EP4168616B1 - Procédé de production continue d'un tissu non tissé et appareil de production de tissu non tissé associé et panneau non tissé - Google Patents
Procédé de production continue d'un tissu non tissé et appareil de production de tissu non tissé associé et panneau non tissé Download PDFInfo
- Publication number
- EP4168616B1 EP4168616B1 EP21736967.7A EP21736967A EP4168616B1 EP 4168616 B1 EP4168616 B1 EP 4168616B1 EP 21736967 A EP21736967 A EP 21736967A EP 4168616 B1 EP4168616 B1 EP 4168616B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fibers
- nonwoven fabric
- air
- conveyor belts
- fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004745 nonwoven fabric Substances 0.000 title claims description 56
- 238000004519 manufacturing process Methods 0.000 title claims description 44
- 238000000034 method Methods 0.000 title claims description 24
- 238000010924 continuous production Methods 0.000 title description 3
- 239000000835 fiber Substances 0.000 claims description 152
- 238000001816 cooling Methods 0.000 claims description 16
- 238000002156 mixing Methods 0.000 claims description 14
- 238000000605 extraction Methods 0.000 claims description 12
- 238000005520 cutting process Methods 0.000 claims description 10
- 238000009826 distribution Methods 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 4
- 239000011230 binding agent Substances 0.000 claims description 3
- 238000000151 deposition Methods 0.000 claims description 3
- 238000000465 moulding Methods 0.000 claims description 3
- 230000005855 radiation Effects 0.000 claims description 3
- 238000007596 consolidation process Methods 0.000 claims description 2
- 230000002123 temporal effect Effects 0.000 claims 1
- 238000009413 insulation Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000007711 solidification Methods 0.000 description 5
- 230000008023 solidification Effects 0.000 description 5
- 238000009960 carding Methods 0.000 description 4
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 241000251730 Chondrichthyes Species 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000002657 fibrous material Substances 0.000 description 2
- 239000004750 melt-blown nonwoven Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 239000004753 textile Substances 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000011094 fiberboard Substances 0.000 description 1
- 229920013754 low-melting plastic Polymers 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229920005594 polymer fiber Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/70—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
- D04H1/72—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
- D04H1/732—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by fluid current, e.g. air-lay
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/54—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/54—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
- D04H1/542—Adhesive fibres
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/54—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
- D04H1/558—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in combination with mechanical or physical treatments other than embossing
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/70—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
- D04H1/74—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being orientated, e.g. in parallel (anisotropic fleeces)
Definitions
- the invention relates to a continuous fiber fleece production process and the associated fiber fleece production arrangement and fiber fleece board made from fiber mixtures of carrier fibers and binding fibers.
- a non-woven fabric is a structure made of limited length fibers, filaments or chopped yarns. Since a variety of raw materials can be used for fiber nonwovens and there are a variety of manufacturing processes, fiber nonwovens can be tailored to a wide range of application requirements.
- the fiber fleeces differ in their structure depending on the requirements.
- nonwovens with high absorption are dense, have a high flow resistance and consist of thin or very thin fibers.
- a special version of these is meltblown nonwovens.
- the polymer strand emerging from the nozzle is immediately stretched by hot air flowing in the direction of the filaments' exit.
- the fibers swirled by the air flow are deposited on a sieve belt.
- the deposition process can produce a fine nonwoven made of entangled polymer fibers.
- Electrostatically formed nonwovens are created by the formation and deposition of fibers from polymer solutions or melts under the influence of an electric field.
- Nonwovens for thermal insulation are more voluminous. Meltblown nonwovens can also be combined with staple fibers to create a voluminous structure.
- nonwoven fabrics are subject to mechanical stress and have elastic properties, they preferably have fibers aligned in the direction of the stress.
- Such nonwoven insulation is used, for example, in vehicles under the carpet or behind the bulkhead, or for the production of air-permeable mattresses.
- the fibers in the nonwoven fabric can be oriented in different ways. Usually they are more or less parallel to the surface. A distinction is made between oriented nonwovens, where the fibers are very strongly oriented in one direction, cross-layer nonwovens, where the fibers are preferably oriented in two directions by laying individual fiber piles or nonwovens with a longitudinal orientation of the fibers on top of each other to form the overall nonwoven fabric using cross-layers. oriented and random-layer nonwovens, in which the fibres or filaments can take any direction.
- nonwovens are those that are produced using carding or carding or using airlay processes.
- the carding or carding process is a dry manufacturing process in which several layers of fleece are placed on top of each other. The fibers are mostly flat, parallel to the surface. Depending on how the fleeces are laid, oriented fleeces or cross-layered fleeces are created. If special cards are used, random fleeces can also be formed.
- Aerodynamically formed fleeces are those that are formed from fibers using an air stream on an air-permeable base. If the fleeces are produced using airlay systems, the fibers are sucked onto an air-permeable belt and lie oriented in the surface. Depending on the placement and the belt transport speed, the fibers can be positioned at an angle of between 70° and 80° to the surface without being completely vertical. The fibers take on an opposite angle on both surfaces, which causes the fibers to bend significantly.
- fibers are suspended in water and laid on a water-permeable base. This process is also known as the wet process.
- Fibers that are perpendicular to the surface can be obtained using the Struto process, which is also known as the Wavemacker or V-Lap process. This is a process in which a flat fleece with vertical folds is created from a carded fleece with a horizontal fiber layer.
- thermoplastics in the form of low-melting plastic, preferably in fiber form.
- binding fibers have a melting range of 100 - 200 °C and are preferably present as compact fibers or as bicomponent fibers.
- the publication EN 10 2010 034 159 A1 discloses a discontinuous solution for the production of nonwoven components with fibers oriented perpendicular to the surface, in which the fibers are transported into a mold provided with flow openings via an air stream wherein the mold is divided and is moved apart before filling, after filling the fiber material is compressed by closing the mold and then the fiber material is heated by hot air until the fibers have bonded together, wherein the fibers in the mold are oriented perpendicular to the feed direction and in the direction of the air flowing out of the mold before compression.
- a textile lapping machine having an inclined comb which deposits a vertically sloping fibrous web onto a wire belt of a continuous conveyor passing through a furnace.
- the reciprocating pusher bar pushes the folds formed by the comb into a shark unit which extends across the width of the mesh belt.
- the unit has a toothed plate which initially slows down the folded web and longitudinal fingers which overlie the conveyor forming a flat overlap zone.
- a textile card feeds the fibrous web to the lapping zone and the furnace fuses any low melting synthetic fibres in the web to the surrounding fibres to give a web having a density of 80-2000 g/m 2.
- the comb web direction remains constant and the pusher bar and shark unit are moved towards and away from the comb.
- the drives to the comb and pusher are independent.
- the publication further discloses WO 00/66824 A1 an airy nonwoven material comprising a nonwoven web having a plurality of substantially continuous fibers oriented in a z direction of the nonwoven web, and a method of making the airy nonwoven material from the materials described in z -Direction shaped fibers.
- the Cormatex company has a system that deposits the fibers into a channel and also sucks them off to the side.
- nonwovens which have different densities and fiber orientations over the fleece thickness, with the fibers in the surface areas being plane-parallel in the central area, largely perpendicular to it, which in turn makes later deformation of the nonwoven into a three-dimensional component more difficult .
- Fleece manufactured using a well-known airlay process ( WO 2009056745 A1 , US20040097155 A1 and Comatex) always have fibres lying parallel to the surface due to the manufacturing process, which has a negative impact on three-dimensional deformation.
- the present invention is based on the object of providing a simple and efficient, economical, continuous, aerodynamic manufacturing process and an arrangement for producing nonwoven fabrics with fibers oriented perpendicular to the surface and defined fiber orientation and preferably also density distribution over the length and width of the nonwoven fabric and a corresponding nonwoven fabric therefor.
- the orientation of the fibers in the front area of the belts running parallel to each other can be controlled.
- the fibers are vacuumed directly at the beginning of the belts, the fibers are preferably deposited parallel to the belts and form a layer.
- the ratio of parallel to vertical fibers can be controlled.
- the air extraction can be moved in the front area of the conveyor belts, from the beginning of the conveyor belts along the belts. This makes it possible to change the orientation of the fibers from parallel to the conveyor belts to a perpendicular orientation of the fibers to the conveyor belts.
- the filling quantity and the belt speed are controlled so that the fiber condensation always occurs directly at the beginning of the belts.
- the density can be varied across the length of the fleece.
- the density and thus the properties of the resulting fiber fleece can be adjusted using the speed of the conveyor belts. If suction power and belt speed are coupled, the desired effect of density and property change is increased.
- density distribution is also possible across the width. This means that fleece with locally limited density differences can be produced lengthways and crossways within a board.
- the fleece thickness can be adjusted in the range from 5 mm to 100 mm by means of a defined, adjustable distance between the bands.
- the fleece can be pre-compressed by changing the band gap.
- the fleece is preferably heated using hot air.
- the fleece can be heated using short-wave rays.
- the heating and cooling process differs.
- the fleece is heated so that all binding fibers are activated and the maximum mechanical properties are achieved when cold.
- the optimal parameters can be determined through preliminary tests.
- the fleece is then cooled with air and cut to size according to the subsequent use.
- Fig. 8 shows the compression hardness versus heating time for a 50 mm thick fleece.
- the fleece is only heated for a short time, the fleece strength is then adjusted so that the fleece can be transported and stacked. In picture 3, the first heating time would be sufficient for this fleece. Here, too, the fleece is then cooled and cut to size according to the subsequent use.
- the fleece is completely heated and, when fully heated, is placed directly into a final mold for shaping and cooling, thus producing a finished component.
- the fiber fleece production arrangement has a feed arrangement for carrier fibers, a feed arrangement for binding fibers, at least one opening/combing arrangement or a fiber opener for combing, separating, loosening and loosening the carrier and/or binding fibers, at least one mixing system for mixing the dissolved fibers, as well as a transport system with air extraction in the front section of the transport system for aligning and depositing the fibers consisting of air guide channels and pressure control nozzles and with a heat source in the rear section of the transport system with a subsequent cooling source for thermally solidifying the resulting fiber fleece; wherein the front section of the transport system with air suction consists of opposing, air-permeable conveyor belts running at the same speed and the loosened and mixed fibers are sucked in between the opposing conveyor belts and the fibers are in different densities over the width and length of the fiber fleece due to the air suction Arrange from outside on the conveyor belts perpendicular to the conveyor belts.
- the band gap can be changed via automatic or manual control.
- a conveyor belt for transporting the fiber fleece can be arranged downstream of the transport system with air extraction and heat source.
- a cutting device for longitudinal and cross-cutting can be coupled to the conveyor belt.
- tools with three-dimensional contours for producing molded parts can be arranged downstream of the conveyor belt and the cutting device.
- the two conveyor belts run parallel.
- the distance between the air-permeable conveyor belts can be changed to adjust the fleece thickness.
- the distance between the bands can be reduced over their length and the fleece can thus be pre-compressed.
- the air extraction area is divided across its width into individual, separately controllable areas.
- the control can take place via changes in cross-section at the same suction pressure or via a change in the suction pressure.
- the fleece leaves the belt in a cooled state without being transferred to another transport system.
- the heated fleece is cut into blank sections, placed in the lower half of a 3-D mold, which is moved along the bottom, the tool is closed with the upper half of the tool, the product is pressed into the final shape and the three-dimensional shaped product is cooled.
- the cooling source for thermal solidification can be arranged downstream of the heat source in the rear section of the transport system or to cool the contents of the three-dimensional molded part.
- the heat source can be designed, for example, in the form of a hot air stream.
- the fleece is heated using short-wave rays.
- the cooling of the fleece can be done via cold air or via contact, preferably in the 3-D forming tool.
- the fiber fleece board has a defined density distribution over the length and width, particularly if it has been manufactured accordingly (by means of the method according to the invention and/or by means of the arrangement).
- Fig. 1 is a schematic representation of an embodiment with vertically oriented fibers 3 between two parallel, air-permeable conveyor belts 4, 4'.
- Fig. 2 shows a schematic representation of an embodiment of a nonwoven fabric board 2 having vertically oriented fibers 3.
- Fig. 3 shows a schematic representation of an embodiment of a nonwoven fabric production arrangement 1 with separate feed arrangements 5, 5' of carrier fibers and binding fibers, separate fiber openers 6, 6 ⁇ , common mixing system 7 and air-permeable conveyor belts 4, 4 ⁇ running parallel at the top and bottom.
- the fibers are each fed from the feed arrangement 5, 5' into a fiber opener 6, 6'.
- the fiber openers 6, 6' are followed by a common mixing system 7 for mixing the fibers for a homogeneous distribution.
- Fig. 4 shows a front view of a schematic representation of an exemplary embodiment of a fiber fleece production arrangement 1 with separate feed arrangements 5, 5 'of carrier fibers and binding fibers, separate fiber openers 6, 6', common mixing system 7 and air-permeable conveyor belts 4, 4' running parallel at the top and bottom.
- the fibers are each guided from the feed arrangement 5, 5' into a fiber opener 6, 6'.
- the fiber openers 6, 6' are followed by a common mixing system 7 for mixing the fibers for a homogeneous distribution.
- An air extraction system 8, 8', 81 - 8.10 on the outside of the air-permeable conveyor belts 4, 4' extracts air across the width of the fleece at different rates and at different times, and the fibers condense perpendicular to the surface of the conveyor belts at different densities.
- the start of the air extraction system 81 - 8.10 is at the beginning of the conveyor belts and the end of the air extraction system 82 is directly in front of the thermal bonding system area.
- a heat source 9 and a cooling source 10 are connected in series for thermal bonding.
- the finished fiber fleece is then further processed in subsequent production steps.
- FIG. 5 is a schematic representation of the rear section of an exemplary embodiment of a fiber fleece production arrangement 1 with air-permeable conveyor belts 4, 4' running parallel at the top and bottom, a heat source 9, and a cooling source 10 and a subsequent conveyor belt 11 with cutting device 12.
- the finished fiber fleece boards 2 are collected in a product collection container 13.
- the end of the air extraction 82 is directly in front of the system area for thermal solidification with heat source 9 and cooling source 10.
- Fig. 6 shows a schematic representation of the rear section of an exemplary embodiment of a fiber fleece production arrangement 1 with air-permeable conveyor belts 4, 4' running parallel at the top and bottom, a heat source 9, a subsequent conveyor belt 11 with cutting device 12 and three-dimensional molded parts 14.
- the lower half of a three-dimensional molded part 14 is moved along under the warm and therefore easily formable fiber fleece boards 2.
- the conveyor belt 11 ends the sections are placed individually on the lower three-dimensional molded part halves.
- the upper molding halves are then pressed with a fixed pressure onto the lower molding halves, each filled with a fiber fleece board 2, and the fiber fleece board 2 is thus formed.
- the heated fiber fleece blanks formed in the three-dimensional molded parts 14 are cooled in the lower halves of the three-dimensional molded parts 14 before being transferred to a product collection container 13. A fully formed fiber fleece product is obtained.
- Fig. 7 shows a possible density distribution for floor insulation in a passenger car.
- the density is higher for this example at 70 kg/m 3 , in the tunnel and under the seats at 30 kg/m 3 .
- Fig. 8 the compression hardness depending on the heating time.
- Fig. 9 the suction of the fibers in two belts running at the same speed in such a way that the fibers are sucked in parallel to the belts is shown.
- Fig. 12 shows the arrangement of the suction with spatially different suction along the belts on the top and bottom and the arrangement of the fibers in the belts.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Mechanical Engineering (AREA)
- Nonwoven Fabrics (AREA)
Claims (13)
- Procédé de production continue d'un tissu non tissé à partir de mélanges de fibres de support et de fibres de liaison,
comprenant les étapes suivantes :a. Alimentation en fibres ;b. Casser / peigner et ouvrir les fibres ;c. Mélanger les fibres ;d. Aspirer les fibres entre deux bandes transporteuses opposées, perméables à l'air et tournant à la même vitesse, de sorte que l'air dans la section avant des bandes transporteuses est aspiré de l'extérieur de telle sorte que le flux d'air est toujours aspiré à travers le tissu non tissé déposé parallèlement aux bandes transporteuses par une aspiration d'air variant temporellement et localement sur la largeur, et que les fibres sont donc déposées perpendiculairement à la surface des bandes transporteuses ;e. Liaison thermique de la fibre non tissée créée par chauffage au moyen d'air chaud ou de rayonnement à ondes courtes et refroidissement. - Procédé de fabrication d'un non-tissé selon la revendication 1,
caractérisée en ce que
la puissance d'aspiration au niveau des bandes transporteuses opposées et perméables à l'air (4, 4') est identique dans chaque cas. - Procédé de fabrication d'un non-tissé selon la revendication 1,
caractérisée en ce que
la puissance d'aspiration le long de la bande transporteuse est différente au niveau des bandes transporteuses opposées et perméables à l'air (4, 4') - Procédé de fabrication d'un tissu non tissé selon l'une quelconque des revendications 1 à 3,
caractérisée en ce que
la puissance d'aspiration et/ou la vitesse des bandes transporteuses est ajustée au cours du cycle de production selon un système prédéterminé, ce qui permet de réaliser une variation locale et temporelle. - Procédé de fabrication d'un tissu non tissé selon l'une des revendications précédentes, caractérisée en ce que
la vitesse de défilement des bandes transporteuses et la puissance d'aspiration du système d'extraction d'air sont couplées l'une à l'autre. - Procédé de fabrication d'un tissu non tissé selon l'une des revendications précédentes caractérisée en ce que
la distance entre les bandes est réglable. - Procédé de fabrication d'un tissu non tissé selon l'une des revendications précédentes, caractérisée en ce que
le chauffage du non-tissé est effectué par air chaud et/ou par rayonnement à ondes courtes. - Appareil de production de tissu non tissé (1) comprenant:- un dispositif d'alimentation (5, 5') en fibres porteuses ;- un dispositif d'alimentation (5, 5') en fibres liantes;- au moins un dispositif d'ouverture ou un dispositif de peignage d'ouverture/liaison ou au moins un dispositif d'ouverture de fibres (6, 6') pour peigner, séparer, délier et détacher les fibres porteuses et/ou les fibres liantes;- au moins un système de mélange (7, 7') pour mélanger les fibres déliées ou détachées;- un système de transport- avec aspiration d'air (8, 8') dans la partie avant du système de transport pour aligner et déposer les fibres, composé de canaux de guidage d'air et de buses de contrôle de pression (15-1 - 15 - 4)
et- avec une source de chaleur (9) dans la partie arrière du système de transport avec une source de refroidissement ultérieure (10) pour le collage thermique du tissu non tissé résultant,dans lequel
la partie avant du système de transport avec aspiration d'air (8, 8') est constituée de bandes transporteuses opposées et perméables à l'air (4, 4') tournant à la même vitesse, et les fibres détachées et mélangées sont transportées entre les bandes transporteuses opposées, et les fibres sont disposées en différentes densités sur la largeur et la longueur du tissu non tissé sur les bandes transporteuses perpendiculaires aux bandes transporteuses en raison de l'aspiration d'air (8, 8') (8-1 -8-10) depuis l'extérieur. - Appareil de production de tissu non tissé (1) selon la revendication précédente, caractérisé en ce qu'
bande transporteuse (11) pour évacuer la fibre non-tissée est disposée en aval du système de transport avec l'aspiration d'air (8, 8') et la source de chaleur (9). - Appareil de production de tissu non tissé (1) selon l'une des deux revendications précédentes,
caractérisé en ce qu'
un dispositif de coupe (12) pour diviser le tissu non tissé en sections / feuilles de fibres non tissées ou ébauches est situé sur la bande transporteuse (11). - Appareil de production de tissu non tissé (1) selon l'une des trois revendications précédentes,
caractérisé en ce que
des moulures tridimensionnelles (14) sont disposées en aval de la bande transporteuse (11) et du dispositif de coupe (12). - Appareil de production de tissu non tissé (1) selon l'une des quatre revendications précédentes,
caractérisé en ce que
la source de refroidissement (10) pour la liaison thermique et la consolidation est disposée- en aval de la source de chaleur (9) dans la section arrière du système de transport
ou- pour refroidir le contenu de la pièce moulée tridimensionnelle (14). - Feuille ou panneau de tissu non tissé produit au moyen d'un procédé de fabrication d'un tissu non tissé selon l'une des revendications 1 à 7 ou produit au moyen d'un appareil de production de tissu non tissé (1) selon l'une des cinq revendications précédentes,
caractérisé en ce que
la feuille de tissu non tissé présente une répartition définie de la densité sur la longueur et sur la largeur.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102020116315.0A DE102020116315A1 (de) | 2020-06-19 | 2020-06-19 | Kontinuierliches Faservlies-Herstellungsverfahren sowie zugehörige Faservlies- Herstellungsanordnung und Faservliesplatine |
PCT/DE2021/100511 WO2021254565A1 (fr) | 2020-06-19 | 2021-06-15 | Procédé de production continue d'un tissu non tissé et appareil de production de tissu non tissé associé et panneau non tissé |
Publications (3)
Publication Number | Publication Date |
---|---|
EP4168616A1 EP4168616A1 (fr) | 2023-04-26 |
EP4168616C0 EP4168616C0 (fr) | 2024-04-03 |
EP4168616B1 true EP4168616B1 (fr) | 2024-04-03 |
Family
ID=76744573
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21736967.7A Active EP4168616B1 (fr) | 2020-06-19 | 2021-06-15 | Procédé de production continue d'un tissu non tissé et appareil de production de tissu non tissé associé et panneau non tissé |
Country Status (6)
Country | Link |
---|---|
US (1) | US20230228018A1 (fr) |
EP (1) | EP4168616B1 (fr) |
KR (1) | KR20230024992A (fr) |
CN (1) | CN116134190A (fr) |
DE (1) | DE102020116315A1 (fr) |
WO (1) | WO2021254565A1 (fr) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102023104422A1 (de) | 2023-02-23 | 2024-08-29 | Adler Pelzer Holding Gmbh | Verfahren zur Herstellung einer Schallisolierung |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5503782A (en) | 1993-01-28 | 1996-04-02 | Minnesota Mining And Manufacturing Company | Method of making sorbent articles |
CA2136273C (fr) | 1994-11-21 | 2001-11-20 | Serge Cadieux | Procede et machine pour le formage de mat, et produit obtenu par ce procede |
US6588080B1 (en) * | 1999-04-30 | 2003-07-08 | Kimberly-Clark Worldwide, Inc. | Controlled loft and density nonwoven webs and method for producing |
US7476632B2 (en) | 2002-11-15 | 2009-01-13 | 3M Innovative Properties Company | Fibrous nonwoven web |
DE10311439A1 (de) * | 2003-03-15 | 2004-09-23 | Saurer Gmbh & Co. Kg | Vorrichtung und Verfahren zum Spinnen und Ablegen einer synthetischen Fadenschar zur Vlieserzeugung |
EP1853754B1 (fr) | 2005-03-02 | 2012-09-05 | V-Lap Pty. Ltd | Ourdissoir textile |
FR2922901B1 (fr) | 2007-10-25 | 2010-03-26 | Elysees Balzac Financiere | Procede et dispositif de fabrication en continu de nappes fibreuses 3d ; lesdites nappes et leurs utilisations. |
DE102010034159A1 (de) | 2010-08-10 | 2012-02-16 | Grimm-Schirp Gs Technologie Gmbh | Vorrichtung und Verfahren zur Herstellung eines Faserformteils und Faserformteil |
US20130137330A1 (en) * | 2010-08-10 | 2013-05-30 | Heinrich Grimm | Device and Method for Producing a Molding Pulp Part and Molding Pulp Part |
DE202016105337U1 (de) * | 2016-09-26 | 2018-01-17 | Autefa Solutions Germany Gmbh | Aerodynamische Vliesbildeeinrichtung |
-
2020
- 2020-06-19 DE DE102020116315.0A patent/DE102020116315A1/de not_active Withdrawn
-
2021
- 2021-06-15 KR KR1020237001533A patent/KR20230024992A/ko unknown
- 2021-06-15 CN CN202180060287.5A patent/CN116134190A/zh active Pending
- 2021-06-15 EP EP21736967.7A patent/EP4168616B1/fr active Active
- 2021-06-15 US US18/010,047 patent/US20230228018A1/en active Pending
- 2021-06-15 WO PCT/DE2021/100511 patent/WO2021254565A1/fr active Application Filing
Also Published As
Publication number | Publication date |
---|---|
CN116134190A (zh) | 2023-05-16 |
DE102020116315A1 (de) | 2021-12-23 |
US20230228018A1 (en) | 2023-07-20 |
EP4168616A1 (fr) | 2023-04-26 |
EP4168616C0 (fr) | 2024-04-03 |
KR20230024992A (ko) | 2023-02-21 |
WO2021254565A1 (fr) | 2021-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2630287B1 (fr) | Procédé et dispositif de fabrication d'un non-tissé composite | |
EP1726700B1 (fr) | Procédé et dispositif pour la fabrication d'un non-tissé | |
DE60030120T2 (de) | Verfahren zur herstellung eines vliesstoffes, anlage zur durchführung dieses verfahren, hergestellter vliesstoff | |
EP3118361B1 (fr) | Installation et procede de fabrication d'un voile multicouche a partir d'au moins un voile de carde non encolle | |
DE68915305T2 (de) | Nichtgewobener Artikel aus wärmebeständigem Material, Verfahren zur Herstellung desselben und Vorrichtung zum Ausführen des Verfahrens. | |
EP1930492A1 (fr) | Procédé et dispositif pour la fabrication d' un non-tissé de type spunbond | |
EP2128320B1 (fr) | Procédé et dispositif destinés à la fabrication de tissus non tissés en filaments | |
DE1157513B (de) | Verfahren zur Herstellung einer Matte aus endlosen Faeden oder Stapelfasern | |
EP4168616B1 (fr) | Procédé de production continue d'un tissu non tissé et appareil de production de tissu non tissé associé et panneau non tissé | |
EP3061855B1 (fr) | Installation de carde et procede de renforcement d'un voile de carde | |
EP3110997B1 (fr) | Dispositif de cardage et procédé de cardage | |
EP2480709B1 (fr) | Installation et procédé pour produire un non-tissé à base de fibres de verre et non-tissé de fibres ainsi produit | |
DE4244904C2 (de) | Verfahren zur Herstellung eines großvolumigen Vliesstoffes | |
EP3450603B1 (fr) | Procédé de formation d'un non-tissé profilé | |
EP2695980A1 (fr) | Dispositif d'acheminement pour fibres ou flocons | |
DE10329648B4 (de) | Vorrichtung zur Vliesbildung | |
DE69312763T2 (de) | Verfahren zum Wellen und zum Verbinden oder thermischen Verbinden von Füllmaterial und dadurch hergestelltes Füllmaterial. | |
EP1057906A1 (fr) | Installation et procédé de production de voile | |
EP2509759B1 (fr) | Semi-produit et procédé de fabrication d'un semi-produit pour un élément composite renforcé par des fibres | |
WO2008074665A1 (fr) | Procédé et dispositif de fabrication d'un non-tissé | |
EP3450604B1 (fr) | Procédé de formation d'un produit non tissé, profilé, solidifié | |
WO2001014623A2 (fr) | Procede et dispositif pour influer sur la structure et la position de fibres lors de la formation aerodynamique de non-tisses | |
EP1726699A1 (fr) | Procédé et dispositif pour la fabrication d'un non-tissé | |
DE102016113721A1 (de) | Faserflor-basiertes bahnförmiges Textil mit unidirektional erhöhter Festigkeit | |
EP4444946A1 (fr) | Système et procédé de production de non-tissé monocouche ou multicouche |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20230109 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: D04H 1/542 20120101ALI20231006BHEP Ipc: D04H 1/54 20120101ALI20231006BHEP Ipc: D04H 1/74 20060101ALI20231006BHEP Ipc: D04H 1/732 20120101AFI20231006BHEP |
|
INTG | Intention to grant announced |
Effective date: 20231027 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502021003226 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
U01 | Request for unitary effect filed |
Effective date: 20240418 |
|
U07 | Unitary effect registered |
Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI Effective date: 20240425 |
|
U20 | Renewal fee paid [unitary effect] |
Year of fee payment: 4 Effective date: 20240628 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240803 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240403 |