane, ou un mélange de ceux-ci, notamment un mélange d’HMDZ et de divinyltétraméthyldisilazane. Lorsque la charge thermoconductrice est traitée par un agent chimique, notamment par un organosilazane, de l’eau peut être typiquement ajoutée. More preferably, the thermally conductive filler made of metallic silicon can be treated with an alkoxysilane, in particular octyltrimethoxysilane, or with an organosilazane, in particular hexamethyldisilazane (HMDZ) and divinyltetramethyldisilazane, or a mixture of these, in particular a mixture of these HMDZ and divinyltetramethyldisilazane. When the thermally conductive filler is treated with a chemical agent, especially an organosilazane, water can typically be added.
La composition organopolysiloxanique X comprend de préférence de 0,1% à 5% d’un agent de traitement de la charge thermoconductrice E, et plus préférentiellement de 1% à 3% en poids, par rapport au poids total de la composition organopolysiloxanique X. The organopolysiloxane composition X preferably comprises from 0.1% to 5% of an agent for treating the thermally conductive filler E, and more preferably from 1% to 3% by weight, relative to the total weight of the organopolysiloxane composition X.
Un traitement thermique de la charge thermoconductrice en silicium métallique peut consister à soumettre ladite charge à une température comprise entre 100°C et 200°C pendant une durée comprise entre 1 heure et 4 heures. A heat treatment of the thermally conductive filler in metallic silicon can consist in subjecting said filler to a temperature of between 100 ° C and 200 ° C for a period of between 1 hour and 4 hours.
On entend par traitement physique l’ajout à la charge thermoconductrice d’un agent de traitement physique qui interagit avec ladite charge de façon essentiellement physique et non chimique, par exemple par interaction ionique ou par liaisons hydrogène. Typiquement, un agent de traitement physique peut être un organopolysiloxane comprenant dans groupements OH. Selon un mode de réalisation, le traitement de surface peut être réalisé avant incorporation de la charge thermoconductrice dans la composition organopolysiloxanique. Selon un mode de réalisation alternatif, le traitement de la charge thermoconductrice peut être réalisé in situ, lors de la préparation de la composition organopolysiloxanique. By physical treatment is meant the addition to the thermally conductive charge of a physical treatment agent which interacts with said charge in an essentially physical and non-chemical manner, for example by ionic interaction or by hydrogen bonds. Typically, a physical treatment agent can be an organopolysiloxane comprising in OH groups. According to one embodiment, the surface treatment can be carried out before incorporation of the thermally conductive filler in the organopolysiloxane composition. According to an alternative embodiment, the treatment of the thermally conductive filler can be carried out in situ, during the preparation of the organopolysiloxane composition.
En plus des composants A, B, C, et D déjà mentionnés ci-dessus, la composition organopolysiloxanique X selon la présente invention peut optionnellement comprendre d’autre composants. In addition to the components A, B, C, and D already mentioned above, the organopolysiloxane composition X according to the present invention can optionally comprise other components.
Selon un mode de réalisation, la composition organopolysiloxanique X selon la présente invention peut optionnellement comprendre une charge E qui n’est pas une charge thermoconductrice . According to one embodiment, the organopolysiloxane composition X according to the present invention can optionally comprise a filler E which is not a thermally conductive filler.
Selon un mode de réalisation, la composition organopolysiloxanique X selon la présente invention peut optionnellement comprendre un inhibiteur de réticulation F. La fonction de l’inhibiteur F est de ralentir la réaction d’hydrosilylation. L’inhibiteur de réticulation F peut être choisi parmi les composés suivants : According to one embodiment, the organopolysiloxane composition X according to the present invention can optionally comprise a crosslinking inhibitor F. The function of the inhibitor F is to slow the hydrosilylation reaction. The crosslinking inhibitor F can be chosen from the following compounds:
- un organopolysiloxane, avantageusement cyclique, et substitué par au moins un alcényle, le tétraméthylvinyltétrasiloxane étant particulièrement préféré, - an organopolysiloxane, advantageously cyclic, and substituted by at least one alkenyl, tetramethylvinyltetrasiloxane being particularly preferred,
- la pyridine, - pyridine,
- les phosphines et les phosphites organiques, - organic phosphines and phosphites,
- les amides insaturées, - unsaturated amides,
- les maléates alkylés, et - alkylated maleates, and
- les alcools acétyléniques. - acetylenic alcohols.
De préférence, l’inhibiteur de réticulation F est un alcool acétylénique de formule (R1)(R2)C(OH)-C=CH, dans laquelle : Preferably, the crosslinking inhibitor F is an acetylenic alcohol of formula (R 1 ) (R 2 ) C (OH) -C = CH, in which:
- R1 est un radical alkyle linéaire ou ramifié, ou un radical phényle, - R 1 is a linear or branched alkyl radical, or a phenyl radical,
- R2 est un atome d’hydrogène, un radical alkyle linéaire ou ramifié, ou un radical phényle,- R 2 is a hydrogen atom, a linear or branched alkyl radical, or a phenyl radical,
- les radicaux R1, R2 et l’atome de carbone situé en alpha de la triple liaison pouvant éventuellement former un cycle, et - the radicals R 1 , R 2 and the carbon atom located alpha to the triple bond possibly forming a ring, and
- le nombre total d’atomes de carbone contenus dans R1 et R2 étant d’au moins 5, de préférence de 9 à 20. - the total number of carbon atoms contained in R 1 and R 2 being at least 5, preferably 9 to 20.
Lesdits alcools sont, de préférence, choisis parmi ceux présentant un point d’ébullition supérieur à 250°C. On peut citer à titre d’exemples, les produits suivants qui sont disponibles commercialement: le 1-éthynyl-l-cyclohexanol, le méthyl-3-dodécyne-l-ol-3, le triméthyl- 3,7,1 l-dodécyne-l-ol-3, le diphényl-l,l-propyne-2-ol-l, l’éthyl-3-éthyl-6-nonyne-l-ol-3 et le méthyl-3-pentadécyne-l-ol-3. De préférence, l’inhibiteur de réticulation F est le 1-éthynyl-l- cyclohexanol. Said alcohols are preferably chosen from those having a boiling point greater than 250 ° C. Mention may be made, by way of examples, of the following products which are commercially available: 1-ethynyl-l-cyclohexanol, methyl-3-dodécyne-l-ol-3, trimethyl-3,7,1 l-dodécyne -1-ol-3, diphenyl-1, 1-propyne-2-ol-1, ethyl-3-ethyl-6-nonyne-1-ol-3 and methyl-3-pentadecyne-1-ol-3. Preferably, the crosslinking inhibitor F is 1-ethynyl-1-cyclohexanol.
Selon le procédé mis en œuvre pour produire l’élastomère silicone selon l’invention, la présence de l’inhibiteur peut être nécessaire ou pas. Si besoin, un tel inhibiteur de réticulation peut typiquement être présent à raison de 3000 ppm au maximum, de préférence à raison de 100 ppm à 2000 ppm par rapport au poids total de la composition organopolysiloxanique X. Depending on the process used to produce the silicone elastomer according to the invention, the presence of the inhibitor may or may not be necessary. If necessary, such a crosslinking inhibitor can typically be present in an amount of 3000 ppm at most, preferably at a rate of 100 ppm to 2000 ppm relative to the total weight of the organopolysiloxane composition X.
Selon un mode de réalisation, la composition organopolysiloxanique X selon la présente invention peut optionnellement comprendre d’autre additifs traditionnellement utilisés dans ce domaine technique par l’homme du métier, par exemple un promoteur d’adhérence, un colorant, un retardateur de feu, un agent rhéologique tel qu’un agent thixotrope, etc.. According to one embodiment, the organopolysiloxane composition X according to the present invention can optionally comprise other additives traditionally used in this technical field by a person skilled in the art, for example an adhesion promoter, a dye, a fire retardant, a rheological agent such as a thixotropic agent, etc.
Selon un mode de réalisation, la composition organopolysiloxanique X selon la présente invention peut contenir un faible taux de composés organiques volatils, typiquement moins de 100 pgC/g, de préférence moins de 70 pgC/g, ou encore moins de 50 pgC/g. Pour cela, les composés organopolysiloxanes utilisés dans le composition selon la présente invention peuvent être de préférence choisis parmi les composés contenant eux-mêmes un faible taux de composés organiques volatils. According to one embodiment, the organopolysiloxane composition X according to the present invention can contain a low level of volatile organic compounds, typically less than 100 pgC / g, preferably less than 70 pgC / g, or even less than 50 pgC / g. For this, the organopolysiloxane compounds used in the composition according to the present invention can preferably be chosen from the compounds themselves containing a low level of volatile organic compounds.
Selon un mode de réalisation préféré, la composition organopolysiloxanique X selon l’invention comprend : According to a preferred embodiment, the organopolysiloxane composition X according to the invention comprises:
- de 5% à 30%, de préférence de 8% à 15%, d’un organopolysiloxane A présentant, par molécule, au moins deux groupes alcényles en C2-C6 liés au silicium, - from 5% to 30%, preferably from 8% to 15%, of an organopolysiloxane A having, per molecule, at least two C2-C6 alkenyl groups bonded to silicon,
- de 0,1% à 10%, de préférence de 0,5% à 5%, d’un organopolysiloxane B présentant, par molécule, au moins deux motifs SiH, - from 0.1% to 10%, preferably from 0.5% to 5%, of an organopolysiloxane B having, per molecule, at least two SiH units,
- de 2 ppm à 400 ppm, de préférence de 5 ppm à 200 ppm, d’un catalyseur d’hydrosilylation C,- from 2 ppm to 400 ppm, preferably from 5 ppm to 200 ppm, of a hydrosilylation catalyst C,
- de 70% à 95%, de préférence de 80% à 95% d’une charge thermoconductrice D, - from 70% to 95%, preferably from 80% to 95% of a thermally conductive load D,
- de 0,1% à 5%, de préférence de 1% à 3%, d’un agent de traitement de la charge thermoconductrice E, - from 0.1% to 5%, preferably from 1% to 3%, of an agent for treating the thermally conductive filler E,
- de 100 ppm à 3000 ppm, de préférence de 100 ppm à 2000 ppm d’un inhibiteur de réticulation F. - from 100 ppm to 3000 ppm, preferably from 100 ppm to 2000 ppm of a crosslinking inhibitor F.
Les pourcentages et ppm sont des pourcentages et ppm massiques. La quantité pondérale de catalyseur C est calculée en poids de platine-métal. The percentages and ppm are percentages and ppm by mass. The quantity by weight of catalyst C is calculated by weight of platinum metal.
La présente invention a également pour objet l’élastomère silicone obtenu ou susceptible d’être obtenu par réticulation et/ou durcissement de la composition organopolysiloxanique X telle que définie ci-dessus, le procédé d’obtention dudit élastomère, ainsi que les compositions intermédiaires mises en œuvre lors de ce procédé d’obtention. A subject of the present invention is also the silicone elastomer obtained or capable of being obtained by crosslinking and / or curing of the organopolysiloxane composition X such as defined above, the process for obtaining said elastomer, as well as the intermediate compositions used during this process for obtaining.
La composition organopolysiloxanique X telle que définie ci-dessus est particulièrement adaptée à la préparation d’un élastomère silicone ayant des propriétés de thermoconduction. Selon un mode de réalisation, ledit élastomère est préparé à partir d’un système bi-composant P comprenant l’ensemble des composants de la composition organopolysiloxanique X. The organopolysiloxane composition X as defined above is particularly suitable for the preparation of a silicone elastomer having thermally conductive properties. According to one embodiment, said elastomer is prepared from a two-component system P comprising all the components of the organopolysiloxane composition X.
En particulier, la présente invention a également pour objet un système bi-composant P précurseur de la composition organopolysiloxanique X telle que définie ci-dessus, comprenant au moins les constituants A, B, C, et D, ledit système bi-composant P étant caractérisé en ce qu’il se présente en deux parties PI et P2 distinctes destinées à être mélangées pour former ladite composition organopolysiloxanique X, et en ce que l’une des parties PI ou P2 comprend le catalyseur C et ne comprend pas l’organopolysiloxane B, tandis que l’autre partie PI ou P2 comprend l’organopolysiloxane B et ne comprend pas le catalyseur C. In particular, the present invention also relates to a two-component system P precursor of the organopolysiloxane composition X as defined above, comprising at least the components A, B, C, and D, said two-component system P being characterized in that it is in two distinct PI and P2 parts intended to be mixed to form said organopolysiloxane composition X, and in that one of the PI or P2 parts comprises catalyst C and does not include organopolysiloxane B , while the other PI or P2 part comprises the organopolysiloxane B and does not include the catalyst C.
Un autre objet de la présente invention consiste en un procédé de préparation d’un élastomère silicone comprenant les étapes suivantes : a) fournir un système bi-composant P comprenant l’ensemble des composants de la composition organopolysiloxanique X telle que définie ci-dessus ; b) mélanger les deux parties dudit système bi-composant P pour obtenir la composition organopolysiloxanique X ; et c) laisser réticuler et/ou durcir ladite composition organopolysiloxanique X pour obtenir ledit élastomère silicone. Another object of the present invention consists of a process for preparing a silicone elastomer comprising the following steps: a) providing a two-component system P comprising all the components of the organopolysiloxane composition X as defined above; b) mixing the two parts of said two-component system P to obtain the organopolysiloxane composition X; and c) allowing said organopolysiloxane composition X to crosslink and / or harden to obtain said silicone elastomer.
Selon un mode de réalisation préféré, la partie PI comprend : According to a preferred embodiment, the PI part comprises:
- tout ou partie de l’organopolysiloxane A présentant, par molécule, au moins deux groupes alcényles en C2-C6 liés au silicium, - all or part of the organopolysiloxane A having, per molecule, at least two C2-C6 alkenyl groups bonded to silicon,
- le catalyseur d’hydrosilylation C, - the hydrosilylation catalyst C,
- tout ou partie de la charge thermoconductrice D, - all or part of the thermally conductive load D,
- optionnellement l’agent de traitement de la charge thermoconductrice E, et la partie P2 comprend : - optionally the treatment agent for the thermally conductive load E, and part P2 includes:
- optionnellement une partie de l’organopolysiloxane A présentant, par molécule, au moins deux groupes alcényles en C2-C6 liés au silicium, - optionally a part of the organopolysiloxane A having, per molecule, at least two C2-C6 alkenyl groups bonded to silicon,
- l’organopolysiloxane B présentant, par molécule, au moins deux motifs SiH, - organopolysiloxane B having, per molecule, at least two SiH units,
- tout ou partie de la charge thermoconductrice D, - all or part of the thermally conductive load D,
- optionnellement l’agent de traitement de la charge thermoconductrice E, - optionally the treatment agent for the thermally conductive load E,
- optionnellement l’inhibiteur de réticulation F. La charge thermoconductrice D peut être présente dans la partie PI, dans la partie P2 ou dans les deux parties PI et P2, avec des teneurs identiques ou différentes entre les parties PI et P2. Avantageusement, la charge thermoconductrice D peut être présente dans la partie PI et dans la partie P2, selon une teneur identique. Ainsi, la teneur totale en charge thermoconductrice D reste invariable dans la composition organopolysiloxanique X quel que soit le taux de mélange des parties PI et P2. - optionally the crosslinking inhibitor F. The thermally conductive filler D can be present in part PI, in part P2 or in both parts PI and P2, with identical or different contents between parts PI and P2. Advantageously, the thermally conductive filler D can be present in part PI and in part P2, in an identical content. Thus, the total content of thermally conductive filler D remains invariable in the organopolysiloxane composition X regardless of the rate of mixing of the parts PI and P2.
Chacune des parties PI et P2 selon la présente invention peut être obtenue en mélangeant les différents composants dans un dispositif approprié connu de l’homme du métier. Each of the parts PI and P2 according to the present invention can be obtained by mixing the various components in an appropriate device known to those skilled in the art.
Selon un mode de réalisation particulièrement avantageux de la présente invention, la partie PI , la partie P2 ou les deux parties PI et P2 peuvent être obtenues à partir d’une composition intermédiaire comprenant tout ou partie de l’organopolysiloxane A et tout ou partie de la charge thermoconductrice D, ainsi qu’optionnellement l’agent de traitement de la charge thermoconductrice E. According to a particularly advantageous embodiment of the present invention, the PI part, the P2 part or the two PI and P2 parts can be obtained from an intermediate composition comprising all or part of the organopolysiloxane A and all or part of the thermally conductive filler D, as well as optionally the treatment agent for the thermally conductive filler E.
La présente invention a également pour objet une composition intermédiaire comprenant :A subject of the present invention is also an intermediate composition comprising:
- au moins un organopolysiloxane A présentant, par molécule, au moins deux groupes alcényles en C2-C6 liés au silicium, et - at least one organopolysiloxane A having, per molecule, at least two C2-C6 alkenyl groups bonded to silicon, and
- une charge thermoconductrice D, caractérisée en ce que ladite charge thermoconductrice D comprend au moins 40% en poids de silicium métallique, ladite charge thermoconductrice D comprend entre 3% et 22% de particules ayant un diamètre inférieur ou égal à 2 pm, et la distribution de taille des particules est telle que le ratio d90/dl0 de ladite charge est supérieur ou égal à 20. a thermally conductive filler D, characterized in that said thermally conductive filler D comprises at least 40% by weight of metallic silicon, said thermally conductive filler D comprises between 3% and 22% of particles having a diameter less than or equal to 2 μm, and the particle size distribution is such that the d90 / d10 ratio of said filler is greater than or equal to 20.
Ledit organopolysiloxane A et ladite charge thermoconductrice D sont de préférence tels que décrits ci-dessus. Said organopolysiloxane A and said thermally conductive filler D are preferably as described above.
Avantageusement, le poids total de la charge thermoconductrice D dans la composition intermédiaire est supérieur à 70%, de façon plus préférée supérieure à 75%, et de façon plus préférée supérieur à 80%, et de façon encore plus préférée compris entre 85% et 98%, en poids par rapport au poids total de la composition intermédiaire. Cette composition intermédiaire, particulièrement riche en charge thermoconductrice D, permet après dilution avec des autres composants d’obtenir aisément la composition organopolysiloxanique X ou des parties précurseurs PI et/ou P2. La composition intermédiaire selon la présente invention peut être obtenue par mélange d’au moins l’organopolysiloxane A et la charge thermoconductrice D au moyen d’un dispositif connu de l’homme du métier, par exemple un mélangeur bras en Z ou un mélangeur papillon. Optionnellement, la charge thermoconductrice D peut subir un traitement de surface, qui peut être un traitement thermique, un traitement chimique, ou la combinaison d’un traitement thermique et d’un traitement chimique. La composition intermédiaire peut optionnellement comprendre un agent de traitement de la charge thermoconductrice E, tel que décrit ci-dessus. Un traitement thermique peut être effectué sur la charge thermoconductrice avant son mélange dans la composition intermédiaire. Alternativement, la composition intermédiaire peut être soumise à un traitement thermique après le mélange de l’organopolysiloxane A, de la charge thermoconductrice D, et optionnellement de l’agent de traitement de la charge thermoconductrice E. Advantageously, the total weight of the thermally conductive filler D in the intermediate composition is greater than 70%, more preferably greater than 75%, and more preferably greater than 80%, and even more preferably between 85% and 98% by weight relative to the total weight of the intermediate composition. This intermediate composition, particularly rich in thermally conductive filler D, makes it possible, after dilution with other components, to easily obtain the organopolysiloxane composition X or precursor parts PI and / or P2. The intermediate composition according to the present invention can be obtained by mixing at least the organopolysiloxane A and the thermally conductive filler D by means of a device known to those skilled in the art, for example a Z-arm mixer or a butterfly mixer. . Optionally, the thermally conductive filler D can undergo a treatment surface treatment, which can be heat treatment, chemical treatment, or a combination of heat treatment and chemical treatment. The intermediate composition may optionally comprise an agent for treating the thermally conductive filler E, as described above. Heat treatment can be performed on the thermally conductive filler before it is mixed into the intermediate composition. Alternatively, the intermediate composition can be subjected to a heat treatment after mixing the organopolysiloxane A, the thermally conductive filler D, and optionally the treatment agent for the thermally conductive filler E.
Avantageusement, la composition organopolysiloxanique X , ainsi que les partie PI et P2 du système bi-composant P précurseur de la composition organopolysiloxanique X, possèdent une bonne processabilité. En effet, malgré la présence d’une teneur en charge thermoconductrice très élevée, lesdites compositions sont avantageusement pâteuses et non poudreuses, ce qui les rend manipulables, en particulier extrudables. Il est du mérite des inventeurs d’avoir réussi à déterminer les bonnes caractéristiques de la charge thermoconductrice permettant d’atteindre ce résultat technique. Advantageously, the organopolysiloxane composition X, as well as the parts PI and P2 of the two-component system P precursor of the organopolysiloxane composition X, have good processability. Indeed, despite the presence of a very high thermally conductive filler content, said compositions are advantageously pasty and non-powdery, which makes them easy to handle, in particular extrudable. It is to the credit of the inventors to have succeeded in determining the good characteristics of the thermally conductive filler allowing this technical result to be achieved.
L’élastomère silicone objet de la présente invention, obtenu ou susceptible d’être obtenu par réticulation et/ou durcissement de la composition organopolysiloxanique X, présente avantageusement une conduction thermique supérieure ou égale à 1 W/m.K, de façon préférée supérieure ou égale à 1,5 W/m.K, de façon plus préférée supérieure ou égale à 2 W/m.K, de façon plus préférée supérieure ou égale à 3 W/m.K, et de façon encore plus préférée comprise entre 3 W/m.K et 7 W/m.K. The silicone elastomer which is the subject of the present invention, obtained or capable of being obtained by crosslinking and / or curing of the organopolysiloxane composition X, advantageously exhibits a thermal conduction greater than or equal to 1 W / mK, preferably greater than or equal to 1.5 W / mK, more preferably greater than or equal to 2 W / mK, more preferably greater than or equal to 3 W / mK, and even more preferably between 3 W / mK and 7 W / mK
De plus, ledit élastomère silicone présente avantageusement une densité inférieure ou égale à 4 g/cm3, de façon préférée inférieure ou égale à 3 g/cm3, de façon plus préférée inférieure à 2 g/cm3. In addition, said silicone elastomer advantageously has a density of less than or equal to 4 g / cm 3 , preferably less than or equal to 3 g / cm 3 , more preferably less than 2 g / cm 3 .
Avantageusement, l’élastomère silicone selon la présente invention peut aisément être recyclé après utilisation. En effet, cet élastomère contient de préférence une teneur en élément silicium très élevée, notamment lorsque la charge thermoconductrice contient elle-même une très haute teneur en silicium métallique. L’élastomère silicone usagé peut avantageusement être recyclé à l’aide de fours à combustion. Advantageously, the silicone elastomer according to the present invention can easily be recycled after use. Indeed, this elastomer preferably contains a very high silicon element content, in particular when the thermally conductive filler itself contains a very high metallic silicon content. The used silicone elastomer can advantageously be recycled using combustion furnaces.
Ledit élastomère silicone peut avantageusement être utilisé comme matériau thermoconducteur dans différents domaines techniques, notamment dans le domaine de l’électronique, dans des applications électriques, et dans le domaine de l’automobile. Ledit élastomère silicone peut avantageusement être utilisé comme matériau thermoconducteur d’enrobage (i.e. « potting » selon la terminologie anglo-saxonne) ou de remplissage (i.e. « gap-filler » selon la terminologie anglo-saxonne), notamment pour les batteries, par exemple les batteries des véhicules électriques et des véhicules hybrides, mais aussi les batteries stationnaires. Dans le domaine de l’électronique, l’élastomère silicone selon l’invention peut avantageusement être utilisé comme matériau thermoconducteur dans les dispositifs 5G. Said silicone elastomer can advantageously be used as a thermally conductive material in various technical fields, in particular in the field of electronics, in electrical applications, and in the automotive field. Said silicone elastomer can advantageously be used as a thermally conductive coating material (ie “potting” according to English terminology) or filling (ie “gap-filler” according to English terminology. Anglo-Saxon), in particular for batteries, for example the batteries of electric vehicles and hybrid vehicles, but also stationary batteries. In the field of electronics, the silicone elastomer according to the invention can advantageously be used as a thermally conductive material in 5G devices.
EXEMPLES EXAMPLES
Les compositions silicones décrites en exemple ci-dessous ont été obtenues à partir des matières premières suivantes : The silicone compositions described as an example below were obtained from the following raw materials:
A : Huile silicone vinylée bout de chaîne, ayant une teneur en groupes vinyles de 1 ,2% en poids, viscosité = 100 mPa.s A: End-of-chain vinylated silicone oil, having a vinyl group content of 1.2% by weight, viscosity = 100 mPa.s
B 1 : Huile hydrogéno diméthylpolysiloxane avec des groupes SiH bout de chaîne (a/w), ayant une teneur en groupes vinyles de SiH de 5,7% en poids, viscosité = 8,5 mPa.s B2 : Huile poly(méthylhydrogéno)(diméthyl)siloxane avec des groupes SiH en milieu et bout de chaîne (a/w), ayant une teneur en groupes vinyles de SiH de 7,3% en poids, viscosité = 30 mPa.s B 1: Hydrogen dimethylpolysiloxane oil with chain end SiH groups (a / w), having a vinyl group content of SiH of 5.7% by weight, viscosity = 8.5 mPa.s B2: Poly (methylhydrogen) oil (dimethyl) siloxane with SiH groups in the middle and end of the chain (a / w), having a vinyl group content of SiH of 7.3% by weight, viscosity = 30 mPa.s
C : catalyseur platine de Karstedt, contenant 10% en poids de platine-métal C: Karstedt platinum catalyst, containing 10% by weight of platinum metal
DI : poudre de silicium (pureté>99%), dl0=42,3 pm, d50=70 pm, d90=112 pm, dl00=200 pmDI: silicon powder (purity> 99%), dl0 = 42.3 pm, d50 = 70 pm, d90 = 112 pm, dl00 = 200 pm
D2 : poudre de silicium (pureté>99%), dl0=15 pm, d50=31,6 pm, d90=54 pm, dl00=100 pmD2: silicon powder (purity> 99%), dl0 = 15 pm, d50 = 31.6 pm, d90 = 54 pm, dl00 = 100 pm
D3 : poudre de silicium (pureté>99%), dl0=6,4 pm, d50=10,4 pm, d90=16,4 pm, dl00=30 pmD3: silicon powder (purity> 99%), dl0 = 6.4 pm, d50 = 10.4 pm, d90 = 16.4 pm, dl00 = 30 pm
D4 : poudre de silicium (pureté>99%), dl0=2 pm, d50=10,7 pm, d90=26 pm, dl00=60 pmD4: silicon powder (purity> 99%), dl0 = 2 pm, d50 = 10.7 pm, d90 = 26 pm, dl00 = 60 pm
D5 : poudre de silicium (pureté>99%), dl0=0,9 pm, d50=2,7 pm, d90=5,3 pm, dl00=10 pmD5: silicon powder (purity> 99%), dl0 = 0.9 pm, d50 = 2.7 pm, d90 = 5.3 pm, dl00 = 10 pm
D6 : poudre de silicium (pureté>99%), dl0= 4,0 pm, d50=10 pm, d90=25 D6: silicon powder (purity> 99%), dl0 = 4.0 pm, d50 = 10 pm, d90 = 25
D7 : poudre d’alumine, dl0=l pm, d50=5,7 pm, d90=12,3 pm D7: alumina powder, d10 = 1 pm, d50 = 5.7 pm, d90 = 12.3 pm
D8 : poudre d’alumine, dl0=18 pm, d50=46 pm, d90=73 pm D8: alumina powder, d10 = 18 pm, d50 = 46 pm, d90 = 73 pm
D9 : poudre d’alumine, dl0=0,3 pm, d50=2,4 pm, d90=18 pm D9: alumina powder, d10 = 0.3 pm, d50 = 2.4 pm, d90 = 18 pm
D10 : poudre d’oxyde de zinc, dl0=0,2 pm, d50=l,5 pm, d90=5 pm D10: zinc oxide powder, d10 = 0.2 pm, d50 = 1.5 pm, d90 = 5 pm
El : octyltrimethoxysilane El: octyltrimethoxysilane
F : 1-éthynyl-l-cyclohexanol (ECH) F: 1-ethynyl-l-cyclohexanol (ECH)
Dans les exemples qui suivent, la granulométrie des charges est mesurée par une méthode de diffraction laser : In the examples which follow, the particle size distribution of the fillers is measured by a laser diffraction method:
- « dlO » correspond au diamètre caractéristique correspondant à 10% de la fréquence cumulée en volume de la distribution granulométrique de la charge. - "d10" corresponds to the characteristic diameter corresponding to 10% of the cumulative frequency by volume of the particle size distribution of the filler.
- « d50 » correspond au diamètre caractéristique correspondant à 50% de la fréquence cumulée en volume de la distribution granulométrique de la charge. - "d50" corresponds to the characteristic diameter corresponding to 50% of the cumulative frequency by volume of the particle size distribution of the filler.
- « d90 » correspond au diamètre caractéristique correspondant à 90% de la fréquence cumulée en volume de la distribution granulométrique de la charge. - "d90" corresponds to the characteristic diameter corresponding to 90% of the cumulative frequency by volume of the particle size distribution of the filler.
- « dlOO » correspond au diamètre caractéristique correspondant à 100% de la fréquence cumulée en volume de la distribution granulométrique de la charge. - "d100" corresponds to the characteristic diameter corresponding to 100% of the cumulative frequency by volume of the particle size distribution of the filler.
- la teneur en particules ayant un diamètre inférieur ou égal à 2 pm est une teneur volumique, obtenue en sommant le volume de toutes les particules ayant un diamètre mesuré par diffraction laser inférieur ou égal à 2 pm. Exemples 1 à 17 : the content of particles having a diameter less than or equal to 2 μm is a volume content, obtained by summing the volume of all the particles having a diameter measured by laser diffraction less than or equal to 2 μm. Examples 1 to 17:
Des compositions silicones correspondant aux parties PI et P2 ont été préparées selon le protocole suivant : Silicone compositions corresponding to parts PI and P2 were prepared according to the following protocol:
Pour la partie PI : la charge thermoconductrice D, l’huile silicone A et le catalyseur C ont été mélangés dans un Speed Mixer à 1800 tours par minutes selon la concentration indiquée dans le tableau 1 ci-dessous. La concentration en charges thermoconductrices est de 85%. For the PI part: the thermally conductive filler D, the silicone oil A and the catalyst C were mixed in a Speed Mixer at 1800 rpm according to the concentration indicated in Table 1 below. The concentration of thermally conductive fillers is 85%.
Pour la partie P2: la charge thermoconductrice D, l’huile silicone A, des huiles silicones B 1 et B2, et de G 1-éthynyl-l-cyclohexanol F ont été mélangés dans un Speed Mixer à 1800 tours par minutes selon la concentration indiquée dans le tableau 1 ci-dessous. La concentration en charges thermoconductrices est de 85%. For part P2: the thermally conductive filler D, silicone oil A, silicone oils B 1 and B2, and G 1-ethynyl-l-cyclohexanol F were mixed in a Speed Mixer at 1800 rpm depending on the concentration shown in Table 1 below. The concentration of thermally conductive fillers is 85%.
[Tableau 1] [Table 1]
Les exemples 1 à 17 ont été réalisés en suivant le protocole de fabrication décrit ci-dessus, en faisant varier la charge thermoconductrice D comme décrit dans le tableau 2 et le tableau 3 ci- dessous. La processabilité des compositions obtenues a été évaluée visuellement, et classée en tant que : « - » = très mauvais - aspect poudreux « - » = mauvais - aspect d’un crumble, d’agrégats « + » = bon - aspect pâteux « ++ » = très bon - aspect pâteux et lisse. Examples 1 to 17 were carried out by following the manufacturing protocol described above, by varying the thermally conductive load D as described in Table 2 and Table 3 below. The processability of the compositions obtained was evaluated visually, and classified as: "-" = very poor - powdery appearance "-" = poor - appearance of a crumble, aggregates "+" = good - pasty appearance "+ + ”= Very good - pasty and smooth appearance.
Les résultats sont présentés dans le tableau 2 et le tableau 3 ci-dessous. The results are shown in Table 2 and Table 3 below.
[Tableau 2] [Tableau 3] Exemples 18 à 22 [Table 2] [Table 3] Examples 18 to 22
Les exemples 18 à 22 ont été réalisés en mélangeant au Speed Mixer (agitation de 2 fois 2 minutes à 1800 tours par minutes) 85% de charges thermoconductrices D avec 15% d’huile silicone A, en faisant varier la charge thermoconductrice D comme décrit dans le tableau 4 ci- dessous. La processabilité des compositions obtenues a été évaluée visuellement comme décrit précédemment. La conductivité thermique et la densité d’un matériau élastomère qui pourrait être obtenu à partir des compositions exemplifiées ont été estimées par calcul. Examples 18 to 22 were carried out by mixing with the Speed Mixer (stirring for 2 times 2 minutes at 1800 revolutions per minute) 85% of thermally conductive fillers D with 15% of silicone oil A, by varying the thermally conductive load D as described. in Table 4 below. The processability of the compositions obtained was visually evaluated as described above. The thermal conductivity and the density of an elastomeric material which could be obtained from the exemplified compositions were estimated by calculation.
[Tableau 4] [Table 4]
Exemple 23 Example 23
Etape 1 : Fabrication d’une composition intermédiaire 89% de charges thermoconductrices D, 9% d’huile silicone A et 2% d’octyltrimethoxysilaneStep 1: Manufacture of an intermediate composition 89% of thermally conductive fillers D, 9% of silicone oil A and 2% of octyltrimethoxysilane
El (pourcentages en masse) ont été mélangés dans un mélangeur bras en Z pendant 30 minutes. La composition obtenue a été soumise à un traitement thermique de 2 heures à 150°C. E1 (weight percentages) were mixed in a Z-arm mixer for 30 minutes. The resulting composition was subjected to a heat treatment for 2 hours at 150 ° C.
La charge thermoconductrice D est constituée de 60% en poids de charge D2 et 40% en poids de charge D5. Caractéristiques de la charge : - taux de particules ayant un diamètre inférieur ou égal à 2 pm = 13,7% The thermally conductive filler D consists of 60% by weight of filler D2 and 40% by weight of filler D5. Characteristics of the charge: - rate of particles having a diameter less than or equal to 2 pm = 13.7%
- d90/dl0 = 32. Etape 2 : Fabrication des parties PI et P2 - d90 / dl0 = 32. Step 2: Manufacture of the PI and P2 parts
Pour la partie PI : Dilution de l’empatage obtenu à l’étape 1 avec de l’huile silicone A et du catalyseur C selon la concentration indiquée dans le tableau 5 ci-dessous. La concentration en charges thermoconductrices est de 85%. For part PI: Dilution of the paste obtained in step 1 with silicone oil A and catalyst C according to the concentration indicated in Table 5 below. The concentration of thermally conductive fillers is 85%.
Pour la partie P2: Dilution de l’empatage obtenu à l’étape 1 avec de l’huile silicone A, des huiles silicones B1 et B2, et de G 1-éthynyl-l-cyclohexanol F. selon la concentration indiquée dans le tableau 5 ci-dessous. La concentration en charges thermoconductrices est de 85%. Lesdites dilutions sont obtenues par mélange dans un Speed Mixer à 1800 tours par minutes. Les parties PI et P2 possédaient une très bonne processabilité. For part P2: Dilution of the mash obtained in step 1 with silicone oil A, silicone oils B1 and B2, and G 1-ethynyl-l-cyclohexanol F. according to the concentration indicated in the table 5 below. The concentration of thermally conductive fillers is 85%. Said dilutions are obtained by mixing in a Speed Mixer at 1800 revolutions per minute. The PI and P2 parts had very good processability.
Etape 3 : Fabrication de la composition silicone thermoconductrice et de l’élastomère silicone thermoconducteur Step 3: Manufacture of the thermally conductive silicone composition and of the thermally conductive silicone elastomer
Les parties PI et P2 obtenues à l’étape 2 ont été mélangées dans une proportion de 1 : 1 au Speed Mixer. Le mélange obtenu a été dégazé sous vide, puis versé dans un moule. Le mélange contenu dans le moule a ensuite été placé dans une presse chauffante, à une pression de 2 bars, à 100°C, pendant 30 minutes. The PI and P2 parts obtained in step 2 were mixed in a ratio of 1: 1 with the Speed Mixer. The resulting mixture was degassed in vacuo, then poured into a mold. The mixture contained in the mold was then placed in a heating press, at a pressure of 2 bars, at 100 ° C., for 30 minutes.
[Tableau 5] [Table 5]
La conductivité thermique de l’élastomère a été mesurée selon la méthode de la source plane transitoire (méthode TPS pour « transient place source ») telle que décrite dans la norme ISO 22007-2 (« Détermination de la conductivité thermique et de l’effusivité thermique. Partie 2 : méthode de la source plane transitoire (disque chaud) ») à l’aide d’un dispositif Hot Disc TPS 2200. La conductivité thermique de l’élastomère était égale à 3,42 W/m.K. La densité de l’élastomère était égale à 1,94 g/cm3. The thermal conductivity of the elastomer was measured according to the transient plane source method (TPS method for "transient place source") as described in standard ISO 22007-2 ("Determination of thermal conductivity and effusivity thermal. Part 2: Transient planar source (hot disk) method ”) using a Hot Disc TPS 2200 device. The thermal conductivity of the elastomer was equal to 3.42 W / mK The density of l elastomer was 1.94 g / cm 3 .

Claims

REVENDICATIONS
1. Composition organopolysiloxanique X comprenant : 1. Organopolysiloxane composition X comprising:
- au moins un organopolysiloxane A présentant, par molécule, au moins deux groupes alcényles en C2-C6 liés au silicium, - at least one organopolysiloxane A having, per molecule, at least two C2-C6 alkenyl groups bonded to silicon,
- au moins un organopolysiloxane B présentant, par molécule, au moins deux motifs SiH,- at least one organopolysiloxane B having, per molecule, at least two SiH units,
- une quantité catalytiquement efficace d’au moins un catalyseur d’hydrosilylation C, et- a catalytically effective amount of at least one hydrosilylation catalyst C, and
- une charge thermoconductrice D, caractérisée en ce que ladite charge thermoconductrice D comprend au moins 40% en poids de silicium métallique, ladite charge thermoconductrice D comprend entre 3% et 22% de particules ayant un diamètre inférieur ou égal à 2 pm, et la distribution de taille des particules est telle que le ratio d90/dl0 de ladite charge est supérieur ou égal à 20. a thermally conductive filler D, characterized in that said thermally conductive filler D comprises at least 40% by weight of metallic silicon, said thermally conductive filler D comprises between 3% and 22% of particles having a diameter less than or equal to 2 μm, and the particle size distribution is such that the d90 / d10 ratio of said filler is greater than or equal to 20.
2. Composition organopolysiloxanique X selon la revendication 1, caractérisée en ce que le poids total de la charge thermoconductrice D dans la composition organopolysiloxanique X est compris entre 80% et 95%. 2. Organopolysiloxane composition X according to claim 1, characterized in that the total weight of the thermally conductive filler D in the organopolysiloxane composition X is between 80% and 95%.
3. Composition organopolysiloxanique X selon la revendication 1 ou la revendication 2, caractérisée en ce que ladite charge thermoconductrice D comprend entre 3% et 20%, de préférence entre 6% et 18%, de particules ayant un diamètre inférieur ou égal à 2 pm. 3. Organopolysiloxane composition X according to claim 1 or claim 2, characterized in that said thermally conductive filler D comprises between 3% and 20%, preferably between 6% and 18%, of particles having a diameter less than or equal to 2 μm. .
4. Composition organopolysiloxanique X selon l’une quelconque des revendications 1 à 3, caractérisée en ce que la distribution de taille des particules est telle que le ratio d90/dl0 de ladite charge est supérieur ou égal à 30. 4. An organopolysiloxane composition X according to any one of claims 1 to 3, characterized in that the size distribution of the particles is such that the d90 / d10 ratio of said filler is greater than or equal to 30.
5. Composition organopolysiloxanique X selon l’une quelconque des revendications 1 à 4, caractérisée en ce que ladite charge thermoconductrice D comprend au moins 70% en poids de silicium métallique. 5. Organopolysiloxane composition X according to any one of claims 1 to 4, characterized in that said thermally conductive filler D comprises at least 70% by weight of metallic silicon.
6. Composition organopolysiloxanique X selon l’une quelconque des revendications 1 à 5, caractérisée en ce que la charge thermoconductrice D comprend 100% en poids de silicium métallique. 6. Organopolysiloxane composition X according to any one of claims 1 to 5, characterized in that the thermally conductive filler D comprises 100% by weight of metallic silicon.
7. Composition organopolysiloxanique X selon l’une quelconque des revendications 1 à 5, caractérisée en ce que la charge thermoconductrice D comprend, en plus du silicium métallique, une charge thermoconductrice choisie dans le groupe constitué par une charge d’alumine, une charge de trihydrate d’aluminium, une charge d’aluminium, une charge de silice, une charge d’oxyde de zinc, une charge de nitrure d’aluminium, une charge de nitrure de bore, et leurs mélanges. 7. An organopolysiloxane composition X according to any one of claims 1 to 5, characterized in that the thermally conductive filler D comprises, in addition to metallic silicon, a thermally conductive filler chosen from the group consisting of an alumina filler, a filler of aluminum trihydrate, aluminum filler, silica filler, zinc oxide filler, aluminum nitride filler, boron nitride filler, and mixtures thereof.
8. Composition organopolysiloxanique X selon l’une quelconque des revendications 1 à 7, caractérisée en ce qu’elle comprend : 8. Organopolysiloxane composition X according to any one of claims 1 to 7, characterized in that it comprises:
- de 5% à 30%, de préférence de 8% à 15%, d’un organopolysiloxane A présentant, par molécule, au moins deux groupes alcényles en C2-C6 liés au silicium, - from 5% to 30%, preferably from 8% to 15%, of an organopolysiloxane A having, per molecule, at least two C2-C6 alkenyl groups bonded to silicon,
- de 0,1% à 10%, de préférence de 0,5% à 5%, d’un organopolysiloxane B présentant, par molécule, au moins deux motifs SiH, - from 0.1% to 10%, preferably from 0.5% to 5%, of an organopolysiloxane B having, per molecule, at least two SiH units,
- de 2 ppm à 400 ppm, de préférence de 5 ppm à 200 ppm, d’un catalyseur d’hydrosilylation C,- from 2 ppm to 400 ppm, preferably from 5 ppm to 200 ppm, of a hydrosilylation catalyst C,
- de 70% à 95%, de préférence de 80% à 95% d’une charge thermoconductrice D, - from 70% to 95%, preferably from 80% to 95% of a thermally conductive load D,
- de 0,1% à 5%, de préférence de 1% à 3%, d’un agent de traitement de la charge thermoconductrice E, - from 0.1% to 5%, preferably from 1% to 3%, of an agent for treating the thermally conductive filler E,
- de 100 ppm à 3000 ppm, de préférence de 100 ppm à 2000 ppm d’un inhibiteur de réticulation F. - from 100 ppm to 3000 ppm, preferably from 100 ppm to 2000 ppm of a crosslinking inhibitor F.
9. Système bi-composant P précurseur de la composition organopolysiloxanique X telle que définie dans l’une quelconque des revendications 1 à 8 et comprenant les constituants A, B, C, et D tels que définis dans l’une quelconque des revendications 1 à 8, ledit système bi-composant P étant caractérisé en ce qu’il se présente en deux parties PI et P2 distinctes destinées à être mélangées pour former ladite composition organopolysiloxanique X, et en ce que l’une des parties PI ou P2 comprend le catalyseur C et ne comprend pas l’organopolysiloxane B, tandis que l’autre partie PI ou P2 comprend G organopolysiloxane B et ne comprend pas le catalyseur C 9. Bicomponent system P precursor of the organopolysiloxane composition X as defined in any one of claims 1 to 8 and comprising the constituents A, B, C, and D as defined in any one of claims 1 to 8, said two-component system P being characterized in that it is in two distinct parts PI and P2 intended to be mixed to form said organopolysiloxane composition X, and in that one of the parts PI or P2 comprises the catalyst C and does not include organopolysiloxane B, while the other part PI or P2 includes G organopolysiloxane B and does not include catalyst C
10. Elastomère silicone susceptible d’être obtenu par réticulation et/ou durcissement de la composition organopolysiloxanique X telle que définie dans l’une quelconque des revendications 1 à 8. 10. Silicone elastomer obtainable by crosslinking and / or curing of the organopolysiloxane composition X as defined in any one of claims 1 to 8.
11. Procédé de préparation d’un élastomère silicone comprenant les étapes suivantes : a) fournir un système bi-composant P comprenant l’ensemble des composants de la composition organopolysiloxanique X telle que définie dans l’une quelconque des revendications 1 à 8 ; b) mélanger les deux parties dudit système bi-composant P pour obtenir la composition organopolysiloxanique X ; et c) laisser réticuler et/ou durcir ladite composition organopolysiloxanique X pour obtenir ledit élastomère silicone. 11. Process for preparing a silicone elastomer comprising the following steps: a) providing a two-component system P comprising all the components of the organopolysiloxane composition X as defined in any one of claims 1 to 8; b) mixing the two parts of said two-component system P to obtain the organopolysiloxane composition X; and c) allowing said organopolysiloxane composition X to crosslink and / or harden to obtain said silicone elastomer.
12. Utilisation de l’élastomère silicone tel que défini dans la revendication 10 comme matériau thermoconducteur d’ enrobage ou de remplissage, notamment dans le domaine de l’électronique, dans des applications électriques, et dans le domaine de l’automobile. 12. Use of the silicone elastomer as defined in claim 10 as a thermally conductive coating or filling material, in particular in the field of electronics, in electrical applications, and in the automotive field.
13. Composition intermédiaire comprenant : 13. Intermediate composition comprising:
- au moins un organopolysiloxane A présentant, par molécule, au moins deux groupes alcényles en C2-C6 liés au silicium, et - une charge thermoconductrice D, caractérisée en ce que ladite charge thermoconductrice D comprend au moins 40% en poids de silicium métallique, ladite charge thermoconductrice D comprend entre 3% et 22% de particules ayant un diamètre inférieur ou égal à 2 pm, et la distribution de taille des particules est telle que le ratio d90/dl0 de ladite charge est supérieur ou égal à 20. - at least one organopolysiloxane A having, per molecule, at least two C2-C6 alkenyl groups bonded to silicon, and - a thermally conductive filler D, characterized in that said thermally conductive filler D comprises at least 40% by weight of metallic silicon, said thermally conductive filler D comprises between 3% and 22% of particles having a diameter less than or equal to 2 μm, and the size distribution of the particles is such that the ratio d90 / d10 of said filler is greater than or equal to 20.
EP21740116.5A 2020-06-25 2021-06-24 Thermally conductive silicone compositions Pending EP4172276A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2006652 2020-06-25
PCT/FR2021/000066 WO2021260279A1 (en) 2020-06-25 2021-06-24 Thermally conductive silicone compositions

Publications (1)

Publication Number Publication Date
EP4172276A1 true EP4172276A1 (en) 2023-05-03

Family

ID=72644420

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21740116.5A Pending EP4172276A1 (en) 2020-06-25 2021-06-24 Thermally conductive silicone compositions

Country Status (6)

Country Link
US (1) US20230250283A1 (en)
EP (1) EP4172276A1 (en)
JP (1) JP2023533466A (en)
KR (1) KR20230029862A (en)
CN (1) CN116209720A (en)
WO (1) WO2021260279A1 (en)

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3159602A (en) 1962-06-07 1964-12-01 Olin Mathieson Preparation of polymeric phosphates
US3159601A (en) 1962-07-02 1964-12-01 Gen Electric Platinum-olefin complex catalyzed addition of hydrogen- and alkenyl-substituted siloxanes
US3220972A (en) 1962-07-02 1965-11-30 Gen Electric Organosilicon process using a chloroplatinic acid reaction product as the catalyst
NL133821C (en) 1964-07-31
NL131800C (en) 1965-05-17
US3814730A (en) 1970-08-06 1974-06-04 Gen Electric Platinum complexes of unsaturated siloxanes and platinum containing organopolysiloxanes
US3715334A (en) 1970-11-27 1973-02-06 Gen Electric Platinum-vinylsiloxanes
JPS524573B1 (en) 1971-05-22 1977-02-04
US4292223A (en) 1980-01-04 1981-09-29 Ford Motor Company Highly filled thermally conductive elastomers I
US4394317A (en) 1981-02-02 1983-07-19 Sws Silicones Corporation Platinum-styrene complexes which promote hydrosilation reactions
FR2575085B1 (en) 1984-12-20 1987-02-20 Rhone Poulenc Spec Chim PLATINUM-TRIENE COMPLEX AS HYDROSILYLATION REACTION CATALYST AND PREPARATION METHOD THEREOF
FR2575086B1 (en) 1984-12-20 1987-02-20 Rhone Poulenc Spec Chim PLATINUM-ALCENYLCYCLOHEXENE COMPLEX AS HYDROSILYLATION REACTION CATALYST AND PROCESS FOR PREPARING THE SAME
JP2000063670A (en) 1998-08-24 2000-02-29 Suzuki Sogyo Co Ltd Thermally conductive silicone rubber composition and its molded item
JP2007138100A (en) 2005-11-22 2007-06-07 Shin Etsu Chem Co Ltd High thermal conductivity silicone rubber composition
JP2007311628A (en) 2006-05-19 2007-11-29 Kureha Elastomer Co Ltd Heat transferable elastic sheet
JP5392274B2 (en) 2011-01-25 2014-01-22 信越化学工業株式会社 Method for producing high thermal conductive silicone rubber sponge composition
FR3008325B1 (en) 2013-07-12 2019-10-04 Centre National De La Recherche Scientifique - Cnrs NEW SILIC LIGAND CATALYSTS
FR3008324B1 (en) 2013-07-12 2019-10-04 Centre National De La Recherche Scientifique - Cnrs NEW SILYLENE LIGAND CATALYSTS
FR3028258B1 (en) 2014-11-07 2017-01-13 Bluestar Silicones France NEW CATALYSTS FOR CROSSLINKING SILICONE COMPOSITIONS
FR3028512B1 (en) 2014-11-14 2016-12-09 Bluestar Silicones France HYDROSILYLATION PROCESS USING AN ORGANIC CATALYST DERIVED FROM GERMYLENE
US11254849B2 (en) 2015-11-05 2022-02-22 Momentive Performance Materials Japan Llc Method for producing a thermally conductive polysiloxane composition
CN108350183B (en) * 2015-11-05 2021-05-07 迈图高新材料日本合同公司 Method for producing thermally conductive silicone composition

Also Published As

Publication number Publication date
CN116209720A (en) 2023-06-02
JP2023533466A (en) 2023-08-03
KR20230029862A (en) 2023-03-03
WO2021260279A1 (en) 2021-12-30
US20230250283A1 (en) 2023-08-10

Similar Documents

Publication Publication Date Title
EP1989253B1 (en) Curable silicone resin composition and cured body thereof
CA2238886C (en) Silicone elastomer having high heat conductivity
JP4015722B2 (en) Thermally conductive polymer composition
EP0991712B1 (en) Method for preparing a silica suspension in a vulcanisable silicon matrix to form elastomers
CN109312159A (en) Heat-conductive silicone composition and its solidfied material
EP1877470B1 (en) Organopolysiloxane compositions that harden into elastomers at ambient temperature in the presence of moisture
FR2734833A1 (en) LOW MOLECULAR MASS SILICONE RESINS FOR INJECTION MOLDING OF LIQUID WITH A HIGH CONTENT IN VINYL GROUPS
FR2500842A1 (en) SILICONE RUBBER COMPOSITION FOR COATING PHOTOVOLTAIC ELEMENTS
EP1633830A2 (en) Silicon composition which can be crosslinked into an adhesive gel
FR2717180A1 (en) Process for the preparation of a component and a two-component room temperature vulcanizable elastomeric silicone composition and composition obtained by this process
FR2601377A1 (en) COMPOSITION CURABLE IN A SILICONE ELASTOMER, THIS ELASTOMER AND ELECTRICAL CONDUCTOR ISOLATED WITH THIS ELASTOMER
FR2831548A1 (en) CROSS-LINKABLE ADHESIVE SILICONE COMPOSITION COMPRISING AS A THIXOTROPING AGENT A COMPOUND WITH CYCLIC AMINE FUNCTION CARRIED BY A SILOXANIC CHAIN
EP1141131A1 (en) Organopolysiloxane compositions hardening into translucent elastomers at room temperature in the presence of humidity
FR2474519A1 (en) ADDITION-CURABLE SILICONE COMPOSITION, AUTOLIANTE, PROCESS FOR OBTAINING AND USE FOR THE MANUFACTURE OF SEALS FOR SERIGRAPHIC PRINTING
FR2713650A1 (en) Polymers for high application speed extrusion and method of making the same.
FR3068699B1 (en) USEFUL IRON COMPOUND AS A CATALYST FOR HYDROSILYLATION, DEHYDROGENANT SILYLATION AND CROSSLINKING OF SILICONE COMPOSITIONS
TWI740449B (en) Polyorganosiloxane and thermally conductive silicone composition thereof
WO2021260279A1 (en) Thermally conductive silicone compositions
KR20190119117A (en) Silicone elastomers with fluorinated side groups
EP3162857B1 (en) Wet gel and manufacturing method thereof
EP3625299B1 (en) Polyaddition-crosslinkable silicone composition useful for overmolding parts
JP3447964B2 (en) Addition-curable silicone rubber composition filled with zinc oxide
FR2735137A1 (en) PASTE BASED ON SILICONE OIL AND A SILICA FILLER, USED FOR LIQUID INJECTION MOLDING APPLICATIONS, METHOD OF PREPARATION AND USE
EP4189013A1 (en) Crosslinkable silicone elastomer composition containing a heat-resistant additive
WO2002085597A1 (en) Method for making adherent or non-adherent coatings in silicone elastomer by dip coating

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230124

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR