EP4172041B1 - Method for controlling the angular position of a wheel, in particular a landing gear of an aircraft - Google Patents

Method for controlling the angular position of a wheel, in particular a landing gear of an aircraft Download PDF

Info

Publication number
EP4172041B1
EP4172041B1 EP21729525.2A EP21729525A EP4172041B1 EP 4172041 B1 EP4172041 B1 EP 4172041B1 EP 21729525 A EP21729525 A EP 21729525A EP 4172041 B1 EP4172041 B1 EP 4172041B1
Authority
EP
European Patent Office
Prior art keywords
current
angular
wheel
threshold
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21729525.2A
Other languages
German (de)
French (fr)
Other versions
EP4172041A1 (en
Inventor
Ismail MAZZANE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Landing Systems SAS
Original Assignee
Safran Landing Systems SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Landing Systems SAS filed Critical Safran Landing Systems SAS
Publication of EP4172041A1 publication Critical patent/EP4172041A1/en
Application granted granted Critical
Publication of EP4172041B1 publication Critical patent/EP4172041B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/32Alighting gear characterised by elements which contact the ground or similar surface 
    • B64C25/50Steerable undercarriages; Shimmy-damping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/32Alighting gear characterised by elements which contact the ground or similar surface 
    • B64C25/50Steerable undercarriages; Shimmy-damping
    • B64C25/505Shimmy damping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/02Undercarriages
    • B64C25/08Undercarriages non-fixed, e.g. jettisonable
    • B64C25/10Undercarriages non-fixed, e.g. jettisonable retractable, foldable, or the like
    • B64C25/18Operating mechanisms
    • B64C25/22Operating mechanisms fluid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/80Energy efficient operational measures, e.g. ground operations or mission management

Definitions

  • the present invention relates to the field of angular orientation of a wheel, in particular, of a wheel of a front landing gear of an aircraft.
  • a front landing gear of an aircraft comprises a wheel which can be oriented in order to allow the pilot to move the aircraft in the desired direction when the aircraft is on the ground, in particular, during a taxi phase.
  • Various solutions are known for controlling the orientation of the wheel using documents. EP2591998A1 , US9139295B2 , FR2963606A1 And GB813912A .
  • the front landing gear comprises a wheel W whose angular position ANG is controlled by two cylinders, in particular, a front hydraulic cylinder V1 and a rear hydraulic cylinder V2.
  • a control system SC* comprising a hydraulic module MH, generally comprises a hydraulic pump (not shown) and a servovalve S, in order to respectively issue a forward command COM1* and a rear COM2* control to the front hydraulic cylinder V1 and the rear hydraulic cylinder V2.
  • the SC* control system includes a CAL* computer configured to receive a set angular position ANGc from the cockpit and an angular position measurement ANGm in order to deduce a control current COM* which is transmitted to the hydraulic module MH, in particular to the servovalve S, to modify the angular position ANG of the wheel W so that it corresponds to the set angular position ANGc.
  • the invention thus aims to eliminate at least some of these disadvantages by proposing a new regulation method which eliminates at least some of these disadvantages.
  • the invention also relates to an aircraft comprising a landing gear as presented previously.
  • the second integral regulation step comprises a sub-step of limiting the second current according to a parametric law, the parametric law imposing a second current of zero value when the angular deviation is lower, in absolute value , at a first determined angular threshold.
  • the integral correction step is inhibited only for small angular deviations, that is to say, less than the first determined angular threshold.
  • the integral correction is inhibited occasionally, it continues to be mainly active when the angular position of the wheel is modified. Regulation thus remains optimal and undesirable effects are eliminated.
  • the parametric law limits the second current to a maximum authorized current value when the angular deviation is included, in absolute value, between a second determined angular threshold and a third determined angular threshold, the second threshold determined angular threshold and the third determined angular threshold being greater than the first determined angular threshold.
  • the value of the second current is thus limited during a modification of the set angular position.
  • the parametric law limits the second current according to an ascending ramp between the zero value and the maximum current value authorized when the angular deviation is included, in absolute value, between the first determined angular threshold and the second angular threshold determined.
  • the parametric law limits the second current according to a descending ramp between the maximum authorized current value and zero value when the angular deviation is included, in absolute value, between the third determined angular threshold and a fourth determined angular threshold greater than third threshold determined.
  • transitions are thus controlled to limit the second current.
  • the invention further relates to an assembly of a wheel, in particular a wheel of an aircraft landing gear, connected to at least one hydraulic cylinder controlled by a servovalve and a control system such as presented previously to determine a control current of the servovalve.
  • the wheel is connected to at least a first hydraulic cylinder and a second hydraulic cylinder controlled by the servovalve.
  • the assembly comprises a hydraulic module, comprising the servovalve, configured to directly control the first hydraulic cylinder and the second hydraulic cylinder.
  • the invention also relates to a landing gear of an aircraft comprising an assembly as presented previously.
  • the invention relates to a system for controlling the angular position of a wheel, in particular a wheel of a front landing gear of an aircraft.
  • a front landing gear of an aircraft comprises a wheel which can be oriented in order to allow the pilot to move the aircraft in the desired direction when the aircraft is on the ground, in particular, during a taxi phase.
  • the front landing gear comprises a wheel W whose angular position ANG is controlled by two cylinders, in particular, a front hydraulic cylinder V1 and a rear hydraulic cylinder V2.
  • a control system SC comprising a hydraulic module MH, which comprises a hydraulic pump (not shown) and a servovalve S, in order to respectively issue a forward command COM1 and a rear control COM2 to the front hydraulic cylinder V1 and to the rear hydraulic cylinder V2.
  • the control system SC includes a computer CAL configured to receive a set angular position ANGc from the cockpit and an angular position measurement ANGm in order to deduce a control current COM which is transmitted to the hydraulic module MH, in particular to the servovalve S, to modify the angular position ANG of the wheel W so that it corresponds to the angular position ANGc setpoint.
  • a computer CAL configured to receive a set angular position ANGc from the cockpit and an angular position measurement ANGm in order to deduce a control current COM which is transmitted to the hydraulic module MH, in particular to the servovalve S, to modify the angular position ANG of the wheel W so that it corresponds to the angular position ANGc setpoint.
  • the CAL calculator is in the form of a computer system which implements a regulation method which is presented in [ Fig.5 ].
  • the regulation method comprises a step E1 of determining an angular difference ⁇ between a measurement of the angular position ANGm and the set angular position ANGc.
  • the regulation method comprises a first proportional correction step R1 so as to determine a first current C1 from the angular deviation ⁇ .
  • the angular deviation ⁇ is multiplied by a first constant Kp so as to deduce a first current C1 which has previously been limited in value by a limitation operator L1.
  • the first proportional correction step R1 is analogous to the prior art and will not be presented in further detail.
  • the regulation method comprises a second integral correction step R2 so as to determine a second current C2 from the angular deviation ⁇ .
  • a control current COM of the servovalve S is then determined during an addition step E2 of the first current C1 and the second current C2.
  • the control current COM is limited in value by a limitation operator L2 following the addition of the first current C1 and the second current C2.
  • the second step of integral correction R2 includes a sub-step R2' of integration of the angular deviation ⁇ with a second constant Ki in order to obtain the second current C2.
  • a sub-step R2' of the angular deviation ⁇ an activation/deactivation of the integration is carried out if the deviation ⁇ , in absolute value, is between 0 and one predetermined threshold, 2° in this example.
  • the second current C2 is previously limited in value by a limitation operator L3 in order to form the control current COM.
  • the integration sub-step is analogous to the prior art and will not be presented in more detail.
  • the second integral regulation step R2 comprises a sub-step of limitation (R2") of the second current C2 according to a parametric law LP.
  • this parametric law LP is defined to avoid any oscillatory phenomenon.
  • the parametric law LP determines a value of the second current C2 as a function of the absolute value of the angular deviation ⁇ .
  • ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4 are defined.
  • the angular thresholds are determined according to the needs of the regulation (speed, precision, error static, etc.).
  • the parametric law LP imposes a second current C2 of zero value.
  • Such cancellation of the second current C2 makes it possible to eliminate all oscillations by preventing the integral correction from “charging” intermittently.
  • No current command C2 is sent to the servovalve to control the cylinders V1, V2 whose hydraulic pressure does not vary, the proportional part C1 only canceling if the difference is zero. Any oscillatory phenomenon is eliminated without replacing the servovalve S or the cylinders V1, V2.
  • the second current C2 is limited to a maximum authorized current value C2max in order to limit the value of the second current C2 and protect the servovalve S.
  • the second current C2 is limited according to an ascending ramp between the zero value and the maximum authorized current value C2max.
  • the second current C2 is limited according to a descending ramp comprised between the maximum authorized current value C2max and the value zero.
  • the ramps advantageously make it possible to ensure a ⁇ smooth' variation when the deviation ⁇ passes below the second determined angular threshold ⁇ 2 or above the third determined angular threshold ⁇ 3 during the control.
  • the second integral correction R2 remains active and is only inhibited when the angular deviation ⁇ is too small to be perceived by the servovalve S.
  • the value of the first determined angular threshold ⁇ 1 can be adapted to obtain the desired regulation .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Control Of Position Or Direction (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Control Of Transmission Device (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Description

Domaine techniqueTechnical area

La présente invention concerne le domaine de l'orientation angulaire d'une roue, en particulier, d'une roue d'un train d'atterrissage avant d'un aéronef.The present invention relates to the field of angular orientation of a wheel, in particular, of a wheel of a front landing gear of an aircraft.

De manière connue, un train d'atterrissage avant d'un aéronef comporte une roue qui peut être orientée afin de permettre au pilote de déplacer l'aéronef dans la direction désirée lorsque l'aéronef est au sol, en particulier, lors d'une phase de taxi. On connaît diverses solutions pour contrôler l'orientation de la roue par les documents EP2591998A1 , US9139295B2 , FR2963606A1 et GB813912A .In known manner, a front landing gear of an aircraft comprises a wheel which can be oriented in order to allow the pilot to move the aircraft in the desired direction when the aircraft is on the ground, in particular, during a taxi phase. Various solutions are known for controlling the orientation of the wheel using documents. EP2591998A1 , US9139295B2 , FR2963606A1 And GB813912A .

Comme illustré à la [Fig.1], le train d'atterrissage avant comporte une roue W dont la position angulaire ANG est commandée par deux vérins, en particulier, un vérin hydraulique avant V1 et un vérin hydraulique arrière V2. Pour contrôler la position angulaire ANG, il est connu d'utiliser un système de contrôle SC* comportant un module hydraulique MH, comporte généralement une pompe hydraulique (non représentée) et une servovalve S, afin d'émettre respectivement une commande avant COM1* et une commande arrière COM2* au vérin hydraulique avant V1 et au vérin hydraulique arrière V2.As shown in [ Fig.1 ], the front landing gear comprises a wheel W whose angular position ANG is controlled by two cylinders, in particular, a front hydraulic cylinder V1 and a rear hydraulic cylinder V2. To control the angular position ANG, it is known to use a control system SC* comprising a hydraulic module MH, generally comprises a hydraulic pump (not shown) and a servovalve S, in order to respectively issue a forward command COM1* and a rear COM2* control to the front hydraulic cylinder V1 and the rear hydraulic cylinder V2.

Le système de contrôle SC* comporte un calculateur CAL* configuré pour recevoir une position angulaire de consigne ANGc issue de la cabine de pilotage et une mesure de position angulaire ANGm afin d'en déduire un courant de commande COM* qui est transmis au module hydraulique MH, en particulier à la servovalve S, pour modifier la position angulaire ANG de la roue W afin qu'elle corresponde à la position angulaire de consigne ANGc.The SC* control system includes a CAL* computer configured to receive a set angular position ANGc from the cockpit and an angular position measurement ANGm in order to deduce a control current COM* which is transmitted to the hydraulic module MH, in particular to the servovalve S, to modify the angular position ANG of the wheel W so that it corresponds to the set angular position ANGc.

Le calculateur CAL* se présente sous la forme d'un système informatique qui met en oeuvre un procédé de régulation qui est présenté à la [Fig.2]. Le procédé de régulation comporte :

  • une étape de détermination 11 d'un écart angulaire ε entre la mesure de la position angulaire ANGm et la position angulaire de consigne ANGc,
  • une première étape de correction proportionnelle B1 de manière à déterminer un premier courant C1* à partir de l'écart angulaire ε,
  • une deuxième étape de correction intégrale B2 de manière à déterminer un deuxième courant C2* à partir de l'écart angulaire ε,
  • une étape d'addition 12 du premier courant C1* et du deuxième courant C2* de manière à déterminer un courant de commande COM* de la servovalve S et
  • une étape de limitation 13 du courant de commande COM* afin limiter la valeur de la somme des courants Cl*, C2* et fournir un courant de commande COM* adapté à la servovalve S.
The CAL* calculator is in the form of a computer system which implements a regulation process which is presented in [ Fig.2 ]. The regulation process includes:
  • a step 11 of determining an angular difference ε between the measurement of the angular position ANGm and the set angular position ANGc,
  • a first proportional correction step B1 so as to determine a first current C1* from the angular deviation ε,
  • a second integral correction step B2 so as to determine a second current C2* from the angular deviation ε,
  • a step 12 of adding the first current C1* and the second current C2* so as to determine a control current COM* of the servovalve S And
  • a step 13 of limiting the control current COM* in order to limit the value of the sum of the currents Cl*, C2* and provide a control current COM* adapted to the servovalve S.

Un tel procédé de régulation est globalement performant. Néanmoins, en référence à la [Fig.3], lors d'une modification de la position angulaire de consigne ANGc (courbe 3A), il a été observé des oscillations OSC du courant de commande COM* (courbe 3B) destiné à la servovalve S ainsi que des variations de pression dans les vérins hydrauliques V1, V2 en régime stationnaire. Autrement dit, en l'absence de modification de la position angulaire de consigne ANGc, le courant de commande COM* continue à être régulé de manière intempestive.Such a regulation process is generally efficient. However, with reference to the [ Fig.3 ], during a modification of the set angular position ANGc (curve 3A), OSC oscillations of the control current COM* (curve 3B) intended for the servovalve S were observed as well as pressure variations in the cylinders hydraulics V1, V2 in steady state. In other words, in the absence of modification of the set angular position ANGc, the control current COM* continues to be regulated unintentionally.

En pratique, lorsque l'écart angulaire ε est proche de 0, la correction intégrale B2 est « chargée » de manière périodique. En effet, une servovalve réelle S n'a pas des caractéristiques parfaites. Lors de la réception d'un courant de commande COM* de valeur faible mais non nul, la servovalve S ne s'active pas. Il en résulte que l'écart angulaire ε n'est pas modifié et que le courant de commande COM* va croître. Lorsque le courant de commande COM* devient suffisamment fort pour commander la servovalve S, celle-ci s'active et l'écart angulaire ε change rapidement de signe puis revient proche de 0. Ce phénomène périodique est à l'origine des oscillations OSC du courant de commande COM* destiné à la servovalve S ainsi que des variations de pression dans les vérins hydrauliques V1, V2 en régime stationnaire.In practice, when the angular deviation ε is close to 0, the integral correction B2 is “loaded” periodically. Indeed, a real S servovalve does not have perfect characteristics. When receiving a low but non-zero COM* control current, the servovalve S does not activate. As a result, the angular deviation ε is not modified and the control current COM* will increase. When the control current COM* becomes strong enough to control the servovalve S, it activates and the angular deviation ε quickly changes sign then returns close to 0. This periodic phenomenon is at the origin of the OSC oscillations of the COM* control current intended for the servovalve S as well as pressure variations in the hydraulic cylinders V1, V2 in steady state.

Une solution immédiate pour éliminer cet inconvénient est de changer la servovalve S afin d'obtenir un modèle plus performant sur le plan de la régulation lorsque l'écart angulaire ε est proche de 0. En pratique, un tel changement entraine des inconvénients nombreux aussi bien sur le plan technique (intégration, certification, etc.) qu'économique (coût).An immediate solution to eliminate this drawback is to change the servovalve S in order to obtain a more efficient model in terms of regulation when the angular deviation ε is close to 0. In practice, such a change leads to numerous drawbacks as well both technically (integration, certification, etc.) and economically (cost).

Une autre solution immédiate serait de désactiver la correction intégrale pour limiter les oscillations OSC mais cela abaisserait les performances de la régulation (erreur statique) et les performances de suivi de l'usure de la servovalve S (dérive à débit nul, etc.).Another immediate solution would be to deactivate the integral correction to limit OSC oscillations but this would lower the regulation performance (static error) and the wear monitoring performance of the servovalve S (drift at zero flow, etc.).

L'invention vise ainsi à éliminer au moins certains de ces inconvénients en proposant un nouveau procédé de régulation qui élimine au moins certains de ces inconvénients.The invention thus aims to eliminate at least some of these disadvantages by proposing a new regulation method which eliminates at least some of these disadvantages.

L'invention concerne également un aéronef comprenant un train d'atterrissage tel que présenté précédemment.The invention also relates to an aircraft comprising a landing gear as presented previously.

PRESENTATION DE L'INVENTIONPRESENTATION OF THE INVENTION

L'invention concerne un procédé de régulation de la position angulaire d'une roue, en particulier d'une roue d'un train d'atterrissage d'un aéronef, la roue étant reliée à au moins un vérin hydraulique commandé par une servovalve, le procédé comportant :

  • une étape de détermination d'un écart angulaire entre une mesure de la position angulaire et une position angulaire de consigne,
  • une première étape de correction proportionnelle de manière à déterminer un premier courant à partir de l'écart angulaire
  • une deuxième étape de correction intégrale de manière à déterminer un deuxième courant à partir de l'écart angulaire et
  • une étape d'addition du premier courant et du deuxième courant de manière à déterminer un courant de commande de la servovalve .
The invention relates to a method for regulating the angular position of a wheel, in particular a wheel of an aircraft landing gear, the wheel being connected to minus one hydraulic cylinder controlled by a servovalve, the method comprising:
  • a step of determining an angular difference between a measurement of the angular position and a set angular position,
  • a first proportional correction step so as to determine a first current from the angular deviation
  • a second integral correction step so as to determine a second current from the angular deviation and
  • a step of adding the first current and the second current so as to determine a control current of the servovalve.

L'invention est remarquable en ce que la deuxième étape de régulation intégrale comporte une sous-étape de limitation du deuxième courant selon une loi paramétrique, la loi paramétrique imposant un deuxième courant de valeur nulle lorsque l'écart angulaire est inférieur, en valeur absolue, à un premier seuil angulaire déterminé.The invention is remarkable in that the second integral regulation step comprises a sub-step of limiting the second current according to a parametric law, the parametric law imposing a second current of zero value when the angular deviation is lower, in absolute value , at a first determined angular threshold.

De manière avantageuse, grâce à l'invention, l'étape de correction intégrale est inhibée uniquement pour des faibles écarts angulaires, c'est-à-dire, inférieurs au premier seuil angulaire déterminé. Cela permet d'éviter une correction par la branche intégrale qui soit intempestive et qui entraine une modification de la pression des vérins. Les défauts réels liés à la servovalve sont ainsi éliminés sans modifier l'architecture physique, évitant ainsi des étapes de certification. En outre, comme la correction intégrale est inhibée de manière ponctuelle, elle continue à être majoritairement active lors de la modification de la position angulaire de la roue. La régulation demeure ainsi optimale et les effets indésirables sont éliminés.Advantageously, thanks to the invention, the integral correction step is inhibited only for small angular deviations, that is to say, less than the first determined angular threshold. This makes it possible to avoid a correction by the integral branch which is untimely and which leads to a modification of the pressure of the cylinders. Real faults linked to the servovalve are thus eliminated without modifying the physical architecture, thus avoiding certification steps. In addition, as the integral correction is inhibited occasionally, it continues to be mainly active when the angular position of the wheel is modified. Regulation thus remains optimal and undesirable effects are eliminated.

Selon un aspect de l'invention, la loi paramétrique limite le deuxième courant à une valeur de courant maximale autorisée lorsque l'écart angulaire est compris, en valeur absolue, entre un deuxième seuil angulaire déterminé et un troisième seuil angulaire déterminé, le deuxième seuil angulaire déterminé et le troisième seuil angulaire déterminé étant supérieurs au premier seuil angulaire déterminé. La valeur du deuxième courant est ainsi bornée lors d'une modification de la position angulaire de consigne.According to one aspect of the invention, the parametric law limits the second current to a maximum authorized current value when the angular deviation is included, in absolute value, between a second determined angular threshold and a third determined angular threshold, the second threshold determined angular threshold and the third determined angular threshold being greater than the first determined angular threshold. The value of the second current is thus limited during a modification of the set angular position.

Selon un aspect de l'invention, la loi paramétrique limite le deuxième courant selon une rampe ascendante comprise entre la valeur nulle et la valeur de courant maximale autorisée lorsque l'écart angulaire est compris, en valeur absolue, entre le premier seuil angulaire déterminé et le deuxième seuil angulaire déterminé.According to one aspect of the invention, the parametric law limits the second current according to an ascending ramp between the zero value and the maximum current value authorized when the angular deviation is included, in absolute value, between the first determined angular threshold and the second angular threshold determined.

Selon un aspect de l'invention, la loi paramétrique limite le deuxième courant selon une rampe descendante comprise entre la valeur de courant maximale autorisée et la valeur nulle lorsque l'écart angulaire est compris, en valeur absolue, entre le troisième seuil angulaire déterminé et un quatrième seuil angulaire déterminé supérieur au troisième seuil déterminé.According to one aspect of the invention, the parametric law limits the second current according to a descending ramp between the maximum authorized current value and zero value when the angular deviation is included, in absolute value, between the third determined angular threshold and a fourth determined angular threshold greater than third threshold determined.

Les transitions (ascendante ou descendante) sont ainsi contrôlées pour limiter le deuxième courant.The transitions (ascending or descending) are thus controlled to limit the second current.

L'invention concerne également un système de contrôle de la position angulaire d'une roue, en particulier d'une roue d'un train d'atterrissage d'un aéronef, reliée à au moins un vérin hydraulique commandé par une servovalve, le système de contrôle comprenant un calculateur configuré pour :

  • déterminer un écart angulaire entre une mesure de la position angulaire et une position angulaire de consigne,
  • réaliser une première correction proportionnelle de manière à déterminer un premier courant à partir de l'écart angulaire
  • réaliser une deuxième correction intégrale de manière à déterminer un deuxième courant à partir de l'écart angulaire,
  • additionner le premier courant et le deuxième courant de manière à déterminer un courant de commande de la servovalve et
  • lors de la réalisation de la deuxième correction intégrale, limiter le deuxième courant selon une loi paramétrique, la loi paramétrique imposant un deuxième courant de valeur nulle lorsque l'écart angulaire est inférieur, en valeur absolue, à un premier seuil angulaire déterminé.
The invention also relates to a system for controlling the angular position of a wheel, in particular of a wheel of an aircraft landing gear, connected to at least one hydraulic cylinder controlled by a servovalve, the system control comprising a computer configured to:
  • determine an angular difference between a measurement of the angular position and a set angular position,
  • carry out a first proportional correction so as to determine a first current from the angular deviation
  • carry out a second integral correction so as to determine a second current from the angular deviation,
  • add the first current and the second current so as to determine a control current of the servovalve and
  • when carrying out the second integral correction, limit the second current according to a parametric law, the parametric law imposing a second current of zero value when the angular deviation is less, in absolute value, than a first determined angular threshold.

L'invention concerne en outre un ensemble d'une roue, en particulier d'une roue d'un train d'atterrissage d'un aéronef, reliée à au moins un vérin hydraulique commandé par une servovalve et d'un système de contrôle tel que présenté précédemment pour déterminer un courant de commande de la servovalve.The invention further relates to an assembly of a wheel, in particular a wheel of an aircraft landing gear, connected to at least one hydraulic cylinder controlled by a servovalve and a control system such as presented previously to determine a control current of the servovalve.

De préférence, la roue est reliée à au moins un premier vérin hydraulique et un deuxième vérin hydraulique commandés par la servovalve.Preferably, the wheel is connected to at least a first hydraulic cylinder and a second hydraulic cylinder controlled by the servovalve.

De manière préférée, l'ensemble comprend un module hydraulique, comprenant la servovalve, configuré pour commander directement le premier vérin hydraulique et le deuxième vérin hydraulique.Preferably, the assembly comprises a hydraulic module, comprising the servovalve, configured to directly control the first hydraulic cylinder and the second hydraulic cylinder.

L'invention concerne aussi un train d'atterrissage d'un aéronef comprenant un ensemble tel que présenté précédemment.The invention also relates to a landing gear of an aircraft comprising an assembly as presented previously.

PRESENTATION DES FIGURESPRESENTATION OF FIGURES

L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée à titre d'exemple, et se référant aux figures suivantes, données à titre d'exemples non limitatifs, dans lesquelles des références identiques sont données à des objets semblables.

  • [Fig.1] La [Fig.1] est une représentation schématique d'un système de contrôle de la position angulaire d'une roue d'un train d'atterrissage avant selon l'art antérieur.
  • [Fig.2] La [Fig.2] est une représentation schématique des étapes d'un procédé de régulation de la position angulaire selon l'art antérieur.
  • [Fig.3] La [Fig.3] est une représentation schématique de l'évolution temporelle d'une position angulaire de consigne et du courant de commande de la servovalve selon l'art antérieur.
  • [Fig.4] La [Fig.4] est une représentation schématique d'un système de contrôle de la position angulaire d'une roue d'un train d'atterrissage avant selon une forme de réalisation de l'invention.
  • [Fig.5] La [Fig.5] est une représentation schématique des étapes d'un procédé de régulation de la position angulaire selon un exemple de mise en oeuvre.
  • [Fig.6] La [Fig.6] est une représentation schématique d'une loi paramétrique pour la limitation du deuxième courant issu de la correction intégrale.
  • [Fig.7] La [Fig.7] est une représentation schématique de l'évolution temporelle d'une position angulaire de consigne, de l'écart angulaire et du courant de commande de la servovalve selon l'invention.
The invention will be better understood on reading the description which follows, given by way of example, and referring to the following figures, given by way of non-limiting examples, in which identical references are given to similar objects .
  • [ Fig.1 ] There [ Fig.1 ] is a schematic representation of a system for controlling the angular position of a wheel of a front landing gear according to the prior art.
  • [ Fig.2 ] There [ Fig.2 ] is a schematic representation of the steps of a process for regulating the angular position according to the prior art.
  • [ Fig.3 ] There [ Fig.3 ] is a schematic representation of the temporal evolution of a set angular position and the control current of the servovalve according to the prior art.
  • [ Fig.4 ] There [ Fig.4 ] is a schematic representation of a system for controlling the angular position of a wheel of a front landing gear according to one embodiment of the invention.
  • [ Fig.5 ] There [ Fig.5 ] is a schematic representation of the steps of a method for regulating the angular position according to an example of implementation.
  • [ Fig.6 ] There [ Fig.6 ] is a schematic representation of a parametric law for the limitation of the second current resulting from the integral correction.
  • [Fig.7] [Fig.7] is a schematic representation of the temporal evolution of a set angular position, the angular deviation and the control current of the servovalve according to the invention.

Il faut noter que les figures exposent l'invention de manière détaillée pour mettre en oeuvre l'invention, lesdites figures pouvant bien entendu servir à mieux définir l'invention le cas échéant.It should be noted that the figures set out the invention in detail to implement the invention, said figures being able of course to be used to better define the invention if necessary.

DESCRIPTION DETAILLEE DE L'INVENTIONDETAILED DESCRIPTION OF THE INVENTION

L'invention concerne un système de contrôle de la position angulaire d'une roue, en particulier, d'une roue d'un train d'atterrissage avant d'un aéronef. De manière connue, un train d'atterrissage avant d'un aéronef comporte une roue qui peut être orientée afin de permettre au pilote de déplacer l'aéronef dans la direction désirée lorsque l'aéronef est au sol, en particulier, lors d'une phase de taxi.The invention relates to a system for controlling the angular position of a wheel, in particular a wheel of a front landing gear of an aircraft. In known manner, a front landing gear of an aircraft comprises a wheel which can be oriented in order to allow the pilot to move the aircraft in the desired direction when the aircraft is on the ground, in particular, during a taxi phase.

En référence à la [Fig.4], comme présenté précédemment, le train d'atterrissage avant comporte une roue W dont la position angulaire ANG est commandée par deux vérins, en particulier, un vérin hydraulique avant V1 et un vérin hydraulique arrière V2.With reference to the [ Fig.4 ], as presented previously, the front landing gear comprises a wheel W whose angular position ANG is controlled by two cylinders, in particular, a front hydraulic cylinder V1 and a rear hydraulic cylinder V2.

Selon l'invention, pour contrôler la position angulaire ANG, on utilise un système de contrôle SC comportant un module hydraulique MH, qui comporte une pompe hydraulique (non représentée) et une servovalve S, afin d'émettre respectivement une commande avant COM1 et une commande arrière COM2 au vérin hydraulique avant V1 et au vérin hydraulique arrière V2.According to the invention, to control the angular position ANG, a control system SC is used comprising a hydraulic module MH, which comprises a hydraulic pump (not shown) and a servovalve S, in order to respectively issue a forward command COM1 and a rear control COM2 to the front hydraulic cylinder V1 and to the rear hydraulic cylinder V2.

Le système de contrôle SC comporte un calculateur CAL configuré pour recevoir une position angulaire de consigne ANGc issue de la cabine de pilotage et une mesure de position angulaire ANGm afin d'en déduire un courant de commande COM qui est transmis au module hydraulique MH, en particulier à la servovalve S, pour modifier la position angulaire ANG de la roue W afin qu'elle corresponde à la position angulaire de consigne ANGc.The control system SC includes a computer CAL configured to receive a set angular position ANGc from the cockpit and an angular position measurement ANGm in order to deduce a control current COM which is transmitted to the hydraulic module MH, in particular to the servovalve S, to modify the angular position ANG of the wheel W so that it corresponds to the angular position ANGc setpoint.

Selon l'invention, le calculateur CAL se présente sous la forme d'un système informatique qui met en oeuvre un procédé de régulation qui est présenté à la [Fig.5].According to the invention, the CAL calculator is in the form of a computer system which implements a regulation method which is presented in [ Fig.5 ].

Tout d'abord, le procédé de régulation comporte une étape de détermination E1 d'un écart angulaire ε entre une mesure de la position angulaire ANGm et la position angulaire de consigne ANGc.First of all, the regulation method comprises a step E1 of determining an angular difference ε between a measurement of the angular position ANGm and the set angular position ANGc.

Puis, le procédé de régulation comporte une première étape de correction proportionnelle R1 de manière à déterminer un premier courant C1 à partir de l'écart angulaire ε. En référence à la [Fig.5], lors de l'étape de correction proportionnelle R1, l'écart angulaire ε est multiplié par une première constante Kp de manière à déduire un premier courant C1 qui a été précédemment limité en valeur par un opérateur de limitation L1. De manière préférée, la première étape de correction proportionnelle R1 est analogue à l'art antérieur et ne sera pas présentée plus en détails.Then, the regulation method comprises a first proportional correction step R1 so as to determine a first current C1 from the angular deviation ε. With reference to the [ Fig.5 ], during the proportional correction step R1, the angular deviation ε is multiplied by a first constant Kp so as to deduce a first current C1 which has previously been limited in value by a limitation operator L1. Preferably, the first proportional correction step R1 is analogous to the prior art and will not be presented in further detail.

Le procédé de régulation comporte une deuxième étape de correction intégrale R2 de manière à déterminer un deuxième courant C2 à partir de l'écart angulaire ε.The regulation method comprises a second integral correction step R2 so as to determine a second current C2 from the angular deviation ε.

Un courant de commande COM de la servovalve S est ensuite déterminé lors d'une étape d'addition E2 du premier courant C1 et du deuxième courant C2. Le courant de commande COM est limité en valeur par un opérateur de limitation L2 suite à l'addition du premier courant C1 et du deuxième courant C2.A control current COM of the servovalve S is then determined during an addition step E2 of the first current C1 and the second current C2. The control current COM is limited in value by a limitation operator L2 following the addition of the first current C1 and the second current C2.

La deuxième étape de correction intégrale R2 va être dorénavant présentée de manière détaillée. Celle-ci comporte une sous-étape d'intégration R2' de l'écart angulaire ε avec une deuxième constante Ki afin d'obtenir le deuxième courant C2. De manière préférée, au cours de la sous-étape d'intégration R2' de l'écart angulaire ε, il est réalisé une activation / désactivation de l'intégration si l'écart ε, en valeur absolue, est compris entre 0 et un seuil prédéterminé, 2° dans cet exemple.The second step of integral correction R2 will now be presented in detail. This includes a sub-step R2' of integration of the angular deviation ε with a second constant Ki in order to obtain the second current C2. Preferably, during the integration sub-step R2' of the angular deviation ε, an activation/deactivation of the integration is carried out if the deviation ε, in absolute value, is between 0 and one predetermined threshold, 2° in this example.

Au cours de la sous-étape d'intégration R2', le deuxième courant C2 est préalablement limité en valeur par un opérateur de limitation L3 afin de former le courant de commande COM. La sous-étape d'intégration est analogue à l'art antérieur et ne sera pas présentée plus en détails.During the integration sub-step R2', the second current C2 is previously limited in value by a limitation operator L3 in order to form the control current COM. The integration sub-step is analogous to the prior art and will not be presented in more detail.

De manière préférée, selon l'invention, la deuxième étape de régulation intégrale R2 comporte une sous-étape de limitation (R2") du deuxième courant C2 selon une loi paramétrique LP. Contrairement à une limitation classique qui vise à limiter les valeurs extrêmes, la présente loi paramétrique LP est définie pour éviter tout phénomène oscillatoire.Preferably, according to the invention, the second integral regulation step R2 comprises a sub-step of limitation (R2") of the second current C2 according to a parametric law LP. Unlike a conventional limitation which aims to limit extreme values, this parametric law LP is defined to avoid any oscillatory phenomenon.

La loi paramétrique LP détermine une valeur du deuxième courant C2 en fonction de la valeur absolue de l'écart angulaire ε. En référence à la [Fig.6], il est défini plusieurs seuils angulaires déterminés de valeur croissante ε1, ε2, ε3, ε4. Les seuils angulaires sont déterminés en fonction des besoins de la régulation (rapidité, précision, erreur statique, etc.).The parametric law LP determines a value of the second current C2 as a function of the absolute value of the angular deviation ε. With reference to the [ Fig.6 ], several determined angular thresholds of increasing value ε1, ε2, ε3, ε4 are defined. The angular thresholds are determined according to the needs of the regulation (speed, precision, error static, etc.).

Lorsque l'écart angulaire ε est inférieur, en valeur absolue, au premier seuil angulaire déterminé ε1, c'est à dire compris entre 0 et ε1, la loi paramétrique LP impose un deuxième courant C2 de valeur nulle. Une telle annulation du deuxième courant C2 permet d'éliminer toutes les oscillations en interdisant à la correction intégrale de se « charger » par intermittence. Aucune commande de courant C2 n'est émise à la servovalve pour commander les vérins V1, V2 dont la pression hydraulique ne varie pas, la partie proportionnelle C1 ne s'annulant que si l'écart est nul. Tout phénomène oscillatoire est éliminé sans remplacement de la servovalve S ou des vérins V1, V2.When the angular deviation ε is less, in absolute value, than the first determined angular threshold ε1, that is to say between 0 and ε1, the parametric law LP imposes a second current C2 of zero value. Such cancellation of the second current C2 makes it possible to eliminate all oscillations by preventing the integral correction from “charging” intermittently. No current command C2 is sent to the servovalve to control the cylinders V1, V2 whose hydraulic pressure does not vary, the proportional part C1 only canceling if the difference is zero. Any oscillatory phenomenon is eliminated without replacing the servovalve S or the cylinders V1, V2.

Lorsque l'écart angulaire ε est compris, en valeur absolue, entre le deuxième seuil angulaire déterminé ε2 et le troisième seuil angulaire déterminé ε3, le deuxième courant C2 est limité à une valeur de courant maximale autorisée C2max afin de borner la valeur du deuxième courant C2 et protéger la servovalve S.When the angular difference ε is included, in absolute value, between the second determined angular threshold ε2 and the third determined angular threshold ε3, the second current C2 is limited to a maximum authorized current value C2max in order to limit the value of the second current C2 and protect the servovalve S.

Lorsque l'écart angulaire ε est compris, en valeur absolue, entre le premier seuil angulaire déterminé ε1 et le deuxième seuil angulaire déterminé ε2, le deuxième courant C2 est limité selon une rampe ascendante comprise entre la valeur nulle et la valeur de courant maximale autorisée C2max. De même, lorsque l'écart angulaire ε est compris, en valeur absolue, entre le troisième seuil angulaire déterminé ε3 et le quatrième seuil angulaire déterminé ε4, le deuxième courant C2 est limité selon une rampe descendante comprise entre la valeur de courant maximale autorisée C2max et la valeur nulle. Les rampes permettent avantageusement d'assurer une variation `lisse' lorsque l'écart ε passe en dessous du deuxième seuil angulaire déterminé ε2 ou au-dessus du troisième seuil angulaire déterminé ε3 pendant le contrôle.When the angular difference ε is included, in absolute value, between the first determined angular threshold ε1 and the second determined angular threshold ε2, the second current C2 is limited according to an ascending ramp between the zero value and the maximum authorized current value C2max. Likewise, when the angular difference ε is included, in absolute value, between the third determined angular threshold ε3 and the fourth determined angular threshold ε4, the second current C2 is limited according to a descending ramp comprised between the maximum authorized current value C2max and the value zero. The ramps advantageously make it possible to ensure a `smooth' variation when the deviation ε passes below the second determined angular threshold ε2 or above the third determined angular threshold ε3 during the control.

Ainsi, la deuxième correction intégrale R2 demeure active et est uniquement inhibée lorsque l'écart angulaire ε est trop faible pour être perçu par la servovalve S. De manière avantageuse, la valeur du premier seuil angulaire déterminé ε1 peut être adaptée pour obtenir la régulation désirée.Thus, the second integral correction R2 remains active and is only inhibited when the angular deviation ε is too small to be perceived by the servovalve S. Advantageously, the value of the first determined angular threshold ε1 can be adapted to obtain the desired regulation .

Le calculateur CAL est configuré pour mettre en oeuvre les étapes du procédé de régulation, en particulier, pour :

  • déterminer un écart angulaire ε entre une mesure de la position angulaire ANGm et une position angulaire de consigne ANGc,
  • réaliser une première correction proportionnelle R1 de manière à déterminer un premier courant C1 à partir de l'écart angulaire ε
  • réaliser une deuxième correction intégrale R2 de manière à déterminer un deuxième courant C2 à partir de l'écart angulaire ε,
  • additionner le premier courant C1 et le deuxième courant C2 de manière à déterminer un courant de commande COM de la servovalve S,
  • lors de la réalisation de la deuxième correction intégrale R2, limiter le deuxième courant C2 selon une loi paramétrique, la loi paramétrique imposant un deuxième courant C2 de valeur nulle lorsque l'écart angulaire ε est inférieur, en valeur absolue, à un premier seuil angulaire déterminé ε1.
The CAL computer is configured to implement the steps of the regulation process, in particular, for:
  • determine an angular difference ε between a measurement of the angular position ANGm and a set angular position ANGc,
  • carry out a first proportional correction R1 so as to determine a first current C1 from the angular deviation ε
  • carry out a second integral correction R2 so as to determine a second current C2 from the angular deviation ε,
  • add the first current C1 and the second current C2 so as to determine a control current COM of the servovalve S,
  • when carrying out the second integral correction R2, limit the second current C2 according to a parametric law, the parametric law imposing a second current C2 of zero value when the angular deviation ε is less, in absolute value, than a first determined angular threshold ε1.

De manière avantageuse, il suffit de modifier le procédé de régulation mise en oeuvre par un calculateur CAL pour bénéficier des bénéfices de l'invention, sans aucun autre changement matériel physique.Advantageously, it is enough to modify the regulation method implemented by a CAL computer to benefit from the benefits of the invention, without any other physical material change.

En référence à la [Fig.7], lors de la mise en oeuvre du procédé de régulation, lors d'une modification de la position angulaire de consigne ANGc (courbe 7A), l'écart angulaire ε est annulé lorsqu'il est inférieur premier seuil angulaire déterminé ε1 et ne présente pas d'oscillation (courbe 7B). Il en résulte que le courant de commande COM (courbe 7C) est également dépourvu d'oscillations OSC. Il n'existe ainsi pas de variations de pression indésirables dans les vérins hydrauliques V1, V2 en régime stationnaire. Autrement dit, en l'absence de modification de la position angulaire de consigne ANGc, le courant de commande COM n'est plus corrigé de manière intempestive. With reference to [Fig.7], during the implementation of the regulation process, during a modification of the set angular position ANGc (curve 7A), the angular deviation ε is canceled when it is lower first determined angular threshold ε1 and does not exhibit oscillation (curve 7B). As a result, the control current COM (curve 7C) is also devoid of oscillations OSC. There are thus no undesirable pressure variations in the hydraulic cylinders V1, V2 in steady state. In other words, in the absence of modification of the set angular position ANGc, the control current COM is no longer corrected unintentionally.

Claims (10)

  1. Method for adjusting the angular position (ANG) of a wheel (W), in particular of a wheel of an aircraft landing gear, the wheel (W) being connected to at least one hydraulic cylinder controlled by a servo valve (S), the method comprising:
    - a step of determining (E1) an angular difference (ε) between a measurement of the angular position (ANGm) and a setpoint angular position (ANGc),
    - a first proportional correction step (R1) so as to determine a first current (C1) from the angular difference (ε)
    - a second integral correction step (R2) so as to determine a second current (C2) from the angular difference (ε),
    - a step of adding (E2) the first current (C1) and the second current (C2) so as to determine a control current (COM) of the servo valve (S)
    - method characterised in the fact that,
    - the second integral adjustment step (R2) comprises a substep of limiting (R2") the second current (C2) according to a parametric law (LP), the parametric law (LP) imposing a zero-value second current (C2) when the angular difference (ε) is less, in absolute value, than a determined first angular threshold (ε1).
  2. Method for adjusting according to claim 1, wherein the parametric law (LP) limits the second current (C2) to a maximum permissible current value (C2max) when the angular difference (ε) is comprised, in absolute value, between a second determined angular threshold (ε2) and a third determined angular threshold (ε3), the second determined angular threshold (ε2) and the third determined angular threshold (ε3) being greater than the first determined angular threshold (ε1).
  3. Method for adjusting according to claim 2, wherein the parametric law (LP) limits the second current (C2) according to a rising ramp comprised between the zero value and the maximum permissible current value (C2max) when the angular difference (ε) is comprised, in absolute value, between the first determined angular threshold (ε1) and the second determined angular threshold (ε2).
  4. Method for adjusting according to one of claims 2 and 3, wherein the parametric law (LP) limits the second current (C2) according to a falling ramp comprised between the maximum permissible current value (C2max) and the zero value when the angular difference (ε) is comprised, in absolute value, between the third determined angular threshold (ε3) and a fourth determined angular threshold (ε4) greater than the third determined threshold (ε3).
  5. System for controlling (SC) the angular position of a wheel (W), in particular of a wheel of an aircraft landing gear, connected to at least one hydraulic cylinder (V1, V2) controlled by a servo valve (S), the control system (SC) comprising a calculator (CAL) configured to:
    - determine an angular difference (ε) between a measurement of the angular position (ANGm) and a setpoint angular position (ANGc),
    - perform a first proportional correction (R1) in order to determine a first current (C1) from the angular difference (ε)
    - perform a second integral correction (R2) so as to determine a second current (C2) from the angular difference (ε),
    - add the first current (C1) and the second current (C2) so as to determine a control current (COM) of the servo valve (S) and
    - when performing the second integral correction (R2), limit the second current (C2) according to a parametric law (LP), the parametric law (LP) imposing a zero-value second current (C2) when the angular difference (ε) is less, in absolute value, than a first determined angular threshold (ε1).
  6. Assembly of a wheel (W), in particular a wheel of an aircraft landing gear, connected to at least one hydraulic cylinder (V1, V2) controlled by a servo valve (S) and a control system (SC) according to claim 5 to determine a control current (COM) of the servo valve (S).
  7. Assembly according to claim 6, wherein the wheel (W) is connected to at least one first hydraulic cylinder (V1) and a second hydraulic cylinder (V2) controlled by the servo valve (S).
  8. Assembly according to one of claims 6 and 7 comprising a hydraulic module (MH), comprising the servo valve (S), configured to directly control the first hydraulic cylinder (V1) and the second hydraulic cylinder (V2).
  9. Aircraft landing gear comprising an assembly according to one of claims 6 to 8.
  10. Aircraft comprising a landing gear according to claim 9.
EP21729525.2A 2020-06-25 2021-05-31 Method for controlling the angular position of a wheel, in particular a landing gear of an aircraft Active EP4172041B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2006664A FR3111871B1 (en) 2020-06-25 2020-06-25 Method for regulating the angular position of a wheel, in particular of an aircraft landing gear
PCT/EP2021/064480 WO2021259591A1 (en) 2020-06-25 2021-05-31 Method for adjusting the angular position of a wheel, in particular of an aircraft landing gear

Publications (2)

Publication Number Publication Date
EP4172041A1 EP4172041A1 (en) 2023-05-03
EP4172041B1 true EP4172041B1 (en) 2024-04-03

Family

ID=72709542

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21729525.2A Active EP4172041B1 (en) 2020-06-25 2021-05-31 Method for controlling the angular position of a wheel, in particular a landing gear of an aircraft

Country Status (5)

Country Link
US (1) US20240034462A1 (en)
EP (1) EP4172041B1 (en)
CN (1) CN115697840A (en)
FR (1) FR3111871B1 (en)
WO (1) WO2021259591A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB813912A (en) * 1955-12-22 1959-05-27 Dowty Equipment Ltd Improvements relating to aircraft nosewheel steering devices
FR2963606B1 (en) * 2010-08-05 2013-03-08 Messier Dowty Sa LIGHTER EQUIPPED WITH A SAFETY DEVICE
FR2976911B1 (en) * 2011-06-27 2013-07-05 Messier Bugatti Dowty METHOD FOR CONTROLLING THE ORIENTATION OF AN ORIENTABLE PART OF AN AIRCRAFT INTERFERENCE.
FR2982582B1 (en) * 2011-11-10 2013-12-13 Messier Bugatti Dowty (EN) ORIENTATION REAGENT METHOD FOR AN AIRCRAFT AIRCRAFT COMPRISING AN EASILY ORIENTABLE PART.

Also Published As

Publication number Publication date
US20240034462A1 (en) 2024-02-01
WO2021259591A1 (en) 2021-12-30
CN115697840A (en) 2023-02-03
FR3111871A1 (en) 2021-12-31
FR3111871B1 (en) 2022-05-27
EP4172041A1 (en) 2023-05-03

Similar Documents

Publication Publication Date Title
EP1586968B1 (en) System for longitudinally piloting an aircraft rolling on the ground
EP3173603B1 (en) Method for controlling the thrust of the jet engines of an aircraft during the take-off phase, controlling device and corresponding aircraft
CA2204445C (en) System for controlling aircraft control surface trim tabs
EP1993908B1 (en) Method and device for controlling the thrust of a multi-engine aircraft
EP3091412B1 (en) Rotorcraft control system, associated rotorcraft and corresponding control method
EP3109156B1 (en) Method for controlling a three-engined power plant of a rotary-wing aircraft
EP1902346B1 (en) Method and device for lightening loads on the wing system of an aircraft in roll motion
FR3020036A1 (en) ACTUATOR SYSTEM FOR AN AIRCRAFT GOVERNOR.
FR3016706A1 (en) METHOD AND DEVICE FOR OPTIMIZING LANDING OF AN AIRCRAFT ON A TRACK.
EP1026565B1 (en) Yaw control system for an aircraft
EP4172041B1 (en) Method for controlling the angular position of a wheel, in particular a landing gear of an aircraft
CA2803852A1 (en) Direction control management process for an adjustable part of aircraft landing gear
EP3338147B1 (en) System for controlling a controlled parameter
WO2007048960A2 (en) Method and system for limiting an aircraft control surface steering angle
EP0834787A1 (en) Method and device for vertical guidance of an aircraft
FR2747204A1 (en) DEVICE FOR MAINTAINING THE SPEED OF AN AIRCRAFT WITHIN A DETERMINED SPEED DOMAIN
FR2814433A1 (en) Helicopter command device in which the helicopter can be commanded at low speeds by commands corresponding to a change in translational speed rather than a change in rotor speed
CA3077780C (en) Pilotage process for a braking device
FR2930936A1 (en) SYSTEM FOR CONTROLLING A DOUBLE-MEDIUM DRIVING GANTRY
EP1406141B1 (en) Process and device to automatically control the thrust of an aircraft engine
CA2920712C (en) Method and module for filtering a raw setpoint
FR2579172A1 (en) METHOD AND APPARATUS FOR THRUST CONTROL FOR MULTI-ENGINE AIRCRAFT
EP4054906A1 (en) Aircraft braking method comprising a dynamic correction of the braking command
EP0519791B1 (en) Apparatus for controlling the position of a steering gear, in particular of a ship
EP1907912B1 (en) Method and device for flying an aircraft according to at least one flying line

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221214

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240117

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602021011363

Country of ref document: DE