EP4127683B1 - Drone for measuring data representative of the content of at least two gases present in the atmosphere away from the ground and associated measurement method - Google Patents
Drone for measuring data representative of the content of at least two gases present in the atmosphere away from the ground and associated measurement method Download PDFInfo
- Publication number
- EP4127683B1 EP4127683B1 EP21713971.6A EP21713971A EP4127683B1 EP 4127683 B1 EP4127683 B1 EP 4127683B1 EP 21713971 A EP21713971 A EP 21713971A EP 4127683 B1 EP4127683 B1 EP 4127683B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- drone
- measurement cell
- laser
- measuring
- laser beam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000007789 gas Substances 0.000 title claims description 47
- 238000000691 measurement method Methods 0.000 title description 2
- 238000005259 measurement Methods 0.000 claims description 55
- 238000002347 injection Methods 0.000 claims description 23
- 239000007924 injection Substances 0.000 claims description 23
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 5
- 229920000642 polymer Polymers 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 4
- 238000002004 direct laser absorption spectroscopy Methods 0.000 claims description 3
- 239000004696 Poly ether ether ketone Substances 0.000 claims description 2
- 229920002530 polyetherether ketone Polymers 0.000 claims description 2
- 238000009434 installation Methods 0.000 description 10
- 238000001514 detection method Methods 0.000 description 9
- 239000005431 greenhouse gas Substances 0.000 description 8
- 238000001228 spectrum Methods 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 6
- 238000013480 data collection Methods 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000005286 illumination Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 238000009530 blood pressure measurement Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- -1 poly(acrylonitrile butadiene styrene) Polymers 0.000 description 3
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 238000009529 body temperature measurement Methods 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 239000012855 volatile organic compound Substances 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006012 detection of carbon dioxide Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010408 sweeping Methods 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3504—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/85—Investigating moving fluids or granular solids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2101/00—UAVs specially adapted for particular uses or applications
- B64U2101/35—UAVs specially adapted for particular uses or applications for science, e.g. meteorology
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N2021/3129—Determining multicomponents by multiwavelength light
- G01N2021/3133—Determining multicomponents by multiwavelength light with selection of wavelengths before the sample
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/85—Investigating moving fluids or granular solids
- G01N2021/8578—Gaseous flow
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/02—Mechanical
- G01N2201/021—Special mounting in general
- G01N2201/0214—Airborne
Definitions
- the present invention relates to a drone for measuring data representative of contents of at least two gases present in the atmosphere away from the ground, according to the preamble of claim 1.
- the gases to be measured include greenhouse gases such as methane or carbon dioxide.
- greenhouse gases are emitted during exploitation, transport, refining and hydrocarbon deposition operations. These emissions are monitored by operators and are regularly subject to reduction measures.
- emissions are very difficult to measure, because they are often not channeled, and potentially near ponds or lakes or in inaccessible places, for example at height or in the middle of a unit.
- An aim of the invention is therefore to have a measuring drone which has sufficient autonomy to carry out gas detection campaigns presenting diffuse and fugitive emissions, while having sufficient measuring capabilities to carry out the desired analyses.
- the subject of the invention is a drone according to claim 1.
- the invention also relates to a method for measuring data representative of contents of at least two gases present in the atmosphere away from the ground according to claim 15.
- a first drone 10 according to the invention is illustrated on the figures 1 to 3 .
- the drone 10 is intended in particular to measure representative data in order to be able to calculate the contents of at least two gases present in the atmosphere in which the drone 10 operates.
- the representative data are for example measured with regard to an industrial installation, such as an oil installation, in particular an installation for the exploitation, transport, refining, processing or deposition of hydrocarbons.
- the gases whose content is measured are preferably methane and carbon dioxide.
- gases are measurable, such as aromatic gases in particular benzene, or even butadiene, ethane, carbon monoxide. More generally, the content measured is that of a set of volatile organic compounds (or “VOCs”) to determine a fingerprint of these compounds.
- VOCs volatile organic compounds
- a gas is measurable as long as it has a defined spectral signature, for example in the infrared (in particular for wavelengths between 700 nm and 2 ⁇ m) or in the ultraviolet (in particular for wavelengths between 10 nm and 380 nm).
- the drone 10 is intended to move in the atmosphere above and around the installation to carry out, at various points in the atmosphere above and around the installation, measurements of data representative of the contents of at least two gases.
- the drone 10 comprises a chassis 12, a propulsion assembly 14, capable of allowing the chassis 12 to take off away from the ground, and its movement while flying in the atmosphere above the ground.
- the drone 10 further comprises a measuring assembly 16, a control system 18 of the measuring assembly 16, and advantageously, a remote transmission system 20.
- the frame 12 is here formed of a perforated frame, formed of frames 22.
- the frame is rectangular in shape. It has frames 22 following the sides of a rectangle, and frames 22 following the diagonals of the rectangle.
- the frames 22 are for example made of polymer, to lighten the drone 10.
- the polymer chosen is preferably a polymer in solid form.
- the polymer is for example chosen from polyetheretherketone, poly(acrylonitrile butadiene styrene), poly(polylactic acid), poly(acrylonitrile styrene acrylate).
- the members 22 of the frame define a first region 24 for supporting the control system 18, and a second region 26 for supporting the measuring assembly 16, offset laterally relative to the first region 24.
- the propulsion assembly 14 comprises a plurality of propulsion members 28, which here are propellers driven in rotation by a motor.
- the propulsion assembly 14 further comprises an energy source 30 formed here by a battery and a system 32 for locating and controlling the movement of the drone 10 in the atmosphere.
- the drone 10 is a multi-rotor rotary wing drone. It has no wings, its lift being provided by the propulsion unit 14.
- the drone 10 is for example a quadcopter drone with a rotary wing, in particular a DJI M200 drone marketed by the company DJI.
- the propulsion assembly 14 here comprises a plurality of rotating propellers around substantially vertical axes.
- substantially vertical we generally mean that the axes of rotation of the propellers are inclined by less than 30° relative to the vertical.
- the propeller motors When the propeller motors are electrically powered by the battery, the propellers are rotated around their axis, resulting in a downward air flow, which is capable of partially sweeping the chassis 12 in the first region 24 and in the second region 26.
- the location and control system 32 includes a position sensor, in particular a GPS and/or an inertial unit. It further comprises a control unit, capable of controlling the movement of the drone 10 along a trajectory pre-recorded before the flight and loaded into the system 32, or in a remote and manual manner via a remote remote control.
- the drone 10 is thus able to automatically follow a predefined trajectory, or alternatively, to be piloted manually by an operator.
- the measuring assembly 16 comprises a sensor 40 for measuring data representative of the contents of at least two gases, mounted on the chassis 12 advantageously via shock absorbers 42. It further comprises sensors 44, 46 for measuring the temperature and pressure and advantageously, an altitude sensor 48.
- the representative data measurement sensor 40 comprises a measuring cell 50 open to the atmosphere, a first laser source 52, intended for the detection of a first gas, a second laser source 54, intended for the detection of a second gas, and a common detector 56 intended to receive the signals allowing the detection of the first gas and the second gas, the signals coming respectively from the first source 52 and the second source 54.
- the sensor 40 further comprises heat exchange plates 58 mounted respectively on each source 52, 54 and on the detector 56.
- the measuring cell 50 is here a single cell for measuring in the same volume data representative of the contents of the first gas and the second gas.
- the measuring cell 50 comprises two facing supports 60A, 60B, and connecting bars 62 connecting the supports 60A, 60B.
- the measuring cell 50 further comprises facing mirrors 64A, 64B, carried respectively by the supports 60A, 60B, the mirrors 64A, 64B delimiting between them a measuring cavity 66.
- the supports 60A, 60B are mounted parallel to each other, perpendicular to a longitudinal axis A-A' of the measuring cavity 66.
- the axis A-A' is preferably horizontal when the drone 10 rests on a horizontal plane support.
- the supports 60A, 60B here have a prismatic shape and a polygonal outer contour, preferably square.
- the connecting bars 62 fix the distance between the supports 60A, 60B.
- the connecting bars 62 extend between the vertices of the polygon defining the contour of the supports 60A, 60B. They extend parallel to each other, delimiting intermediate passage spaces.
- the measuring cavity 66 is therefore open in at least one direction, preferably in at least two directions, between the facing supports 60A, 60B and between the connecting bars 62.
- the length of the measuring cavity 66, taken between the supports 60A, 60B is for example less than 50 cm and notably between 5 cm and 30 cm.
- the length of the measuring cavity 66 is adapted according to the range of contents expected for the gas to be measured. For example, the length of the measuring cavity 66 is greater if the gas is in trace form and/or if the response it has to the measured wavelength is weak.
- the length of the measuring cavity 66 is less important, if the gas to be measured is present with a relatively high content or if its response to the measured wavelength is strong.
- the mirrors 64A, 64B are each mounted respectively on a support 60A, 60B to be placed facing each other.
- the mirrors 64A, 64B are concave, with their concavities facing each other.
- a first support 60A and a first mirror 64A comprise at least two holes 68, 70 to respectively allow the injection of a first beam coming from the first laser source 52 and a second beam coming from the second laser source 54.
- the second mirror 64B facing the first mirror 64A, and the second support 64B include a signal extraction hole 72, to allow the detector to receive a signal from the measuring cavity 66.
- the first laser source 52 and the second laser source 54 are mounted on one face of the first support 60A, outside the measuring cavity 66, on either side of the longitudinal axis A-A' of the cavity.
- Each source 52, 54 comprises a laser component 74 and a temperature control element 76, for example a Peltier element.
- the laser component 74 of the first source 52 is for example capable of emitting a first laser beam centered on a first wavelength ⁇ 1.
- the laser component 74 of the second source 54 is capable of emitting a second laser beam centered on a second wavelength ⁇ 2, distinct from the wavelength ⁇ 1.
- the wavelengths ⁇ 1, ⁇ 2 are preferably separated advantageously by at least 5 nm, in particular by at least 100 nm.
- the first source 52 is capable of emitting the first laser beam centered on the wavelength ⁇ 1 between 3230 nm and 3250 nm, in particular between 3238 nm and 3242 nm.
- the second source 54 is suitable for example for emitting the second laser beam centered on the wavelength ⁇ 2 between 1990 mm and 2020 mm, in particular between 2000 nm and 2005 nm.
- the wavelength associated with a target molecule is chosen according to the spectral signature of each target molecule and any interfering molecules.
- the selection of the wavelength depends on the measurement environment (pressure, temperature, concentration of target and interfering molecules, etc.).
- the temperature control element 76 is capable of stabilizing the temperature of the sources 52, 54.
- the heat exchange plates 58 are mounted at the rear of the first laser source 52 of the second laser source 54 and of the detector 56, in thermal contact with the temperature control elements 76 .
- the heat exchange plates 58 are made of metal, for example aluminum. They project relative to the sources 52, 54, to be swept by the air flow generated by the propulsion members 28 during the rotation of the propellers.
- the calories taken by the temperature control element 76 are evacuated using the heat exchange plates 58, without it being necessary to mount an additional fan to control the temperature of the sources 52, 54 or the detector 56. This makes the drone 10 lighter.
- the detector 56 is common to the first laser source 52 and the second laser source 54. It is capable of detecting the intensity of a signal extracted from the measuring cavity 66 at wavelengths including the wavelength ⁇ 1 of the emission beam of the first laser source 52 and the wavelength ⁇ 2 of the emission beam of the second laser source 54.
- the measured intensity can be linked to the incident intensity by the Beer-Lambert law as described below.
- L L 0 exp L . NOT . K
- I the measured intensity
- I 0 the incident intensity
- L the length of the optical path traveled in the measuring cell 50
- N the number of molecules of the gas studied in the path
- K the coefficient of absorption of this gas.
- a common detector 56 for the two laser sources 52, 54 reduces the number of components present in the measurement sensor 40, which significantly reduces the sensor 40, to allow the integration of other sensors and/or instruments on the drone 10, or its reduction in mass.
- the common detector 56 comprises a single detection member sensitive both to the wavelength ⁇ 1 of the emission beam of the first laser source 52 and to the wavelength ⁇ 2 of the emission beam of the second laser source 54.
- the common detector 56 is formed from a single component, for example marketed by the company Judson (http://www.teledynejudson.com/), Vigo (https://vigo.com.pl/en/products-vigo/ ) or Hamamatsu (https://www.hamamatsu.com).
- the representative data measurement sensor 40 advantageously operates with a single detector 56 to measure the resulting intensities of the signal taken from the measurement cavity 56 for each of the laser sources 52, 54.
- the shock absorbers 42 when present, include spring wires 80 connecting the chassis 12 to each of the supports 60A, 60B. These spring wires 80 are capable of partly absorbing the vibrations of the propulsion assembly 14 and of the movement in the air of the drone 10.
- the temperature measurement sensor 46 is arranged between the facing supports 60A, 60B.
- the sensor 46 is for example a thermistor, or a thermocouple, capable of measuring the electrical resistance of a metallic element which varies as a function of the temperature.
- the pressure measurement sensor 48 comprises for example a pressure measurement tube opening into the measurement cavity 66.
- a temperature measuring sensor 44 and a pressure measuring sensor 46 directly within the measuring cell 50, preferably in the measuring cavity 66, reinforces the reliability of the data collected, in particular taking into account given the low concentration of the gases to be measured in the measuring cavity 66.
- the altitude sensor 48 when present, includes an altimeter, equipped for example with a laser pointing towards the ground to measure the height at which the drone 10 is located.
- the control system 18 comprises a unit 90 for selective electrical supply of each of the sources 52, 54, a unit 92 for collecting data measured by the detector 56 and at least one heat exchanger 94, capable of evacuating the heat generated by the units 90, 92 without their own ventilation. These units are housed in a 96 box.
- the electrical power supply unit 90 is capable of selectively and successively powering the first laser source 52 and the second laser source 54 to obtain a first phase of illumination of the measuring cavity 66 exclusively by the first laser source 52, without illumination by another laser source such as the second laser source 54, then a second phase of illumination of the measuring cavity 66 exclusively by the second laser source 54, without illumination by another laser source, in particular by the first laser source 52.
- successive measurement phases of data representative of the first content of a first gas, and of the second content of a second gas can be carried out in the same measuring cavity 66 of the measuring cell 50, these data being collected selectively by the same detector 56, without interference between the signals obtained.
- the electrical power unit 90 is for example connected to the energy source 30 of the propulsion member 28, or has its own energy source.
- the data collection unit 92 comprises at least one memory, capable of storing the light intensity spectra as a function of the wavelength recorded at different times by the detector 56.
- the data is stored for example at a frequency greater than 10 Hz, in particular between 1 Hz and 100 Hz.
- the stored spectra preferably include a number of points greater than 256, and for example between 256 and 4096 points.
- the data collection unit 92 is connected to the remote transmission system 20 to allow the export of data to a reception station on the ground, during the flight of the drone, at a frequency which may be lower than the acquisition frequency, for example between 1 Hz and 5 Hz.
- the heat exchanger 94 is in thermal contact with each of the power supply units 90 and data collection units 92. It is capable of evacuating the heat produced by these units 90, 92 to plates 98 projecting out of the housing 96 containing units 90, 92.
- the plates 98 are able to be swept by the air flow generated by the propulsion members 28, to evacuate the heat produced by the units 90, 92. Thus no fan is necessary in the housing 96 to cool the units 90 , 92, which reduces the weight and power consumption of the drone 10.
- the remote transmission system 20 comprises a transmitter, capable of transmitting data to a ground station, these data being for example the data collected by the unit 92 or a fraction of this data.
- the drone 10 is put into flight.
- the propulsion members 28 are activated by the location and control system 32 to allow the takeoff of the drone 10, and its movement towards the area where the measurements must be carried out.
- the propellers of the propulsion assembly 14 generate a lift force.
- the location and control system 32 controls the movement of the drone 10, either under the effect of a remote manual command, or by following an automatic program loaded into the system 32.
- the representative data measurement sensor 40, the temperature measurement sensor 44, the pressure measurement sensor 46 and possibly the altitude sensor 48 when present, are activated.
- the electrical power unit 90 selectively and successively supplies the first laser source 52, then the second laser source 54.
- the laser component 74 of the second laser source 54 is deactivated.
- the laser component 74 of the first laser source 52 emits a first laser beam at the wavelength ⁇ 1 which is injected via the injection hole 68 into the measuring cavity 66.
- the thickness of the first laser beam is greater than 1 mm, and in particular between 3 mm and 6 mm. This makes it possible to avoid measurement artifacts that could be created by particles suspended in the measurement cavity 66.
- the first laser beam is reflected successively on the mirrors 64A, 64B by moving back and forth in the measuring cavity 66 to increase the length of the optical path L.
- a first signal is collected through the sampling hole 72 resulting from the first beam emitted by the first source 52.
- This first signal is picked up by the detector 56 and the data picked up by the detector 56 is sent to the data collection unit 92 to be stored.
- the laser component 74 of the first source 52 is deactivated.
- the laser component 74 of the second source 54 emits a second laser beam at the wavelength ⁇ 2 distinct from the wavelength ⁇ 1. This laser beam is introduced via the injection hole 70 into the measuring cavity 66.
- the thickness of the second laser beam is greater than 1 mm, and in particular between 3 mm and 6 mm.
- the second laser beam is reflected successively on the mirrors 64A, 64B by moving back and forth in the measuring cavity 66 to increase the length of the optical path L.
- This second signal is picked up by the same detector 56 which picked up the first signal and the data picked up by the detector 56 is sent to the data collection unit 92 to be stored.
- the measurements being carried out successively in the first phase and in the second phase make it possible to determine, using the same detector 56, light intensities at two wavelengths ⁇ 1, ⁇ 2, respectively representative of the content of a first gas and of the content of a second gas.
- the spectra recorded by the detector 56 and stored in the memory of the data collection unit 92 are transmitted by the remote transmission system 20 to a control station.
- these spectra are stored in association with geographical position data of the drone 10 measured by the location and control system 32, with the temperature and pressure measured by the sensors 44, 46, possibly with the altitude measured by the altitude sensor 48 and with the time at which the measurement was carried out.
- the drone 10 according to the invention is therefore particularly compact and light. It nevertheless makes it possible to obtain precise and reliable data, making it possible to deduce at least two contents of two gases present in the atmosphere, in difficult environments, for example in the vicinity of industrial installations, thanks to the presence of a detector unique 56 associated with at least two different laser sources 52, 54.
- the drone 10 comprises a calculation unit 100 on board the chassis 12.
- the calculation unit 100 is capable of processing the data collected by the detector 56 at each moment, in particular the light intensity spectra measured at each instant, to calculate the contents of at least two gases at different instants, from the representative data collected by the detector 56 and from a prior calibration.
- the data remote transmission system 20 is then capable of teletransmitting the content values calculated by the calculation unit 100, replacing the light intensity data spectra, which reduces the transmission of data in real time and makes it possible to obtain more measurements of the contents of the two gases in real time.
- the drone 10 comprises several measuring cells 50, of structure similar to the measuring cell 50 described above, each being dedicated to the detection of at least two distinct gases.
- each laser component of the first laser source 52 and the second laser source 54 is for example a laser diode.
- a laser diode is an opto-electronic component made from semiconductor materials. It emits coherent monochromatic light.
- the diode is for example a distributed feed back diode.
- the measuring cell 50 operates by direct absorption of laser light in the measuring cavity 66, in contact with the gases whose content is to be measured. It is therefore a measuring cell 50 for carrying out direct laser absorption spectroscopy (Direct Laser Absorption Spectrometry in English).
- the measuring cavity 66 makes it possible to produce multiple reflections of the laser beams injected from the first source 52 or from the second source 54 to increase the length of the optical path.
- the measuring cell is thus a multiple-pass spectroscopic cell, or Herriott cell.
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Remote Sensing (AREA)
- Aviation & Aerospace Engineering (AREA)
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
- Microelectronics & Electronic Packaging (AREA)
Description
La présente invention concerne un drone de mesure de données représentatives de teneurs en au moins deux gaz présents dans l'atmosphère à l'écart du sol, selon le préambule de la revendication 1.The present invention relates to a drone for measuring data representative of contents of at least two gases present in the atmosphere away from the ground, according to the preamble of claim 1.
Les gaz à mesurer sont notamment des gaz à effet de serre tel que le méthane ou le dioxyde de carbone.The gases to be measured include greenhouse gases such as methane or carbon dioxide.
Les préoccupations sur la protection de l'environnement ont contribué au renforcement de la législation sur les émissions polluantes, notamment en Europe.Concerns about environmental protection have contributed to the strengthening of legislation on polluting emissions, particularly in Europe.
De ce fait, les unités industrielles, telles que celles présentes dans l'industrie pétrolière ou chimique doivent s'adapter à des contraintes environnementales de plus en plus exigeantes.As a result, industrial units, such as those present in the oil or chemical industry, must adapt to increasingly demanding environmental constraints.
En particulier, des gaz à effet de serre sont émis lors d'opérations d'exploitation, de transport, de raffinage, et de dépôt des hydrocarbures. Ces émissions sont suivies par les exploitants et font régulièrement l'objet de mesures de réduction.In particular, greenhouse gases are emitted during exploitation, transport, refining and hydrocarbon deposition operations. These emissions are monitored by operators and are regularly subject to reduction measures.
Il est en particulier nécessaire de caractériser quelles sont les sources de gaz à effet de serre et quelles sont les quantités émises par ces sources pour s'assurer de leur contrôle et reporter les progrès effectués.In particular, it is necessary to characterize the sources of greenhouse gases and the quantities emitted by these sources to ensure their control and report the progress made.
Toutefois, l'identification des sources d'émission de gaz à effet de serre et la quantification des émissions diffuses et fugitives ne donnent pas entière satisfaction.However, the identification of sources of greenhouse gas emissions and the quantification of diffuse and fugitive emissions are not entirely satisfactory.
En effet, les émissions sont très difficiles à mesurer, car souvent non canalisées, et potentiellement près de bassins ou de lacs ou à des endroits inaccessibles, par exemple en hauteur ou en milieu d'unité.Indeed, emissions are very difficult to measure, because they are often not channeled, and potentially near ponds or lakes or in inaccessible places, for example at height or in the middle of a unit.
Pour obtenir suffisamment de mesures, il est donc nécessaire d'effectuer un grand nombre de passages au-dessus de l'installation pour relever les teneurs en gaz.To obtain sufficient measurements, it is therefore necessary to carry out a large number of passes over the installation to record the gas contents.
Pour ce faire, il est connu d'utiliser des avions qui volent à basse altitude, et qui sont munis de capteurs de mesures de gaz à effet de serre. Ces avions effectuent de nombreux allers et venues en regard de l'installation pour pouvoir effectuer la mesure.To do this, it is known to use planes which fly at low altitude, and which are equipped with greenhouse gas measurement sensors. These planes make numerous comings and goings next to the installation to be able to carry out the measurement.
Cependant, de tels avions présentent le désavantage majeur d'émettre également des gaz à effet de serre. Leur coût d'exploitation est également très élevé et des restrictions peuvent exister quant au survol de certaines installations par des avions.However, such aircraft have the major disadvantage of also emitting greenhouse gases. Their operating costs are also very high and there may be restrictions on aircraft flying over certain installations.
Pour pallier à ce problème, il est possible d'utiliser des drones, même si les drones ne donnent pas entière satisfaction dans le cadre de ces mesures.To overcome this problem, it is possible to use drones, even if drones do not give complete satisfaction in the context of these measures.
En effet, les drones existants présentent par nature une autonomie assez limitée. En outre, leur charge utile est faible, ce qui limite le nombre d'équipements embarqués, en particulier pour réaliser des mesures multiples.Indeed, existing drones inherently have quite limited autonomy. In addition, their payload is low, which limits the number of on-board equipment, in particular for carrying out multiple measurements.
L'article de
L'article de
L'article de
Un but de l'invention est donc de disposer d'un drone de mesure qui présente une autonomie suffisante pour effectuer des campagnes de détection de gaz présentant des émissions diffuses et fugitives, tout en disposant de capacités de mesure suffisantes pour effectuer les analyses souhaitées.An aim of the invention is therefore to have a measuring drone which has sufficient autonomy to carry out gas detection campaigns presenting diffuse and fugitive emissions, while having sufficient measuring capabilities to carry out the desired analyses.
A cet effet, l'invention a pour objet un drone selon la revendication 1.For this purpose, the subject of the invention is a drone according to claim 1.
Le drone selon l'invention peut comprendre l'une ou plusieurs des caractéristiques 2 à 14, ou l'une des caractéristiques suivantes prise(s) isolément ou suivant toute combinaison techniquement possible :
- la cavité de mesure est configurée pour réaliser de multiples réflexions des faisceaux laser injectés par la première source et par la deuxième source ;
- le composant laser de chacune de la première source laser et de la deuxième source laser est constitué d'une diode laser ;
- la cellule de mesure est configurée pour fonctionner par absorption directe de lumière laser dans la cavité de mesure, au contact des gaz dont la teneur est à mesurer.
- the measurement cavity is configured to produce multiple reflections of the laser beams injected by the first source and by the second source;
- the laser component of each of the first laser source and the second laser source consists of a laser diode;
- the measuring cell is configured to operate by direct absorption of laser light in the measuring cavity, in contact with the gases whose content is to be measured.
L'invention à également pour objet un procédé de mesure de données représentatives de teneurs en au moins deux gaz présents dans l'atmosphère à l'écart du sol selon la revendication 15.The invention also relates to a method for measuring data representative of contents of at least two gases present in the atmosphere away from the ground according to claim 15.
Le procédé de mesure selon l'invention peut comprendre la caractéristique suivante :
- le système de commande réalise des injections séquentielles et successives du premier faisceau laser dans la cellule de mesure, puis du deuxième faisceau laser dans la cellule de mesure, respectivement sans injection du deuxième faisceau laser dans la cellule de mesure, lorsque le premier faisceau laser est injecté dans la cellule de mesure, et sans injection du premier faisceau laser dans la cellule de mesure, lorsque le deuxième faisceau laser est injecté dans la cellule de mesure.
- the control system performs sequential and successive injections of the first laser beam into the measuring cell, then of the second laser beam into the measuring cell, respectively without injection of the second laser beam into the measuring cell, when the first laser beam is injected into the measuring cell, and without injection of the first laser beam into the measuring cell, when the second laser beam is injected into the measuring cell.
L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple, et faite en se référant aux dessins annexés, sur lesquels :
- [
Fig. 1 ] lafigure 1 est une vue en perspective d'un premier drone selon l'invention ; - [
Fig. 2 ] lafigure 2 est une vue de dessus du châssis du drone portant un capteur de mesure et un système de commande du capteur de mesure ; - [
Fig. 3 ] lafigure 3 est une vue de face du capteur de mesure illustré sur lafigure 2 ; - [
Fig. 4 ] lafigure 4 est une vue de la cellule de mesure, lors de l'injection d'un premier faisceau ; - [
Fig. 5 ] lafigure 5 est une vue analogue à lafigure 4 lors de l'injection d'un deuxième faisceau ; - [
Fig. 6 ] lafigure 6 est une vue du signal capté par le détecteur, successivement pendant l'injection du premier faisceau, puis lors de l'injection du deuxième faisceau.
- [
Fig. 1 ] therefigure 1 is a perspective view of a first drone according to the invention; - [
Fig. 2 ] therefigure 2 is a top view of the drone chassis carrying a measurement sensor and a measurement sensor control system; - [
Fig. 3 ] thereFigure 3 is a front view of the measuring sensor shown on thefigure 2 ; - [
Fig. 4 ] thereFigure 4 is a view of the measuring cell, during the injection of a first beam; - [
Fig. 5 ] thereFigure 5 is a view analogous to theFigure 4 during the injection of a second beam; - [
Fig. 6 ] thereFigure 6 is a view of the signal captured by the detector, successively during the injection of the first beam, then during the injection of the second beam.
Un premier drone 10 selon l'invention est illustré sur les
Les données représentatives sont par exemple mesurées en regard d'une installation industrielle, telle qu'une installation pétrolière, en particulier une installation d'exploitation, de transport, de raffinage, de traitement ou de dépôt d'hydrocarbures.The representative data are for example measured with regard to an industrial installation, such as an oil installation, in particular an installation for the exploitation, transport, refining, processing or deposition of hydrocarbons.
Les gaz dont la teneur est mesurée sont de préférence le méthane et le dioxyde de carbone.The gases whose content is measured are preferably methane and carbon dioxide.
Dans des variantes, d'autres gaz sont mesurables, tel que les gaz aromatiques notamment le benzène, ou encore le butadiène, l'éthane, le monoxyde de carbone. Plus généralement la teneur mesurée est celle d'un ensemble de composés organiques volatiles (ou « COV ») pour déterminer une empreinte en ces composés.In variants, other gases are measurable, such as aromatic gases in particular benzene, or even butadiene, ethane, carbon monoxide. More generally, the content measured is that of a set of volatile organic compounds (or “VOCs”) to determine a fingerprint of these compounds.
Un gaz est mesurable du moment qu'il possède une signature spectrale définie, par exemple dans l'infrarouge (notamment pour des longueurs d'ondes comprises entre 700 nm et 2 µm) ou dans l'ultraviolet (notamment pour des longueurs d'ondes entre 10 nm et 380 nm).A gas is measurable as long as it has a defined spectral signature, for example in the infrared (in particular for wavelengths between 700 nm and 2 µm) or in the ultraviolet (in particular for wavelengths between 10 nm and 380 nm).
Le drone 10 est destiné à se déplacer dans l'atmosphère au-dessus et autour de l'installation pour effectuer à divers points dans l'atmosphère au-dessus et autour de l'installation, des mesures de données représentatives des teneurs en au moins deux gaz.The
Comme illustré sur la
Le drone 10 comporte en outre un ensemble de mesure 16, un système de commande 18 de l'ensemble de mesure 16, et avantageusement, un système de télétransmission 20.The
Le châssis 12 est ici formé d'une armature ajourée, formée de membrures 22. Dans l'exemple représenté sur la
Les membrures 22 sont par exemple réalisées en polymère, pour alléger le drone 10.The
Le polymère choisi est de préférence un polymère présentant sous forme solide.The polymer chosen is preferably a polymer in solid form.
Le polymère est par exemple choisi parmi les polyétheréthercétone, les poly(acrylonitrile butadiène styrène), les poly(acide polylactique), les poly(acrylonitrile styrène acrylate).The polymer is for example chosen from polyetheretherketone, poly(acrylonitrile butadiene styrene), poly(polylactic acid), poly(acrylonitrile styrene acrylate).
Comme illustré sur la
En référence à la
L'ensemble de propulsion 14 comporte en outre une source d'énergie 30 formée ici par une batterie et un système 32 de localisation et de commande du déplacement du drone 10 dans l'atmosphère.The
Dans cet exemple, le drone 10 est un drone multi rotor à voilure tournante. Il est dépourvu d'ailes, sa portance étant assurée par l'ensemble de propulsion 14.In this example, the
Le drone 10 est par exemple un drone quadricoptère à voilure tournante, notamment un drone DJI M200 commercialisé par la société DJI.The
L'ensemble de propulsion 14 comporte ici une pluralité d'hélices rotatives autour d'axes sensiblement verticaux. Par « sensiblement verticaux », on entend généralement que les axes de rotation des hélices sont inclinés de moins de 30° par rapport à la verticale.The
Lorsque les moteurs des hélices sont alimentés électriquement par la batterie, les hélices sont entraînées en rotation autour de leur axe, entraînant un flux d'air descendant, qui est propre à balayer en partie le châssis 12 dans la première région 24 et dans la deuxième région 26.When the propeller motors are electrically powered by the battery, the propellers are rotated around their axis, resulting in a downward air flow, which is capable of partially sweeping the
Le système de localisation et de commande 32 comporte un capteur de position, notamment un GPS et/ou une centrale inertielle. Il comprend en outre une unité de commande, propre à piloter le déplacement du drone 10 le long d'une trajectoire préenregistrée avant le vol et chargée dans le système 32, ou de manière déportée et manuelle via une télécommande déportée.The location and
Le drone 10 est ainsi propre à suivre automatiquement une trajectoire prédéfinie, ou alternativement, à être piloté manuellement par un opérateur.The
L'ensemble de mesure 16 comporte un capteur 40 de mesure des données représentatives des teneurs en au moins deux gaz, monté sur le châssis 12 avantageusement via des amortisseurs 42. Il comprend en outre des capteurs 44, 46 de mesure de la température et de la pression et avantageusement, un capteur d'altitude 48.The measuring
En référence aux
Le capteur 40 comporte en outre des plaques d'échange thermique 58 montées respectivement sur chaque source 52, 54 et sur le détecteur 56.The
La cellule de mesure 50 est ici une cellule unique pour la mesure dans le même volume des données représentatives des teneurs en premier gaz et en deuxième gaz.The measuring
La cellule de mesure 50 comporte deux supports 60A, 60B en regard, et des barres de liaison 62 raccordant les supports 60A, 60B. La cellule de mesure 50 comporte en outre des miroirs 64A, 64B en regard, portés respectivement par les supports 60A, 60B, les miroirs 64A, 64B délimitant entre eux une cavité de mesure 66.The measuring
Dans cet exemple, les supports 60A, 60B sont montés parallèles l'un à l'autre, perpendiculairement à un axe longitudinal A-A' de la cavité de mesure 66. L'axe A-A' est de préférence horizontal lorsque le drone 10 repose sur un support plan horizontal.In this example, the
Les supports 60A, 60B présentent ici une forme prismatique et un contour extérieur polygonal, de préférence carré.The supports 60A, 60B here have a prismatic shape and a polygonal outer contour, preferably square.
Les barres de liaison 62 fixent la distance entre les supports 60A, 60B. Dans cet exemple, les barres de liaison 62 s'étendent entre les sommets du polygone définissant le contour des supports 60A, 60B. Elles s'étendent parallèles entre elles en délimitant des espaces intermédiaires de passage.The connecting bars 62 fix the distance between the
La cavité de mesure 66 est donc ouverte dans au moins une direction, de préférence dans au moins deux directions, entre les supports 60A, 60B en regard et entre les barres de liaisons 62.The measuring
La longueur de la cavité de mesure 66, prises entre les supports 60A, 60B est par exemple inférieure à 50 cm et comprise notamment entre 5 cm et 30 cm.The length of the measuring
La longueur de la cavité de mesure 66 est adaptée en fonction de la gamme de teneurs attendues pour le gaz à mesurer. Par exemple, la longueur de la cavité de mesure 66 est plus importante si le gaz est à l'état de traces et/ou si la réponse qu'il possède à la longueur d'onde mesurée est faible.The length of the measuring
Au contraire, la longueur de la cavité de mesure 66 est moins importante, si le gaz à mesurer est présent avec une teneur relativement forte ou si sa réponse à la longueur d'onde mesurée est forte.On the contrary, the length of the measuring
Les miroirs 64A, 64B sont montés chacun respectivement sur un support 60A, 60B pour être placés en regard l'un de l'autre. Les miroirs 64A, 64B sont concaves, avec leurs concavités en regard l'une de l'autre.The
Un premier support 60A et un premier miroir 64A comprennent au moins deux trous 68, 70 pour permettre respectivement l'injection d'un premier faisceau provenant de la première source laser 52 et d'un deuxième faisceau provenant de la deuxième source laser 54.A
Le deuxième miroir 64B en regard du premier miroir 64A, et le deuxième support 64B comportent un trou 72 d'extraction de signal, pour permettre au détecteur de recevoir un signal issu de la cavité de mesure 66.The
La première source laser 52 et la deuxième source laser 54 sont montées sur une face du premier support 60A, à extérieur à la cavité de mesure 66, de part et d'autre de l'axe longitudinal A-A' de la cavité.The
Chaque source 52, 54 comporte un composant laser 74 et un élément 76 de contrôle de la température, par exemple un élément Peltier.Each
Le composant laser 74 de la première source 52 est par exemple propre à émettre un premier faisceau laser centrée sur une première longueur d'onde λ1. Le composant laser 74 de la deuxième source 54 est propre à émettre un deuxième faisceau laser centrée sur une deuxième longueur d'onde λ2, distincte de la longueur d'onde λ1.The
Les longueurs d'ondes λ1, λ2 sont de préférence séparées avantageusement d'au moins 5 nm, notamment d'au moins 100 nm.The wavelengths λ1, λ2 are preferably separated advantageously by at least 5 nm, in particular by at least 100 nm.
Par exemple, pour la détection du méthane, la première source 52 est propre à émettre le premier faisceau laser centré sur la longueur d'onde λ1 comprise entre 3230 nm et 3250 nm, notamment entre 3238 nm et 3242 nm. Pour la détection du dioxyde de carbone, la deuxième source 54 est propre par exemple à émettre le deuxième faisceau laser centrée sur la longueur d'onde λ2 comprise entre 1990 mm et 2020 mm, notamment entre 2000 nm et 2005 nm.For example, for the detection of methane, the
Plus généralement, la longueur d'onde associée à une molécule cible est choisie en fonction de la signature spectrale de chaque molécule cible et des éventuelles molécules interférentes. La sélection de la longueur d'onde dépend de l'environnement de mesure (pression, température, concentration des molécules cibles et interférentes, ...).More generally, the wavelength associated with a target molecule is chosen according to the spectral signature of each target molecule and any interfering molecules. The selection of the wavelength depends on the measurement environment (pressure, temperature, concentration of target and interfering molecules, etc.).
L'élément de contrôle 76 de la température est propre à stabiliser la température des sources 52, 54.The
Dans l'exemple représenté sur les figures, les plaques d'échange thermique 58 sont montées à l'arrière de la première source laser 52 de la deuxième source laser 54 et du détecteur 56, en contact thermique avec les éléments de contrôle de température 76.In the example shown in the figures, the
Les plaques d'échanges thermique 58 sont formées de métal, par exemple d'aluminium. Elles font saillie par rapport aux sources 52, 54, pour être balayées par le flux d'air engendré par les organes de propulsion 28 lors de la rotation des hélices.The
Ainsi, les calories prélevées par l'élément de contrôle de température 76 sont évacuées à l'aide des plaques d'échanges thermique 58, sans qu'il soit nécessaire de monter un ventilateur additionnel pour contrôler la température des sources 52, 54 ou du détecteur 56. Ceci allège le drone 10.Thus, the calories taken by the
Le détecteur 56 est commun à la première source laser 52 et à la deuxième source laser 54. Il est propre à détecter l'intensité d'un signal extrait de la cavité de mesure 66 à des longueurs d'ondes incluant la longueur d'onde λ1 du faisceau d'émission de la première source laser 52 et la longueur d'onde λ2 du faisceau d'émission de la deuxième source laser 54.The
Ainsi, l'intensité mesurée peut être reliée à l'intensité incidente par la loi de Beer-Lambert telle que décrite plus bas
L'utilisation d'un détecteur commun 56 aux deux sources laser 52, 54 réduit le nombre de composants présent dans le capteur de mesure 40, ce qui allège sensiblement le capteur 40, pour permettre l'intégration d'autres capteurs et/ou d'instruments sur le drone 10, ou sa réduction de masse.The use of a
Le détecteur commun 56 comporte un organe de détection unique sensible à la fois à la longueur d'onde λ1 du faisceau d'émission de la première source laser 52 et à la longueur d'onde λ2 du faisceau d'émission de la deuxième source laser 54.The
Le détecteur commun 56 est formé d'un seul composant, par exemple commercialisé par la société Judson (http://www.teledynejudson.com/), Vigo (https://vigo.com.pl/en/products-vigo/) ou Hamamatsu (https://www.hamamatsu.com).The
Le capteur de mesure des données représentatives 40 fonctionne avantageusement avec un seul détecteur 56 pour mesurer les intensités résultantes du signal prélevé dans la cavité de mesure 56 pour chacune des sources laser 52, 54.The representative
Les amortisseurs 42, lorsqu'ils sont présents, comportent des fils ressorts 80 raccordant le châssis 12 à chacun des supports 60A, 60B. Ces fils ressorts 80 sont propres à absorber en partie les vibrations de l'ensemble de propulsion 14 et du mouvement dans l'air du drone 10.The
Le capteur 46 de mesure de la température est disposé, entre les supports 60A, 60B en regard. Le capteur 46 est par exemple une thermistance, ou un thermocouple, propre à mesurer une résistance électrique d'un élément métallique qui varie en fonction de la température.The
Le capteur 48 de mesure de pression comporte par exemple un tube de mesure de pression débouchant dans la cavité de mesure 66.The
La présence d'un capteur de mesure de température 44 et d'un capteur de mesure de la pression 46 directement au sein de la cellule de mesure 50, de préférence dans la cavité de mesure 66 renforce la fiabilité des données collectées, en particulier compte tenu de la concentration faible des gaz à mesurer dans la cavité de mesure 66.The presence of a
Le capteur d'altitude 48, lorsqu'il est présent, comporte un altimètre, muni par exemple d'un laser pointant vers le sol pour mesurer la hauteur à laquelle se trouve le drone 10.The
Le système de commande 18 comporte une unité 90 d'alimentation électrique sélective de chacune des sources 52, 54, une unité 92 de recueil de données mesurées par le détecteur 56 et au moins un échangeur thermique 94, propre à évacuer la chaleur engendrée par les unités 90, 92 sans ventilation propre. Ces unités sont logées dans un boitier 96.The
L'unité d'alimentation électrique 90 est propre à alimenter sélectivement et successivement la première source laser 52 et la deuxième source laser 54 pour obtenir une première phase d'illumination de la cavité de mesure 66 exclusivement par la première source laser 52, sans illumination par une autre source laser telle que la deuxième source laser 54, puis une seconde phase d'illumination de la cavité de mesure 66 exclusivement par la deuxième source laser 54, sans illumination par une autre source laser, en particulier par la première source laser 52.The electrical
Ainsi, des phases de mesures successives de données représentatives de la première teneur en un premier gaz, et de la deuxième teneur en un deuxième gaz, peuvent être réalisées dans la même cavité de mesure 66 de la cellule de mesure 50, ces données étant collectées sélectivement par le même détecteur 56, sans interférence entre les signaux obtenus.Thus, successive measurement phases of data representative of the first content of a first gas, and of the second content of a second gas, can be carried out in the same measuring
Ces données représentatives forment des spectres d'intensité lumineuse en fonction de la longueur d'onde, représentés schématiquement sur la
L'unité d'alimentation électrique 90 est par exemple raccordée à la source d'énergie 30 de l'organe de propulsion 28, ou possède sa propre source d'énergie.The
L'unité de recueil de données 92 comporte au moins une mémoire, propre à stocker les spectres d'intensité lumineuse en fonction de la longueur d'onde relevés à différents instants par le détecteur 56.The
Les données sont stockées par exemple à une fréquence supérieure à 10 Hz, en particulier comprise entre 1 Hz et 100 Hz. Les spectres stockés comprennent de préférence un nombre de points supérieurs à 256, et compris par exemple entre 256 et 4096 points.The data is stored for example at a frequency greater than 10 Hz, in particular between 1 Hz and 100 Hz. The stored spectra preferably include a number of points greater than 256, and for example between 256 and 4096 points.
Ainsi, une très bonne résolution est obtenue pour déterminer l'intensité des pics mesurés dans la cellule de mesure 50 en fonction de la longueur d'onde, ce qui permet d'en déduire les teneurs en les deux gaz, même si ces teneurs sont très faibles.Thus, a very good resolution is obtained to determine the intensity of the peaks measured in the measuring
L'unité de recueil des données 92 est raccordée au système de télétransmission 20 pour permettre l'export des données vers une station de réception au sol, lors du vol du drone, à une fréquence qui peut être inférieure à la fréquence d'acquisition, par exemple comprise entre 1 Hz et 5 Hz.The
L'échangeur thermique 94 est en contact thermique avec chacune des unités d'alimentation 90 et de recueils de données 92. Il est propre à évacuer la chaleur produite par ces unités 90, 92 jusqu'à des plaques 98 faisant saillie hors du boitier 96 contenant les unités 90, 92.The
Les plaques 98 sont propres à être balayées par le flux d'air engendré par les organes de propulsion 28, pour évacuer la chaleur produite par les unités 90, 92. Ainsi aucun ventilateur n'est nécessaire dans le boitier 96 pour refroidir les unités 90, 92, ce qui réduit le poids et la consommation électrique du drone 10.The
Le système de télétransmission 20 comporte un émetteur, propre à transmettre des données vers une station au sol, ces données étant par exemple les données recueillies par l'unité 92 ou une fraction de ces données.The
Un procédé de mesure des teneurs en au moins deux gaz présents dans l'atmosphère, de préférence en regard d'une installation industrielle, va maintenant être décrit.A method for measuring the contents of at least two gases present in the atmosphere, preferably in relation to an industrial installation, will now be described.
Initialement, le drone 10 est mis en vol. Les organes de propulsion 28 sont activés par le système de localisation et de commande 32 pour permettre le décollage du drone 10, et son déplacement vers la zone où les mesures doivent être effectuées.Initially, the
Les hélices de l'ensemble de propulsion 14 engendrent une force de portance. Le système de localisation et de commande 32 commande le déplacement du drone 10, soit sous l'effet d'une commande manuelle à distance, soit en suivant un programme automatique chargé dans le système 32.The propellers of the
Lors du déplacement du drone 10, des mesures sont effectuées. A cet effet, le capteur de mesure des données représentatives 40, le capteur de mesure de température 44, le capteur de mesure de pression 46 et éventuellement le capteur d'altitude 48 lorsqu'il est présent, sont activés.When the
Les mesures par les différents capteurs 40, 44, 46, 48 sont effectuées lors du mouvement du drone 10, sans avoir à immobiliser le drone 10. A cet effet, l'unité d'alimentation électrique 90 alimente sélectivement et successivement la première source laser 52, puis la deuxième source laser 54.The measurements by the
Lors de chaque phase d'activation de la première source laser 52, le composant laser 74 de la deuxième source laser 54 est désactivé. Le composant laser 74 de la première source laser 52 émet un premier faisceau laser à la longueur d'onde λ1 qui est injecté via le trou d'injection 68 dans la cavité de mesure 66.During each activation phase of the
Comme indiqué plus haut, l'épaisseur du premier faisceau laser est supérieure à 1 mm, et notamment comprise entre 3 mm et 6 mm. Ceci permet de s'affranchir d'artefacts de mesures pouvant être crées par des particules en suspension dans la cavité de mesure 66.As indicated above, the thickness of the first laser beam is greater than 1 mm, and in particular between 3 mm and 6 mm. This makes it possible to avoid measurement artifacts that could be created by particles suspended in the
Le premier faisceau laser se réfléchit successivement sur les miroirs 64A, 64B en effectuant des va et vient dans la cavité de mesure 66 pour augmenter la longueur du chemin optique L.The first laser beam is reflected successively on the
Comme illustré par la
Ce premier signal est capté par le détecteur 56 et les données captées par le détecteur 56 sont envoyées à l'unité de recueil de données 92 pour être stockées.This first signal is picked up by the
Puis, dans chaque phase d'activation de la deuxième source laser 54, le composant laser 74 de la première source 52 est désactivé. Le composant laser 74 de la deuxième source 54 émet un deuxième faisceau laser à la longueur d'onde λ2 distincte de la longueur d'onde λ1. Ce faisceau laser est introduit via le trou d'injection 70 dans la cavité de mesure 66.Then, in each activation phase of the
Comme précédemment, l'épaisseur du deuxième faisceau laser est supérieure à 1 mm, et notamment comprise entre 3 mm et 6 mm.As previously, the thickness of the second laser beam is greater than 1 mm, and in particular between 3 mm and 6 mm.
Le deuxième faisceau laser se réfléchit successivement sur les miroirs 64A, 64B en effectuant des va et vient dans la cavité de mesure 66 pour augmenter la longueur du chemin optique L.The second laser beam is reflected successively on the
Comme illustré par la
Ce deuxième signal est capté par le même détecteur 56 qui a capté le premier signal et les données captées par le détecteur 56 sont envoyées à l'unité de recueil de données 92 pour être stockées.This second signal is picked up by the
Les mesures étant effectuées successivement dans la première phase et dans la deuxième phase permettent de déterminer, à l'aide du même détecteur 56, des intensités lumineuses à deux longueurs d'ondes λ1, λ2, représentatives respectivement de la teneur en un premier gaz et de la teneur en un deuxième gaz.The measurements being carried out successively in the first phase and in the second phase make it possible to determine, using the
Lorsque le drone 10 a fini sa mission et revient au sol, les spectres relevés par le détecteur 56 et stockés dans la mémoire de l'unité de recueil de données 92, sont transmis par le système de télétransmission 20 vers une station de contrôle.When the
Dans la station de contrôle, ces spectres sont stockés en association avec des données de position géographique du drone 10 mesurées par le système de localisation et de commande 32, avec la température et la pression mesurées par les capteurs 44, 46, éventuellement avec l'altitude mesurée par le capteur d'altitude 48 et avec le temps auquel la mesure a été effectuée.In the control station, these spectra are stored in association with geographical position data of the
Le drone 10 selon l'invention est donc particulièrement compact et léger. Il permet néanmoins d'obtenir des données précises et fiables, permettant de déduire au moins deux teneurs en deux gaz présents dans l'atmosphère, dans des environnements difficiles, par exemple au voisinage d'installations industrielles, grâce à la présence d'un détecteur unique 56 associé à au moins deux sources laser 52, 54 différentes.The
Il est ainsi possible de mesurer dans la même cellule de mesure 50, quasi simultanément, des données représentatives des teneurs en chacun des deux gaz, de manière sélective et pratique.It is thus possible to measure in the same measuring
Dans une variante, le drone 10 comporte une unité 100 de calcul embarquée sur le châssis 12. L'unité de calcul 100 est propre à traiter les données collectées par le détecteur 56 à chaque instant, en particuliers les spectres d'intensité lumineuses mesurés à chaque instant, pour calculer des teneurs en au moins deux gaz à différents instants, à partir des données représentatives colletées par le détecteur 56 et à partir d'une calibration préalable.In a variant, the
Le système de télétransmission de données 20 est alors propre à télétransmettre les valeurs de teneur calculées par l'unité de calcul 100, en remplacement des spectres de données d'intensité lumineuses, ce qui allège la transmission de données en temps réel et permet d'obtenir plus de mesures de teneurs en les deux gaz en temps réel.The data
Dans une autre variante, le drone 10 comporte plusieurs cellules de mesures 50, de structure analogue à la cellule de mesure 50 décrite plus haut, chacune étant dédiée à la détection d'au moins deux gaz distincts.In another variant, the
Dans l'exemple qui vient d'être décrit, chaque composant laser de la première source laser 52 et la deuxième source laser 54 est par exemple une diode laser. Une diode laser est un composant opto-électronique réalisé à base de matériaux semi-conducteurs. Elle émet de la lumière monochromatique cohérente.In the example which has just been described, each laser component of the
Elle est par exemple formée d'une jonction de semi-conducteurs, qui possède trois zones caractéristiques : une couche de confinement de type n, une zone active et une couche de confinement de type p. La diode est par exemple une diode à réaction distribuée (« distributed feed back » en anglais).It is for example formed of a semiconductor junction, which has three characteristic zones: an n-type confinement layer, an active zone and a p-type confinement layer. The diode is for example a distributed feed back diode.
Comme indiqué plus haut, la cellule de mesure 50 fonctionne par absorption directe de lumière laser dans la cavité de mesure 66, au contact des gaz dont la teneur est à mesurer. Il s'agit donc d'une cellule de mesure 50 pour réaliser une spectroscopie d'absorption directe au laser (Direct Laser Absorption Spectrometry en anglais).As indicated above, the measuring
La cavité de mesure 66 permet de réaliser de multiples réflexions des faisceaux laser injectés depuis la première source 52 ou depuis la deuxième source 54 pour augmenter la longueur du chemin optique. La cellule de mesure est ainsi une cellule spectroscopique à passage multiples, ou cellule de Herriott.The measuring
Claims (15)
- Drone (10) for measuring data representative of amounts of at least two gases present in the atmosphere away from the ground, comprising:- a chassis (12);- at least one propelling device (28) able to allow the chassis (12) to move through the atmosphere, away from the ground;- at least one sensor (40) for measuring the representative data, said at least one sensor being borne by the chassis (12);- a control system (18) for controlling the sensor (40) for measuring the representative data, said control system being borne by the chassis (12),
wherein the sensor (40) for measuring the representative data is able to measure data representative of amounts of at least two gases present in the atmosphere, the sensor (40) for measuring the representative data comprising at least one measurement cell (50) that is open to the atmosphere, and, for the or for each measurement cell (50), at least a first laser source (52) able to inject, into the measurement cell (50), a first laser beam at a first wavelength characteristic of a first gas to be detected and a second laser source (54) able to inject, into the measurement cell (50), a second laser beam at a second wavelength characteristic of a second gas to be detected, the sensor (40) for measuring the representative data comprising a detector (56) common to the two laser sources (52, 54), said detector being able to detect a first measurement signal originating from the measurement cell (50) and resulting from injection of the first laser beam into the measurement cell (50) and a second measurement signal originating from the measurement cell (50) and resulting from injection of the second laser beam into the measurement cell (50). - Drone (10) according to Claim 1, wherein the control system (18) is able to implement sequential and successive injections of the first laser beam into the measurement cell (50), then of the second laser beam into the measurement cell (50), without injection of the second laser beam into the measurement cell (50), when the first laser beam is injected into the measurement cell (50), and without injection of the first laser beam into the measurement cell (50), when the second laser beam is injected into the measurement cell (50), respectively, wherein optionally, the control system (18) is able to selectively and sequentially activate the first laser source (52) and the second laser source (54) to implement the sequential and successive injections.
- Drone (10) according to any one of the preceding claims, wherein the measurement cell (50) comprises two mirrors (64A, 64B) located facing and away from each other and defining there between a measurement cavity (66), and two holders (60) bearing the two mirrors (64A, 64B), respectively, the laser sources (52, 54) and the detector (56) being joined to be holders (60), away from the measurement cavity (66).
- Drone (10) according to any one of the preceding claims, wherein the first laser source (52) and the second laser source (54) are able to inject, into the measurement cavity (66), a laser beam of width larger than 1 mm, and especially comprised between 3 mm and 6 mm.
- Drone (10) according to any one of the preceding claims, wherein at least one element among the first laser source (52), the second laser source (54) and the detector (56) is equipped with a metal heat-exchange plate (58) that is swept by an airflow generated by the propelling device (28) when the propelling device (28) is activated.
- Drone (10) according to any one of the preceding claims, wherein the control system (18) comprises a casing (96) and at least one heat exchanger (94) comprising at least one metal heat-exchange plate, and preferably a series of metal plates, the or each metal heat-exchange plate protruding from the casing (96) and being swept by an airflow generated by the propelling device (28) when the propelling device (28) is activated.
- Drone (10) according to any one of the preceding claims, comprising a temperature-measuring sensor (44) and pressure-measuring sensor (46) placed in the measuring cell (50).
- Drone (10) according to any one of the preceding claims, comprising an altitude-measuring sensor (48) borne by the chassis (12).
- Drone (10) according to any one of the preceding claims, wherein the chassis (12) comprises a plurality of members (22) forming an apertured framework, a first region (24) of the chassis (12) holding the control system (18), and a second region of the chassis (12), which second region is located away from the first region of the chassis (12), holding the measurement cell (50), the members (22) advantageously being made of polymer, and especially of polyetheretherketone.
- Drone (10) according to any one of the preceding claims, comprising dampers (42) mounted between the chassis (12) and the measurement cell (50), the dampers (42) especially being formed from spring wire.
- Drone (10) according to any one of the preceding claims, holding a system (20) for transmitting data, said system being borne by the chassis (12), the representative data detected by the detector (56) being able to be transmitted by the transmitting system (20), the drone (10) optionally comprising a memory for storing representative data collected by the detector (56), and an on-board computing unit (100) located in the chassis (12) and able to process the representative data collected by the detector (56) at any given time, with a view to computing amounts of at least two gases at various times, the data-transmitting system being able to transmit the amount values computed by the computing unit (100).
- Drone (10) according to any one of the preceding claims, having a total mass lower than 10 kg, and especially lower than 8 kg.
- Drone (10) according to any one of the preceding claims, wherein the common detector (56) comprises a single detecting device sensitive both to the wavelength of the beam emitted by the first laser source (52) and to the wavelength of the beam emitted by the second laser source (54), the common detector (56) being formed of a single component.
- Drone (10) according to any one of the preceding claims, wherein the measurement cell (50) is a direct-laser-absorption-spectroscopy cell.
- Method (10) for measuring data representative of amounts of at least two gases present in the atmosphere away from the ground, comprising:- flying a drone (10) according to any one of the preceding claims through the atmosphere away from the ground;- injecting, using the first laser source (52), into the measurement cell (50), a first laser beam at a first wavelength representative of a first gas;- detecting, using the detector (56) common to the two laser sources (52, 54), a first measurement signal originating from the measurement cell (50) and resulting from the first laser beam injected into the measurement cell (50);- injecting, using the second laser source (54), into the measurement cell (50), a second laser beam at a second wavelength representative of a second gas to be detected;- detecting, using the detector (56) common to the two laser sources (52, 54), a second signal measured in the measurement cell (50) and resulting from the second laser beam injected into the measurement cell (50).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP23168857.3A EP4235150A3 (en) | 2020-03-27 | 2021-03-25 | Drone for measuring data representative of the content of at least two gases present in the atmosphere away from the ground and associated measurement method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR2003027A FR3108726B1 (en) | 2020-03-27 | 2020-03-27 | Drone for measuring data representative of the content of at least two gases present in the atmosphere away from the ground and associated measuring method |
PCT/EP2021/057765 WO2021191360A1 (en) | 2020-03-27 | 2021-03-25 | Drone for measuring data representative of the content of at least two gases present in the atmosphere away from the ground and associated measurement method |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP23168857.3A Division-Into EP4235150A3 (en) | 2020-03-27 | 2021-03-25 | Drone for measuring data representative of the content of at least two gases present in the atmosphere away from the ground and associated measurement method |
EP23168857.3A Division EP4235150A3 (en) | 2020-03-27 | 2021-03-25 | Drone for measuring data representative of the content of at least two gases present in the atmosphere away from the ground and associated measurement method |
Publications (2)
Publication Number | Publication Date |
---|---|
EP4127683A1 EP4127683A1 (en) | 2023-02-08 |
EP4127683B1 true EP4127683B1 (en) | 2023-11-22 |
Family
ID=71452421
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP23168857.3A Pending EP4235150A3 (en) | 2020-03-27 | 2021-03-25 | Drone for measuring data representative of the content of at least two gases present in the atmosphere away from the ground and associated measurement method |
EP21713971.6A Active EP4127683B1 (en) | 2020-03-27 | 2021-03-25 | Drone for measuring data representative of the content of at least two gases present in the atmosphere away from the ground and associated measurement method |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP23168857.3A Pending EP4235150A3 (en) | 2020-03-27 | 2021-03-25 | Drone for measuring data representative of the content of at least two gases present in the atmosphere away from the ground and associated measurement method |
Country Status (15)
Country | Link |
---|---|
US (1) | US20230146441A1 (en) |
EP (2) | EP4235150A3 (en) |
JP (1) | JP2023520375A (en) |
CN (1) | CN115968444A (en) |
AU (1) | AU2021240338A1 (en) |
BR (1) | BR112022019373A2 (en) |
CA (1) | CA3173693A1 (en) |
DK (1) | DK4127683T3 (en) |
ES (1) | ES2972237T3 (en) |
FI (1) | FI4127683T3 (en) |
FR (1) | FR3108726B1 (en) |
IL (1) | IL296836A (en) |
MX (1) | MX2022012080A (en) |
PL (1) | PL4127683T3 (en) |
WO (1) | WO2021191360A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3830533A4 (en) | 2018-07-30 | 2022-04-20 | SeekOps Inc. | Ultra-lightweight, handheld gas leak detection device |
US11994464B2 (en) | 2019-04-05 | 2024-05-28 | Seekops Inc. | Analog signal processing for a lightweight and compact laser-based trace gas sensor |
US12055485B2 (en) | 2020-02-05 | 2024-08-06 | Seekops Inc. | Multispecies measurement platform using absorption spectroscopy for measurement of co-emitted trace gases |
FR3142556A1 (en) | 2022-11-30 | 2024-05-31 | Totalenergies Onetech | Method for measuring the contents of at least one gas emitted by a source in a plume propagating in the atmosphere from the source, method, and associated drone |
CN117341969B (en) * | 2023-12-05 | 2024-02-09 | 陕西省环境调查评估中心 | High altitude air quality monitoring device |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2869858A (en) * | 1956-08-01 | 1959-01-20 | Metal Textile Corp | Vibration and shock absorptive cushion element |
US3780566A (en) | 1972-03-07 | 1973-12-25 | Argus Chem | Apparatus for continuously monitoring air-pollution |
US6597462B2 (en) | 2000-03-01 | 2003-07-22 | Lambda Physik Ag | Laser wavelength and bandwidth monitor |
US6509566B1 (en) | 2000-06-22 | 2003-01-21 | Ophir Corporation | Oil and gas exploration system and method for detecting trace amounts of hydrocarbon gases in the atmosphere |
US7999232B2 (en) * | 2006-12-22 | 2011-08-16 | Photonic Innovations Limited | Gas detector |
US8665442B2 (en) | 2011-08-18 | 2014-03-04 | Li-Cor, Inc. | Cavity enhanced laser based isotopic gas analyzer |
WO2014116840A1 (en) * | 2013-01-23 | 2014-07-31 | California Institute Of Technology | Miniature tunable laser spectrometer for detection of a trace gas |
JP6240339B2 (en) * | 2014-09-22 | 2017-11-29 | 株式会社東芝 | Gas analyzer and gas processing apparatus |
KR101530646B1 (en) * | 2014-11-20 | 2015-06-23 | 한국건설기술연구원 | Apparatus and Method for Measuring Gas Using Unmanned Aerial Vehicle |
US11299268B2 (en) | 2016-11-02 | 2022-04-12 | California Institute Of Technology | Positioning of in-situ methane sensor on a vertical take-off and landing (VTOL) unmanned aerial system (UAS) |
US10209188B2 (en) * | 2016-11-02 | 2019-02-19 | The United States Of America, As Represented By The Secretary Of The Navy | Methods and systems for incorporating bio-sensors in drones to wirelessly detect biological molecules and hazards |
US10704981B2 (en) * | 2017-01-04 | 2020-07-07 | General Electric Company | Remote leak detection system |
US10330592B2 (en) | 2017-07-21 | 2019-06-25 | Serguei Koulikov | Laser absorption spectroscopy isotopic gas analyzer |
CN108698703B (en) * | 2017-11-13 | 2022-08-26 | 深圳市大疆创新科技有限公司 | Motion sensor subassembly and unmanned aerial vehicle |
US11022489B2 (en) * | 2018-03-30 | 2021-06-01 | The United States Of America, As Represented By The Secretary Of The Navy | Portable multi-spectrometry system for chemical and biological sensing in atmospheric air |
US20190357771A1 (en) * | 2018-05-07 | 2019-11-28 | Pine Development Corporation | Systems and methods for delivering, eliciting, and modifying tactile sensations using electromagnetic radiation |
WO2019246280A1 (en) | 2018-06-19 | 2019-12-26 | Seekops Inc. | Emissions estimate model algorithms and methods |
EP3591379B1 (en) * | 2018-07-04 | 2022-01-26 | Q.E.D. Environmental Systems Limited | Portable optical spectroscopy device for analyzing gas samples |
WO2020086499A1 (en) * | 2018-10-22 | 2020-04-30 | Seekops Inc. | A uav-borne, high-bandwidth, lightweight point sensor for quantifying greenhouse gases in atmospheric strata |
US11614430B2 (en) * | 2019-12-19 | 2023-03-28 | Seekops Inc. | Concurrent in-situ measurement of wind speed and trace gases on mobile platforms for localization and qualification of emissions |
WO2021158916A1 (en) | 2020-02-05 | 2021-08-12 | Seekops Inc. | Multiple path length optical cell for trace gas measurement |
CA3232749A1 (en) * | 2021-10-04 | 2023-04-13 | Heath Consultants Incorporated | System and method for simultaneous high-sensitivity measurement of methane and ethane via laser absorption spectroscopy in an open-air configuration |
-
2020
- 2020-03-27 FR FR2003027A patent/FR3108726B1/en active Active
-
2021
- 2021-03-25 EP EP23168857.3A patent/EP4235150A3/en active Pending
- 2021-03-25 CN CN202180029165.XA patent/CN115968444A/en active Pending
- 2021-03-25 EP EP21713971.6A patent/EP4127683B1/en active Active
- 2021-03-25 AU AU2021240338A patent/AU2021240338A1/en active Pending
- 2021-03-25 PL PL21713971.6T patent/PL4127683T3/en unknown
- 2021-03-25 JP JP2022558440A patent/JP2023520375A/en active Pending
- 2021-03-25 DK DK21713971.6T patent/DK4127683T3/en active
- 2021-03-25 FI FIEP21713971.6T patent/FI4127683T3/en active
- 2021-03-25 ES ES21713971T patent/ES2972237T3/en active Active
- 2021-03-25 CA CA3173693A patent/CA3173693A1/en active Pending
- 2021-03-25 IL IL296836A patent/IL296836A/en unknown
- 2021-03-25 MX MX2022012080A patent/MX2022012080A/en unknown
- 2021-03-25 WO PCT/EP2021/057765 patent/WO2021191360A1/en active Application Filing
- 2021-03-25 US US17/914,953 patent/US20230146441A1/en active Pending
- 2021-03-25 BR BR112022019373A patent/BR112022019373A2/en unknown
Also Published As
Publication number | Publication date |
---|---|
FI4127683T3 (en) | 2024-02-20 |
IL296836A (en) | 2022-11-01 |
CA3173693A1 (en) | 2021-09-30 |
FR3108726A1 (en) | 2021-10-01 |
JP2023520375A (en) | 2023-05-17 |
AU2021240338A1 (en) | 2022-10-27 |
EP4127683A1 (en) | 2023-02-08 |
BR112022019373A2 (en) | 2022-11-16 |
EP4235150A2 (en) | 2023-08-30 |
WO2021191360A1 (en) | 2021-09-30 |
EP4235150A3 (en) | 2023-09-13 |
ES2972237T3 (en) | 2024-06-11 |
US20230146441A1 (en) | 2023-05-11 |
PL4127683T3 (en) | 2024-06-24 |
DK4127683T3 (en) | 2024-02-26 |
CN115968444A (en) | 2023-04-14 |
MX2022012080A (en) | 2023-03-07 |
FR3108726B1 (en) | 2022-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP4127683B1 (en) | Drone for measuring data representative of the content of at least two gases present in the atmosphere away from the ground and associated measurement method | |
Knobelspiesse et al. | Simultaneous retrieval of aerosol and cloud properties during the MILAGRO field campaign | |
Tuzson et al. | A compact QCL spectrometer for mobile, high-precision methane sensing aboard drones | |
Francis et al. | Remote measurements of volcanic gas compositions by solar occultation spectroscopy | |
Cairns et al. | Research scanning polarimeter and airborne usage for remote sensing of aerosols | |
EP2359110B1 (en) | Device for analysing materials by plasma spectroscopy | |
Schwarz et al. | Single‐particle measurements of midlatitude black carbon and light‐scattering aerosols from the boundary layer to the lower stratosphere | |
Abshire et al. | Pulsed airborne lidar measurements of atmospheric CO2 column absorption | |
Diskin et al. | Open-path airborne tunable diode laser hygrometer | |
De Young et al. | Langley mobile ozone lidar: ozone and aerosol atmospheric profiling for air quality research | |
JP2002539446A (en) | Passive remote sensor for chemicals | |
Allen et al. | Aerosol and trace‐gas measurements in the Darwin area during the wet season | |
Weibring et al. | First demonstration of a high performance difference frequency spectrometer on airborne platforms | |
Telg et al. | A practical set of miniaturized instruments for vertical profiling of aerosol physical properties | |
WO2015189283A1 (en) | Mobile spectroscopic analysis device, in particular for geological analyses | |
Galle et al. | A multi-purpose, multi-rotor drone system for long-range and high-altitude volcanic gas plume measurements | |
Yokota et al. | Test measurements by a BBM of the nadir-looking SWIR FTS aboard GOSAT to monitor CO2 column density from space | |
WO2015189286A1 (en) | Spectroscopic analysis device for drilling cores | |
Bennett et al. | Distribution of infrared radiance over a clear sky | |
OA20912A (en) | Drone for measuring data representative of the amounts of at least two gases present in the atmosphere away from the ground and associated measurement method. | |
Georgieva et al. | Total column oxygen detection using a Fabry-Perot interferometer | |
Suto et al. | Characterization and correction of spectral distortions induced by microvibrations onboard the GOSAT Fourier transform spectrometer | |
Pantani et al. | Two infrared laser spectrometers for the in situ measurement of stratospheric gas concentration | |
EA047054B1 (en) | UNMANNED AIRCRAFT FOR MEASUREMENT OF REPRESENTATIVE DATA DISPLAYING THE CONTENT OF AT LEAST TWO GASES PRESENT IN THE ATMOSPHERE AT A DISTANCE FROM THE GROUND AND THE CORRESPONDING METHOD OF MEASUREMENT | |
Schmidt et al. | Airborne Solar Radiation Sensors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20220923 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20230907 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: COUSIN, JULIEN Inventor name: DUMELIE, NICOLAS Inventor name: ALBORA, GREGORY Inventor name: CHAUVIN, NICOLAS Inventor name: BURGALAT, JEREMIE Inventor name: DECARPENTERIE, THOMAS Inventor name: JOLY, LILIAN Inventor name: MAUNOURY, ABEL Inventor name: DONNAT, LUDOVIC |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
TPAC | Observations filed by third parties |
Free format text: ORIGINAL CODE: EPIDOSNTIPA |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602021007088 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20240220 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR Ref country code: LT Ref legal event code: MG9D |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20240214 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240322 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231122 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1634271 Country of ref document: AT Kind code of ref document: T Effective date: 20231122 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231122 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231122 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240322 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240223 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231122 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240322 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231122 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231122 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231122 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2972237 Country of ref document: ES Kind code of ref document: T3 Effective date: 20240611 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240521 Year of fee payment: 4 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240521 Year of fee payment: 4 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20240527 Year of fee payment: 4 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240523 Year of fee payment: 4 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240524 Year of fee payment: 4 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231122 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231122 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231122 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231122 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231122 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231122 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NO Payment date: 20240528 Year of fee payment: 4 Ref country code: IT Payment date: 20240401 Year of fee payment: 4 Ref country code: FR Payment date: 20240527 Year of fee payment: 4 Ref country code: FI Payment date: 20240527 Year of fee payment: 4 Ref country code: BG Payment date: 20240521 Year of fee payment: 4 Ref country code: RO Payment date: 20240524 Year of fee payment: 4 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20240516 Year of fee payment: 4 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602021007088 Country of ref document: DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20240517 Year of fee payment: 4 Ref country code: SE Payment date: 20240521 Year of fee payment: 4 Ref country code: BE Payment date: 20240521 Year of fee payment: 4 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |