EP4149897A1 - Matériau bas émissif comprenant une couche épaisse à base d'oxyde de silicium - Google Patents

Matériau bas émissif comprenant une couche épaisse à base d'oxyde de silicium

Info

Publication number
EP4149897A1
EP4149897A1 EP21732439.1A EP21732439A EP4149897A1 EP 4149897 A1 EP4149897 A1 EP 4149897A1 EP 21732439 A EP21732439 A EP 21732439A EP 4149897 A1 EP4149897 A1 EP 4149897A1
Authority
EP
European Patent Office
Prior art keywords
layer
functional
silver
material according
stack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21732439.1A
Other languages
German (de)
English (en)
Inventor
Yann COHIN
Maëlis BANCI
Corinne Victor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Original Assignee
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Glass France SAS, Compagnie de Saint Gobain SA filed Critical Saint Gobain Glass France SAS
Publication of EP4149897A1 publication Critical patent/EP4149897A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3618Coatings of type glass/inorganic compound/other inorganic layers, at least one layer being metallic
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3636Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer one layer at least containing silicon, hydrogenated silicon or a silicide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3644Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the metal being silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3652Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the coating stack containing at least one sacrificial layer to protect the metal from oxidation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3657Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
    • C03C17/366Low-emissivity or solar control coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3681Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating being used in glazing, e.g. windows or windscreens
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/065Details
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/90Other aspects of coatings
    • C03C2217/94Transparent conductive oxide layers [TCO] being part of a multilayer coating
    • C03C2217/944Layers comprising zinc oxide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/154Deposition methods from the vapour phase by sputtering
    • C03C2218/156Deposition methods from the vapour phase by sputtering by magnetron sputtering

Definitions

  • Low emissivity material comprising a thick layer based on silicon oxide
  • the invention relates to a material comprising a transparent substrate coated with a stack comprising a functional silver-based metal layer.
  • the invention also relates to glazing comprising these materials as well as the use of such materials for manufacturing glazing.
  • Functional silver-based metallic layers have advantageous electrical conduction and infrared (IR) radiation reflection properties, hence their use in so-called “solar control” glazing aimed at reducing the amount of incoming solar energy and / or in so-called “low-emissive” glazing aimed at reducing the amount of energy dissipated to the outside of a building, a vehicle or a device.
  • IR infrared
  • dielectric coatings are deposited between coatings based on dielectric materials generally comprising several dielectric layers (hereinafter “dielectric coatings") making it possible to adjust the optical properties of the stack. These dielectric layers also help protect the silver layer from chemical or mechanical attack.
  • the invention relates very particularly to a material used to manufacture a glazing used as a component of a heating or cooling device.
  • a heating device comprises an enclosure delimited by one or more walls and heating means so as to allow the enclosure to be heated to a high temperature.
  • the heating devices can in particular be chosen from ovens, fireplaces, stoves, etc.
  • the heating means are distinct from the stack of thin layers. Heated automotive glazing, the stack of which serves as a heating element that does not correspond to a heating device according to the invention.
  • a refrigerating device comprises an enclosure delimited by one or more walls and means making it possible to cool the enclosure to a temperature below the normal temperature (20 ° C).
  • the refrigerating devices can in particular be chosen from:
  • the glazing used as constituent elements of a refrigerating device of the freezer type (negative cold) are generally monolithic glasses.
  • the glazing used as component parts of a refrigerator-type heating or cooling device are generally multiple glazing.
  • a multiple glazing comprises at least two substrates kept at a distance so as to delimit a space.
  • the faces of the glazing are designated from the inside of the heater or cooler and by numbering the faces of the substrates from the inside (inner face) to the outside (outer face) of the heater or cooler.
  • the different substrates are generally arranged side by side in an open space.
  • the various substrates are generally interconnected so as to form an airtight cavity between two substrates.
  • These glazing help maintain a set temperature inside the device while keeping the exterior surface of the glazing normally cool to the touch for the protection and comfort of users.
  • Coatings comprising functional silver-based metallic layers (or silver layers) are the most effective for reducing the emissivity of glazing while preserving optical and aesthetic qualities. These coatings provide better user protection, lower energy consumption and greater comfort of use.
  • This phenomenon is accentuated when these glazings are used in heating devices, especially when they are subjected to long and repeated heat treatment cycles at high temperatures in a humid environment.
  • This coating comprises a single functional silver-based layer protected by an undercoat and a blocking overlay.
  • the dielectric coatings surrounding the functional layer essentially consist of oxide-based layers.
  • This coating is particularly suitable for refrigeration and heating device applications because it has both:
  • the excellent chemical durability may be due to the nature of its dielectrics which are primarily oxides.
  • the materials in order to be used in heating or cooling devices, the materials must undergo a high temperature heat treatment such as quenching.
  • a high temperature heat treatment such as quenching.
  • the functional coating developed by the applicant remains sensitive to overheating, both during its quenching and during its potential use in a heating device. This sensitivity to heat treatment could be due to the nature of its dielectrics, which are composed exclusively of oxides.
  • the silver-based functional layer is unstable and dewets during heat treatment at elevated temperature. This dewetting is characterized by the appearance of holes in the silver layer. These holes are called dendritic because of their shape often branched. These holes in the silver layer have two very damaging consequences for the product.
  • the product becomes blurry (after quenching, since the edge of the holes in the silver layer diffuses the light).
  • this blur corresponds to the appearance of a more or less milky veil.
  • This blur can be inhomogeneous because it can reveal defects on the surface of the glass (traces of drying, marks of suction cups handling the glass, etc.).
  • the product's emissivity is severely degraded by these holes. Indeed, we can show that in each hole, it is no longer the emissivity of the silver layer (3%, for example) that is to be taken into account, but that of the glass (close to 89%). Thus, if the holes represent only 1% of the area, the emissivity is already degraded by about 1.8 points, going from 3% to almost 5%.
  • the solution of the invention consists in placing an intermediate layer based on silicon oxide with a thickness greater than 12 nm between the glass substrate and the first dielectric layer of the stack.
  • the solution of the invention has the significant advantage that it does not require any other modification of the stack already developed by the applicant.
  • the use of this layer of optical index close to glass does not then require any modification of the stack already developed, because these layers are optically neutral.
  • Light interference at the glass / Si02 interface is negligible.
  • the use of a 14 nm layer of silicon oxide in a functional coating has an 8 times greater resistance to heating at a temperature of 450 ° C than that of the same functional coating without a layer of silicon oxide.
  • the term 8 times greater resistance is understood to mean that the material provided with a stack comprising a 14 nm layer of silicon oxide can be heated at the same temperature for a time 8 times longer than the same stack without an oxide layer. silicon, before exhibiting the same degree of degradation.
  • the Applicant has discovered that the use of a silicon oxide layer allows the degradation of the functional coating to be delayed. However, for this degradation delay to be sufficient not to cause degradation:
  • a minimum thickness of silicon oxide is required, and in particular a thickness of at least 12 nm.
  • the time / temperature pair during heating becomes compatible with a transformation of the glass, such as toughening or bending, without blurring or degradation of emissivity.
  • the glazing comprising a functional coating without a thick silicon oxide layer in contact with the substrate shows a haze at time and temperature parameters very close to those necessary to obtain flatness, fragmentation, and an acceptable form.
  • Industrial tools used for bending and / or soaking substrates including coatings functionalities may also exhibit variability. A material must therefore be robust enough to accept these process variabilities. The materials of the invention have this additional strength.
  • the observed degradation delay severe tens of seconds at 705 ° C is sufficient to ensure that the materials will not be degraded, regardless of the variability of the quenching process.
  • the invention therefore relates to a material comprising a transparent substrate coated with a stack comprising at least one functional metallic layer based on silver and at least two dielectric coatings, each dielectric coating comprising at least one dielectric layer, so that each functional metal layer is placed between two dielectric coatings, characterized in that the stack comprises a silicon oxide-based layer with a thickness greater than or equal to 12 nm located directly in contact with the substrate.
  • the invention also relates to:
  • a glazing comprising a material according to the invention mounted on a device, on a vehicle, in particular a motor vehicle or on a building, and
  • glazing according to the invention as solar control glazing and / or low emissivity for the building or vehicles
  • the invention also relates to a heating or cooling device comprising heating or cooling means and an enclosure delimited by one or more walls, at least one wall of which comprises at least one glazing comprising a material according to the invention.
  • the invention is particularly suitable as a freezer-type refrigerating device.
  • the glazing can be made of the material (monolithic glazing) with preferably the stack located on the face of the substrate in contact with the enclosure.
  • the glazing of the invention is also suitable in all applications requiring the use of a stack comprising layers of silver for which the resistance to repeated heat treatments and to corrosion in a hot and cold humid environment are key parameters. .
  • the invention also relates to the use of glazing as a constituent element of a cooling device, of a heating device or of a fire door, the glazing comprising a material according to the invention.
  • the glazing can be chosen from multiple glazing comprising at least two transparent substrates.
  • the glazing can also consist solely of the material according to the invention. In this case, it has only one substrate. It is then a simple glazing or monolithic glazing.
  • the substrate according to the invention is considered to be laid horizontally.
  • the stack of thin layers is deposited on top of the substrate.
  • the meaning of the expressions “above” and “below” and “lower” and “upper” should be considered in relation to this orientation.
  • the expressions “above” and “below” do not necessarily mean that two layers and / or coatings are placed in contact with one another.
  • a layer is deposited "in contact” with another layer or a coating, this means that there cannot be one (or more) layer (s) interposed between these. two coats (or coat and coating).
  • the material that is, the transparent substrate coated with the stack, is intended to undergo heat treatment at elevated temperature. Therefore, the stack and the substrate have preferably been subjected to heat treatment at an elevated temperature such as quenching, annealing or bending.
  • the stack is deposited by cathodic sputtering assisted by a magnetic field (magnetron process). According to this advantageous embodiment, all the layers of the stack are deposited by cathodic sputtering assisted by a magnetic field.
  • the material and the glazing of the invention are transparent, that is to say not opaque. According to an advantageous embodiment, the material or the glazing according to the invention has a light transmission greater than 35%, greater than 40%, greater than 45% or greater than 50%.
  • the thicknesses mentioned in this document are physical thicknesses and the layers are thin layers.
  • the term “thin layer” is understood to mean a layer having a thickness of between 0.1 nm and 100 micrometers.
  • the stack comprises a silicon oxide-based layer greater than 12 nm thick located directly in contact with the substrate.
  • the silicon oxide-based layer has a thickness:
  • the silicon oxide-based layer can include other elements. These elements can be selected from aluminum, boron, titanium, and zirconium. Preferably, the elements are selected from aluminum, boron and titanium.
  • the silicon oxide-based layer may comprise at least 60%, at least 65%, at least 70% at least 75.0%, at least 80% or at least 90% by mass of silicon relative to the mass of all the elements constituting the silicon oxide-based layer other than oxygen.
  • the silicon oxide-based layer comprises at most 35%, at most 30%, at most 20% or at most 10% by mass of elements other than silicon relative to the mass of all elements. constituting the layer based on silicon oxide other than oxygen.
  • the layer based on silicon oxide may comprise at least 2%, at least 5.0% or at least 8% by mass of aluminum relative to the mass of all the elements constituting the layer based on silicon oxide. silicon other than oxygen.
  • the amounts of oxygen and nitrogen in a layer are determined in atomic percentages relative to the total amounts of oxygen and nitrogen in the layer in question.
  • the layers based on silicon oxide essentially comprise oxygen and very little nitrogen.
  • Silicon oxide-based layers include greater than 90%, greater than 95% or 100% atomic percent oxygen to oxygen and nitrogen in the silicon oxide based layer.
  • the silicon oxide-based layer can be obtained:
  • the functional silver-based metal layer before or after heat treatment, comprises at least 95.0%, preferably at least 96.5% and better still at least 98.0% by mass of silver relative to the mass of the functional layer.
  • the functional silver-based metal layer before heat treatment comprises less than 5% or less than 1.0% by weight of metals other than silver based on the weight of the functional metal layer based on silver. 'money.
  • Functional silver-based layers range in thickness from 5 to 30nm, 5 to 25nm, or 7 to 16nm.
  • the stack comprises a single functional layer.
  • the stack comprises in this case a single functional layer and two dielectric coatings comprising at least one dielectric layer, so that the functional layer is disposed between two dielectric coatings.
  • the stack may include at least two metallic silver-based functional layers and at least three dielectric coatings comprising at least one dielectric layer, such that each functional layer is disposed between two dielectric coatings.
  • the stack is located on at least one side of the transparent substrate.
  • the stack may include blocking layers located below and / or above the functional silver-based metal layer.
  • the stack may include at least one blocking layer, the function of which is to protect the silver layers by preventing possible degradation linked to the deposition of a dielectric coating or linked to a heat treatment.
  • These blocking layers are preferably located in contact with the functional silver-based metal layers.
  • the stack may comprise at least one blocking layer, located below and (directly) in contact with a functional silver-based metal layer (under blocking layer) and / or at least one blocking layer located above and (directly) in contact with a functional silver-based metal layer (on blocking layer).
  • a blocking layer on top of a functional silver-based metal layer is called a blocking overcoat.
  • a blocking layer below a functional silver-based metal layer is called a blocking sublayer.
  • the blocking layers are chosen from metal layers based on a metal or a metal alloy, metal nitride layers, metal oxide layers and metal oxynitride layers of one or more elements chosen from titanium, nickel, chromium, tantalum and niobium such as Ti, TiN, TiOx, Nb, NbN, NbOx, Ni, NiN, NiOx, Cr, CrN, CrOx, NiCr, NiCrN, NiCrOx.
  • these blocking layers When these blocking layers are deposited in metallic, nitrided or oxynitrided form, these layers may undergo partial or total oxidation depending on their thickness and the nature of the layers which surround them, for example, at the time of deposition of the next layer or by oxidation. in contact with the underlying layer.
  • the blocking layers can be chosen from metallic layers, in particular of an alloy of nickel and chromium (NiCr) or of titanium.
  • the blocking layers are metallic layers based on nickel.
  • the nickel-based metal blocking layers can comprise, (before heat treatment), at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or 100% by mass of nickel relative to the mass of the metallic base layer nickel.
  • the nickel-based metal layers can be chosen from:
  • Nickel alloy metal layers can be nickel chromium alloy based.
  • Each blocking layer has a thickness between 0.1 and 5.0 nm.
  • the thickness of these blocking layers can be:
  • dielectric coating within the meaning of the present invention, it should be understood that there may be a single layer or several layers of different materials inside the coating.
  • a “dielectric coating” according to the invention mainly comprises dielectric layers. However, according to the invention these coatings can also comprise layers of another nature, in particular absorbent layers, for example metallic.
  • dielectric layer within the meaning of the present invention, it should be understood that from the point of view of its nature, the material is “non-metallic", that is to say is not a metal. In the context of the invention, this term denotes a material exhibiting an n / k ratio over the entire visible wavelength range (from 380 nm to 780 nm) equal to or greater than 5.
  • n denotes the index of actual refraction of the material at a given wavelength and k represents the imaginary part of the refractive index at a given wavelength; the ratio n / k being calculated at a given wavelength identical for n and for k.
  • the thickness of a dielectric coating corresponds to the sum of the thicknesses of the layers constituting it.
  • the dielectric coatings have a thickness greater than 15 nm, preferably between 15 and 200 nm.
  • They have a thickness greater than 2 nm, preferably between 2 and 100 nm.
  • the silver-based functional layer is located above a dielectric layer called a stabilizing or wetting layer made of a material capable of stabilizing the interface with the functional layer.
  • a stabilizing or wetting layer made of a material capable of stabilizing the interface with the functional layer.
  • These layers are generally zinc oxide based.
  • the silver-based functional layer is located below a dielectric layer called a stabilizing or wetting layer made of a material capable of stabilizing the interface with the functional layer.
  • a stabilizing or wetting layer made of a material capable of stabilizing the interface with the functional layer.
  • These layers are generally zinc oxide based.
  • the zinc oxide-based layers may comprise, at least 80%, at least 90% by mass of zinc relative to the total mass of all the elements constituting the zinc oxide-based layer, excluding oxygen and nitrogen.
  • the zinc oxide-based layers can comprise one or more elements chosen from aluminum, titanium, niobium, zirconium, magnesium, copper, silver, gold, silicon, molybdenum, nickel, chromium, platinum, indium, tin and hafnium, preferably aluminum.
  • Zinc oxide-based layers can optionally be doped with at least one other element, such as aluminum.
  • the zinc oxide-based layer is not nitrided, however traces may exist.
  • the zinc oxide-based layer comprises, in increasing order of preference, at least 80%, at least 90%, at least 95%, at least 98%, at least 100%, by weight of oxygen relative to the total mass of oxygen.
  • the dielectric coating located between the substrate and the first functional metallic layer and / or one or each dielectric coating located above the first functional silver-based layer located comprises a zinc oxide-based layer comprising at least 80 % by mass of zinc relative to the mass of all elements other than oxygen.
  • each dielectric coating comprises a zinc oxide-based layer comprising at least 80% by mass of zinc relative to the mass of all elements other than oxygen.
  • the dielectric coating located directly below the functional metal layer based on silver comprises at least one dielectric layer based on zinc oxide, optionally doped with at least one other element, such as aluminum.
  • the metallic functional layer deposited on top of a zinc oxide-based layer is either directly in contact or separated by a blocking layer.
  • the dielectric coating closest to the substrate is called the bottom coating and the dielectric coating farthest from the substrate is called the top coating.
  • Stacks with more than one silver layer also include intermediate dielectric coatings located between the bottom and top coatings.
  • the lower or intermediate coatings comprise a dielectric layer based on zinc oxide located below and directly in contact with a metallic layer based on silver or separated from this layer by a blocking sublayer.
  • the dielectric coating located directly above the functional metal layer based on silver comprises at least one dielectric layer based on zinc oxide, optionally doped with at least one other element, such as aluminum.
  • the metallic functional layer deposited below a zinc oxide-based layer is either directly in contact or separated by a blocking layer.
  • the intermediate or top coatings comprise a zinc oxide-based dielectric layer located above and directly in contact with the silver-based metallic layer or separated from this layer by a blocking overlay.
  • Zinc oxide layers have a thickness:
  • the dielectric layers can have a barrier function.
  • barrier layer is understood to mean a layer made of a material capable of forming a barrier to the diffusion of oxygen and water at high temperature, originating from the ambient atmosphere or from the substrate. transparent, towards the functional layer.
  • Such dielectric layers are chosen from the layers:
  • oxides such as Si02, nitrides such as silicon nitride Si3N4 and aluminum nitrides AIN, and oxynitrides SiOxNy, optionally doped using at least one other element,
  • the material comprises one or more layers based on zinc oxide and tin.
  • Zinc and tin oxide layers contain at least 20% by mass of tin based on the total mass of zinc and tin.
  • the layer based on zinc and tin oxide comprises, with respect to the total mass of zinc and tin, at least 20%, at least 30%, at least 40%, at least 50%, at least 60% or at least 80% by mass of tin.
  • the zinc-tin oxide layer comprises 40-80% by weight of tin based on the total weight of zinc and tin.
  • the zinc-tin oxide-based layer has a thickness:
  • the dielectric coating located between the substrate and the first functional metal layer and / or each dielectric coating located above the first functional silver-based layer located comprises a zinc oxide-based layer and tin comprising at less 20% by mass of tin relative to the total mass of zinc and tin.
  • Each dielectric coating may include a zinc-tin oxide-based layer comprising at least 20% by mass of tin based on the total mass of zinc and tin.
  • the sum of the thicknesses of all the zinc and tin oxide-based layers located in the dielectric coating located between the substrate and the first silver layer is greater than 30%, greater than 40%, greater 50% or greater than 60% of the total thickness of the dielectric coating.
  • the sum of the thicknesses of all the zinc and tin oxide based layers located in the dielectric coating located above a functional silver based layer is greater than 50%, greater than 60 %, greater than 70% or greater than 75% of the total thickness of the dielectric coating.
  • the sum of the thicknesses of all the oxide-based layers present in the dielectric coating located between the substrate and the first functional metal layer and / or in each dielectric coating located above the first functional layer based on The silver is greater than 50%, greater than 60%, greater than 70%, greater than 80% or greater than 90% of the total thickness of the dielectric coating.
  • the dielectric coating located between the substrate and the first functional metal layer and / or one or each dielectric coating located above the first silver-based functional layer may consist of an oxide layer only.
  • the stack comprises at least one dielectric layer based on zinc oxide and one layer based on zinc oxide and tin.
  • the dielectric coating located directly below the functional silver-based metal layer has at least one zinc oxide-based dielectric layer and one zinc-tin oxide-based layer.
  • one or each dielectric coating located above the functional metal layer based on silver comprises at least one dielectric layer based on zinc oxide and one layer based on zinc oxide and tin.
  • each dielectric coating comprises at least one dielectric layer based on zinc oxide and one layer based on zinc oxide and tin.
  • the stack of thin layers may optionally include a protective layer.
  • the protective layer is preferably the last layer of the stack, that is to say the layer furthest from the substrate coated with the stack (before heat treatment).
  • the dielectric coating furthest from the substrate may include a protective layer. These layers generally have a thickness of between 0.5 and 10 nm, preferably 1 and 5 nm.
  • This protective layer can be chosen from a layer based on titanium, zirconium, hafnium, silicon, zinc and / or tin and their mixture, this or these metals being in metallic, oxidized or nitrided form.
  • the protective layer is based on zirconium and / or titanium oxide, preferably based on zirconium oxide, titanium oxide or titanium and zirconium oxide.
  • the stack comprises:
  • a dielectric coating located above the functional silver-based metal layer optionally comprising a protective layer.
  • the stack comprises:
  • a dielectric coating located below the functional silver-based metallic layer comprising the silicon oxide-based layer, a zinc-tin oxide-based layer, an oxide-based layer zinc,
  • a dielectric coating located above the functional silver-based metal layer comprising a zinc oxide-based layer, a zinc-tin oxide-based layer and optionally a protective layer.
  • the substrate coated with the stack or the stack only may be intended to undergo a heat treatment.
  • the substrate coated with the stack may be curved and / or soaked.
  • the present invention also relates to the untreated heat treated coated substrate.
  • the stack may not have undergone a heat treatment at a temperature above 500 ° C, preferably 300 ° C.
  • the stack may have undergone heat treatment at a temperature above 300 ° C, preferably 500 ° C.
  • the heat treatments are chosen from annealing, for example by rapid thermal annealing ("Rapid Thermal Process”) such as laser or flash lamp annealing, hardening and / or bending. Rapid thermal annealing is for example described in application WO2008 / 096089.
  • Rapid Thermal annealing is for example described in application WO2008 / 096089.
  • the heat treatment temperature (at the stack) is greater than 300 ° C, preferably greater than 400 ° C, and better still greater than 500 ° C.
  • the substrate coated with the stack is preferably a tempered glass, especially when it forms part of a glazing used as a constituent element of a cooling device, of a heating device or of a fire door.
  • the transparent substrates according to the invention are preferably made of a rigid mineral material, such as glass, or organic based on polymers (or polymer).
  • the organic transparent substrates according to the invention can also be made of polymer, rigid or flexible.
  • polymers suitable according to the invention include, in particular:
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PEN polyethylene naphthalate
  • PMMA polymethyl methacrylate
  • fluorinated polymers such as fluoroesters such as ethylene tetrafluoroethylene (ETFE), polyvinylidene fluoride (PVDF), polychlorotrifluoroethylene (PCTFE), chlorotrifluoroethylene ethylene (ECTFE), fluorinated ethylene-propylene copolymers (FEP);
  • fluoroesters such as ethylene tetrafluoroethylene (ETFE), polyvinylidene fluoride (PVDF), polychlorotrifluoroethylene (PCTFE), chlorotrifluoroethylene ethylene (ECTFE), fluorinated ethylene-propylene copolymers (FEP);
  • - photocrosslinkable and / or photopolymerizable resins such as thiolene, polyurethane, urethane-acrylate, polyester-acrylate resins and
  • the substrate is preferably a sheet of glass or ceramic glass.
  • the substrate is preferably transparent, colorless (this is then a clear or extra-clear glass) or colored, for example blue, gray or bronze.
  • the glass is preferably of the soda-lime-silicate type, but it can also be of the borosilicate or alumino-borosilicate type glass.
  • the substrate is made of glass, in particular soda-lime silica, or of polymeric organic material.
  • the substrate advantageously has at least one dimension greater than or equal to 1 m, or even 2 m and even 3 m.
  • the thickness of the substrate generally varies between 0.5 mm and 19 mm, preferably between 0.7 and 9 mm, in particular between 2 and 8 mm, or even between 2.8 and 6 mm.
  • the substrate can be flat or curved, or even flexible.
  • the invention also relates to a glazing comprising at least one material according to the invention.
  • the invention relates to glazing which may be in the form of monolithic, laminated or multiple glazing, in particular double glazing or triple glazing.
  • the glazing can be a monolithic glazing comprising 2 faces.
  • the glazing can be a multiple glazing comprising two, three or four substrates.
  • the glazing comprises a material according to the invention, comprising in particular a substrate and one, two, three additional substrates.
  • Multiple glazing comprises at least one material according to the invention and at least one additional substrate.
  • the material and the additional substrate are either side by side or separated by at least one intermediate gas sheet.
  • Double glazing has two substrates, an exterior substrate and an interior substrate and 4 sides.
  • a triple glazing has three substrates, an outer substrate, a central substrate and an inner substrate, and 6 sides.
  • face 1 is outside the building and therefore constitutes the outer wall of the glazing. All the other faces are numbered successively. The face inside the building has the highest number.
  • a laminated glazing comprises at least one structure of the first substrate / sheet (s) / second substrate type.
  • the polymeric sheet may in particular be based on polyvinyl butyral PVB, ethylene vinyl acetate EVA, polyethylene terephthalate PET, polyvinyl chloride PVC.
  • the stack of thin layers is positioned on at least one side of one of the substrates.
  • These glazing can be mounted on a building or a vehicle. These glazings can be mounted on heating or cooling devices such as oven or refrigerator doors.
  • the glazing may include at least one transparent substrate coated with a functional coating other than a stack comprising at least one functional silver-based metal layer such as a coating comprising a transparent conductive oxide ("TCO").
  • TCO transparent conductive oxide
  • the coating comprising a transparent conductive oxide can be chosen from a material based on indium tin oxide (ITO), based on zinc oxide doped with aluminum (ZnO: Al) or doped with boron. (ZnO: B), or else based on tin oxide doped with fluorine (SnO 2: F).
  • These materials are deposited chemically, such as for example by chemical vapor deposition (“CVD”), optionally improved by plasma (“PECVD”) or physically, such as for example by vacuum deposition by cathode sputtering, optionally assisted by magnetic field (“Magnetron”).
  • CVD chemical vapor deposition
  • PECVD plasma
  • Magnetron magnetic field
  • the non-stack functional coating comprising at least one functional silver-based metal layer may be on the same substrate.
  • the non-stack functional coating comprising at least one silver-based functional metal layer may be on a different substrate than that coated with a stack comprising a silver-based functional metal layer.
  • the glazing is a multiple glazing.
  • the glazing can therefore include a functional coating other than a stack comprising a functional silver-based metallic layer such as a coating comprising a transparent conductive oxide located:
  • the heating device allows the enclosure to be heated to a high temperature, in particular greater than 50, 100, 200, 300, 400, 500 or 600 ° C.
  • the heating device further comprises heating means. These heating means allow the enclosure to be heated to a high temperature, in particular greater than 50, 100, 200, 300, 400, 500 or 600 ° C.
  • Magnetic cathode sputtering the conditions for depositing the layers deposited by sputtering (so-called “magnetron cathode sputtering”) are summarized in Table 1 below.
  • the materials Cp-1 to Cp-5 and lnv-1 and lnv-2 comprise a layer of SiO2 deposited in a single zone.
  • the SiO 2 layer is deposited in two different zones.
  • Table 3 below lists the materials and the physical thicknesses in nanometers (unless otherwise indicated) of each layer or coating which constitutes the stacks as a function of their positions with respect to the substrate carrying the stack. [Table 3] RD: Dielectric coating; CB: Blocking layer; CF: Functional layer
  • a quench type heat treatment is performed on the coated substrates at 705 ° C for 180 seconds.
  • the level of blur is evaluated as follows.
  • the tempered glass is placed on a desk tilted 20 degrees from the vertical, in a room with black walls. It is lit by a powerful lamp placed vertically over the desk.
  • the observer stands in front of the desk, 1 m away.
  • a fuzzy sample shows a marked milky appearance: it scatters the light from the lamp away from its specular reflection zone on the glass.
  • a sample that does not present a blur does not scatter any light in the direction of the observer, so it appears dark.
  • the following assessment indicators were used:
  • the chemical durability is evaluated by a high humidity test before (HH) and after heat treatment (TT-HH).
  • the humidity test (HH) consists of storing samples for 56 days at 90% relative humidity and 60 ° C and observing the possible presence of defects such as pitting corrosion.
  • the following assessment indicators were used:
  • FIG. 2 groups together two images taken under a microscope, on the left the material Cp-1 and on the right the material lnv-2.
  • Table 5 summarizes the observations. [Table 5]
  • Table 6 shows the delay in degradation of the solution of the invention. For this, we compare the duration of the heat treatment in seconds for which we obtain 2 points of degradation of the emissivity between the material Cp-1 and respectively the materials Cp-3 and Cp-4 as well as the materials of the invention lnv-2, lnv-3 and lnv-4.
  • the delay is too short to be really useful.
  • the time / temperature pair during heating becomes compatible with a transformation of the glass, such as tempering or bending without blurring, or degradation of emissivity.
  • the Cp-1 glazing showed a blurring at time and temperature parameters very close to those necessary to obtain an acceptable flatness, a fragmentation, and an acceptable shape.
  • Industrial tools used to bend and / or toughen coated glazing which may exhibit variability. A glazing must therefore be sufficiently robust to accept these process variabilities.
  • the materials lnv-2, lnv-3, and lnv-4 have this added strength.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Surface Treatment Of Glass (AREA)
  • Laminated Bodies (AREA)

Abstract

L'invention concerne un matériau comprenant un substrat transparent revêtu d'un empilement comprenant au moins une couche métallique fonctionnelle à base d'argent et au moins deux revêtements diélectriques, chaque revêtement diélectrique comportant au moins une couche diélectrique, de manière à ce que chaque couche métallique fonctionnelle soit disposée entre deux revêtements diélectriques, caractérisé en ce que l'empilement comprend une couche à base d'oxyde de silicium d'épaisseur supérieure ou égale à 12 nm située directement au contact du substrat.

Description

Description
Titre de l'invention : Matériau bas émissif comprenant une couche épaisse à base d'oxyde de silicium
L’invention concerne un matériau comprenant un substrat transparent revêtu d’un empilement comprenant une couche métallique fonctionnelle à base d’argent. L'invention concerne également les vitrages comprenant ces matériaux ainsi que l'utilisation de tels matériaux pour fabriquer des vitrages.
Les couches métalliques fonctionnelles à base d’argent (ou couches d’argent) ont des propriétés de conduction électrique et de réflexion des rayonnements infrarouges (IR) avantageuses, d'où leur utilisation dans des vitrages dits « de contrôle solaire » visant à diminuer la quantité d'énergie solaire entrante et/ou dans des vitrages dits « bas émissifs » visant à diminuer la quantité d'énergie dissipée vers l'extérieur d'un bâtiment, d'un véhicule ou d’un dispositif.
Ces couches d'argent sont déposées entre des revêtements à base de matériaux diélectriques comprenant généralement plusieurs couches diélectriques (ci-après « revêtements diélectriques ») permettant d’ajuster les propriétés optiques de l’empilement. Ces couches diélectriques permettent en outre de protéger la couche d’argent des agressions chimiques ou mécaniques.
L’invention concerne tout particulièrement un matériau utilisé pour fabriquer un vitrage utilisé comme un élément constitutif d’un dispositif chauffant ou réfrigérant.
Un dispositif chauffant comprend une enceinte délimitée par une ou plusieurs parois et des moyens de chauffage de façon à permettre le chauffage de l'enceinte à une température élevée. Les dispositifs chauffants peuvent être notamment choisis parmi les fours, les cheminées, les fourneaux... Selon l’invention, les moyens de chauffage sont distincts de l’empilement de couches minces. Des vitrages automobiles chauffants dont l’empilement sert d’élément chauffant ne correspondant pas à un dispositif chauffant selon l’invention.
Un dispositif réfrigérant comprend une enceinte délimitée par une ou plusieurs parois et des moyens permettant de refroidir l'enceinte à une température inférieure à la température normale (20°C). Les dispositifs réfrigérant peuvent être notamment choisis parmi :
- les réfrigérateurs pour lesquels les températures recherchées varient entre 0 et 20 °C (froid positif),
- les congélateurs pour lesquels les températures recherchées sont inférieures à 0 °C (froid négatif). Les vitrages utilisés comme éléments constitutifs d’un dispositif réfrigérant de type congélateur (froid négatif) sont en général des verres monolithiques.
Les vitrages utilisés comme éléments constitutifs d’un dispositif chauffant ou réfrigérant de type réfrigérateur (froid positif) sont en général des vitrages multiples.
Selon, l’invention un vitrage multiple comprend au moins deux substrats maintenus à distance de manière à délimiter un espace. Les faces du vitrage sont désignées à partir de l'intérieur du dispositif chauffant ou réfrigérant et en numérotant les faces des substrats de l'intérieur (face interne) vers l'extérieur (face externe) du dispositif chauffant ou réfrigérant.
Dans le cas d’un vitrage multiple pour dispositif chauffant, les différents substrats sont en général disposés côte à côte dans un espace ouvert.
Dans le cas d’un vitrage multiple pour dispositif réfrigérant de type réfrigérateur, les différents substrats sont en général reliés entre eux de façon à former entre deux substrats une cavité hermétique.
Ces vitrages contribuent à maintenir à une température de consigne la température à l’intérieur du dispositif tout en gardant la surface extérieure du vitrage normalement froide au toucher pour la protection et le confort des utilisateurs.
L’utilisation de substrat revêtu de revêtement fonctionnel réfléchissant les rayonnements infrarouges (IR) dans des vitrages utilisés comme éléments constitutifs d’un dispositif chauffant ou réfrigérant permet :
- de diminuer la quantité d'énergie dissipée vers l'extérieur dans le cas d’un dispositif chauffant en réfléchissant la chaleur vers l’enceinte,
- de diminuer la quantité d'énergie entrant à l’intérieur de l’enceinte dans le cas d’un dispositif réfrigérant en réfléchissant la chaleur vers l’extérieur.
L’utilisation de ces revêtements concourt à réduire la consommation du dispositif chauffant ou réfrigérant et réchauffement ou refroidissement du vitrage.
Les revêtements comprenant des couches métalliques fonctionnelles à base d’argent (ou couches d’argent) sont les plus performants pour réduire l’émissivité des vitrages tout en préservant les qualités optiques et esthétiques. Ces revêtements assurent une meilleure protection des utilisateurs, une plus basse consommation énergétique et un plus grand confort d’utilisation.
Cependant, la résistance chimique, thermique et mécanique des revêtements comprenant ces couches métalliques fonctionnelles à base d’argent est souvent insuffisante. Cette faible résistance se traduit lors d’une utilisation dans des conditions normales, et a fortiori dans des conditions plus extrêmes, par l’apparition à court terme de défauts tels que des points de corrosion, des rayures, voire de l’arrachement total ou partiel de l’empilement.
Ce phénomène est accentué lorsque ces vitrages sont utilisés dans des dispositifs chauffants, notamment lorsqu’ils sont soumis à des cycles de traitement thermique à températures élevées longs et répétés dans un environnement humide.
Ce phénomène est également accentué lorsque ces vitrages sont utilisés dans des dispositifs réfrigérant, notamment lorsqu’ils sont soumis en permanence à un environnement humide.
Ces conditions extrêmes accélèrent encore davantage la dégradation des couches d’argent notamment par démouillage ou corrosion de l’argent. Tous défauts ou rayures, qu’ils soient dus à la corrosion ou à des sollicitations mécaniques, sont susceptibles d’altérer non seulement les performances énergétiques et optiques mais également l’esthétique du substrat revêtu.
Le demandeur a mis au point un revêtement fonctionnel convenant tout particulièrement pour ces applications. Ce revêtement comprend une seule couche fonctionnelle à base d’argent protégée par une sous couche et une surcouche de blocage. Les revêtements diélectriques encadrant la couche fonctionnelle sont essentiellement constitués de couches à base d’oxyde.
Ce revêtement convient tout particulièrement pour les applications réfrigération et dispositifs chauffants car il présente à la fois :
- une durabilité chimique importante avec notamment une résistance supérieure à 56 jours en test Haute Humidité), et
- une faible émissivité (environ 3%).
L’excellente durabilité chimique peut être attribuable à la nature de ses diélectriques qui sont essentiellement des oxydes.
Toutefois, pour pouvoir être utilisés dans des dispositifs chauffant ou réfrigérant, les matériaux doivent subir un traitement thermique à température élevée telle qu’une trempe. Or, le revêtement fonctionnel développé par le demandeur demeure sensible à la surchauffe, tant lors de sa trempe, que lors de son utilisation potentielle dans un dispositif chauffant. Cette sensibilité au traitement thermique pourrait être due à la nature de ses diélectriques, composés exclusivement d’oxydes.
La couche fonctionnelle à base d’argent est instable et démouille lors du traitement thermique à température élevée. Ce démouillage se caractérise par l’apparition de trous dans la couche d’argent. Ces trous sont dits dendritiques en raison de leur forme souvent ramifiée. Ces trous dans la couche d’argent ont deux conséquences très dommageables pour le produit.
Le produit devient flou (après trempe, puisque le bord des trous dans la couche d’argent diffuse la lumière). Visuellement, ce flou correspond à l’apparition d’un voile plus ou moins laiteux. Ce flou peut être inhomogène car il peut révéler des défauts à la surface du verre (traces de séchage, marques de ventouses de manutention du verre, etc.).
L’émissivité du produit, sa performance clé, est très dégradée par ces trous. En effet, on peut montrer que dans chaque trou, ce n’est plus l’émissivité de la couche d’argent (3%, par exemple) qui est à prendre en compte, mais celle du verre (proche de 89%). Ainsi, si les trous représentent seulement 1% de surface, l’émissivité est déjà dégradée de 1,8 points environ, passant de 3% à presque 5%.
Ils existent un certain nombre de demandes de brevet divulguant des revêtements fonctionnels à base d’argent comprenant une fine couche bas indice pouvant être à base d’oxyde de silicium au contact du substrat. Parmi ces demandes, on peut citer la demande EP1480920. L’objectif de ces couches bas indice est de réduire le flou suite à un traitement thermique d’empilements comprenant une couche fonctionnelle à base d’argent. Ces couches permettraient de réduire l’impact négatif du vieillissement du substrat de verre en « régénérant » la surface d’un substrat de verre potentiellement dégradé suite par exemple à un stockage long.
Ces demandes ou brevet ne s’intéressent pas à la problématique dispositifs chauffant ou réfrigérant. L’épaisseur maximale de ces couches intermédiaires d’oxyde de silicium est de 10 nm. Enfin, ces demandes ne divulguent pas des empilements essentiellement constitués de couche d’oxyde présentant une durabilité chimique avantageuse.
Le demandeur a découvert de manière surprenante que cette double dégradation optique/émissivité peut être largement abolie tout en conservant la très bonne durabilité chimique du produit. En effet, certaines solutions techniques permettent une forte amélioration du flou à la trempe, sans pour autant conserver la durabilité chimique nécessaire au matériau, qui est alors largement fragilisé.
La solution de l’invention consiste à placer une couche intermédiaire à base d’oxyde de silicium d’épaisseur supérieure à 12 nm entre le substrat de verre et la première couche diélectrique de l’empilement.
La solution de l’invention présente pour avantage non négligeable qu’elle ne nécessite aucune autre modification de l’empilement déjà développé par le demandeur. En effet, l’utilisation de cette couche d’indice optique proche du verre ne nécessite alors aucune modification de l’empilement déjà développé, car ces couches sont optiquement neutres. Les interférences lumineuses à l’interface verre/Si02 sont négligeables.
La résistance supérieure à la chauffe en présence d’une telle couche intermédiaire est non seulement vraie lors de la trempe, mais également lors de l’utilisation dans un dispositif chauffant.
Par exemple, l’utilisation d’une couche de 14 nm d’oxyde de silicium dans un revêtement fonctionnel présente une résistance 8 fois supérieure à la chauffe à une température de 450 °C à celle d’un même revêtement fonctionnel sans couche d’oxyde de silicium. Par résistance 8 fois supérieure, on entend que le matériau muni d’un empilement comprenant une couche de 14 nm d’oxyde de silicium peut être chauffé à température identique pendant un temps 8 fois plus important que le même empilement dépourvu de couche d’oxyde de silicium, avant de présenter le même degré de dégradation.
Le demandeur a découvert qu’il existe une gamme d’épaisseur pour cette couche d’oxyde de silicium à respecter de sorte à avoir un effet anti-flou et une très bonne durabilité chimique. Les effets avantageux de l’invention ne sont pas obtenus pour des épaisseurs inférieures à 12 nm.
En particulier, le demandeur a découvert que l’utilisation d’une couche d’oxyde de silicium permet de retarder la dégradation du revêtement fonctionnel. Toutefois, pour que ce retard de dégradation soit suffisant pour ne pas entraîner de dégradation :
- lors d’un traitement thermique à température élevée, c’est à dire à une température supérieure à 550°C pendant plusieurs minutes, ou
- lors de cycles de chauffage longs et répétés (durée supérieure à 15 minutes) à une température entre 100° et 250°C, il faut une épaisseur minimale d’oxyde de silicium et notamment une épaisseur d’au moins 12 nm.
En effet, grâce à l’utilisation d’une couche d’oxyde de silicium d’au moins 12 nm, le couple temps/température lors de la chauffe devient compatible avec une transformation du verre, telle qu’une trempe ou un bombage, sans flou, ni dégradation de l’émissivité. Sur les outils de trempe et de bombage utilisés, le vitrage comprenant un revêtement fonctionnel sans couche d’oxyde de silicium épaisse au contact du substrat montre un flou à des paramètres temps et température très proches de ceux nécessaires pour obtenir une planéité, une fragmentation, et une forme acceptable. Les outils industriels utilisés pour bomber et/ou tremper les substrats comprenant des revêtements fonctionnels peuvent en outre présenter des variabilités. Un matériau doit donc être suffisamment robuste pour accepter ces variabilités de procédé. Les matériaux de l’invention disposent de cette résistance supplémentaire. Le retard à la dégradation observé (plusieurs dizaines de seconde à 705°C) suffit à permettre d’assurer que les matériaux ne seront pas dégradés, peu importe la variabilité du procédé de trempe.
L’invention concerne donc un matériau comprenant un substrat transparent revêtu d’un empilement comprenant au moins une couche métallique fonctionnelle à base d’argent et au moins deux revêtements diélectriques, chaque revêtement diélectrique comportant au moins une couche diélectrique, de manière à ce que chaque couche métallique fonctionnelle soit disposée entre deux revêtements diélectriques, caractérisé en ce que l’empilement comprend une couche à base d’oxyde de silicium d’épaisseur supérieure ou égale à 12 nm située directement au contact du substrat.
L’invention concerne également :
- un vitrage comprenant un matériau selon l’invention,
- un vitrage comprenant un matériau selon l’invention monté sur un dispositif, sur un véhicule, notamment automobile ou sur un bâtiment, et
- le procédé de préparation d’un matériau ou d’un vitrage selon l’invention,
- l’utilisation d’un vitrage selon l’invention en tant que vitrage de contrôle solaire et/ou bas émissif pour le bâtiment ou les véhicules,
- un bâtiment, un véhicule ou un dispositif comprenant un vitrage selon l’invention.
L’invention concerne également un dispositif chauffant ou réfrigérant comprenant des moyens de chauffage ou de refroidissement et une enceinte délimitée par une ou plusieurs parois dont au moins une paroi comprend au moins un vitrage comprenant un matériau selon l’invention.
L’invention convient tout particulièrement comme dispositif réfrigérant de type congélateur. Dans ce cas, le vitrage peut être constitué du matériau (vitrage monolithique) avec de préférence l’empilement situé sur la face du substrat au contact de l’enceinte.
Le vitrage de l’invention convient aussi dans toutes applications nécessitant l’utilisation d’un empilement comprenant des couches d’argent pour lesquelles la résistance à des traitements thermiques répétés et à la corrosion en milieu humide à chaud et à froid sont des paramètres clés. On peut notamment citer :
- les vitrages pour porte de four, pyrolytiques ou non,
- les vitrages pour porte d’insert de cheminée, - les vitrages pour porte anti-feu,
- les vitrages pour éléments chauffants tels que les radiateurs et les sèches serviettes.
L’invention concerne également l’utilisation d’un vitrage comme élément constitutif d’un dispositif réfrigérant, d’un dispositif chauffant ou d’une porte anti-feu, le vitrage comprenant un matériau selon l’invention.
Le vitrage peut être choisi parmi les vitrages multiples comprenant au moins deux substrats transparents.
Le vitrage peut également être uniquement constitué du matériau selon l’invention. Dans ce cas, il ne comporte qu’un seul substrat. Il s’agit alors d’un simple vitrage ou vitrage monolithique.
Dans toute la description le substrat selon l'invention est considéré posé horizontalement. L’empilement de couches minces est déposé au-dessus du substrat. Le sens des expressions « au-dessus » et « en-dessous » et « inférieur » et « supérieur » est à considérer par rapport à cette orientation. A défaut de stipulation spécifique, les expressions « au-dessus » et « en-dessous » ne signifient pas nécessairement que deux couches et/ou revêtements sont disposés au contact l'un de l'autre. Lorsqu’il est précisé qu’une couche est déposée « au contact » d’une autre couche ou d’un revêtement, cela signifie qu’il ne peut y avoir une (ou plusieurs) couche(s) intercalée(s) entre ces deux couches (ou couche et revêtement).
Toutes les caractéristiques lumineuses décrites sont obtenues selon les principes et méthodes de la norme européenne EN 410 se rapportant à la détermination des caractéristiques lumineuses et solaires des vitrages utilisés dans le verre pour la construction. On considère que la lumière solaire entrant dans un bâtiment va de l’extérieur vers l’intérieur.
Les caractéristiques préférées qui figurent dans la suite de la description sont applicables aussi bien au matériau selon l’invention que, le cas échéant, aux vitrages, aux dispositifs ou au procédé selon l’invention.
Le matériau, c’est-à-dire le substrat transparent revêtu de l’empilement, est destiné à subir un traitement thermique à température élevée. Par conséquent, l'empilement et le substrat ont de préférence été soumis à un traitement thermique à une température élevée tel qu’une trempe, un recuit ou un bombage.
L’empilement est déposé par pulvérisation cathodique assistée par un champ magnétique (procédé magnétron). Selon ce mode de réalisation avantageux, toutes les couches de l’empilement sont déposées par pulvérisation cathodique assistée par un champ magnétique. Le matériau et le vitrage de l’invention sont transparents, c’est à dire non opaques. Selon un mode de réalisation avantageux, le matériau ou le vitrage selon l’invention présente une transmission lumineuse supérieure à 35 %, supérieure à 40 %, supérieure à 45 % ou supérieure à 50 %.
Sauf mention contraire, les épaisseurs évoquées dans le présent document sont des épaisseurs physiques et les couches sont des couches minces. On entend par couche mince, une couche présentant une épaisseur comprise entre 0,1 nm et 100 micromètres.
L’empilement comprend une couche à base d’oxyde de silicium d’épaisseur supérieure à 12 nm située directement au contact du substrat.
La couche à base d’oxyde de silicium présente une épaisseur :
- supérieure ou égale à 12 nm, supérieure ou égale à 13 nm ou supérieure ou égale à 14 nm,
- inférieure ou égale à 60 nm, inférieure ou égale à 40 nm, inférieure ou égale à 30 nm, inférieure ou égale à 25 nm, inférieure ou égale à 20 nm ou inférieure ou égale à 18 nm.
La couche à base d’oxyde de silicium peut comprendre d’autres éléments. Ces éléments peuvent être choisis parmi l’aluminium, le bore, le titane, et le zirconium. De préférence, les éléments sont choisis parmi l’aluminium, le bore et le titane.
La couche à base d’oxyde de silicium peut comprendre au moins 60 %, au moins 65 %, au moins 70 % au moins 75,0 %, au moins 80 % ou au moins 90 % en masse de silicium par rapport à la masse de tous les éléments constituant la couche à base d’oxyde de silicium autres que de l’oxygène.
De préférence, la couche à base d’oxyde de silicium comprend au plus 35%, au plus 30%, au plus 20 % ou au plus 10% en masse d’éléments autres que du silicium par rapport à la masse de tous les éléments constituant la couche à base d’oxyde de silicium autres que de l’oxygène.
La couche à base d’oxyde de silicium peut comprendre au moins 2 %, au moins 5,0 % ou au moins 8 % en masse d’aluminium par rapport à la masse de tous les éléments constituant la couche à base d’oxyde de silicium autres que de l’oxygène.
Les quantités d’oxygène et d’azote dans une couche sont déterminées en pourcentages atomiques par rapport aux quantités totales d’oxygène et d’azote dans la couche considérée.
Selon l’invention, les couches à base d’oxyde de silicium comprennent essentiellement de l’oxygène et très peu d’azote. Les couches à base d’oxyde de silicium comprennent plus de 90 %, plus de 95 % ou 100 % en pourcentage atomique d’oxygène par rapport à l’oxygène et l’azote dans la couche à base d’oxyde de silicium.
La couche à base d’oxyde de silicium peut être obtenue :
- par pulvérisation cathodique,
- à partir d’une cible métallique de silicium ou d’une cible céramique à base d’oxyde de silicium.
La couche métallique fonctionnelle à base d’argent, avant ou après traitement thermique, comprend au moins 95,0 %, de préférence au moins 96,5 % et mieux au moins 98,0 % en masse d’argent par rapport à la masse de la couche fonctionnelle.
De préférence, la couche métallique fonctionnelle à base d’argent avant traitement thermique comprend moins de 5 % ou moins de 1 ,0 % en masse de métaux autres que de l’argent par rapport à la masse de la couche métallique fonctionnelle à base d’argent.
Les couches fonctionnelles à base d’argent ont une épaisseur comprise de 5 à 30 nm, de 5 à 25 nm ou de 7 à 16 nm.
De préférence, l’empilement comprend une seule couche fonctionnelle. L’empilement comprend dans ce cas une seule couche fonctionnelle et deux revêtements diélectriques comportant au moins une couche diélectrique, de manière à ce que la couche fonctionnelle soit disposée entre deux revêtements diélectriques.
L’empilement peut comprendre au moins deux couches fonctionnelles métalliques à base d’argent et au moins trois revêtements diélectriques comportant au moins une couche diélectrique, de manière à ce que chaque couche fonctionnelle soit disposée entre deux revêtements diélectriques.
L’empilement est situé sur au moins une des faces du substrat transparent.
L’empilement peut comprendre des couches de blocage situées en-dessous et/ou au-dessus de la couche métallique fonctionnelle à base d’argent.
L’empilement peut comprendre au moins une couche de blocage dont la fonction est de protéger les couches d’argent en évitant une éventuelle dégradation liée au dépôt d’un revêtement diélectrique ou liée à un traitement thermique. Ces couches de blocages sont situées de préférence au-contact des couches métalliques fonctionnelles à base d’argent.
Selon des modes de réalisation avantageux, l’empilement peut comprendre au moins une couche de blocage, située en-dessous et (directement) au-contact d’une couche métallique fonctionnelle à base d’argent (sous couche de blocage) et/ou au moins une couche de blocage située au-dessus et (directement) au-contact d’une couche métallique fonctionnelle à base d’argent (sur couche de blocage). Une couche de blocage située au-dessus d’une couche métallique fonctionnelle à base d’argent est appelée surcouche de blocage. Une couche de blocage située en- dessous d’une couche métallique fonctionnelle à base d’argent est appelée sous-couche de blocage.
Les couches de blocage sont choisies parmi les couches métalliques à base d'un métal ou d'un alliage métallique, les couches de nitrure métallique, les couches d’oxyde métallique et les couches d’oxynitrure métallique d’un ou plusieurs éléments choisis parmi le titane, le nickel, le chrome, le tantale et le niobium telles que Ti, TiN, TiOx, Nb, NbN, NbOx, Ni, NiN, NiOx, Cr, CrN, CrOx, NiCr, NiCrN, NiCrOx.
Lorsque ces couches de blocage sont déposées sous forme métallique, nitrurée ou oxynitrurée, ces couches peuvent subir une oxydation partielle ou totale selon leur épaisseur et la nature des couches qui les entourent, par exemple, au moment du dépôt de la couche suivante ou par oxydation au contact de la couche sous-jacente.
Les couches de blocage peuvent être choisies parmi les couches métalliques notamment d'un alliage de nickel et de chrome (NiCr) ou de titane.
Avantageusement, les couches de blocage sont des couches métalliques à base de nickel. Les couche de blocage métallique à base de nickel peuvent comprendre, (avant traitement thermique), au moins 20 %, au moins 30 %, au moins 40 %, au moins 50 %, au moins 60 %, au moins 70 %, au moins 80 %, au moins 90 %, au moins 95 %, au moins 96 %, au moins 97 %, au moins 98 %, au moins 99 % ou 100 % en masse de nickel par rapport à la masse de la couche métallique à base de nickel.
Les couches métalliques à base de nickel peuvent être choisies parmi :
- les couches métalliques de nickel,
- les couches métalliques de nickel dopées,
- les couches métalliques à base d’alliage de nickel.
Les couches métalliques à base d’alliage de nickel peuvent être à base d’alliage de nickel et de chrome.
Chaque couche de blocage présente une épaisseur comprise entre 0,1 et 5,0 nm. L’épaisseur de ces couches de blocage peut être :
- d’au moins 0,1 nm, d’au moins 0,2 nm ou d’au moins 0,4 nm et/ou
- d’au plus 5,0 nm, d’au plus 2,0 nm, d’au plus 1 ,0 nm ou d’au plus 0,5 nm.
Par « revêtement diélectrique » au sens de la présente invention, il faut comprendre qu’il peut y avoir une seule couche ou plusieurs couches de matériaux différents à l’intérieur du revêtement. Un « revêtement diélectrique » selon l’invention comprend majoritairement des couches diélectriques. Cependant, selon l’invention ces revêtements peuvent comprendre également des couches d’autre nature notamment des couches absorbantes par exemple métalliques.
On considère qu’un « même » revêtement diélectrique se situe :
- entre le substrat et la première couche fonctionnelle,
- entre chaque couche métallique fonctionnelle à base d’argent,
- au-dessus de la dernière couche fonctionnelle (la plus éloignée du substrat).
Par « couche diélectrique » au sens de la présente invention, il faut comprendre que du point de vue de sa nature, le matériau est « non métallique », c’est-à-dire n’est pas un métal. Dans le contexte de l’invention, ce terme désigne un matériau présentant un rapport n/k sur toute la plage de longueur d’onde du visible (de 380 nm à 780 nm) égal ou supérieur à 5. n désigne l’indice de réfraction réel du matériau à une longueur d’onde donnée et k représente la partie imaginaire de l’indice de réfraction à une longueur d’onde donnée ; le rapport n/k étant calculé à une longueur d’onde donnée identique pour n et pour k.
L’épaisseur d’un revêtement diélectrique correspond à la somme des épaisseurs des couches le constituant.
Les revêtements diélectriques présentent une épaisseur supérieure à 15 nm, de préférence comprise entre 15 et 200 nm.
Les couches diélectriques des revêtements diélectriques présentent les caractéristiques suivantes seules ou en combinaison :
- elles sont déposées par pulvérisation cathodique assistée par champ magnétique,
- elles sont choisies parmi les oxydes ou nitrures d’un ou plusieurs éléments choisi(s) parmi le titane, le silicium, l’aluminium, le zirconium, l’étain et le zinc,
- elles ont une épaisseur supérieure à 2 nm, de préférence comprise entre 2 et 100 nm.
De préférence, la couche fonctionnelle à base d’argent se trouve au-dessus d’une couche diélectrique dite couche stabilisante ou de mouillage en un matériau apte à stabiliser l'interface avec la couche fonctionnelle. Ces couches sont en général à base d’oxyde de zinc.
De préférence, la couche fonctionnelle à base d’argent se trouve en-dessous d’une couche diélectrique dite couche stabilisante ou de mouillage en un matériau apte à stabiliser l'interface avec la couche fonctionnelle. Ces couches sont en général à base d’oxyde de zinc.
Les couches à base d’oxyde de zinc, peuvent comprendre, au moins 80 %, au moins 90 % en masse de zinc par rapport à la masse totale de tous les éléments constituant la couche à base d’oxyde de zinc à l’exclusion de l’oxygène et de l’azote. Les couches à base d’oxyde de zinc peuvent comprendre un ou plusieurs éléments choisis parmi l’aluminium, le titane, le niobium, le zirconium, le magnésium, le cuivre, l’argent, l’or, le silicium, le molybdène, le nickel, le chrome, le platine, l’indium, l’étain et l’hafnium, de préférence l’aluminium.
Les couches à base d’oxyde de zinc peuvent être éventuellement dopée à l’aide d’au moins un autre élément, comme l’aluminium.
A priori, la couche à base d’oxyde de zinc n’est pas nitrurée, cependant des traces peuvent exister.
La couche à base d’oxyde de zinc comprend, par ordre de préférence croissant, au moins 80 %, au moins 90 %, au moins 95 %, au moins 98 %, au moins 100 %, en masse d’oxygène par rapport à la masse totale de l’oxygène.
Le revêtement diélectrique situé entre le substrat et la première couche métallique fonctionnelle et/ou un ou chaque revêtement diélectrique situé au-dessus de la première couche fonctionnelle à base d’argent situé comporte une couche à base d’oxyde de zinc comprenant au moins 80 % en masse de zinc par rapport à la masse de tous les éléments autres que de l’oxygène.
De préférence, chaque revêtement diélectrique comporte une couche à base d’oxyde de zinc comprenant au moins 80 % en masse de zinc par rapport à la masse de tous les éléments autres que de l’oxygène.
De préférence, le revêtement diélectrique situé directement en-dessous de la couche métallique fonctionnelle à base d’argent comporte au moins une couche diélectrique à base d’oxyde de zinc, éventuellement dopé à l’aide d’au moins un autre élément, comme l’aluminium. La couche fonctionnelle métallique déposée au-dessus d’une couche à base d’oxyde de zinc est soit directement au contact, soit séparée par une couche de blocage.
Dans tous les empilements, le revêtement diélectrique le plus proche du substrat est appelé revêtement inférieur et le revêtement diélectrique le plus éloigné du substrat est appelé revêtement supérieur. Les empilements à plus d’une couche d’argent comprennent également des revêtements diélectriques intermédiaires situés entre le revêtement inférieur et supérieur.
De préférence, les revêtements inférieurs ou intermédiaires comprennent une couche diélectrique à base d’oxyde de zinc située au-dessous et directement au contact d’une couche métallique à base d’argent ou séparée de cette couche par une sous couche de blocage. De préférence, le revêtement diélectrique situé directement au-dessus de la couche métallique fonctionnelle à base d’argent comporte au moins une couche diélectrique à base d’oxyde de zinc, éventuellement dopé à l’aide d’au moins un autre élément, comme l’aluminium. La couche fonctionnelle métallique déposée en-dessous d’une couche à base d’oxyde de zinc est soit directement au contact, soit séparée par une couche de blocage.
De préférence, les revêtements intermédiaires ou supérieurs comprennent une couche diélectrique à base d’oxyde de zinc située au-dessus et directement au contact de la couche métallique à base d’argent ou séparée de cette couche par une sur couche de blocage.
Les couches d’oxyde de zinc ont une épaisseur :
- d'au moins 1,0 nm, d'au moins 2,0 nm, d'au moins 3,0 nm, d'au moins 4,0 nm ou d'au moins 5,0 nm, et/ou
- d’au plus 25 nm, d’au plus 10 nm ou d’au plus 8,0 nm.
Les couches diélectriques peuvent présenter une fonction barrière. On entend par couches diélectriques à fonction barrière (ci-après couche barrière), une couche en un matériau apte à faire barrière à la diffusion de l'oxygène et de l’eau à haute température, provenant de l'atmosphère ambiante ou du substrat transparent, vers la couche fonctionnelle. De telles couches diélectriques sont choisies parmi les couches :
- à base de composés de silicium et/ou d’aluminium et/ou de zirconium choisis parmi les oxydes tels que Si02, les nitrures tels que les nitrure de silicium Si3N4 et les nitrures d'aluminium AIN, et les oxynitrures SiOxNy, éventuellement dopé à l’aide d’au moins un autre élément,
- à base d’oxyde de zinc et d’étain,
- à base d’oxyde de titane.
De préférence, le matériau comprend une ou plusieurs couches à base d’oxyde de zinc et d’étain. Les couches à base d’oxyde de zinc et d’étain comprennent au moins 20 % en masse d’étain par rapport à la masse totale de zinc et d’étain.
La couche à base d’oxyde de zinc et d’étain comprend par rapport à la masse totale de zinc et d’étain au moins 20 %, au moins 30 %, au moins 40 %, au moins 50 %, au moins 60 % ou au moins 80 % en masse d’étain.
De préférence, la couche à base d’oxyde de zinc et d’étain comprend 40 à 80 % en masse d’étain par rapport à la masse totale de zinc et d’étain.
La couche à base d’oxyde de zinc et d’étain présente une épaisseur :
- supérieure à 5 nm, supérieure à 10 nm, supérieure à 15 nm, supérieure à 20 nm ou supérieure à 25 nm,
- inférieure à 50 nm, inférieure à 40 nm ou inférieure à 35 nm.
Le revêtement diélectrique situé entre le substrat et la première couche métallique fonctionnelle et/ou chaque revêtement diélectrique situé au-dessus de la première couche fonctionnelle à base d’argent situé comporte une couche à base d’oxyde de zinc et d’étain comprenant au moins 20 % en masse d’étain par rapport à la masse totale de zinc et d’étain.
Chaque revêtement diélectrique peut comporter une couche à base d’oxyde de zinc et d’étain comprenant au moins 20 % en masse d’étain par rapport à la masse totale de zinc et d’étain.
De préférence, la somme des épaisseurs de toutes les couches à base d’oxyde de zinc et d’étain situées dans le revêtement diélectrique situé entre le substrat et la première couche d’argent est supérieure à 30%, supérieure à 40%, supérieure à 50% ou supérieure à 60% de l’épaisseur totale du revêtement diélectrique.
De préférence, la somme des épaisseurs de toutes les couches à base d’oxyde de zinc et d’étain située dans le revêtement diélectrique situé au-dessus d’une couche fonctionnelle à base d’argent est supérieure à 50%, supérieure à 60%, supérieure à 70% ou supérieure à 75 % de l’épaisseur totale du revêtement diélectrique.
De préférence, la somme des épaisseurs de toutes les couches à base d’oxyde présentes dans le revêtement diélectrique situé entre le substrat et la première couche métallique fonctionnelle et/ou dans chaque revêtement diélectrique situé au-dessus de la première couche fonctionnelle à base d’argent est supérieure à 50 %, supérieure à 60 %, supérieure à 70 %, supérieure à 80 % ou supérieure à 90 % de l’épaisseur totale du revêtement diélectrique.
Le revêtement diélectrique situé entre le substrat et la première couche métallique fonctionnelle et/ou un ou chaque revêtement diélectrique situé au-dessus de la première couche fonctionnelle à base d’argent peut être constitué uniquement de couche d’oxyde.
De préférence, l’empilement comporte au moins une couche diélectrique à base d’oxyde de zinc et une couche à base d’oxyde de zinc et d’étain.
De préférence, le revêtement diélectrique situé directement en-dessous de la couche métallique fonctionnelle à base d’argent comporte au moins une couche diélectrique à base d’oxyde de zinc et une couche à base d’oxyde de zinc et d’étain.
De préférence, un ou chaque revêtement diélectrique situé au-dessus de la couche métallique fonctionnelle à base d’argent comporte au moins une couche diélectrique à base d’oxyde de zinc et une couche à base d’oxyde de zinc et d’étain. De préférence, chaque revêtement diélectrique comporte au moins une couche diélectrique à base d’oxyde de zinc et une couche à base d’oxyde de zinc et d’étain.
L’empilement de couches minces peut éventuellement comprendre une couche de protection. La couche de protection est de préférence la dernière couche de l’empilement, c’est-à-dire la couche la plus éloignée du substrat revêtu de l’empilement (avant traitement thermique).
Le revêtement diélectrique le plus éloigné du substrat peut comprendre une couche de protection. Ces couches ont en général une épaisseur comprise entre 0,5 et 10 nm, de préférence 1 et 5 nm.
Cette couche de protection peut être choisie parmi une couche à base de titane, de zirconium, d’hafnium, de silicium, de zinc et/ou d’étain et leur mélange, ce ou ces métaux étant sous forme métallique, oxydée ou nitrurée.
Selon un mode de réalisation, la couche de protection est à base d’oxyde de zirconium et/ou de titane, de préférence à base d’oxyde de zirconium, d’oxyde de titane ou d’oxyde de titane et de zirconium.
Selon un mode de réalisation, l’empilement comprend :
- un revêtement diélectrique situé en-dessous de la couche métallique fonctionnelle à base d’argent,
- éventuellement une couche de blocage,
- une couche métallique fonctionnelle à base d’argent,
- éventuellement une couche de blocage,
- un revêtement diélectrique situé au-dessus de la couche métallique fonctionnelle à base d’argent comprenant éventuellement une couche de protection.
Selon un mode de réalisation, l’empilement comprend :
- un revêtement diélectrique situé en-dessous de la couche métallique fonctionnelle à base d’argent comprenant la couche à base d’oxyde de silicium, une couche à base d’oxyde de zinc et d’étain, une couche à base d’oxyde de zinc,
- éventuellement une couche de blocage,
- une couche métallique fonctionnelle à base d’argent,
- éventuellement une couche de blocage,
- un revêtement diélectrique situé au-dessus de la couche métallique fonctionnelle à base d’argent comprenant une couche à base d’oxyde de zinc, une couche à base d’oxyde de zinc et d’étain et éventuellement une couche de protection.
Le substrat revêtu de l’empilement ou l’empilement seulement peut être destiné à subir un traitement thermique. Le substrat revêtu de l'empilement peut être bombé et/ou trempé. Cependant, la présente invention concerne également le substrat revêtu non traité thermiquement.
L’empilement peut ne pas avoir subi un traitement thermique à une température supérieure à 500 °C, de préférence 300 °C.
L’empilement peut avoir a subi un traitement thermique à une température supérieure à 300 °C, de préférence 500 °C.
Les traitements thermiques sont choisis parmi un recuit, par exemple par un recuit thermique rapide (« Rapid Thermal Process ») tel qu’un recuit laser ou lampe flash, une trempe et/ou un bombage. Le recuit thermique rapide est par exemple décrit dans la demande W02008/096089.
La température de traitement thermique (au niveau de l’empilement) est supérieure à 300 °C, de préférence supérieure à 400 °C, et mieux supérieure à 500 °C.
Le substrat revêtu de l'empilement est de préférence un verre trempé notamment lorsqu’il fait partie d’un vitrage utilisé dans comme élément constitutif d’un dispositif réfrigérant, d’un dispositif chauffant ou d’une porte anti-feu.
Les substrats transparents selon l’invention sont de préférence en un matériau rigide minéral, comme en verre, ou organiques à base de polymères (ou en polymère).
Les substrats transparents organiques selon l’invention peuvent également être en polymère, rigides ou flexibles. Des exemples de polymères convenant selon l’invention comprennent, notamment :
- le polyéthylène,
- les polyesters tels que le polyéthylène téréphtalate (PET), le polybutylène téréphtalate (PBT), le polyéthylène naphtalate (PEN) ;
- les polyacrylates tels que le polyméthacrylate de méthyle (PMMA) ;
- les polycarbonates ;
- les polyuréthanes ;
- les polyamides ;
- les polyimides ;
- les polymères fluorés comme les fluoroesters tels que l’éthylène tétrafluoroéthylène (ETFE), le polyfluorure de vinylidène (PVDF), le polychlorotrifluorethylène (PCTFE), l’éthylène de chlorotrifluorethylène (ECTFE), les copolymères éthylène-propylène fluorés (FEP) ;
- les résines photoréticulables et/ou photopolymérisables, telles que les résines thiolène, polyuréthane, uréthane-acrylate, polyester-acrylate et
- les polythiouréthanes. Le substrat est de préférence une feuille de verre ou de vitrocéramique.
Le substrat est de préférence transparent, incolore (il s’agit alors d’un verre clair ou extra-clair) ou coloré, par exemple en bleu, gris ou bronze. Le verre est de préférence de type silico-sodo-calcique, mais il peut également être en verre de type borosilicate ou alumino-borosilicate.
Selon un mode de réalisation préféré, le substrat est en verre, notamment silico- sodo-calcique ou en matière organique polymérique.
Le substrat possède avantageusement au moins une dimension supérieure ou égale à 1 m, voire 2 m et même 3 m. L’épaisseur du substrat varie généralement entre 0,5 mm et 19 mm, de préférence entre 0,7 et 9 mm, notamment entre 2 et 8 mm, voire entre 2,8 et 6 mm. Le substrat peut être plan ou bombé, voire flexible.
L’invention concerne également un vitrage comprenant au moins un matériau selon l’invention. L’invention concerne un vitrage pouvant être sous forme de vitrage monolithique, feuilleté ou multiple, en particulier double vitrage ou triple vitrage.
Le vitrage peut être un vitrage monolithique comportant 2 faces.
Le vitrage peut être un vitrage multiple comprenant deux, trois ou quatre substrats. Dans ce cas, le vitrage comporte un matériau selon l’invention, comprenant notamment un substrat et un, deux, trois substrats additionnels.
Un vitrage multiple comprend au moins un matériau selon l’invention et au moins un substrat additionnel. Le matériau et le substrat additionnel sont soit cote à cote soit séparés par au moins une lame de gaz intercalaire.
Un double vitrage comporte deux substrats, un substrat extérieur et un substrat intérieur et 4 faces.
Un triple vitrage comporte trois substrats, un substrat extérieur, un substrat central et un substrat intérieur, et 6 faces.
Dans le cas d’un bâtiment, la face 1 est à l'extérieur du bâtiment et constitue donc la paroi extérieure du vitrage. Toutes les autres faces sont numérotées successivement. La face située à l’intérieur du bâtiment présente le numéro le plus élevé.
Un vitrage feuilleté comporte au moins une structure de type premier substrat / feuille(s) / deuxième substrat. La feuille polymérique peut notamment être à base de polyvinylbutyral PVB, éthylène vinylacétate EVA, polyéthylène téréphtalate PET, polychlorure de vinyle PVC. L’empilement de couches minces est positionné sur l’une au moins des faces d’un des substrats.
Ces vitrages peuvent être montés sur un bâtiment ou un véhicule. Ces vitrages peuvent être montés sur des dispositifs chauffants ou réfrigérants tels que des portes de four ou de réfrigérateur.
Le vitrage peut comprendre au moins un substrat transparent revêtu d’un revêtement fonctionnel autre qu’un empilement comprenant au moins une couche métallique fonctionnelle à base d’argent tel qu’un revêtement comprenant un oxyde transparent conducteur (« TCO » en anglais). Le revêtement comprenant un oxyde transparent conducteur peut être choisi parmi un matériau à base d'oxyde d'indium et d'étain (ITO), à base d'oxyde de zinc dopé à l'aluminium (ZnO:AI) ou dopé au bore (ZnO: B), ou encore à base d'oxyde d'étain dopé au fluor (Sn02: F). Ces matériaux sont déposés par voie chimique, comme par exemple par dépôt de vapeur chimique (« CVD »), éventuellement améliorée par plasma (« PECVD ») ou par voie physique, comme par exemple par dépôt sous vide par pulvérisation cathodique, éventuellement assistée par champ magnétique (« Magnétron »). La présence de cet autre revêtement est particulièrement avantageuse dans le cas de dispositif chauffant.
Le revêtement fonctionnel autre qu’un empilement comprenant au moins une couche métallique fonctionnelle à base d’argent peut se trouver sur le même substrat. Le revêtement fonctionnel autre qu’un empilement comprenant au moins une couche métallique fonctionnelle à base d’argent peut se trouver sur un substrat différent de celui revêtu d’un empilement comprenant une couche métallique fonctionnelle à base d’argent. Dans ce cas le vitrage est un vitrage multiple.
Le vitrage peut donc comprendre un revêtement fonctionnel autre qu’un empilement comprenant une couche métallique fonctionnelle à base d’argent tel qu’un revêtement comprenant un oxyde transparent conducteur situé :
- sur le substrat comprenant une couche métallique fonctionnelle à base d’argent, sur la face opposé à celle comprenant la couche métallique fonctionnelle à base d’argent,
- sur l’une des faces d’un substrat différent de celui comprenant une couche métallique fonctionnelle à base d’argent.
Le dispositif chauffant permet le chauffage de l'enceinte à une température élevée notamment supérieure à 50, 100, 200, 300, 400, 500 ou 600 °C. Le dispositif chauffant comprend en outre des moyens de chauffage. Ces moyens de chauffage permettent le chauffage de l'enceinte à une température élevée notamment supérieure à 50, 100, 200, 300, 400, 500 ou 600 °C.
Les exemples suivants illustrent l’invention. Exemples Des empilements de couches minces définis ci-après sont déposés sur des substrats en verre sodo-calcique clair d’une épaisseur de 4 mm.
Pour ces exemples, les conditions de dépôt des couches déposées par pulvérisation (pulvérisation dite « cathodique magnétron ») sont résumées dans le tableau 1 ci-dessous.
[Tableau 1] at. : atomique ; pds : poids ; * : à 550 nm. Le tableau 2. ci-dessous résume les conditions de dépôt des couches à base d’oxyde de silicium. [Tableau 2]
Cpt. : Compartiment
Les matériaux Cp-1 à Cp-5 et lnv-1 et lnv-2 comprennent une couche de Si02 déposée dans une zone unique. Pour les matériaux lnv-3 et lnv-4, la couche de Si02 est déposée dans deux zones différentes. Le tableau 3 ci-dessous liste les matériaux et les épaisseurs physiques en nanomètres (sauf autres indications) de chaque couche ou revêtement qui constitue les empilements en fonction de leurs positions vis-à-vis du substrat porteur de l’empilement. [Tableau 3] RD : Revêtement diélectrique ; CB : Couche blocage ; CF : Couche fonctionnelle
Un traitement thermique de type trempe est réalisé sur les substrats revêtus à 705 °C pendant 180 secondes.
Evaluation du flou et de la durabilité chimique
Le niveau de flou est évalué de la façon suivante. Le verre trempé est placé sur un pupitre incliné de 20 degrés par rapport à la verticale, dans une salle dont les murs sont noirs. Il est éclairé par une puissante lampe placée à la verticale du pupitre. L’observateur se place devant le pupitre, à 1 m de distance. Dans cette configuration, un échantillon flou montre un aspect laiteux marqué : il diffuse la lumière de la lampe loin de sa zone de réflexion spéculaire sur le verre. A contrario, un échantillon ne présentant pas de flou ne diffuse aucune lumière en direction de l’observateur, il apparait donc foncé. Les indicateurs d'appréciation suivants ont été utilisés :
- «- » : Le matériau est très flou, - « 0 » : Les matériau est flou,
- « + » : Le matériau n’est pas flou.
La durabilité chimique est évalué par un test haute humidité avant (HH) et après traitement thermique (TT-HH). Le test humidité (HH) consiste à stocker des échantillons pendant 56 jours à 90 % de l'humidité relative et à 60 °C et à observer la présence éventuelle de défauts tels que des piqûres de corrosion. Les indicateurs d'appréciation suivants ont été utilisés :
- ok : pas de piqûre, le matériau ne présente pas de défaut après 56 jours de test, - nok : nombreuses piqûres, le matériau présente des défauts et ne satisfait donc pas le test.
Les résultats sont repris dans la tableau 4 ci-dessous.
[Tableau 4] Afin de confirmer l’effet anti-flou des photographies et des images au microscope ont été prises. La figure 1 montre cote à cote deux matériaux, à gauche le matériau Cp-
1 et à droite le matériau lnv-2. La figure 2 regroupe deux images prises au microscope, à gauche le matériau Cp-1 et à droite le matériau lnv-2. Le tableau 5 ci-dessous reprend les observations. [Tableau 5]
Sur les images du matériau de l’invention, on n’observe pas de flou. Cela est dû à la forte diminution du nombre de dendrites.
Etude de la dégradation de l’émissivité en fonction de la durée du traitement thermique
Le demandeur a découvert que les propriétés avantageuses de l’invention du point de vue de la résistance aux traitements thermiques sont attribuables à un retard de la dégradation. Le retard est illustré par les courbes de la figure 3. Ces courbes A, B, C, D et E représentent la dégradation de l’émissivité en point de pourcentage en fonction de la durée du traitement thermique en seconde. Le traitement thermique est réalisé à une température de 705 °C. Le matériaux Cp-1 est comparé respectivement aux matériaux Cp-3 (Courbe A), Cp-4 (Courbe B), lnv-2 (Courbe C), lnv-3 (Courbe D) et lnv-4 (Courbe E). Les ronds évidés représentent sur chaque courbe Cp-1 et les ronds pleins l’élément de comparaison. Le retard est observé lorsqu’une couche à base d’oxyde de silicium d’épaisseur suffisante est utilisée (courbes C, D et E).
Le tableau 6 ci-dessous met en évidence le retard à la dégradation de la solution de l’invention. Pour cela, on compare la durée du traitement thermique en seconde pour laquelle on obtient 2 points de dégradation de l’émissivité entre le matériau Cp-1 et respectivement les matériaux Cp-3 et Cp-4 ainsi que les matériaux de l’invention lnv-2, lnv-3 et lnv-4.
[Tableau 6]
Pour des épaisseurs inférieures à 12 nm, le retard est trop court pour être véritablement utile. Avec au moins 12 nm de S1O2, le couple temps/température lors de la chauffe devient compatible avec une transformation du verre, telle qu’une trempe ou un bombage sans flou, ni dégradation de l’émissivité. Sur les outils de trempe et de bombage utilisés, le vitrage Cp-1 montrait un flou à des paramètres temps et température très proches de ceux nécessaires pour obtenir une planéité, une fragmentation, et une forme acceptable. Les outils industriels utilisés pour bomber et/ou tremper un vitrage à couche pouvant présenter des variabilités. Un vitrage doit donc être suffisamment robuste pour accepter ces variabilités de procédé. Les matériaux lnv-2, lnv-3, et lnv-4 disposent de cette résistance supplémentaire.

Claims

REVENDICATIONS
1. Matériau comprenant un substrat transparent revêtu d’un empilement comprenant au moins une couche métallique fonctionnelle à base d’argent et au moins deux revêtements diélectriques, chaque revêtement diélectrique comportant au moins une couche diélectrique, de manière à ce que chaque couche métallique fonctionnelle soit disposée entre deux revêtements diélectriques, caractérisé en ce que l’empilement comprend une couche à base d’oxyde de silicium d’épaisseur supérieure ou égale à 12 nm située directement au contact du substrat.
2. Matériau selon la revendication 1 caractérisé en que la couche à base d’oxyde de silicium présente une épaisseur supérieure ou égale à 14 nm.
3. Matériau selon l’une quelconque des revendications précédentes, caractérisé en ce que la couche à base d’oxyde de silicium présente une épaisseur inférieure ou égale à 60 nm.
4. Matériau selon l’une quelconque des revendications précédentes, caractérisé en ce que le revêtement diélectrique situé entre le substrat et la première couche métallique fonctionnelle et/ou un ou chaque revêtement diélectrique situé au-dessus de la première couche fonctionnelle à base d’argent comporte une couche à base d’oxyde de zinc comprenant au moins 80 % en masse de zinc par rapport à la masse de tous les éléments autres que de l’oxygène.
5. Matériau selon l’une quelconque des revendications précédentes caractérisé en ce que le revêtement diélectrique situé entre le substrat et la première couche métallique fonctionnelle et/ou un ou chaque revêtement diélectrique situé au-dessus de la première couche fonctionnelle à base d’argent situé comporte une couche à base d’oxyde de zinc et d’étain comprenant au moins 20 % en masse d’étain par rapport à la masse totale de zinc et d’étain.
6. Matériau selon l’une quelconque des revendications précédentes caractérisé en ce que l’empilement comporte au moins une couche diélectrique à base d’oxyde de zinc et une couche à base d’oxyde de zinc et d’étain.
7. Matériau selon l’une quelconque des revendications précédentes caractérisé en ce que chaque revêtement diélectrique comporte au moins une couche diélectrique à base d’oxyde de zinc et une couche à base d’oxyde de zinc et d’étain.
8. Matériau selon l’une quelconque des revendications précédentes caractérisé en ce que la somme des épaisseurs de toutes les couches à base d’oxyde présentes dans le revêtement diélectrique situé entre le substrat et la première couche métallique fonctionnelle et/ou dans un ou chaque revêtement diélectrique situé au-dessus de la première couche fonctionnelle à base d’argent est supérieure à 50 %, supérieure à 60 %, supérieure à 70 %, supérieure à 80 %, supérieure à 90 % de l’épaisseur totale du revêtement diélectrique.
9. Matériau selon l’une quelconque des revendications précédentes caractérisé en ce que le revêtement diélectrique situé entre le substrat et la première couche métallique fonctionnelle et/ou un ou chaque revêtement diélectrique situé au-dessus de la première couche fonctionnelle à base d’argent est constitué uniquement de couche d’oxyde.
10. Matériau selon l’une quelconque des revendications précédentes caractérisé que toutes les couches de l’empilement sont déposées par pulvérisation cathodique assistée par un champ magnétique.
11. Matériau selon l’une quelconque des revendications précédentes caractérisé en ce que l’empilement comprend :
- un revêtement diélectrique situé en-dessous de la couche métallique fonctionnelle à base d’argent comprenant la couche à base d’oxyde de silicium, une couche à base d’oxyde de zinc et d’étain, une couche à base d’oxyde de zinc,
- éventuellement une couche de blocage,
- une couche métallique fonctionnelle à base d’argent,
- éventuellement une couche de blocage,
- un revêtement diélectrique situé au-dessus de la couche métallique fonctionnelle à base d’argent comprenant une couche à base d’oxyde de zinc, une couche à base d’oxyde de zinc et d’étain et éventuellement une couche de protection.
12. Matériau selon l’une quelconque des revendications précédentes caractérisé que l’empilement comprend une seule couche fonctionnelle.
13. Matériau selon l’une quelconque des revendications précédentes caractérisé en ce qu’au moins le substrat revêtu de l'empilement est bombé et/ou trempé.
14. Vitrage caractérisé en ce qu’il comporte un matériau selon l’une quelconque des revendications précédentes et un, deux, trois substrats additionnels.
15. Vitrage selon la revendication 14 caractérisé en ce qu’il comprend un revêtement fonctionnel autre qu’un empilement comprenant une couche métallique fonctionnelle à base d’argent situé :
- sur le substrat comprenant une couche métallique fonctionnelle à base d’argent, sur la face opposé à celle comprenant une couche métallique fonctionnelle à base d’argent,
- sur l’une des faces d’un substrat différent de celui comprenant une couche métallique fonctionnelle à base d’argent.
16. Dispositif chauffant ou réfrigérant comprenant des moyens de chauffage ou de refroidissement et une enceinte délimitée par une ou plusieurs parois dont au moins une paroi comprend au moins un vitrage comprenant un matériau selon l’une quelconque des revendications 1 à 13.
17. Dispositif réfrigérant selon la revendication 16 caractérisé en ce qu’il est de type congélateur et en ce que le vitrage est constitué du matériau et en ce que l’empilement est situé sur la face du substrat au contact de l’enceinte.
18. Utilisation d’un vitrage comme élément constitutif d’un dispositif réfrigérant, d’un dispositif chauffant ou d’une porte anti-feu, le vitrage comprenant un matériau selon l’une quelconque des revendications 1 à 13.
19. Procédé de préparation d’un matériau selon l’une quelconque des revendications 1 à 13 caractérisé en ce que toutes les couches de l’empilement sont déposées par pulvérisation cathodique assistée par un champ magnétique.
EP21732439.1A 2020-05-12 2021-05-07 Matériau bas émissif comprenant une couche épaisse à base d'oxyde de silicium Pending EP4149897A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2004679A FR3110160B1 (fr) 2020-05-12 2020-05-12 Matériau bas émissif comprenant une couche épaisse à base d'oxyde de silicium
PCT/FR2021/050786 WO2021229165A1 (fr) 2020-05-12 2021-05-07 Matériau bas émissif comprenant une couche épaisse à base d'oxyde de silicium

Publications (1)

Publication Number Publication Date
EP4149897A1 true EP4149897A1 (fr) 2023-03-22

Family

ID=72266419

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21732439.1A Pending EP4149897A1 (fr) 2020-05-12 2021-05-07 Matériau bas émissif comprenant une couche épaisse à base d'oxyde de silicium

Country Status (7)

Country Link
US (1) US20230212065A1 (fr)
EP (1) EP4149897A1 (fr)
BR (1) BR112022021996A2 (fr)
CO (1) CO2022016074A2 (fr)
FR (1) FR3110160B1 (fr)
MX (1) MX2022014175A (fr)
WO (1) WO2021229165A1 (fr)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10100303A (ja) * 1996-06-07 1998-04-21 Nippon Sheet Glass Co Ltd 透明導電膜付き基板およびそれを用いた表示素子
DE60309441T2 (de) 2002-03-01 2007-09-20 Cardinal Cg Co., Eden Prairie Dünnfilmbeschichtung mit einer transparenten grundierungsschicht
JP4298654B2 (ja) * 2002-07-31 2009-07-22 日本板硝子株式会社 焼入れ可能な高遮光性コーティング
FR2911130B1 (fr) 2007-01-05 2009-11-27 Saint Gobain Procede de depot de couche mince et produit obtenu
JP2011512665A (ja) * 2008-02-18 2011-04-21 サン−ゴバン グラス フランス 光起電力セルおよび光起電力セル基板
GB201314699D0 (en) * 2013-08-16 2013-10-02 Pilkington Group Ltd Heat treatable coated glass pane
US9745792B2 (en) * 2015-03-20 2017-08-29 Cardinal Cg Company Nickel-aluminum blocker film multiple cavity controlled transmission coating

Also Published As

Publication number Publication date
FR3110160A1 (fr) 2021-11-19
US20230212065A1 (en) 2023-07-06
MX2022014175A (es) 2022-12-02
WO2021229165A1 (fr) 2021-11-18
FR3110160B1 (fr) 2023-10-27
BR112022021996A2 (pt) 2022-12-13
CO2022016074A2 (es) 2022-12-09

Similar Documents

Publication Publication Date Title
EP2577368B1 (fr) Vitrage de contrôle solaire à faible facteur solaire
EP3066057B1 (fr) Substrat revetu d'un empilement a couches fonctionnelles presentant des proprietes mecaniques ameliorees
EP1644297A2 (fr) Vitrage muni d'un empilement de couches minces reflechissant les infrarouges et/o rayonnement solaire
FR2858816A1 (fr) Substrat transparent comportant un revetement antireflet
EP3880623A1 (fr) Materiau traite thermiquement a proprietes mecaniques ameliorees
WO2021229164A1 (fr) Matériau bas émissif comprenant un revêtement intermédiaire comprenant deux couches comprenant du silicium différentes
WO2016097560A1 (fr) Vitrage utilise comme un element constitutif d'un dispositif chauffant
WO2019166736A1 (fr) Dispositif chauffant muni d'une porte comprenant un vitrage triple
EP3558886B1 (fr) Dispositif chauffant comprenant un substrat verrier revetu sur ses deux faces
FR3047923A1 (fr) Article comprenant une couche de protection superieure a base d'oxyde mixte de zirconium et d'aluminium
EP4149897A1 (fr) Matériau bas émissif comprenant une couche épaisse à base d'oxyde de silicium
FR3032958A1 (fr) Vitrage comprenant un revetement protecteur.
WO2021229166A1 (fr) Matériau bas émissif comprenant une couche à base de nitrure ou d'oxynitrure de silicium et une couche à base d'oxyde de zinc et d'étain
EP3880622A1 (fr) Materiau traite thermiquement a proprietes mecaniques ameliorees
FR3082198A1 (fr) Materiau comprenant un empilement a proprietes thermiques et esthetique
EP4204378B1 (fr) Matériau bas émissif à haute sélectivité et vitrage comprenant un tel matériau
WO2023131766A1 (fr) Vitrage contrôle solaire

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221212

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)