EP4168616B1 - Procédé de production continue d'un tissu non tissé et appareil de production de tissu non tissé associé et panneau non tissé - Google Patents

Procédé de production continue d'un tissu non tissé et appareil de production de tissu non tissé associé et panneau non tissé Download PDF

Info

Publication number
EP4168616B1
EP4168616B1 EP21736967.7A EP21736967A EP4168616B1 EP 4168616 B1 EP4168616 B1 EP 4168616B1 EP 21736967 A EP21736967 A EP 21736967A EP 4168616 B1 EP4168616 B1 EP 4168616B1
Authority
EP
European Patent Office
Prior art keywords
fibers
nonwoven fabric
air
conveyor belts
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21736967.7A
Other languages
German (de)
English (en)
Other versions
EP4168616A1 (fr
EP4168616C0 (fr
Inventor
Wonku LEE
Norbert Nicolai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nvh Czech SRO
Original Assignee
Nvh Czech SRO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nvh Czech SRO filed Critical Nvh Czech SRO
Publication of EP4168616A1 publication Critical patent/EP4168616A1/fr
Application granted granted Critical
Publication of EP4168616C0 publication Critical patent/EP4168616C0/fr
Publication of EP4168616B1 publication Critical patent/EP4168616B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/732Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by fluid current, e.g. air-lay
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/542Adhesive fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/558Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in combination with mechanical or physical treatments other than embossing
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/74Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being orientated, e.g. in parallel (anisotropic fleeces)

Definitions

  • the invention relates to a continuous fiber fleece production process and the associated fiber fleece production arrangement and fiber fleece board made from fiber mixtures of carrier fibers and binding fibers.
  • a non-woven fabric is a structure made of limited length fibers, filaments or chopped yarns. Since a variety of raw materials can be used for fiber nonwovens and there are a variety of manufacturing processes, fiber nonwovens can be tailored to a wide range of application requirements.
  • the fiber fleeces differ in their structure depending on the requirements.
  • nonwovens with high absorption are dense, have a high flow resistance and consist of thin or very thin fibers.
  • a special version of these is meltblown nonwovens.
  • the polymer strand emerging from the nozzle is immediately stretched by hot air flowing in the direction of the filaments' exit.
  • the fibers swirled by the air flow are deposited on a sieve belt.
  • the deposition process can produce a fine nonwoven made of entangled polymer fibers.
  • Electrostatically formed nonwovens are created by the formation and deposition of fibers from polymer solutions or melts under the influence of an electric field.
  • Nonwovens for thermal insulation are more voluminous. Meltblown nonwovens can also be combined with staple fibers to create a voluminous structure.
  • nonwoven fabrics are subject to mechanical stress and have elastic properties, they preferably have fibers aligned in the direction of the stress.
  • Such nonwoven insulation is used, for example, in vehicles under the carpet or behind the bulkhead, or for the production of air-permeable mattresses.
  • the fibers in the nonwoven fabric can be oriented in different ways. Usually they are more or less parallel to the surface. A distinction is made between oriented nonwovens, where the fibers are very strongly oriented in one direction, cross-layer nonwovens, where the fibers are preferably oriented in two directions by laying individual fiber piles or nonwovens with a longitudinal orientation of the fibers on top of each other to form the overall nonwoven fabric using cross-layers. oriented and random-layer nonwovens, in which the fibres or filaments can take any direction.
  • nonwovens are those that are produced using carding or carding or using airlay processes.
  • the carding or carding process is a dry manufacturing process in which several layers of fleece are placed on top of each other. The fibers are mostly flat, parallel to the surface. Depending on how the fleeces are laid, oriented fleeces or cross-layered fleeces are created. If special cards are used, random fleeces can also be formed.
  • Aerodynamically formed fleeces are those that are formed from fibers using an air stream on an air-permeable base. If the fleeces are produced using airlay systems, the fibers are sucked onto an air-permeable belt and lie oriented in the surface. Depending on the placement and the belt transport speed, the fibers can be positioned at an angle of between 70° and 80° to the surface without being completely vertical. The fibers take on an opposite angle on both surfaces, which causes the fibers to bend significantly.
  • fibers are suspended in water and laid on a water-permeable base. This process is also known as the wet process.
  • Fibers that are perpendicular to the surface can be obtained using the Struto process, which is also known as the Wavemacker or V-Lap process. This is a process in which a flat fleece with vertical folds is created from a carded fleece with a horizontal fiber layer.
  • thermoplastics in the form of low-melting plastic, preferably in fiber form.
  • binding fibers have a melting range of 100 - 200 °C and are preferably present as compact fibers or as bicomponent fibers.
  • the publication EN 10 2010 034 159 A1 discloses a discontinuous solution for the production of nonwoven components with fibers oriented perpendicular to the surface, in which the fibers are transported into a mold provided with flow openings via an air stream wherein the mold is divided and is moved apart before filling, after filling the fiber material is compressed by closing the mold and then the fiber material is heated by hot air until the fibers have bonded together, wherein the fibers in the mold are oriented perpendicular to the feed direction and in the direction of the air flowing out of the mold before compression.
  • a textile lapping machine having an inclined comb which deposits a vertically sloping fibrous web onto a wire belt of a continuous conveyor passing through a furnace.
  • the reciprocating pusher bar pushes the folds formed by the comb into a shark unit which extends across the width of the mesh belt.
  • the unit has a toothed plate which initially slows down the folded web and longitudinal fingers which overlie the conveyor forming a flat overlap zone.
  • a textile card feeds the fibrous web to the lapping zone and the furnace fuses any low melting synthetic fibres in the web to the surrounding fibres to give a web having a density of 80-2000 g/m 2.
  • the comb web direction remains constant and the pusher bar and shark unit are moved towards and away from the comb.
  • the drives to the comb and pusher are independent.
  • the publication further discloses WO 00/66824 A1 an airy nonwoven material comprising a nonwoven web having a plurality of substantially continuous fibers oriented in a z direction of the nonwoven web, and a method of making the airy nonwoven material from the materials described in z -Direction shaped fibers.
  • the Cormatex company has a system that deposits the fibers into a channel and also sucks them off to the side.
  • nonwovens which have different densities and fiber orientations over the fleece thickness, with the fibers in the surface areas being plane-parallel in the central area, largely perpendicular to it, which in turn makes later deformation of the nonwoven into a three-dimensional component more difficult .
  • Fleece manufactured using a well-known airlay process ( WO 2009056745 A1 , US20040097155 A1 and Comatex) always have fibres lying parallel to the surface due to the manufacturing process, which has a negative impact on three-dimensional deformation.
  • the present invention is based on the object of providing a simple and efficient, economical, continuous, aerodynamic manufacturing process and an arrangement for producing nonwoven fabrics with fibers oriented perpendicular to the surface and defined fiber orientation and preferably also density distribution over the length and width of the nonwoven fabric and a corresponding nonwoven fabric therefor.
  • the orientation of the fibers in the front area of the belts running parallel to each other can be controlled.
  • the fibers are vacuumed directly at the beginning of the belts, the fibers are preferably deposited parallel to the belts and form a layer.
  • the ratio of parallel to vertical fibers can be controlled.
  • the air extraction can be moved in the front area of the conveyor belts, from the beginning of the conveyor belts along the belts. This makes it possible to change the orientation of the fibers from parallel to the conveyor belts to a perpendicular orientation of the fibers to the conveyor belts.
  • the filling quantity and the belt speed are controlled so that the fiber condensation always occurs directly at the beginning of the belts.
  • the density can be varied across the length of the fleece.
  • the density and thus the properties of the resulting fiber fleece can be adjusted using the speed of the conveyor belts. If suction power and belt speed are coupled, the desired effect of density and property change is increased.
  • density distribution is also possible across the width. This means that fleece with locally limited density differences can be produced lengthways and crossways within a board.
  • the fleece thickness can be adjusted in the range from 5 mm to 100 mm by means of a defined, adjustable distance between the bands.
  • the fleece can be pre-compressed by changing the band gap.
  • the fleece is preferably heated using hot air.
  • the fleece can be heated using short-wave rays.
  • the heating and cooling process differs.
  • the fleece is heated so that all binding fibers are activated and the maximum mechanical properties are achieved when cold.
  • the optimal parameters can be determined through preliminary tests.
  • the fleece is then cooled with air and cut to size according to the subsequent use.
  • Fig. 8 shows the compression hardness versus heating time for a 50 mm thick fleece.
  • the fleece is only heated for a short time, the fleece strength is then adjusted so that the fleece can be transported and stacked. In picture 3, the first heating time would be sufficient for this fleece. Here, too, the fleece is then cooled and cut to size according to the subsequent use.
  • the fleece is completely heated and, when fully heated, is placed directly into a final mold for shaping and cooling, thus producing a finished component.
  • the fiber fleece production arrangement has a feed arrangement for carrier fibers, a feed arrangement for binding fibers, at least one opening/combing arrangement or a fiber opener for combing, separating, loosening and loosening the carrier and/or binding fibers, at least one mixing system for mixing the dissolved fibers, as well as a transport system with air extraction in the front section of the transport system for aligning and depositing the fibers consisting of air guide channels and pressure control nozzles and with a heat source in the rear section of the transport system with a subsequent cooling source for thermally solidifying the resulting fiber fleece; wherein the front section of the transport system with air suction consists of opposing, air-permeable conveyor belts running at the same speed and the loosened and mixed fibers are sucked in between the opposing conveyor belts and the fibers are in different densities over the width and length of the fiber fleece due to the air suction Arrange from outside on the conveyor belts perpendicular to the conveyor belts.
  • the band gap can be changed via automatic or manual control.
  • a conveyor belt for transporting the fiber fleece can be arranged downstream of the transport system with air extraction and heat source.
  • a cutting device for longitudinal and cross-cutting can be coupled to the conveyor belt.
  • tools with three-dimensional contours for producing molded parts can be arranged downstream of the conveyor belt and the cutting device.
  • the two conveyor belts run parallel.
  • the distance between the air-permeable conveyor belts can be changed to adjust the fleece thickness.
  • the distance between the bands can be reduced over their length and the fleece can thus be pre-compressed.
  • the air extraction area is divided across its width into individual, separately controllable areas.
  • the control can take place via changes in cross-section at the same suction pressure or via a change in the suction pressure.
  • the fleece leaves the belt in a cooled state without being transferred to another transport system.
  • the heated fleece is cut into blank sections, placed in the lower half of a 3-D mold, which is moved along the bottom, the tool is closed with the upper half of the tool, the product is pressed into the final shape and the three-dimensional shaped product is cooled.
  • the cooling source for thermal solidification can be arranged downstream of the heat source in the rear section of the transport system or to cool the contents of the three-dimensional molded part.
  • the heat source can be designed, for example, in the form of a hot air stream.
  • the fleece is heated using short-wave rays.
  • the cooling of the fleece can be done via cold air or via contact, preferably in the 3-D forming tool.
  • the fiber fleece board has a defined density distribution over the length and width, particularly if it has been manufactured accordingly (by means of the method according to the invention and/or by means of the arrangement).
  • Fig. 1 is a schematic representation of an embodiment with vertically oriented fibers 3 between two parallel, air-permeable conveyor belts 4, 4'.
  • Fig. 2 shows a schematic representation of an embodiment of a nonwoven fabric board 2 having vertically oriented fibers 3.
  • Fig. 3 shows a schematic representation of an embodiment of a nonwoven fabric production arrangement 1 with separate feed arrangements 5, 5' of carrier fibers and binding fibers, separate fiber openers 6, 6 ⁇ , common mixing system 7 and air-permeable conveyor belts 4, 4 ⁇ running parallel at the top and bottom.
  • the fibers are each fed from the feed arrangement 5, 5' into a fiber opener 6, 6'.
  • the fiber openers 6, 6' are followed by a common mixing system 7 for mixing the fibers for a homogeneous distribution.
  • Fig. 4 shows a front view of a schematic representation of an exemplary embodiment of a fiber fleece production arrangement 1 with separate feed arrangements 5, 5 'of carrier fibers and binding fibers, separate fiber openers 6, 6', common mixing system 7 and air-permeable conveyor belts 4, 4' running parallel at the top and bottom.
  • the fibers are each guided from the feed arrangement 5, 5' into a fiber opener 6, 6'.
  • the fiber openers 6, 6' are followed by a common mixing system 7 for mixing the fibers for a homogeneous distribution.
  • An air extraction system 8, 8', 81 - 8.10 on the outside of the air-permeable conveyor belts 4, 4' extracts air across the width of the fleece at different rates and at different times, and the fibers condense perpendicular to the surface of the conveyor belts at different densities.
  • the start of the air extraction system 81 - 8.10 is at the beginning of the conveyor belts and the end of the air extraction system 82 is directly in front of the thermal bonding system area.
  • a heat source 9 and a cooling source 10 are connected in series for thermal bonding.
  • the finished fiber fleece is then further processed in subsequent production steps.
  • FIG. 5 is a schematic representation of the rear section of an exemplary embodiment of a fiber fleece production arrangement 1 with air-permeable conveyor belts 4, 4' running parallel at the top and bottom, a heat source 9, and a cooling source 10 and a subsequent conveyor belt 11 with cutting device 12.
  • the finished fiber fleece boards 2 are collected in a product collection container 13.
  • the end of the air extraction 82 is directly in front of the system area for thermal solidification with heat source 9 and cooling source 10.
  • Fig. 6 shows a schematic representation of the rear section of an exemplary embodiment of a fiber fleece production arrangement 1 with air-permeable conveyor belts 4, 4' running parallel at the top and bottom, a heat source 9, a subsequent conveyor belt 11 with cutting device 12 and three-dimensional molded parts 14.
  • the lower half of a three-dimensional molded part 14 is moved along under the warm and therefore easily formable fiber fleece boards 2.
  • the conveyor belt 11 ends the sections are placed individually on the lower three-dimensional molded part halves.
  • the upper molding halves are then pressed with a fixed pressure onto the lower molding halves, each filled with a fiber fleece board 2, and the fiber fleece board 2 is thus formed.
  • the heated fiber fleece blanks formed in the three-dimensional molded parts 14 are cooled in the lower halves of the three-dimensional molded parts 14 before being transferred to a product collection container 13. A fully formed fiber fleece product is obtained.
  • Fig. 7 shows a possible density distribution for floor insulation in a passenger car.
  • the density is higher for this example at 70 kg/m 3 , in the tunnel and under the seats at 30 kg/m 3 .
  • Fig. 8 the compression hardness depending on the heating time.
  • Fig. 9 the suction of the fibers in two belts running at the same speed in such a way that the fibers are sucked in parallel to the belts is shown.
  • Fig. 12 shows the arrangement of the suction with spatially different suction along the belts on the top and bottom and the arrangement of the fibers in the belts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Nonwoven Fabrics (AREA)

Claims (13)

  1. Procédé de production continue d'un tissu non tissé à partir de mélanges de fibres de support et de fibres de liaison,
    comprenant les étapes suivantes :
    a. Alimentation en fibres ;
    b. Casser / peigner et ouvrir les fibres ;
    c. Mélanger les fibres ;
    d. Aspirer les fibres entre deux bandes transporteuses opposées, perméables à l'air et tournant à la même vitesse, de sorte que l'air dans la section avant des bandes transporteuses est aspiré de l'extérieur de telle sorte que le flux d'air est toujours aspiré à travers le tissu non tissé déposé parallèlement aux bandes transporteuses par une aspiration d'air variant temporellement et localement sur la largeur, et que les fibres sont donc déposées perpendiculairement à la surface des bandes transporteuses ;
    e. Liaison thermique de la fibre non tissée créée par chauffage au moyen d'air chaud ou de rayonnement à ondes courtes et refroidissement.
  2. Procédé de fabrication d'un non-tissé selon la revendication 1,
    caractérisée en ce que
    la puissance d'aspiration au niveau des bandes transporteuses opposées et perméables à l'air (4, 4') est identique dans chaque cas.
  3. Procédé de fabrication d'un non-tissé selon la revendication 1,
    caractérisée en ce que
    la puissance d'aspiration le long de la bande transporteuse est différente au niveau des bandes transporteuses opposées et perméables à l'air (4, 4')
  4. Procédé de fabrication d'un tissu non tissé selon l'une quelconque des revendications 1 à 3,
    caractérisée en ce que
    la puissance d'aspiration et/ou la vitesse des bandes transporteuses est ajustée au cours du cycle de production selon un système prédéterminé, ce qui permet de réaliser une variation locale et temporelle.
  5. Procédé de fabrication d'un tissu non tissé selon l'une des revendications précédentes, caractérisée en ce que
    la vitesse de défilement des bandes transporteuses et la puissance d'aspiration du système d'extraction d'air sont couplées l'une à l'autre.
  6. Procédé de fabrication d'un tissu non tissé selon l'une des revendications précédentes caractérisée en ce que
    la distance entre les bandes est réglable.
  7. Procédé de fabrication d'un tissu non tissé selon l'une des revendications précédentes, caractérisée en ce que
    le chauffage du non-tissé est effectué par air chaud et/ou par rayonnement à ondes courtes.
  8. Appareil de production de tissu non tissé (1) comprenant:
    - un dispositif d'alimentation (5, 5') en fibres porteuses ;
    - un dispositif d'alimentation (5, 5') en fibres liantes;
    - au moins un dispositif d'ouverture ou un dispositif de peignage d'ouverture/liaison ou au moins un dispositif d'ouverture de fibres (6, 6') pour peigner, séparer, délier et détacher les fibres porteuses et/ou les fibres liantes;
    - au moins un système de mélange (7, 7') pour mélanger les fibres déliées ou détachées;
    - un système de transport
    - avec aspiration d'air (8, 8') dans la partie avant du système de transport pour aligner et déposer les fibres, composé de canaux de guidage d'air et de buses de contrôle de pression (15-1 - 15 - 4)
    et
    - avec une source de chaleur (9) dans la partie arrière du système de transport avec une source de refroidissement ultérieure (10) pour le collage thermique du tissu non tissé résultant,
    dans lequel
    la partie avant du système de transport avec aspiration d'air (8, 8') est constituée de bandes transporteuses opposées et perméables à l'air (4, 4') tournant à la même vitesse, et les fibres détachées et mélangées sont transportées entre les bandes transporteuses opposées, et les fibres sont disposées en différentes densités sur la largeur et la longueur du tissu non tissé sur les bandes transporteuses perpendiculaires aux bandes transporteuses en raison de l'aspiration d'air (8, 8') (8-1 -8-10) depuis l'extérieur.
  9. Appareil de production de tissu non tissé (1) selon la revendication précédente, caractérisé en ce qu'
    bande transporteuse (11) pour évacuer la fibre non-tissée est disposée en aval du système de transport avec l'aspiration d'air (8, 8') et la source de chaleur (9).
  10. Appareil de production de tissu non tissé (1) selon l'une des deux revendications précédentes,
    caractérisé en ce qu'
    un dispositif de coupe (12) pour diviser le tissu non tissé en sections / feuilles de fibres non tissées ou ébauches est situé sur la bande transporteuse (11).
  11. Appareil de production de tissu non tissé (1) selon l'une des trois revendications précédentes,
    caractérisé en ce que
    des moulures tridimensionnelles (14) sont disposées en aval de la bande transporteuse (11) et du dispositif de coupe (12).
  12. Appareil de production de tissu non tissé (1) selon l'une des quatre revendications précédentes,
    caractérisé en ce que
    la source de refroidissement (10) pour la liaison thermique et la consolidation est disposée
    - en aval de la source de chaleur (9) dans la section arrière du système de transport
    ou
    - pour refroidir le contenu de la pièce moulée tridimensionnelle (14).
  13. Feuille ou panneau de tissu non tissé produit au moyen d'un procédé de fabrication d'un tissu non tissé selon l'une des revendications 1 à 7 ou produit au moyen d'un appareil de production de tissu non tissé (1) selon l'une des cinq revendications précédentes,
    caractérisé en ce que
    la feuille de tissu non tissé présente une répartition définie de la densité sur la longueur et sur la largeur.
EP21736967.7A 2020-06-19 2021-06-15 Procédé de production continue d'un tissu non tissé et appareil de production de tissu non tissé associé et panneau non tissé Active EP4168616B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020116315.0A DE102020116315A1 (de) 2020-06-19 2020-06-19 Kontinuierliches Faservlies-Herstellungsverfahren sowie zugehörige Faservlies- Herstellungsanordnung und Faservliesplatine
PCT/DE2021/100511 WO2021254565A1 (fr) 2020-06-19 2021-06-15 Procédé de production continue d'un tissu non tissé et appareil de production de tissu non tissé associé et panneau non tissé

Publications (3)

Publication Number Publication Date
EP4168616A1 EP4168616A1 (fr) 2023-04-26
EP4168616C0 EP4168616C0 (fr) 2024-04-03
EP4168616B1 true EP4168616B1 (fr) 2024-04-03

Family

ID=76744573

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21736967.7A Active EP4168616B1 (fr) 2020-06-19 2021-06-15 Procédé de production continue d'un tissu non tissé et appareil de production de tissu non tissé associé et panneau non tissé

Country Status (6)

Country Link
US (1) US20230228018A1 (fr)
EP (1) EP4168616B1 (fr)
KR (1) KR20230024992A (fr)
CN (1) CN116134190A (fr)
DE (1) DE102020116315A1 (fr)
WO (1) WO2021254565A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023104422A1 (de) 2023-02-23 2024-08-29 Adler Pelzer Holding Gmbh Verfahren zur Herstellung einer Schallisolierung

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5503782A (en) 1993-01-28 1996-04-02 Minnesota Mining And Manufacturing Company Method of making sorbent articles
CA2136273C (fr) 1994-11-21 2001-11-20 Serge Cadieux Procede et machine pour le formage de mat, et produit obtenu par ce procede
US6588080B1 (en) * 1999-04-30 2003-07-08 Kimberly-Clark Worldwide, Inc. Controlled loft and density nonwoven webs and method for producing
US7476632B2 (en) 2002-11-15 2009-01-13 3M Innovative Properties Company Fibrous nonwoven web
DE10311439A1 (de) * 2003-03-15 2004-09-23 Saurer Gmbh & Co. Kg Vorrichtung und Verfahren zum Spinnen und Ablegen einer synthetischen Fadenschar zur Vlieserzeugung
EP1853754B1 (fr) 2005-03-02 2012-09-05 V-Lap Pty. Ltd Ourdissoir textile
FR2922901B1 (fr) 2007-10-25 2010-03-26 Elysees Balzac Financiere Procede et dispositif de fabrication en continu de nappes fibreuses 3d ; lesdites nappes et leurs utilisations.
DE102010034159A1 (de) 2010-08-10 2012-02-16 Grimm-Schirp Gs Technologie Gmbh Vorrichtung und Verfahren zur Herstellung eines Faserformteils und Faserformteil
US20130137330A1 (en) * 2010-08-10 2013-05-30 Heinrich Grimm Device and Method for Producing a Molding Pulp Part and Molding Pulp Part
DE202016105337U1 (de) * 2016-09-26 2018-01-17 Autefa Solutions Germany Gmbh Aerodynamische Vliesbildeeinrichtung

Also Published As

Publication number Publication date
CN116134190A (zh) 2023-05-16
DE102020116315A1 (de) 2021-12-23
US20230228018A1 (en) 2023-07-20
EP4168616A1 (fr) 2023-04-26
EP4168616C0 (fr) 2024-04-03
KR20230024992A (ko) 2023-02-21
WO2021254565A1 (fr) 2021-12-23

Similar Documents

Publication Publication Date Title
EP2630287B1 (fr) Procédé et dispositif de fabrication d'un non-tissé composite
EP1726700B1 (fr) Procédé et dispositif pour la fabrication d'un non-tissé
DE60030120T2 (de) Verfahren zur herstellung eines vliesstoffes, anlage zur durchführung dieses verfahren, hergestellter vliesstoff
EP3118361B1 (fr) Installation et procede de fabrication d'un voile multicouche a partir d'au moins un voile de carde non encolle
DE68915305T2 (de) Nichtgewobener Artikel aus wärmebeständigem Material, Verfahren zur Herstellung desselben und Vorrichtung zum Ausführen des Verfahrens.
EP1930492A1 (fr) Procédé et dispositif pour la fabrication d' un non-tissé de type spunbond
EP2128320B1 (fr) Procédé et dispositif destinés à la fabrication de tissus non tissés en filaments
DE1157513B (de) Verfahren zur Herstellung einer Matte aus endlosen Faeden oder Stapelfasern
EP4168616B1 (fr) Procédé de production continue d'un tissu non tissé et appareil de production de tissu non tissé associé et panneau non tissé
EP3061855B1 (fr) Installation de carde et procede de renforcement d'un voile de carde
EP3110997B1 (fr) Dispositif de cardage et procédé de cardage
EP2480709B1 (fr) Installation et procédé pour produire un non-tissé à base de fibres de verre et non-tissé de fibres ainsi produit
DE4244904C2 (de) Verfahren zur Herstellung eines großvolumigen Vliesstoffes
EP3450603B1 (fr) Procédé de formation d'un non-tissé profilé
EP2695980A1 (fr) Dispositif d'acheminement pour fibres ou flocons
DE10329648B4 (de) Vorrichtung zur Vliesbildung
DE69312763T2 (de) Verfahren zum Wellen und zum Verbinden oder thermischen Verbinden von Füllmaterial und dadurch hergestelltes Füllmaterial.
EP1057906A1 (fr) Installation et procédé de production de voile
EP2509759B1 (fr) Semi-produit et procédé de fabrication d'un semi-produit pour un élément composite renforcé par des fibres
WO2008074665A1 (fr) Procédé et dispositif de fabrication d'un non-tissé
EP3450604B1 (fr) Procédé de formation d'un produit non tissé, profilé, solidifié
WO2001014623A2 (fr) Procede et dispositif pour influer sur la structure et la position de fibres lors de la formation aerodynamique de non-tisses
EP1726699A1 (fr) Procédé et dispositif pour la fabrication d'un non-tissé
DE102016113721A1 (de) Faserflor-basiertes bahnförmiges Textil mit unidirektional erhöhter Festigkeit
EP4444946A1 (fr) Système et procédé de production de non-tissé monocouche ou multicouche

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230109

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: D04H 1/542 20120101ALI20231006BHEP

Ipc: D04H 1/54 20120101ALI20231006BHEP

Ipc: D04H 1/74 20060101ALI20231006BHEP

Ipc: D04H 1/732 20120101AFI20231006BHEP

INTG Intention to grant announced

Effective date: 20231027

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021003226

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20240418

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20240425

U20 Renewal fee paid [unitary effect]

Year of fee payment: 4

Effective date: 20240628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240403