EP4136396B1 - Tubular shell heat exchanger with cross flow - Google Patents

Tubular shell heat exchanger with cross flow Download PDF

Info

Publication number
EP4136396B1
EP4136396B1 EP20829310.0A EP20829310A EP4136396B1 EP 4136396 B1 EP4136396 B1 EP 4136396B1 EP 20829310 A EP20829310 A EP 20829310A EP 4136396 B1 EP4136396 B1 EP 4136396B1
Authority
EP
European Patent Office
Prior art keywords
deflectors
tubes
heat exchanger
tube
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20829310.0A
Other languages
German (de)
French (fr)
Other versions
EP4136396A1 (en
EP4136396C0 (en
Inventor
Jirí KLEMES
Petar Sabev Varbanov
Milan Hemzal
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vysoke Uceni Technicke V Brne
Original Assignee
Vysoke Uceni Technicke V Brne
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vysoke Uceni Technicke V Brne filed Critical Vysoke Uceni Technicke V Brne
Publication of EP4136396A1 publication Critical patent/EP4136396A1/en
Application granted granted Critical
Publication of EP4136396B1 publication Critical patent/EP4136396B1/en
Publication of EP4136396C0 publication Critical patent/EP4136396C0/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1607Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with particular pattern of flow of the heat exchange media, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/007Auxiliary supports for elements
    • F28F9/013Auxiliary supports for elements for tubes or tube-assemblies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/007Auxiliary supports for elements
    • F28F9/013Auxiliary supports for elements for tubes or tube-assemblies
    • F28F9/0132Auxiliary supports for elements for tubes or tube-assemblies formed by slats, tie-rods, articulated or expandable rods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/027Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
    • F28F9/0275Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes with multiple branch pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/24Arrangements for promoting turbulent flow of heat-exchange media, e.g. by plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0066Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • F28D7/0075Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids with particular circuits for the same heat exchange medium, e.g. with the same heat exchange medium flowing through sections having different heat exchange capacities or for heating or cooling the same heat exchange medium at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • F28F2009/222Particular guide plates, baffles or deflectors, e.g. having particular orientation relative to an elongated casing or conduit
    • F28F2009/228Oblique partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/10Particular pattern of flow of the heat exchange media
    • F28F2250/106Particular pattern of flow of the heat exchange media with cross flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/28Safety or protection arrangements; Arrangements for preventing malfunction for preventing noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/30Safety or protection arrangements; Arrangements for preventing malfunction for preventing vibrations

Definitions

  • the invention relates to a tubular shell heat exchanger for use in the energy industry, in oil refining, in chemical engineering and in other industry branches where there is a need for heat exchange and/or waste heat treatment.
  • Tubular shell heat exchangers are currently the most common type of heat exchangers and they are widely used especially in the oil industry, chemical industry and/or energy industry. At present, there is an increasing need to use low-potential heat, which has not been used yet, because it has low rentability or heat exchangers with the necessary parameters were not available. The difficult conditions of such industry branches increases demands on heat exchangers, especially for performance, wear resistance, clogging resistance and simplification of maintenance, increasing service life and efficiency.
  • connection of the heat exchanger to a system may be the opposite of the previous case, whereas the temperature difference between the two media at inlet is the largest and during passing through the heat exchanger is this difference significantly reduced.
  • Such an arrangement is called parallel-flow.
  • a heat exchanger according to the preamble of claim which consists of plurality of heat transfer tubes passing through multiple baffle plates having a circular shape which support the middle portions of the heat transfer tubes.
  • the baffle plate consists of both a full upper portion with openings for the tubes and an empty lower portion. The orientation of the empty portion is always alternating with each baffle plate and this allows the flow of the heating medium to bend into waves.
  • the full portions of the baffle plates for the heat exchanger are created by bent thin plates which are arranged to form a supporting grid.
  • This construction is intended to prevent vibration of the heat exchanger tubes.
  • the tubes are only held in place by the shape contact in the spaces formed between the thin plates.
  • the disadvantage of the heat exchanger is the complicated design and that the generated flow wave of the heating medium creates vibrations.
  • the aim of the present invention is to provide a tubular shell heat exchanger which overcomes the above mentioned shortcomings.
  • tubular shell heat exchanger with cross flow according to the invention as defined by claim 1, which is characterised by the fact that deflectors on tubes in a lower adjacent row are inclined in the opposite direction to those above them, and they are offset by half of the distance, whereas deflectors are fixed to the tubes by means of fixing sleeves, wherein inlet is divided into branches which entry into the shell is in the position above deflectors arranged on the tube which is closest to the branches and deflectors in the place below each entry of the branch form either an assembly of two deflectors oriented to one side, or there is only one deflector oriented to the opposite side and the height of deflectors is less than the distance of the surfaces of two tubes arranged above each other.
  • the fixing sleeves formed as a U-shaped wire wrapped around tubes, wherein the threaded ends of the fixing sleeve being secured by nuts.
  • the deflector fixed on every second tube in a row perpendicular to the axis of the heat exchanger.
  • FIG. 1 is a schematic view of a tubular shell heat exchanger according to the invention
  • Fig. 2 shows a detail of mounting deflectors on the tube bundle of the heat exchanger of Fig. 1 in a perspective view
  • Fig. 3 shows a detail of mounting deflectors on the tube bundle of the heat exchanger of Fig. 1 in axial view.
  • Fig. 1 is a schematic view of a tubular shell heat exchanger 1, which consists of a shell 12 and a set of connecting tubes 8 through which the heated medium flows, and which are fixed between two tube plates 2, 3, on one side to the inlet tube plate 2 and on the opposite side to the outlet tube plate 3.
  • An inlet 4 of the heat transfer medium i.e. a heating medium
  • An outlet 5 of the heating medium is arranged at the bottom.
  • the supply of heated medium is ensured by an inlet tube 6 arranged in the axis of the shell 12 on the side of the inlet tube plate 2 and its discharge by an outlet tube 7, on the side of the outlet tube plate 3.
  • Heat transfer takes place through a bundle of tubes 8 which are arranged parallel to the axis from the inlet tube plate 2 to the outlet tube plate 3.
  • the inlet 4 of the heating medium in the upper part of the heat exchanger 1 is divided into several branches 11 connected to the shell 12 at several entries spaced apart along the upper length of the heat exchanger's shell 12.
  • branches 11 there are four branches 11, but the number of these branches 11 may vary according to the length of the internal space between the tube plates 2, 3 of the heat exchanger 1 and in particular according to the heat performance requirements.
  • deflectors 9 are fastened to the tubes 8 at regular mutual intervals perpendicular to these tubes 8 by means of fixing sleeves 10.
  • the deflector 9 can be fixed on every second tube 8 in a row, perpendicular to the axis.
  • Deflectors 9 consist of a horizontal fastening strip 13 and an inclined wing 14. It is obvious that the fastening strip 13 serves to be fastened to the lower part of the tubes via fixing sleeves 10.
  • Deflectors 9 are arranged in rows next to each other, on one horizontal row of tubes 8 at a distance X, all of which are inclined in the same direction within such a formation. Deflectors 9 on tubes 8 in the lower adjacent row are again arranged at a distance X, but on the one hand they are inclined in the opposite direction to those above them, and they are also offset by half of the distance X. Below this offset row the arrangement and inclination of deflectors are again the same as in a row above. Branches 11 are joined to the shell 12 in the position above deflectors 9 arranged on the tube 8 which is closest to the entry of the branches 11.
  • Deflectors 9 in the place below each entry form either an assembly of two deflectors 9 oriented to one side, or there is only one deflector 9 oriented to the opposite side. Due to this arrangement receives the flow from each individual entry the desired wavy trajectory, as indicated by the arrow in the example of the first branch 11.
  • the deflector 9 is made of sheet metal with a thickness of 4 to 5 mm.
  • the fastening strip 13 has a width of 50 to 100 mm and there are openings for fixing sleeves 10, which are formed as a U-shaped wire wrapped around tubes 8, the threaded ends of the fixing sleeve 10 being secured with nuts.
  • the height H of the deflector 9 as shown in Fig. 2 is less than the distance h of the surfaces of two tubes 8 arranged above each other, as shown in Fig. 1 , so that the lower edge of the deflector wing 14 does not touch the upper surface of the tube 8 arranged below it.
  • Deflectors 9 are arranged at distances from each other, and the inclination of wings 14 is alternately changed to one side or to the other side. For this purpose, the deflector 9 can be simply turned about 180°. This creates a system of chicanes in the space of the heat exchanger 1, curving the trajectory of the cross-flowing medium, so that an intense turbulent flow is created in the heat exchanger, together with the influence of perpendicular inlet of heating medium into the inner space of heat exchanger 1.
  • the medium moves not only forcibly downwards, but also mainly due to gravity it flows from the top to the bottom, thus the need to equip the interior space with baffles designed to disrupt laminar flow and initiate turbulent flow is eliminated, thereby significantly reducing pressure loss.
  • the advantage of the invention consist in particular in the fact that the deflectors 9 have replaced fixed baffles known from the prior art.
  • the heat exchanger 1 according to the invention does not have the disadvantages of the prior art solutions, such as clogging, creation of dead spots, wear, etc., and the deflectors do not form active obstacles to the flow of the medium. This allows intensive washing of the entire interior of the heat exchanger, so there is no accumulation of dirt and clogging of the heat exchanger on the sides, but especially on the lower inner surface of the shell, because any impurities are continuously washed away by the medium leaving the interior of the heat exchanger and leave freely without the opportunity and reason to accumulate.
  • the advantages of the present invention in a comparison with the prior art heat exchangers are as follows: Unlike baffles known from the prior art, deflectors 9 do not increase the pressure loss and do not require increased pump performance. Changing the flow direction of the heating medium from horizontal to vertical and from the top to the bottom means significant energy savings, which in combination with the effect of creating a turbulent flow reduces the energy consumption for pumping approximatelly by 30 %.
  • the homogeneous temperature field inside the heat exchanger shell results in an increase in the temperature difference between the heating and the heated medium from the inlet of the heated medium, which cannot be achieved with a conventional counter-flow arrangement. Although the temperature difference between the two media decreases through the heat exchanger, the integral of the temperature difference is still significantly higher than in the common cases of existing counter-flow and parallel-flow arrangements and the heat transfer coefficient is therefore improved compared to conventional solutions.
  • Vibrations of the tube bundle are limited because the nature of the medium flow on the side of the shell passing through the tube bundle can significantly affect the fluid-induced vibrations of the tube bundle as well as the vibration resistance of the heat exchanger and thus ensure safe operation. It is significant to reduce the possibility of dirt accumulation, especially by removing the baffles and replacing them with deflectors 9.
  • the built-in and functioning heat exchanger can be quickly adjusted to optimum performance, which is enabled by the modular system of mounted deflectors 9 by a relatively simple changing of their number. This ensures the most efficient operation of the system without the need to dismantle the entire heat exchanger. The changing is relatively very simple and fast and can be realised during system temporary shutdown for other reasons.
  • heat exchanger 1 has significantly lower susceptibility to clogging and significant self-cleaning ability.
  • the exchanger can be fine-tuned to optimum performance by simply adjusting the tube bundle to a greater or lesser number of deflectors 9, in terms of their shape, angle and length.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

    Technical background
  • The invention relates to a tubular shell heat exchanger for use in the energy industry, in oil refining, in chemical engineering and in other industry branches where there is a need for heat exchange and/or waste heat treatment.
  • State of the art
  • Tubular shell heat exchangers are currently the most common type of heat exchangers and they are widely used especially in the oil industry, chemical industry and/or energy industry. At present, there is an increasing need to use low-potential heat, which has not been used yet, because it has low rentability or heat exchangers with the necessary parameters were not available. The difficult conditions of such industry branches increases demands on heat exchangers, especially for performance, wear resistance, clogging resistance and simplification of maintenance, increasing service life and efficiency.
  • Therefore, the designers constantly deal with the possibilities of improving and eliminating the shortcomings of existing heat exchangers and propose new ideas and constructions, especially arrangements and installations with the aim of intensifying performance, but also eliminating the shortcomings of existing solutions. In the heat exchanger, heat tranfer takes place through the tube walls creating a closed tube system with different arrangements. On both sides of the tube wall surfaces there are media with different temperature and heat is transferred to the cooler medium through the wall surface of the tube bundle. Baffles are installed inside the shell to provide mechanical support to the tube bundle. Medium inside of the shell flows through a system of baffles, which help to create a turbulent flow so as to achieve the best possible parameters of heat energy transfer between the media.
  • The most common connection of a heat exchanger to a system is such, that the medium that transfers heat energy enters the heat exchanger on the opposite side than the medium that is to receive heat energy, so the temperature difference between the these two media along the heat exchanger shell is approximately constant and the heat exchanger shell temperature decreases from the inlet of the heating medium to its outlet. Such a flow arrangement is called counter-flow.
  • In less frequent cases, the connection of the heat exchanger to a system may be the opposite of the previous case, whereas the temperature difference between the two media at inlet is the largest and during passing through the heat exchanger is this difference significantly reduced. Such an arrangement is called parallel-flow.
  • Traditional heat exchangers with an istallated tube system with baffles are used in industrial applications, but there is a need to make them more efficient and eliminate a number of following disadvantages of common heat exchangers:
    • medium inside the shell must constantly change the speed and direction of the flow, there is an enormous pressure loss during the passage of the heating medium through the heat exchanger and the demand for performance and thus the energy consumption of the pumps increases;
    • especially on the rear sides of the baffles, zones of flow stagnation are created, which reduce the efficiency of the heat exchanger and can cause the fouling with all the negative effects;
    • the heating medium inside the heat exchanger shell flows continuously around the tube bundle and also laterally, which causes vibrations and consequently fatigue damage to the tube bundle, thus shortening the service life of the whole system;
    • unwanted flows and bypasses can be created between the tube plates and the shell, which reduces the efficiency of heat exchange inside the shell. Therefore, longitudinal flow heat exchangers have been designed, where the internal installation of these heat exchangers is designed so, that the medium inside the shell flows along the tube bundle, assuming a reduction of the pressure loss inside the shell, however there was never significant success. Existing longitudinal flow heat exchangers still use baffles or grating plates, e.g. a heat exchanger generally composed of two or more flat fan-shaped plates, as it is for example in the document CN 206094996 U . Thus, although such a heat exchanger reduces pressure loss, it also significantly reduces heat exchange efficiency, while the longitudinal flow of high velocity fluid impinges on the tube plate at the end of its passage through the shell, which shortens the service life of the heat exchanger and the entire tube system.
  • In document JPH0529668 , a heat exchanger according to the preamble of claim is disclosed which consists of plurality of heat transfer tubes passing through multiple baffle plates having a circular shape which support the middle portions of the heat transfer tubes. The baffle plate consists of both a full upper portion with openings for the tubes and an empty lower portion. The orientation of the empty portion is always alternating with each baffle plate and this allows the flow of the heating medium to bend into waves. The full portions of the baffle plates for the heat exchanger are created by bent thin plates which are arranged to form a supporting grid.
  • This construction is intended to prevent vibration of the heat exchanger tubes. Thus, there are no sleeves to hold the tubes, the tubes are only held in place by the shape contact in the spaces formed between the thin plates. The disadvantage of the heat exchanger is the complicated design and that the generated flow wave of the heating medium creates vibrations.
  • The aim of the present invention is to provide a tubular shell heat exchanger which overcomes the above mentioned shortcomings.
  • Summary of the invention
  • The above mentioned deficiencies are eliminated by tubular shell heat exchanger with cross flow according to the invention as defined by claim 1, which is characterised by the fact that deflectors on tubes in a lower adjacent row are inclined in the opposite direction to those above them, and they are offset by half of the distance, whereas deflectors are fixed to the tubes by means of fixing sleeves, wherein inlet is divided into branches which entry into the shell is in the position above deflectors arranged on the tube which is closest to the branches and deflectors in the place below each entry of the branch form either an assembly of two deflectors oriented to one side, or there is only one deflector oriented to the opposite side and the height of deflectors is less than the distance of the surfaces of two tubes arranged above each other.
  • In the preferred embodiment are the fixing sleeves formed as a U-shaped wire wrapped around tubes, wherein the threaded ends of the fixing sleeve being secured by nuts.
  • In another preferred embodiment is the deflector fixed on every second tube in a row perpendicular to the axis of the heat exchanger.
  • Brief description of the drawings
  • The invention will be further explained by means of drawings, in which Fig. 1 is a schematic view of a tubular shell heat exchanger according to the invention, Fig. 2 shows a detail of mounting deflectors on the tube bundle of the heat exchanger of Fig. 1 in a perspective view and Fig. 3 shows a detail of mounting deflectors on the tube bundle of the heat exchanger of Fig. 1 in axial view.
  • Detailed description of the invention
  • Fig. 1 is a schematic view of a tubular shell heat exchanger 1, which consists of a shell 12 and a set of connecting tubes 8 through which the heated medium flows, and which are fixed between two tube plates 2, 3, on one side to the inlet tube plate 2 and on the opposite side to the outlet tube plate 3. An inlet 4 of the heat transfer medium, i.e. a heating medium, is arranged on the top of the shell 12 of the heat exchanger 1 in the middle of the length of the heat exchanger 1 and an outlet 5 of the heating medium is arranged at the bottom. The supply of heated medium is ensured by an inlet tube 6 arranged in the axis of the shell 12 on the side of the inlet tube plate 2 and its discharge by an outlet tube 7, on the side of the outlet tube plate 3. Heat transfer takes place through a bundle of tubes 8 which are arranged parallel to the axis from the inlet tube plate 2 to the outlet tube plate 3.
  • The inlet 4 of the heating medium in the upper part of the heat exchanger 1 is divided into several branches 11 connected to the shell 12 at several entries spaced apart along the upper length of the heat exchanger's shell 12. In the present embodiment there are four branches 11, but the number of these branches 11 may vary according to the length of the internal space between the tube plates 2, 3 of the heat exchanger 1 and in particular according to the heat performance requirements.
  • It can be seen in Fig. 2 and 3 that deflectors 9 are fastened to the tubes 8 at regular mutual intervals perpendicular to these tubes 8 by means of fixing sleeves 10. Advantageously, the deflector 9 can be fixed on every second tube 8 in a row, perpendicular to the axis. Deflectors 9 consist of a horizontal fastening strip 13 and an inclined wing 14. It is obvious that the fastening strip 13 serves to be fastened to the lower part of the tubes via fixing sleeves 10. The wing 14 is arranged obliquely at an angle α = 120 to 140° to the fastening strip 13 in its horizontal position.
  • Deflectors 9 are arranged in rows next to each other, on one horizontal row of tubes 8 at a distance X, all of which are inclined in the same direction within such a formation. Deflectors 9 on tubes 8 in the lower adjacent row are again arranged at a distance X, but on the one hand they are inclined in the opposite direction to those above them, and they are also offset by half of the distance X. Below this offset row the arrangement and inclination of deflectors are again the same as in a row above. Branches 11 are joined to the shell 12 in the position above deflectors 9 arranged on the tube 8 which is closest to the entry of the branches 11. Deflectors 9 in the place below each entry form either an assembly of two deflectors 9 oriented to one side, or there is only one deflector 9 oriented to the opposite side. Due to this arrangement receives the flow from each individual entry the desired wavy trajectory, as indicated by the arrow in the example of the first branch 11.
  • The deflector 9 is made of sheet metal with a thickness of 4 to 5 mm. The fastening strip 13 has a width of 50 to 100 mm and there are openings for fixing sleeves 10, which are formed as a U-shaped wire wrapped around tubes 8, the threaded ends of the fixing sleeve 10 being secured with nuts. The height H of the deflector 9 as shown in Fig. 2, is less than the distance h of the surfaces of two tubes 8 arranged above each other, as shown in Fig. 1, so that the lower edge of the deflector wing 14 does not touch the upper surface of the tube 8 arranged below it.
  • Deflectors 9 are arranged at distances from each other, and the inclination of wings 14 is alternately changed to one side or to the other side. For this purpose, the deflector 9 can be simply turned about 180°. This creates a system of chicanes in the space of the heat exchanger 1, curving the trajectory of the cross-flowing medium, so that an intense turbulent flow is created in the heat exchanger, together with the influence of perpendicular inlet of heating medium into the inner space of heat exchanger 1. The medium moves not only forcibly downwards, but also mainly due to gravity it flows from the top to the bottom, thus the need to equip the interior space with baffles designed to disrupt laminar flow and initiate turbulent flow is eliminated, thereby significantly reducing pressure loss.
  • The use of gravity for the passage of the heating medium through the heat exchanger 1 reduces the demands on the performance of the pumps.
  • Deflectors 9, which are located in the inner space of the shell 12 of the heat exchanger 1, serve not only to create a turbulent flow, but also to fix the tubes 8 of the tube system in order to prevent vibrations, deflection and maintain its geometry.
  • The advantage of the invention consist in particular in the fact that the deflectors 9 have replaced fixed baffles known from the prior art. The heat exchanger 1 according to the invention does not have the disadvantages of the prior art solutions, such as clogging, creation of dead spots, wear, etc., and the deflectors do not form active obstacles to the flow of the medium. This allows intensive washing of the entire interior of the heat exchanger, so there is no accumulation of dirt and clogging of the heat exchanger on the sides, but especially on the lower inner surface of the shell, because any impurities are continuously washed away by the medium leaving the interior of the heat exchanger and leave freely without the opportunity and reason to accumulate.
  • Furthermore, the possible corrosion and wear of tubes 8 in the tube plate at the contact of the outer surface of the tube 8 and the baffle is eliminated. For the same reason, the vibration of tubes 8, mechanical-chemical corrosion and damage to their outer surface by micro-movements in the contact between the tube and the baffle are also eliminated, in a comparison with conventional heat exchangers.
  • Thus, the advantages of the present invention in a comparison with the prior art heat exchangers are as follows:
    Unlike baffles known from the prior art, deflectors 9 do not increase the pressure loss and do not require increased pump performance. Changing the flow direction of the heating medium from horizontal to vertical and from the top to the bottom means significant energy savings, which in combination with the effect of creating a turbulent flow reduces the energy consumption for pumping approximatelly by 30 %. The homogeneous temperature field inside the heat exchanger shell results in an increase in the temperature difference between the heating and the heated medium from the inlet of the heated medium, which cannot be achieved with a conventional counter-flow arrangement. Although the temperature difference between the two media decreases through the heat exchanger, the integral of the temperature difference is still significantly higher than in the common cases of existing counter-flow and parallel-flow arrangements and the heat transfer coefficient is therefore improved compared to conventional solutions.
  • Vibrations of the tube bundle are limited because the nature of the medium flow on the side of the shell passing through the tube bundle can significantly affect the fluid-induced vibrations of the tube bundle as well as the vibration resistance of the heat exchanger and thus ensure safe operation. It is significant to reduce the possibility of dirt accumulation, especially by removing the baffles and replacing them with deflectors 9.
  • By reducing the number of stagnant flow zones and by continuous flushing the interior of the heat exchanger, the possibility of dirt accumulation is significantly reduced and the resulting increased reliability and stable performance of the heat exchanger is achieved. The built-in and functioning heat exchanger can be quickly adjusted to optimum performance, which is enabled by the modular system of mounted deflectors 9 by a relatively simple changing of their number. This ensures the most efficient operation of the system without the need to dismantle the entire heat exchanger. The changing is relatively very simple and fast and can be realised during system temporary shutdown for other reasons.
  • Also important is the simplicity of operation, maintenance and repair of the heat exchanger 1 with deflectors 9 in a comparison with existing types of heat exchangers with fixed baffles, heat exchanger 1 according to the invention has significantly lower susceptibility to clogging and significant self-cleaning ability.
  • Furthermore, production, assembly and operational repairs are easier. By relatively simply changing the deflectors 9 without neccesity of disassemble the entire heat exchanger 1, the exchanger can be fine-tuned to optimum performance by simply adjusting the tube bundle to a greater or lesser number of deflectors 9, in terms of their shape, angle and length.

Claims (3)

  1. Tubular shell heat exchanger (1), comprising a shell (12) with a set of connecting tubes (8) which are mounted parallel to the axis between two tube plates (2, 3), wherein the heating medium inlet (4) is located on the top of the shell (12) and the heating medium outlet (5) is arranged at the bottom and on the inlet tube plate side (2) is an inlet tube (6) for the heated medium and an outlet tube (7) is arranged on the side of the outlet tube plate (3), whereas the tubes (8) are provided with deflectors (9), which are fixed at regular mutual intervals and perpendicular to these tubes (8), whereas deflectors (9) consist of a horizontal fastening strip (13) and an inclined wing (14), which is arranged obliquely at an angle α = 120 to 140° to the fastening strip (13) in its horizontal position, wherein deflectors (9) are in rows next to each other, at a distance (X) within one horizontal row of tubes (8), all of which are inclined in the same direction within such a formation and deflectors (9) on tubes (8) in a lower adjacent row are again arranged at a distance (X),wherein below this offset row the arrangement and inclination of deflectors (9) are again the same as in the row above it, characterized in that deflectors (9) on tubes (8) in a lower adjacent row are inclined in the opposite direction to those above them, and they are offset by half of the distance (X), whereas deflectors (9) are fixed to the tubes (8) by means of fixing sleeves (10), wherein inlet (4) is divided into branches (11) which entry into the shell (12) is in the position above deflectors (9) arranged on the tube (8) which is closest to the branches (11) and deflectors (9) in the place below each entry of the branch (11) form either an assembly of two deflectors (9) oriented to one side, or there is only one deflector (9) oriented to the opposite side and the height (H) of deflectors (9) is less than the distance (h) of the surfaces of two tubes (8) arranged above each other.
  2. Tubular shell heat exchanger according to claim 1, characterized in that the fixing sleeves (10) are formed as a U-shaped wire wrapped around tubes (8), wherein the threaded ends of the fixing sleeve (10) being secured by nuts.
  3. Tubular shell heat exchanger according to claims 1 and 2, characterized in that the deflector (9) is fixed on every second tube (8) in a row perpendicular to the axis of the heat exchanger (1).
EP20829310.0A 2020-12-01 2020-12-01 Tubular shell heat exchanger with cross flow Active EP4136396B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CZ2020/000052 WO2022117129A1 (en) 2020-12-01 2020-12-01 Tubular shell heat exchanger with cross flow

Publications (3)

Publication Number Publication Date
EP4136396A1 EP4136396A1 (en) 2023-02-22
EP4136396B1 true EP4136396B1 (en) 2024-04-10
EP4136396C0 EP4136396C0 (en) 2024-04-10

Family

ID=74045372

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20829310.0A Active EP4136396B1 (en) 2020-12-01 2020-12-01 Tubular shell heat exchanger with cross flow

Country Status (2)

Country Link
EP (1) EP4136396B1 (en)
WO (1) WO2022117129A1 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE930146C (en) * 1952-02-06 1955-07-11 Atlas Werke Ag Device for holding pipes in pipe bundles of heat exchangers
US3813749A (en) * 1972-11-13 1974-06-04 Westinghouse Electric Corp A tube clamp
US3998268A (en) * 1975-03-04 1976-12-21 Westinghouse Electric Corporation Locking device for staggered fin-tubes
US4204570A (en) * 1978-02-23 1980-05-27 Foster Wheeler Energy Corporation Helical spacer for heat exchanger tube bundle
NL8400139A (en) * 1984-01-17 1985-08-16 Hoogovens Groep Bv FLOW HEAT EXCHANGER FOR GAS-GAS HEAT EXCHANGE.
US5255737A (en) * 1990-07-09 1993-10-26 Phillips Petroleum Company Heat exchanger with flow distribution means
JPH05296680A (en) * 1992-04-14 1993-11-09 Toshiba Corp Heat transfer tube supporting structural body for heat exchanger
US5477846A (en) * 1994-08-17 1995-12-26 Cameron; Gordon M. Furnace-heat exchanger preheating system
JP5964286B2 (en) * 2013-12-27 2016-08-03 三菱日立パワーシステムズ株式会社 Heat exchanger
EP3443287B1 (en) * 2016-04-14 2021-12-08 Linde GmbH Coiled heat exchanger
CN206094996U (en) 2016-05-30 2017-04-12 江汉大学 Shell -and -tube heat exchanger
NO344796B1 (en) * 2018-12-14 2020-04-27 Future Tech As Subsea cooler

Also Published As

Publication number Publication date
EP4136396A1 (en) 2023-02-22
EP4136396C0 (en) 2024-04-10
WO2022117129A1 (en) 2022-06-09

Similar Documents

Publication Publication Date Title
US7740057B2 (en) Single shell-pass or multiple shell-pass shell-and-tube heat exchanger with helical baffles
CN113994165A (en) Spiral baffle heat exchanger
CN210689299U (en) Efficient energy-saving tubular heat exchanger
EP4136396B1 (en) Tubular shell heat exchanger with cross flow
WO2022135623A1 (en) Tubular shell heat exchanger with sheet baffles
CN217236556U (en) Heat exchange device capable of increasing heat exchange effect
CN207501760U (en) Two-layer spiral heat exchanger
EP3332653A1 (en) Tubular heat exchanger
CN110260692B (en) Shell-and-tube heat exchanger with triangular cross section and scaling baffle plate
EP3857158B1 (en) A heat exchanger
WO2005028966A1 (en) Heat exchanger
CN217520308U (en) Tube bundle for heat exchanger and heat exchanger
RU2153643C1 (en) Unit of support partitions for tubes of shell-and- tube heat exchanger
CN101762191A (en) Self-supporting rectangular zoom tube bundle heat exchanger and intensified heat transfer method thereof
CN215984116U (en) Reducing hole baffle plate taper pipe heat exchanger
CN215337876U (en) Shell-and-tube heat exchanger of scour corrosion prevention
CN112484306A (en) Three-dimensional space-variable heat exchange module for gas water heater
CN219368482U (en) Spiral baffle heat exchanger
RU2778804C1 (en) Heat transfer increaser device and boiler containing this device
CN218421046U (en) Flue gas waste heat recovery evaporator
CN216845768U (en) Finned tube heat exchanger
CN213902033U (en) High-efficiency special-shaped tube plate heat exchanger
RU2823011C1 (en) Air cooling apparatus
CN216432653U (en) Heat exchange assembly
CN218002258U (en) Non-metal corrosion-resistant reinforced heat exchanger

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221118

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
INTG Intention to grant announced

Effective date: 20231012

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602020028898

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

U01 Request for unitary effect filed

Effective date: 20240416

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20240424