EP4127310B1 - Apparatus for grinding a fibrous material suspension - Google Patents

Apparatus for grinding a fibrous material suspension Download PDF

Info

Publication number
EP4127310B1
EP4127310B1 EP21712970.9A EP21712970A EP4127310B1 EP 4127310 B1 EP4127310 B1 EP 4127310B1 EP 21712970 A EP21712970 A EP 21712970A EP 4127310 B1 EP4127310 B1 EP 4127310B1
Authority
EP
European Patent Office
Prior art keywords
shaft
fluid
bearing
shaft bearing
refiner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21712970.9A
Other languages
German (de)
French (fr)
Other versions
EP4127310A1 (en
EP4127310C0 (en
Inventor
Thomas Reisinger
Peter Ortner
Daniel HOGUE
Christian HARPIN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Andritz AG
Original Assignee
Andritz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from ATA50275/2020A external-priority patent/AT523590B1/en
Application filed by Andritz AG filed Critical Andritz AG
Publication of EP4127310A1 publication Critical patent/EP4127310A1/en
Application granted granted Critical
Publication of EP4127310C0 publication Critical patent/EP4127310C0/en
Publication of EP4127310B1 publication Critical patent/EP4127310B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21DTREATMENT OF THE MATERIALS BEFORE PASSING TO THE PAPER-MAKING MACHINE
    • D21D1/00Methods of beating or refining; Beaters of the Hollander type
    • D21D1/20Methods of refining
    • D21D1/30Disc mills
    • D21D1/303Double disc mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C7/00Crushing or disintegrating by disc mills
    • B02C7/11Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C7/00Crushing or disintegrating by disc mills
    • B02C7/02Crushing or disintegrating by disc mills with coaxial discs
    • B02C7/08Crushing or disintegrating by disc mills with coaxial discs with vertical axis
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21DTREATMENT OF THE MATERIALS BEFORE PASSING TO THE PAPER-MAKING MACHINE
    • D21D1/00Methods of beating or refining; Beaters of the Hollander type
    • D21D1/20Methods of refining
    • D21D1/30Disc mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C7/00Crushing or disintegrating by disc mills
    • B02C7/11Details
    • B02C7/14Adjusting, applying pressure to, or controlling distance between, discs

Definitions

  • the invention relates to a refiner for beating fibrous materials in a fibrous stock suspension, comprising a shaft, a rotor disk firmly connected to the shaft and a shaft bearing, the rotor disk being arranged between two stator disks to form a grinding chamber between the rotor disk and the stator disks, the shaft being movable in an axial direction, at least one stator disk being displaceable in the axial direction, the size of the grinding chamber being adjustable via the distance between the stator disks and the rotor disk between the stator disks being adjustable via a movement of the shaft in the axial direction is movable.
  • Refiners - or the described double disc refiners - are known in different designs.
  • a rotor disk typically rotates between two stationary stator disks, with the rotor disk or the stator disks being equipped with grinding plates.
  • the fibrous material in suspension is ground in the grinding space between the rotor disk and the stator disks.
  • a uniform distribution of the grinding pressure in the grinding chamber and thus in the area between the rotor disk and the first stator disk and in the area between the rotor disk and the second stator disk is essential. To do this, the rotor must be able to move axially.
  • Various solutions are known in the prior art.
  • the aim of the invention is a refiner with reduced wear of the rotor disks and stator disks and in particular the refining plates on these disks.
  • the shaft bearing is hydraulically connected to the grinding chamber.
  • “hydraulically connected” means that a fluid—preferably water—can be transferred between the shaft bearing and the grinding chamber is.
  • a fluid preferably water
  • continuous stream threads of the fluid between the shaft bearing and the grinding chamber can be represented or given.
  • the smooth-running axial mobility of the shaft and thus of the rotor disk, which is firmly connected to the shaft, is an essential prerequisite for the fibrous material present in a suspension in the grinding chamber, i.e. in the area between the rotor disk and the first stator disk and in the area between the rotor disk and the second stator disk, to be ground evenly, since the grinding pressure is distributed evenly in the grinding chamber.
  • the even distribution of the grinding pressure results from the independent and smooth positioning of the rotor disc between the stator discs. Any resistance to positioning, e.g.
  • the fixed connection of the rotor disk to the shaft means that there is no axial displaceability between the shaft and the rotor disk and therefore no relative movement in the axial direction between the shaft and the rotor disk.
  • the connection between the rotor disk and the shaft can be detachable, which can be important for service and installation.
  • a favorable embodiment of the refiner is characterized in that the rotor disk is firmly connected to the shaft inside or outside the shaft bearing.
  • the shaft is thus mounted on both sides of the rotor disc or cantilevered. Bearing the shaft of a refiner on both sides of the rotor disk allows for an even and distributed bearing load, but not a very compact design, since the shaft bearing is designed on both sides of the rotor disk.
  • the rotor disk is firmly connected to the shaft at a first end of the shaft and the rotor disk lies outside of the shaft bearing.
  • the shaft is connected to a motor via a coupling, the coupling being outside of the shaft bearing.
  • the overhung storage of the rotor disk together with the hydraulically connected shaft bearing according to the invention a very compact design.
  • An advantageous embodiment of the refiner is characterized in that the shaft is mounted exclusively on fluid-lubricated slide bearings. This allows the shaft to move particularly easily in the axial direction of the shaft.
  • the shaft is mounted on both sides of the rotor disk, only fluid-lubricated plain bearings are arranged on both sides of the rotor disk. If the shaft is cantilevered, the rotor disk is firmly connected to the shaft at a first end of the shaft and the shaft is mounted exclusively via fluid-lubricated plain bearings, with the shaft bearing being arranged between the rotor disk and a second end of the shaft.
  • a further advantageous refinement of the refiner is characterized in that the shaft bearing is designed as a fluid-lubricated slide bearing, with a fluid, preferably water, being able to be fed to the grinding chamber via the shaft bearing.
  • a fluid preferably water
  • the design as a water-lubricated plain bearing is particularly advantageous.
  • water can be supplied to the grinding chamber via the water-lubricated plain bearing.
  • the use of water as a fluid means the possibility of realizing an oil-free shaft bearing, which means that contamination of the fibrous suspension by oil or hydraulic oil is ruled out. It is particularly advantageous to provide forced guidance to ensure a flow direction of the fluid—preferably water—through the fluid-lubricated slide bearing into the grinding chamber.
  • the fluid in the shaft bearing has a higher pressure than the fibrous suspension in the grinding chamber in the area where the fluid is fed into the grinding chamber. Due to the higher pressure of the fluid in the shaft bearing, the fluid flows in the direction of the grinding chamber, which advantageously effectively prevents contamination of the shaft bearing or the water-lubricated plain bearing.
  • the water-lubricated slide bearing is always flushed in the direction of the grinding chamber and the smooth movement of the shaft is maintained over the operating time.
  • a further favorable refinement of the refiner is characterized in that a seal is arranged between the grinding chamber and the shaft bearing.
  • the shaft bearing is designed as a fluid-lubricated plain bearing, with a fluid, preferably water, being able to be fed to the grinding chamber through the shaft bearing via the seal.
  • An advantageous embodiment of the seal includes a shaft sealing ring or a throttle ring.
  • the seal is arranged, for example, between the shaft and the bearing housing, inserted into a recess in the bearing housing and fixed in the bearing housing via a fixing ring.
  • the shaft is guided through the seal, with the seal being in contact with the shaft in the case of a shaft seal, or with a gap between the shaft and the seal in the case of a throttle ring.
  • Seals advantageously have at least one sealing lip.
  • seal has a sealing effect that is dependent on the direction of flow of the fluid.
  • seals include oil seals or throttle rings.
  • the sealing effect dependent on the direction of flow can be realized in that, for example, when the fluid flows in a direction from the shaft bearing to the grinding chamber, the fluid or the fluid pressure lifts the seal from the sealing surface and/or the seal releases a larger flow cross section for the fluid.
  • the seal is designed with a sealing lip, the sealing lip being designed in the shape of a truncated cone in order to form a sealing effect depending on the direction of flow.
  • a seal with a frustoconical sealing lip can be arranged in such a way that the shaft is guided inside the seal, with the axial direction of the shaft and the axis of the frustoconical sealing lip coinciding.
  • the seal is clamped in the bearing housing and the truncated cone-shaped sealing lip is guided against the shaft.
  • a flow of the fluid from the base to the imaginary cone tip of the truncated cone-shaped sealing lip then leads to the sealing lip widening, to the seal being lifted off the shaft or at least to a Reduction of the contact pressure of the seal against the sliding surface or shaft, which is decisive for the seal and the sliding friction. If the direction of flow is reversed in this first example - ie a flow of the fluid from the imaginary apex of the cone to the base of the frustoconical sealing lip - the fluid would press the sealing lip against the shaft and lead to an increase in the contact pressure of the sealing lip.
  • the seal is clamped to the shaft, for example, and the truncated cone-shaped sealing lip is oriented towards the bearing housing.
  • a flow of the fluid from the base to the imaginary cone tip of the frustoconical sealing lip then leads to an expansion of the base area and thus to increased contact pressure of the sealing lip and an improved sealing effect against the bearing housing.
  • Seals that have a sealing effect that is dependent on the direction of flow of the fluid are advantageous, since when the fluid flows in accordance with the desired direction of flow, very little or no friction losses of the seal can be realized. With a reversal of the direction of flow, however, the best possible seal can be implemented and a flow of the fluid counter to the desired direction of flow can be reduced or avoided.
  • An equally advantageous embodiment of the refiner is characterized in that when the fluid flows through the shaft bearing into the grinding chamber, the seal has a sealing effect that is less than when the fluid flows out of the grinding chamber into the shaft bearing.
  • Seals that have a sealing effect that is dependent on the flow direction of the fluid are advantageous because they allow very little or no friction losses in the seal when the fluid flows in the desired flow direction from the shaft bearing into the grinding chamber.
  • this behavior is advantageously reversed, since the best possible seal is required when the fluid flows from the grinding chamber into the shaft bearing, in particular to prevent the fibrous suspension from flowing from the grinding chamber into the shaft bearing and thus avoiding contamination of the shaft bearing by the fibrous materials.
  • a further advantageous refinement of the refiner is characterized in that a damping element is assigned to the shaft bearing, with the damping element being preferably between the rotor disk and a motor between the rotor disc and a clutch, the clutch being arranged between the rotor disc and the engine.
  • the bearing according to the invention allows the shaft to move so easily in the axial direction that, surprisingly, jerky movements of the shaft can occur during operation, which should be avoided.
  • the clutch can provide a small amount of damping, for example due to friction effects in the clutch.
  • this is not sufficient, which is why the arrangement of a damping element is advantageous in order to ensure uniform movements of the shaft in the axial direction.
  • the damping element is hydraulically connected to the shaft bearing.
  • the damping element includes, for example, a damping area and a throttle element.
  • the throttle element can, for example, be designed as a throttle ring, with the throttle ring being arranged between the shaft and the bearing housing and largely covering the gap between the shaft and the bearing housing.
  • the damping area is formed, for example, by an area between the shaft, bearing housing and throttle element, with the damping area being arranged between the shaft bearing and the clutch.
  • the damping element is hydraulically connected to the shaft bearing, i.e.
  • the fluid - preferably water - which can be fed to the shaft bearing is also fed to the damping element, with continuous streams of fluid between the shaft bearing, ie the fluid feed to the shaft bearing and the damping element being able to be represented.
  • the volume of the damping area changes, with an increase in the volume causing fluid to flow into the damping area via the throttle element and a reduction in the volume causing fluid to flow out of the damping area via the throttle element.
  • a damping effect results in accordance with the viscous losses of the fluid as it passes through the throttle element.
  • the arrangement of the damping element between storage and clutch is advantageous because it is so there is no hydraulic influence on the seal, since the bearing is arranged between the seal and the damping element.
  • An equally advantageous embodiment of the refiner is characterized in that the pulp suspension can be fed to the grinding chamber via an inlet area or through the shaft.
  • This advantageous bearing allows shaft diameters to be realized that allow the fibrous suspension to be fed through the shaft to the grinding chamber, and in contrast to the use of conventional roller bearings, larger shaft diameters can also be realized in a technically sensible manner.
  • a further advantageous embodiment of the refiner is characterized in that the rotor disk is designed with openings, with the openings providing a uniform distribution of the fibrous suspension that can be fed via the inlet area or via the shaft in the grinding chamber.
  • the fibrous stock suspension is fed to the refiner on one side of the rotor disk, with the fibrous stock suspension being able to be fed directly into a first gap between a first stator disk and the rotor disk.
  • the fibrous suspension can also be fed to the second side of the rotor disk through the openings in the rotor disk, with the fibrous suspension being able to be guided into a second gap between a second stator disk and the rotor disk.
  • An advantageous embodiment of the refiner is characterized in that the shaft is connected to a motor via a coupling, the movement of the shaft in the axial direction being able to be absorbed by the coupling. Since the motor is arranged immovably and the shaft is advantageously movable in the axial direction, a relative movement in the axial direction between the shaft and the motor can be accommodated via the coupling.
  • a particularly advantageous embodiment of the refiner is characterized in that the coupling is designed as a curved tooth coupling and the shaft can move radially and/or axially in the curved tooth coupling.
  • the shaft is designed with external teeth in the area of the coupling and is connected to the motor via a coupling spacer that has internal teeth. In the case of maintenance, there is very good accessibility to the refiner by dismantling the adapter.
  • curved tooth couplings In addition to the movement of the shaft in the axial direction, curved tooth couplings also allow a movement in the radial direction. Curved-tooth couplings also allow the external gearing of the shaft and the internal gearing of the coupling spacer to perform a wobbling movement when the shaft rotates, with permanent sliding friction occurring between the gearings.
  • Curved-tooth couplings also allow the external gearing of the shaft and the internal gearing of the coupling spacer to perform a wobbling movement when the shaft rotates, with permanent sliding friction occurring between the gearings.
  • a rotor disk 2 is arranged on a shaft 1 in a housing 19 , the rotor disk 2 being movable in the axial direction 7 relative to the shaft 1 .
  • the pulp suspension is fed to the refiner 17 via an inlet area 12 and is distributed through openings 13 (not shown) in the rotor disc 2 in the grinding chamber 6.
  • the pulp suspension is ground in a first grinding gap between the rotor disc 2 and the first stator disc 4 and in a second grinding gap between the rotor disc 2 and the second stator disc 5 and leaves the refiner 17 via the outlet area 18.
  • At the rotor disc 2 or the St ator discs replaceable grinding plates are arranged.
  • the second stator disk 5 can be moved in the axial direction 7 via an adjusting device 20 and the distance between the stator disks 4.5 or between the rotor disk 2 and the stator disks 4.5 can be adjusted.
  • the axial mobility of the rotor disk 2 on the shaft 1 allows the rotor disk 2 to be centered independently between the stator disks 4.5, with comparable grinding gaps being established.
  • This embodiment of the refiner 17 provides no mobility of the shaft 1 in the axial direction 7, the shaft bearing 3 as Rolling bearing is running. Shaft bearing 3 and grinding chamber 6 are clearly separated.
  • the roller bearings are oil-lubricated.
  • a seal 8 seals the grinding chamber 6 or the inlet area 12 against the shaft 1. The introduction of oil into the grinding chamber 6 is to be prevented by design, and no fibrous material suspension may get into the oil circuit of the roller bearing.
  • a rotor disk 2 is arranged on a shaft 1 in a housing 19 , the rotor disk 2 being fixedly connected to the shaft 1 and the shaft 1 being movable in the axial direction 7 .
  • the pulp suspension is fed to the refiner 17 via an inlet area 12 and is distributed through openings 13 (not shown) in the rotor disc 2 in the grinding chamber 6.
  • the pulp suspension is ground in a first grinding gap between the rotor disc 2 and the first stator disc 4 and in a second grinding gap between the rotor disc 2 and the second stator disc 5 and leaves the refiner 17 via the outlet area 18.
  • At the rotor disc 2 or the St ator discs replaceable grinding plates are arranged.
  • the second stator disk 5 can be moved in the axial direction 7 via an adjusting device 20 and the distance between the stator disks 4.5 or between the rotor disk 2 and the stator disks 4.5 can be adjusted.
  • the axial mobility of the shaft 1 and thus of the rotor disk 2, which is firmly connected to the shaft 1, allows the rotor disk 2 to be centered independently between the stator disks 4.5, with comparable grinding gaps being established.
  • the shaft 1 is connected to a motor 10 (not shown) via a coupling 11 , the coupling 11 being able to absorb the movement of the shaft 1 in the axial direction 7 .
  • the shaft 1 is cantilevered via a shaft bearing 3 , the rotor disk 2 being arranged outside of the shaft bearing 3 .
  • the shaft bearing 3 is hydraulically connected to the grinding chamber 6 .
  • the shaft bearing 3 is designed as a fluid-lubricated slide bearing 23, with a fluid—preferably water—serving as a lubricating medium in the shaft bearing 3 and being at least partially feedable to the grinding chamber 6 via the shaft bearing 3.
  • the seal 8 arranged between the shaft bearing 3 and the grinding chamber 6 limits the amount of fluid that flows between the shaft bearing 3 and the grinding chamber 6 in accordance with the pressure conditions. The fluid is advantageously guided in a targeted manner from the shaft bearing 3 in the direction of the grinding chamber 6 .
  • a seal 8 with a sealing effect that is dependent on the direction of flow of the fluid.
  • a seal 8 is particularly advantageous which, when the fluid flows through the shaft bearing 3 into the grinding chamber 6, has a sealing effect which is less than when the fluid flows from the grinding chamber 6 into the shaft bearing 3. In this way, with a higher pressure in the grinding chamber 6 and a lower pressure in the shaft bearing 3, a flow of fibrous suspension from the grinding chamber 6 into the shaft bearing 3 can be minimized or prevented.
  • the refiner 17 also includes a damping element 9 which is assigned to the shaft bearing 3 .
  • the damping element 9 is arranged between the rotor disk 2 and the motor 10 (not shown) and preferably between the rotor disk 2 and the clutch 11.
  • the damping element 9 can be hydraulically connected to the shaft bearing 3, with the damping element 9 comprising a damping area 15 and a throttle element 16.
  • the fluid supplied to the shaft bearing 3 flows through the shaft bearing 3 and also fills the damping area 15.
  • the volume of the damping area 15 can be changed by a movement of the shaft 1 in the axial direction 7, with an increase in volume of the damping area 15 fluid flowing to the damping element 9 and a reduction in volume of the damping area 15 fluid flowing out of the damping element 9, the fluid flowing through the throttle element 16 to the damping area 15. or drains off.
  • the fluid is fed to the shaft bearing 3 via a fluid inlet 21 and flows through the fluid-lubricated plain bearing 23 or fills the damping area 15.
  • the seal 8 is arranged between the shaft bearing 3 and the grinding chamber 6 and limits the amount of fluid that flows according to the pressure conditions between the shaft bearing 3 and the grinding chamber 6, with the majority of the fluid being discharged from the shaft bearing 3 via the fluid return 22.
  • the fluid is advantageously guided in a targeted manner in the direction of the grinding chamber 6 by a greater pressure of the fluid in the shaft bearing 3 compared to the pressure in the grinding chamber 6 .
  • the damping element 9 is hydraulically connected to the shaft bearing 3, and includes the damping area 15 and the throttle element 16.
  • the throttle element 16 is in 3 connected to the shaft 1, the damping area 15 being delimited by the shaft 1, the bearing housing 14 and the throttle element 16.
  • the volume of the damping area 15 can be changed by moving the shaft 1 in the axial direction 7, with fluid flowing into the damping element 9 when the volume of the damping area 15 increases, and fluid flowing out of the damping element 9 when the volume of the damping area 15 decreases, the fluid flowing in and out of the damping area 15 in each case via the throttle element 16.
  • Figure 4a and Figure 4b each show an advantageous seal 8 of the shaft bearing 3, which allows a sealing effect dependent on the direction of flow of the fluid.
  • the seal 8 is fixed in the bearing housing 14 via a fastening element 24 , sealing lips 25 being guided against the shaft 1 .
  • the direction of flow is reversed, i.e.
  • a seal 8 with two free-standing sealing lips 25 is shown.
  • a seal 8 with two sealing lips 25 is shown, with a free-standing sealing lip 25 being arranged closer to the shaft bearing 3 and the sealing lip 25, which is arranged closer to the grinding chamber 6, does without a cavity 26 oriented towards the grinding chamber 6, which advantageously prevents fibrous material from being stored and possibly hardening in the cavity 26 oriented toward the grinding chamber 6.
  • the present invention thus offers numerous advantages. Particularly advantageous is the low wear of the rotor discs and stator discs - and in particular the grinding plates on these discs, which is achieved by the very easy positioning of the rotor disc, which is also maintained in continuous operation.
  • the solution according to the invention makes it possible to avoid contamination by fibrous material in the sealing area and bearing area.
  • the storage according to the invention avoids the risk of oil contamination of the fibrous suspension, since the storage can be operated oil-free and the risk of contamination of the storage by the fibrous material is eliminated or is minimal.
  • the storage according to the invention also allows a more compact design of the refiner and, above all, a shorter overall length.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Paper (AREA)

Description

Die Erfindung betrifft einen Refiner zur Mahlung von Faserstoffen in einer Faserstoffsuspension umfassend eine Welle, eine fest mit der Welle verbundene Rotorscheibe und eine Wellenlagerung, wobei die Rotorscheibe zwischen zwei Statorscheiben angeordnet ist unter Bildung eines Mahlraumes zwischen der Rotorscheibe und den Statorscheiben, wobei die Welle in einer Axialrichtung beweglich ist, zumindest eine Statorscheibe in Axialrichtung verschiebbar ist, die Größe des Mahlraumes über den Abstand zwischen den Statorscheiben einstellbar ist und die Rotorscheibe zwischen den Statorscheiben über eine Bewegung der Welle in Axialrichtung bewegbar ist.The invention relates to a refiner for beating fibrous materials in a fibrous stock suspension, comprising a shaft, a rotor disk firmly connected to the shaft and a shaft bearing, the rotor disk being arranged between two stator disks to form a grinding chamber between the rotor disk and the stator disks, the shaft being movable in an axial direction, at least one stator disk being displaceable in the axial direction, the size of the grinding chamber being adjustable via the distance between the stator disks and the rotor disk between the stator disks being adjustable via a movement of the shaft in the axial direction is movable.

Refiner - bzw. die beschriebenen Doppelscheibenrefiner - sind in unterschiedlichen Ausführungen bekannt. Typischerweise rotiert eine Rotorscheibe zwischen zwei stehenden Statorscheiben, wobei die Rotorscheibe bzw. die Statorscheiben mit Mahlplatten bestückt sind. Der in Suspension vorliegende Faserstoff wird in dem Mahlraum zwischen der Rotorscheibe und den Statorscheiben gemahlen. Wesentlich ist eine gleichmäßige Verteilung des Mahldruckes im Mahlraum und damit im Bereich zwischen der Rotorscheibe und der ersten Statorscheibe, sowie im Bereich zwischen der Rotorscheibe und der zweiten Statorscheibe. Dazu muss der Rotor axial bewegbar sein. Verschiedene Lösungen sind im Stand der Technik bekannt.Refiners - or the described double disc refiners - are known in different designs. A rotor disk typically rotates between two stationary stator disks, with the rotor disk or the stator disks being equipped with grinding plates. The fibrous material in suspension is ground in the grinding space between the rotor disk and the stator disks. A uniform distribution of the grinding pressure in the grinding chamber and thus in the area between the rotor disk and the first stator disk and in the area between the rotor disk and the second stator disk is essential. To do this, the rotor must be able to move axially. Various solutions are known in the prior art.

So beschreibt die DE 20 2006 002 999 U1 einen Scheibenrefiner zum Mahlen von Faserstoffmaterial. Es werden Einzelheiten zu Rotor und Stator beschrieben, wobei der Rotor eine Trägerscheibe aufweist, die auf der Rotorwelle axial verschiebbar gelagert ist, beispielsweise mittels einer Axialverzahnung. Die Trägerscheibe und damit der gesamte Rotor können sich axial frei einstellen. Es wird ausgeführt, dass es auch günstig sein kann, die Rotorwelle selbst axial verschiebbar zu machen. Ein anderer Scheibenrefiner ist in AT-267306-B offenbart.That's how she describes it DE 20 2006 002 999 U1 a disc refiner for beating fibrous material. Details of the rotor and stator are described, with the rotor having a carrier disk which is mounted on the rotor shaft in an axially displaceable manner, for example by means of axial teeth. The carrier disc and thus the entire rotor can be adjusted axially freely. It is stated that it can also be favorable to make the rotor shaft itself axially displaceable. Another disc refiner is in AT-267306-B disclosed.

Ziel der Erfindung ist ein Refiner mit verringertem Verschleiß der Rotorscheiben und Statorscheiben und insbesondere der Mahlplatten auf diesen Scheiben.The aim of the invention is a refiner with reduced wear of the rotor disks and stator disks and in particular the refining plates on these disks.

Dies gelingt erfindungsgemäß dadurch, dass die Wellenlagerung mit dem Mahlraum hydraulisch verbunden ist. Dabei bedeutet "hydraulisch verbunden", dass ein Fluid - bevorzugt Wasser - zwischen der Wellenlagerung und dem Mahlraum überführbar ist. Somit sind - hydraulisch ausgedrückt - durchgängige Stromfäden des Fluids zwischen der Wellenlagerung und dem Mahlraum darstellbar bzw. gegeben. Überraschenderweise hat sich gezeigt, dass bei erfindungsgemäßer hydraulischer Verbindung der Wellenlagerung mit dem Mahlraum eine besonders leichtgängige Beweglichkeit der Welle in Axialrichtung der Welle gegeben ist. Diese leichtgängige Beweglichkeit bleibt insbesondere auch während des Betriebs des Refiners erhalten. Die leichtgängige axiale Beweglichkeit der Welle und damit der fest mit der Welle verbundenen Rotorscheibe ist eine wesentliche Voraussetzung dafür, dass der in einer Suspension vorliegende Faserstoff im Mahlraum, d.h. im Bereich zwischen der Rotorscheibe und der ersten Statorscheibe sowie im Bereich zwischen der Rotorscheibe und der zweiten Statorscheibe, gleichmäßig gemahlen wird, da im Mahlraum eine gleichmäßige Verteilung des Mahldruckes gegeben ist. Die gleichmäßige Verteilung des Mahldruckes folgt dabei aus der selbstständigen und leichtgängigen Positionierung der Rotorscheibe zwischen den Statorscheiben. Jeder Widerstand gegen eine Positionierung, durch z.B. Reibung, fördert die Ausbildung einer ungleichmäßigen Verteilung des Mahldruckes und damit direkt eine ungleichmäßige Mahlung des Faserstoffes und eine ungleichmäßige Abnutzung an den Rotorscheiben und Statorscheiben, wobei diese Abnutzung insbesondere auf die Mahlplatten der Rotorscheibe und der Statorscheiben bezogen ist. Erfindungsgemäß ist unter der festen Verbindung der Rotorscheibe mit der Welle zu verstehen, dass keine axiale Verschiebbarkeit zwischen Welle und Rotorscheibe gegeben ist und somit keine Relativbewegung in Axialrichtung zwischen Welle und Rotorscheibe. Die Verbindung zwischen Rotorscheibe und Welle kann aber natürlich lösbar ausgeführt sein, was für Service und Installation von Bedeutung sein kann.According to the invention, this is achieved in that the shaft bearing is hydraulically connected to the grinding chamber. In this context, “hydraulically connected” means that a fluid—preferably water—can be transferred between the shaft bearing and the grinding chamber is. Thus - in hydraulic terms - continuous stream threads of the fluid between the shaft bearing and the grinding chamber can be represented or given. Surprisingly, it has been shown that with a hydraulic connection of the shaft bearing to the grinding chamber according to the invention, the shaft is able to move particularly easily in the axial direction of the shaft. This smooth mobility is retained in particular during the operation of the refiner. The smooth-running axial mobility of the shaft and thus of the rotor disk, which is firmly connected to the shaft, is an essential prerequisite for the fibrous material present in a suspension in the grinding chamber, i.e. in the area between the rotor disk and the first stator disk and in the area between the rotor disk and the second stator disk, to be ground evenly, since the grinding pressure is distributed evenly in the grinding chamber. The even distribution of the grinding pressure results from the independent and smooth positioning of the rotor disc between the stator discs. Any resistance to positioning, e.g. due to friction, promotes the formation of an uneven distribution of the grinding pressure and thus directly uneven grinding of the fiber material and uneven wear on the rotor discs and stator discs, with this wear particularly relating to the grinding plates of the rotor disc and the stator discs. According to the invention, the fixed connection of the rotor disk to the shaft means that there is no axial displaceability between the shaft and the rotor disk and therefore no relative movement in the axial direction between the shaft and the rotor disk. Of course, the connection between the rotor disk and the shaft can be detachable, which can be important for service and installation.

Eine günstige Ausgestaltung des Refiners ist dadurch gekennzeichnet, dass die Rotorscheibe innerhalb oder außerhalb der Wellenlagerung fest mit der Welle verbunden ist. Die Welle ist somit beidseits der Rotorscheibe oder fliegend gelagert. Eine Lagerung der Welle eines Refiners beidseits der Rotorscheibe erlaubt eine gleichmäßige und verteilte Lagerbelastung, jedoch keine sehr kompakte Bauweise, da die Wellenlagerung beidseits der Rotorscheibe ausgeführt ist. Im Falle der fliegenden Lagerung ist an einem ersten Ende der Welle die Rotorscheibe fest mit der Welle verbunden und die Rotorscheibe liegt außerhalb der Wellenlagerung. An einem zweiten Ende der Welle ist die Welle über eine Kupplung mit einem Motor verbunden, wobei die Kupplung außerhalb der Wellenlagerung liegt. Vorteilhafterweise erlaubt die fliegende Lagerung der Rotorscheibe zusammen mit der erfindungsgemäßen hydraulisch verbundenen Wellenlagerung eine sehr kompakte Bauweise.A favorable embodiment of the refiner is characterized in that the rotor disk is firmly connected to the shaft inside or outside the shaft bearing. The shaft is thus mounted on both sides of the rotor disc or cantilevered. Bearing the shaft of a refiner on both sides of the rotor disk allows for an even and distributed bearing load, but not a very compact design, since the shaft bearing is designed on both sides of the rotor disk. In the case of the overhung bearing, the rotor disk is firmly connected to the shaft at a first end of the shaft and the rotor disk lies outside of the shaft bearing. At a second end of the shaft, the shaft is connected to a motor via a coupling, the coupling being outside of the shaft bearing. Advantageously, the overhung storage of the rotor disk together with the hydraulically connected shaft bearing according to the invention a very compact design.

Eine vorteilhafte Ausgestaltung des Refiners ist dadurch gekennzeichnet, dass die Welle ausschließlich über fluidgeschmierte Gleitlager gelagert ist. Dies erlaubt eine besonders leichtgängige Beweglichkeit der Welle in Axialrichtung der Welle. Für den Fall, dass die Welle beidseits der Rotorscheibe gelagert ist, sind beidseits der Rotorscheibe ausschließlich fluidgeschmierte Gleitlager angeordnet. Für den Fall der fliegenden Lagerung der Welle ist die Rotorscheibe an einem ersten Ende der Welle fest mit der Welle verbunden und die Welle ist ausschließlich über fluidgeschmierte Gleitlager gelagert, wobei die Wellenlagerung zwischen der Rotorscheibe und einem zweiten Ende der Welle angeordnet ist. Eine weitere günstige Ausgestaltung des Refiners ist dadurch gekennzeichnet, dass die Wellenlagerung als fluidgeschmiertes Gleitlager ausgeführt ist, wobei ein Fluid, bevorzugt Wasser, über die Wellenlagerung dem Mahlraum zuführbar ist. Besonders vorteilhaft ist die Ausführung als wassergeschmiertes Gleitlager. Entsprechend der erfindungsgemäßen hydraulischen Verbindung der Wellenlagerung mit dem Mahlraum kann Wasser über das wassergeschmierte Gleitlager dem Mahlraum zugeführt werden. Die Verwendung von Wasser als Fluid bedeutet die Möglichkeit, eine ölfreie Wellenlagerung zu realisieren, womit eine Kontamination der Faserstoffsuspension durch ein Öl bzw. Hydrauliköl ausgeschlossen ist. Besonders vorteilhaft ist eine Zwangsführung vorzusehen, zur Sicherzustellung einer Strömungsrichtung des Fluids - bevorzugt Wasser- durch das fluidgeschmierte Gleitlager in den Mahlraum. Eine solche Zwangsführung ist leicht erzielbar, indem das Fluid in der Wellenlagerung einen höheren Druck aufweist als die Faserstoffsuspension im Mahlraum im Bereich der Zuführung des Fluids in den Mahlraum. Durch den höheren Druck des Fluids in der Wellenlagerung fließt das Fluid in Richtung des Mahlraumes, was vorteilhafterweise eine Verschmutzung der Wellenlagerung, bzw. des wassergeschmierten Gleitlagers, effektiv verhindert. So wird das wassergeschmierte Gleitlager stets in Richtung des Mahlraumes gespült und die leichtgängige Beweglichkeit der Welle bleibt über die Betriebszeit erhalten. Bei einer Lagerung der Welle des Refiners beidseits der Rotorscheibe ist die Wellenlagerung beidseits der Rotorscheibe als fluidgeschmiertes Gleitlager ausgeführt, wobei ein Fluid, bevorzugt Wasser, über die Wellenlagerung dem Mahlraum zuführbar ist.An advantageous embodiment of the refiner is characterized in that the shaft is mounted exclusively on fluid-lubricated slide bearings. This allows the shaft to move particularly easily in the axial direction of the shaft. In the event that the shaft is mounted on both sides of the rotor disk, only fluid-lubricated plain bearings are arranged on both sides of the rotor disk. If the shaft is cantilevered, the rotor disk is firmly connected to the shaft at a first end of the shaft and the shaft is mounted exclusively via fluid-lubricated plain bearings, with the shaft bearing being arranged between the rotor disk and a second end of the shaft. A further advantageous refinement of the refiner is characterized in that the shaft bearing is designed as a fluid-lubricated slide bearing, with a fluid, preferably water, being able to be fed to the grinding chamber via the shaft bearing. The design as a water-lubricated plain bearing is particularly advantageous. According to the hydraulic connection of the shaft bearing to the grinding chamber according to the invention, water can be supplied to the grinding chamber via the water-lubricated plain bearing. The use of water as a fluid means the possibility of realizing an oil-free shaft bearing, which means that contamination of the fibrous suspension by oil or hydraulic oil is ruled out. It is particularly advantageous to provide forced guidance to ensure a flow direction of the fluid—preferably water—through the fluid-lubricated slide bearing into the grinding chamber. Such forced guidance is easily achievable if the fluid in the shaft bearing has a higher pressure than the fibrous suspension in the grinding chamber in the area where the fluid is fed into the grinding chamber. Due to the higher pressure of the fluid in the shaft bearing, the fluid flows in the direction of the grinding chamber, which advantageously effectively prevents contamination of the shaft bearing or the water-lubricated plain bearing. The water-lubricated slide bearing is always flushed in the direction of the grinding chamber and the smooth movement of the shaft is maintained over the operating time. When the shaft of the refiner is mounted on both sides of the rotor disk, the shaft mounting on both sides of the rotor disk is designed as a fluid-lubricated plain bearing, with a fluid, preferably water, being able to be fed to the grinding chamber via the shaft mounting.

Eine weitere günstige Ausgestaltung des Refiners ist dadurch gekennzeichnet, dass zwischen dem Mahlraum und der Wellenlagerung eine Dichtung angeordnet ist. Die Wellenlagerung ist als fluidgeschmiertes Gleitlager ausgeführt, wobei ein Fluid, bevorzugt Wasser, durch die Wellenlagerung über die Dichtung dem Mahlraum zuführbar ist. Eine vorteilhafte Ausführung der Dichtung umfasst einen Wellendichtring oder einen Drosselring. Die Dichtung ist beispielsweise zwischen Welle und Lagergehäuse angeordnet, in eine Aussparung des Lagergehäuses eingelegt und über einen Fixierring im Lagergehäuse fixiert. Die Welle ist durch die Dichtung geführt, wobei im Falle eines Wellendichtrings die Dichtung mit der Welle in Berührung ist oder im Falles eines Drosselrings ein Spalt zwischen Welle und Dichtring gegeben ist. Dichtungen weisen vorteilhafterweise zumindest eine Dichtlippe auf.A further favorable refinement of the refiner is characterized in that a seal is arranged between the grinding chamber and the shaft bearing. The shaft bearing is designed as a fluid-lubricated plain bearing, with a fluid, preferably water, being able to be fed to the grinding chamber through the shaft bearing via the seal. An advantageous embodiment of the seal includes a shaft sealing ring or a throttle ring. The seal is arranged, for example, between the shaft and the bearing housing, inserted into a recess in the bearing housing and fixed in the bearing housing via a fixing ring. The shaft is guided through the seal, with the seal being in contact with the shaft in the case of a shaft seal, or with a gap between the shaft and the seal in the case of a throttle ring. Seals advantageously have at least one sealing lip.

Eine vorteilhafte Ausführung des Refiners ist dadurch gekennzeichnet, dass die Dichtung eine von der Strömungsrichtung des Fluids abhängige Dichtwirkung aufweist. Solche Dichtungen umfassen Wellendichtringe oder Drosselringe. Die von der Strömungsrichtung abhängige Dichtwirkung kann dadurch realisiert werden, dass bei z.B. einer Strömungsrichtung des Fluids von der Wellenlagerung zum Mahlraum das Fluid bzw. der Fluiddruck die Dichtung von der Dichtfläche abhebt und/oder die Dichtung einen größeren Strömungsquerschnitt für das Fluid freigibt. Durch das Abheben der Dichtung von der Dichtfläche und/oder die Vergrößerung des Strömungsquerschnitts des Fluids wird insbesondere eine Gleitreibung zwischen Dichtung und Dichtfläche verhindert bzw. reduziert und so die leichtgängige Beweglichkeit der Welle in Axialrichtung der Welle unterstützt. Vorteilhafterweise ist die Dichtung mit einer Dichtlippe ausgeführt, wobei die Dichtlippe kegelstumpfförmig ausgebildet ist, um eine Dichtwirkung in Abhängigkeit von der Strömungsrichtung auszubilden. Um beispielsweise eine Dichtung zwischen Wellenlagerung und Mahlraum gegen die rotierende Welle zu realisieren, kann eine Dichtung mit einer kegelstumpfförmigen Dichtlippe so angeordnet werden, dass die Welle im Inneren der Dichtung geführt ist, wobei die Axialrichtung der Welle und die Achse der kegelstumpfförmigen Dichtlippe zusammenfallen. In einem ersten Beispiel sei die Dichtung im Lagergehäuse eingespannt und die kegelstumpfförmige Dichtlippe gegen die Welle geführt. Dann führt eine Strömung des Fluids von der Basis zur gedachten Kegelspitze der kegelstumpfförmigen Dichtlippe zu einer Aufweitung der Dichtlippe, zu einem Abheben der Dichtung von der Welle oder zumindest zu einer Reduzierung des für die Dichtung und die Gleitreibung maßgeblichen Anpressdrucks der Dichtung gegen die Gleitfläche bzw. Welle. Bei Umkehrung der Strömungsrichtung in diesem ersten Bespiel - d.h. einer Strömung des Fluids von der gedachten Kegelspitze zur Basis der kegelstumpfförmigen Dichtlippe - würde das Fluid die Dichtlippe gegen die Welle drücken und zu einer Vergrößerung des Anpressdrucks der Dichtlippe führen. In einem zweiten Beispiel sei die Dichtung beispielsweise an der Welle eingespannt und die kegelstumpfförmige Dichtlippe zum Lagergehäuse orientiert. Dann führt eine Strömung des Fluids von der Basis zur gedachten Kegelspitze der kegelstumpfförmigen Dichtlippe zu einer Aufweitung der Basisfläche und so zu einer verstärkten Anpressung der Dichtlippe und zu einer verbesserten Dichtwirkung gegen das Lagergehäuse. Dichtungen, die eine von der Strömungsrichtung des Fluids abhängige Dichtwirkung aufweisen, sind vorteilhaft, da bei einer Strömung des Fluids entsprechend der gewünschten Strömungsrichtung sehr kleine bzw. keine Reibungsverluste der Dichtung realisiert werden können. Bei einer Umkehrung der Strömungsrichtung kann aber eine bestmögliche Dichtung realisiert werden, und ein Strömen des Fluids entgegen der gewünschten Strömungsrichtung vermindert bzw. vermieden werden.An advantageous embodiment of the refiner is characterized in that the seal has a sealing effect that is dependent on the direction of flow of the fluid. Such seals include oil seals or throttle rings. The sealing effect dependent on the direction of flow can be realized in that, for example, when the fluid flows in a direction from the shaft bearing to the grinding chamber, the fluid or the fluid pressure lifts the seal from the sealing surface and/or the seal releases a larger flow cross section for the fluid. By lifting the seal from the sealing surface and/or increasing the flow cross section of the fluid, sliding friction between the seal and the sealing surface is prevented or reduced in particular and the smooth mobility of the shaft in the axial direction of the shaft is thus supported. Advantageously, the seal is designed with a sealing lip, the sealing lip being designed in the shape of a truncated cone in order to form a sealing effect depending on the direction of flow. For example, in order to create a seal between the shaft bearing and the grinding chamber against the rotating shaft, a seal with a frustoconical sealing lip can be arranged in such a way that the shaft is guided inside the seal, with the axial direction of the shaft and the axis of the frustoconical sealing lip coinciding. In a first example, the seal is clamped in the bearing housing and the truncated cone-shaped sealing lip is guided against the shaft. A flow of the fluid from the base to the imaginary cone tip of the truncated cone-shaped sealing lip then leads to the sealing lip widening, to the seal being lifted off the shaft or at least to a Reduction of the contact pressure of the seal against the sliding surface or shaft, which is decisive for the seal and the sliding friction. If the direction of flow is reversed in this first example - ie a flow of the fluid from the imaginary apex of the cone to the base of the frustoconical sealing lip - the fluid would press the sealing lip against the shaft and lead to an increase in the contact pressure of the sealing lip. In a second example, the seal is clamped to the shaft, for example, and the truncated cone-shaped sealing lip is oriented towards the bearing housing. A flow of the fluid from the base to the imaginary cone tip of the frustoconical sealing lip then leads to an expansion of the base area and thus to increased contact pressure of the sealing lip and an improved sealing effect against the bearing housing. Seals that have a sealing effect that is dependent on the direction of flow of the fluid are advantageous, since when the fluid flows in accordance with the desired direction of flow, very little or no friction losses of the seal can be realized. With a reversal of the direction of flow, however, the best possible seal can be implemented and a flow of the fluid counter to the desired direction of flow can be reduced or avoided.

Eine ebenso vorteilhafte Ausführung des Refiners ist dadurch gekennzeichnet, dass die Dichtung bei Strömung des Fluids durch die Wellenlagerung in den Mahlraum eine Dichtwirkung aufweist, die geringer ist als bei Strömung des Fluids aus dem Mahlraum in die Wellenlagerung. Dichtungen, die eine von der Strömungsrichtung des Fluids abhängige Dichtwirkung aufweisen, sind vorteilhaft, da sie bei einer Strömung des Fluids entsprechend der gewünschten Strömungsrichtung aus der Wellenlagerung in den Mahlraum sehr kleine bzw. keine Reibungsverluste der Dichtung erlauben. Bei einer Umkehrung der Strömungsrichtung kehrt sich dieses Verhalten vorteilhafterweise um, da bei einer Strömung des Fluids aus dem Mahlraum in die Wellenlagerung eine bestmögliche Dichtung erforderlich ist, insbesondere, um eine Strömung der Faserstoffsuspension vom Mahlraum in die Wellenlagerung und entsprechende Verschmutzung der Wellenlagerung durch die Faserstoffe zu vermeiden.An equally advantageous embodiment of the refiner is characterized in that when the fluid flows through the shaft bearing into the grinding chamber, the seal has a sealing effect that is less than when the fluid flows out of the grinding chamber into the shaft bearing. Seals that have a sealing effect that is dependent on the flow direction of the fluid are advantageous because they allow very little or no friction losses in the seal when the fluid flows in the desired flow direction from the shaft bearing into the grinding chamber. When the direction of flow is reversed, this behavior is advantageously reversed, since the best possible seal is required when the fluid flows from the grinding chamber into the shaft bearing, in particular to prevent the fibrous suspension from flowing from the grinding chamber into the shaft bearing and thus avoiding contamination of the shaft bearing by the fibrous materials.

Eine weitere günstige Ausgestaltung des Refiners ist dadurch gekennzeichnet, dass ein Dämpfungselement der Wellenlagerung zugeordnet ist, wobei das Dämpfungselement zwischen der Rotorscheibe und einem Motor, bevorzugt zwischen der Rotorscheibe und einer Kupplung, angeordnet ist, wobei die Kupplung zwischen der Rotorscheibe und dem Motor angeordnet ist. Die erfindungsgemäße Lagerung erlaubt eine derart leichtgängige Beweglichkeit der Welle in Axialrichtung, dass überraschenderweise stoßartige Bewegungen der Welle im Betrieb auftreten können, die es zu vermeiden gilt. So kann zu Beginn der Zuführung der Faserstoffsuspension in den Refiner eine resultierende Kraftwirkung auf die Rotorscheibe und somit auf die Welle gegeben sein, die eine stoßartige Bewegung der Welle bewirkt. Ebenso kann aber im laufenden Betrieb eine resultierende Kraftwirkung auf die Rotorscheibe bzw. die Welle gegeben sein. Zwar kann durch die Kupplung eine geringe Dämpfung gegeben sein, z.B. durch Reibungseffekte in der Kupplung. Dies ist allerdings nicht ausreichend, weswegen die Anordnung eines Dämpfungselementes vorteilhaft ist, um gleichförmige Bewegungen der Welle in Axialrichtung sicherzustellen.A further advantageous refinement of the refiner is characterized in that a damping element is assigned to the shaft bearing, with the damping element being preferably between the rotor disk and a motor between the rotor disc and a clutch, the clutch being arranged between the rotor disc and the engine. The bearing according to the invention allows the shaft to move so easily in the axial direction that, surprisingly, jerky movements of the shaft can occur during operation, which should be avoided. Thus, at the beginning of the feed of the fibrous stock suspension into the refiner, there can be a resultant force effect on the rotor disk and thus on the shaft, which causes an abrupt movement of the shaft. However, a resultant force effect on the rotor disk or the shaft can also occur during ongoing operation. It is true that the clutch can provide a small amount of damping, for example due to friction effects in the clutch. However, this is not sufficient, which is why the arrangement of a damping element is advantageous in order to ensure uniform movements of the shaft in the axial direction.

Eine vorteilhafte Ausgestaltung des Refiners ist dadurch gekennzeichnet, dass das Dämpfungselement mit der Wellenlagerung hydraulisch verbunden ist. Das Dämpfungselement umfasst beispielsweise einen Dämpfungsbereich und ein Drosselelement. Das Drosselelement kann beispielsweise als Drosselring ausgebildet sein, wobei der Drosselring zwischen Welle und Lagergehäuse angeordnet ist und den Spalt zwischen Welle und Lagergehäuse zu einem überwiegenden Teil abdeckt. Der Dämpfungsbereich ist beispielsweise gebildet durch einen Bereich zwischen Welle, Lagergehäuse und Drosselelement, wobei der Dämpfungsbereich zwischen Wellenlagerung und Kupplung angeordnet ist. Dabei ist das Dämpfungselement hydraulisch mit der Wellenlagerung verbunden, d.h. das Fluid - bevorzugt Wasser - das der Wellenlagerung zuführbar ist, wird auch dem Dämpfungselement zugeführt, wobei durchgängige Stromfäden des Fluids zwischen der Wellenlagerung, d.h. der Fluidzuführung zur Wellenlagerung und dem Dämpfungselement darstellbar sind. Bei einer Bewegung der Welle in Axialrichtung verändert sich das Volumen des Dämpfungsbereichs, wobei bei einer Vergrößerung des Volumens Fluid über das Drosselelement in den Dämpfungsbereich zufließt und bei einer Verkleinerung des Volumens Fluid über das Drosselelement aus dem Dämpfungsbereich abfließt. Entsprechend den viskosen Verlusten des Fluids beim Passieren des Drosselelementes ergibt sich eine Dämpfungswirkung. Die Anordnung des Dämpfungselementes zwischen Lagerung und Kupplung ist vorteilhaft, da es so zu keiner hydraulischen Beeinflussung der Dichtung kommt, da die Lagerung zwischen Dichtung und Dämpfungselement angeordnet ist.An advantageous refinement of the refiner is characterized in that the damping element is hydraulically connected to the shaft bearing. The damping element includes, for example, a damping area and a throttle element. The throttle element can, for example, be designed as a throttle ring, with the throttle ring being arranged between the shaft and the bearing housing and largely covering the gap between the shaft and the bearing housing. The damping area is formed, for example, by an area between the shaft, bearing housing and throttle element, with the damping area being arranged between the shaft bearing and the clutch. The damping element is hydraulically connected to the shaft bearing, i.e. the fluid - preferably water - which can be fed to the shaft bearing is also fed to the damping element, with continuous streams of fluid between the shaft bearing, ie the fluid feed to the shaft bearing and the damping element being able to be represented. When the shaft moves in the axial direction, the volume of the damping area changes, with an increase in the volume causing fluid to flow into the damping area via the throttle element and a reduction in the volume causing fluid to flow out of the damping area via the throttle element. A damping effect results in accordance with the viscous losses of the fluid as it passes through the throttle element. The arrangement of the damping element between storage and clutch is advantageous because it is so there is no hydraulic influence on the seal, since the bearing is arranged between the seal and the damping element.

Eine ebenso vorteilhafte Ausführung des Refiners ist dadurch gekennzeichnet, dass dem Mahlraum über einen Einlaufbereich oder durch die Welle die Faserstoffsuspension zuführbar ist. Diese vorteilhafte Lagerung erlaubt Wellendurchmesser zu realisieren, die es erlauben, die Faserstoffsuspension durch die Welle dem Mahlraum zuzuführen, und anders als bei Verwendung von herkömmlichen Wälzlagern auch größere Wellendurchmesser technisch sinnvoll zu realisieren.An equally advantageous embodiment of the refiner is characterized in that the pulp suspension can be fed to the grinding chamber via an inlet area or through the shaft. This advantageous bearing allows shaft diameters to be realized that allow the fibrous suspension to be fed through the shaft to the grinding chamber, and in contrast to the use of conventional roller bearings, larger shaft diameters can also be realized in a technically sensible manner.

Eine weitere vorteilhafte Ausführung des Refiners ist dadurch gekennzeichnet, dass die Rotorscheibe mit Öffnungen ausgeführt ist, wobei durch die Öffnungen eine gleichmäßige Verteilung der über den Einlaufbereich bzw. über die Welle zuführbaren Faserstoffsuspension im Mahlraum gegeben ist. Vorteilhafterweise wird die Faserstoffsuspension auf einer Seite der Rotorscheibe dem Refiner zugeführt, wobei die Faserstoffsuspension direkt in einen ersten Spalt zwischen einer ersten Statorscheibe und der Rotorscheibe führbar ist. Durch die Öffnungen in der Rotorscheibe ist die Faserstoffsuspension auch der zweiten Seite der Rotorscheibe zuführbar, wobei die Faserstoffsuspension in einen zweiten Spalt zwischen einer zweiten Statorscheibe und der Rotorscheibe führbar ist.A further advantageous embodiment of the refiner is characterized in that the rotor disk is designed with openings, with the openings providing a uniform distribution of the fibrous suspension that can be fed via the inlet area or via the shaft in the grinding chamber. Advantageously, the fibrous stock suspension is fed to the refiner on one side of the rotor disk, with the fibrous stock suspension being able to be fed directly into a first gap between a first stator disk and the rotor disk. The fibrous suspension can also be fed to the second side of the rotor disk through the openings in the rotor disk, with the fibrous suspension being able to be guided into a second gap between a second stator disk and the rotor disk.

Eine vorteilhafte Ausgestaltung des Refiners ist dadurch gekennzeichnet, dass die Welle über eine Kupplung mit einem Motor verbunden ist, wobei die Bewegung der Welle in Axialrichtung durch die Kupplung aufnehmbar ist. Da der Motor unbeweglich angeordnet ist und die Welle vorteilhafterweise in Axialrichtung beweglich ist, ist eine Relativbewegung in Axialrichtung zwischen Welle und Motor über die Kupplung aufnehmbar.An advantageous embodiment of the refiner is characterized in that the shaft is connected to a motor via a coupling, the movement of the shaft in the axial direction being able to be absorbed by the coupling. Since the motor is arranged immovably and the shaft is advantageously movable in the axial direction, a relative movement in the axial direction between the shaft and the motor can be accommodated via the coupling.

Eine besonders vorteilhafte Ausgestaltung des Refiners ist dadurch gekennzeichnet, dass die Kupplung als Bogenzahnkupplung ausgeführt ist und in der Bogenzahnkupplung eine radiale und/oder axiale Beweglichkeit der Welle gegeben ist. Dabei ist die Welle im Bereich der Kupplung mit einer Außenverzahnung ausgeführt und über ein Kupplungszwischenstück, das eine Innenverzahnung aufweist, mit dem Motor verbunden. Im Wartungsfall ist dabei durch Demontage des Zwischenstücks eine sehr gute Zugänglichkeit zum Refiner gegeben.A particularly advantageous embodiment of the refiner is characterized in that the coupling is designed as a curved tooth coupling and the shaft can move radially and/or axially in the curved tooth coupling. The shaft is designed with external teeth in the area of the coupling and is connected to the motor via a coupling spacer that has internal teeth. In the case of maintenance, there is very good accessibility to the refiner by dismantling the adapter.

Bogenzahnkupplungen erlauben neben einer Bewegung der Welle in Axialrichtung auch eine Bewegung in radialer Richtung. Bogenzahnkupplungen erlauben weiter, dass bei Rotation der Welle die Außenverzahnung der Welle und die Innenverzahnung des Kupplungszwischenstückes eine taumelnde Bewegung ausführen, wobei zwischen den Verzahnungen eine permanente Gleitreibung gegeben ist. Somit entfällt während der Rotation der Welle bei einer relativen axialen Bewegung der Welle zum Motor eine anfängliche Haftreibung in der Kupplung, da in der Kupplung zwischen den Verzahnungen durchgängig Gleitreibung gegeben ist. Dadurch ist eine besondere Leichtgängigkeit der Welle in Axialrichtung möglich.In addition to the movement of the shaft in the axial direction, curved tooth couplings also allow a movement in the radial direction. Curved-tooth couplings also allow the external gearing of the shaft and the internal gearing of the coupling spacer to perform a wobbling movement when the shaft rotates, with permanent sliding friction occurring between the gearings. Thus, during the rotation of the shaft, with a relative axial movement of the shaft to the motor, there is no initial static friction in the coupling, since there is continuous sliding friction in the coupling between the teeth. This allows the shaft to move particularly easily in the axial direction.

Die Erfindung wird nun anhand der Zeichnungen beispielhaft beschrieben.

  • Fig. 1 zeigt einen Refiner entsprechend dem Stand der Technik.
  • Fig. 2 zeigt einen erfindungsgemäßen Refiner.
  • Fig. 3 zeigt Details der erfindungsgemäßen Wellenlagerung.
  • Fig. 4a und 4b zeigen vorteilhafte Dichtungen.
The invention will now be described by way of example with reference to the drawings.
  • 1 shows a refiner according to the prior art.
  • 2 shows a refiner according to the invention.
  • 3 shows details of the shaft bearing according to the invention.
  • Figure 4a and 4b show advantageous seals.

Fig. 1 zeigt einen Refiner entsprechend dem Stand der Technik. Dabei ist eine Rotorscheibe 2 auf einer Welle 1 in einem Gehäuse 19 angeordnet, wobei die Rotorscheibe 2 relativ zur Welle 1 in Axialrichtung 7 beweglich ist. Die Faserstoffsuspension wird über einen Einlaufbereich 12 dem Refiner 17 zugeführt und verteilt sich durch Öffnungen 13 (nicht dargestellt) der Rotorscheibe 2 im Mahlraum 6. Dabei wird die Faserstoffsuspension in einem ersten Mahlspalt zwischen der Rotorscheibe 2 und der ersten Statorscheibe 4 und in einem zweiten Mahlspalt zwischen der Rotorscheibe 2 und der zweiten Statorscheibe 5 vermahlen und verlässt den Refiner 17 über den Auslassbereich 18. An der Rotorscheibe 2 bzw. den Statorscheiben 4,5 sind austauschbare Mahlplatten angeordnet. Über eine Verstellvorrichtung 20 ist die zweite Statorscheibe 5 in Axialrichtung 7 bewegbar und es kann der Abstand zwischen den Statorscheiben 4,5 bzw. zwischen der Rotorscheibe 2 und den Statorscheiben 4,5 eingestellt werden. Die axiale Beweglichkeit der Rotorscheibe 2 auf der Welle 1 erlaubt ein selbstständiges Zentrieren der Rotorscheibe 2 zwischen den Statorscheiben 4,5, wobei sich vergleichbare Mahlspalte einstellen. Diese Ausführung des Refiners 17 sieht keine Beweglichkeit der Welle 1 in Axialrichtung 7 vor, wobei die Wellenlagerung 3 als Wälzlager ausgeführt ist. Wellenlagerung 3 und Mahlraum 6 sind klar getrennt. Die Wälzlager sind ölgeschmiert. Eine Dichtung 8 dichtet den Mahlraum 6 bzw. den Einlaufbereich 12 gegen die Welle 1. Ein Einbringen von Öl in den Mahlraum 6 ist konstruktiv zu verhindern, ebenso darf keine Faserstoffsuspension in den Ölumlauf des Wälzlagers gelangen. 1 shows a refiner according to the prior art. A rotor disk 2 is arranged on a shaft 1 in a housing 19 , the rotor disk 2 being movable in the axial direction 7 relative to the shaft 1 . The pulp suspension is fed to the refiner 17 via an inlet area 12 and is distributed through openings 13 (not shown) in the rotor disc 2 in the grinding chamber 6. The pulp suspension is ground in a first grinding gap between the rotor disc 2 and the first stator disc 4 and in a second grinding gap between the rotor disc 2 and the second stator disc 5 and leaves the refiner 17 via the outlet area 18. At the rotor disc 2 or the St ator discs 4.5 replaceable grinding plates are arranged. The second stator disk 5 can be moved in the axial direction 7 via an adjusting device 20 and the distance between the stator disks 4.5 or between the rotor disk 2 and the stator disks 4.5 can be adjusted. The axial mobility of the rotor disk 2 on the shaft 1 allows the rotor disk 2 to be centered independently between the stator disks 4.5, with comparable grinding gaps being established. This embodiment of the refiner 17 provides no mobility of the shaft 1 in the axial direction 7, the shaft bearing 3 as Rolling bearing is running. Shaft bearing 3 and grinding chamber 6 are clearly separated. The roller bearings are oil-lubricated. A seal 8 seals the grinding chamber 6 or the inlet area 12 against the shaft 1. The introduction of oil into the grinding chamber 6 is to be prevented by design, and no fibrous material suspension may get into the oil circuit of the roller bearing.

Fig. 2 zeigt einen erfindungsgemäßen Refiner mit einer fliegenden Lagerung. Dabei ist eine Rotorscheibe 2 auf einer Welle 1 in einem Gehäuse 19 angeordnet, wobei die Rotorscheibe 2 fest mit der Welle 1 verbunden ist und die Welle 1 in Axialrichtung 7 beweglich ist. Die Faserstoffsuspension wird über einen Einlaufbereich 12 dem Refiner 17 zugeführt und verteilt sich durch Öffnungen 13 (nicht dargestellt) der Rotorscheibe 2 im Mahlraum 6. Dabei wird die Faserstoffsuspension in einem ersten Mahlspalt zwischen der Rotorscheibe 2 und der ersten Statorscheibe 4 und in einem zweiten Mahlspalt zwischen der Rotorscheibe 2 und der zweiten Statorscheibe 5 vermahlen und verlässt den Refiner 17 über den Auslassbereich 18. An der Rotorscheibe 2 bzw. den Statorscheiben 4,5 sind austauschbare Mahlplatten angeordnet. Über eine Verstellvorrichtung 20 ist die zweite Statorscheibe 5 in Axialrichtung 7 bewegbar und es kann der Abstand zwischen den Statorscheiben 4,5 bzw. zwischen der Rotorscheibe 2 und den Statorscheiben 4,5 eingestellt werden. Die axiale Beweglichkeit der Welle 1 und somit der fest mit der Welle 1 verbundenen Rotorscheibe 2 erlaubt ein selbstständiges Zentrieren der Rotorscheibe 2 zwischen den Statorscheiben 4,5, wobei sich vergleichbare Mahlspalte einstellen. Entsprechend der Beweglichkeit der Welle 1 in Axialrichtung 7 ist die Welle 1 über eine Kupplung 11 mit einem Motor 10 (nicht dargestellt) verbunden, wobei die Kupplung 11 die Bewegung der Welle 1 in Axialrichtung 7 aufnehmen kann. Die Welle 1 ist über eine Wellenlagerung 3 fliegend gelagert, wobei die Rotorscheibe 2 außerhalb der Wellenlagerung 3 angeordnet ist. Erfindungsgemäß ist die Wellenlagerung 3 mit dem Mahlraum 6 hydraulisch verbunden. Dabei ist die Wellenlagerung 3 als fluidgeschmiertes Gleitlager 23 ausgeführt, wobei ein Fluid - bevorzugt Wasser - als Schmiermedium in der Wellenlagerung 3 dient und zumindest teilweise über die Wellenlagerung 3 dem Mahlraum 6 zuführbar ist. Die zwischen Wellenlagerung 3 und Mahlraum 6 angeordnete Dichtung 8 beschränkt die Menge an Fluid, die entsprechend den Druckverhältnissen zwischen Wellenlagerung 3 und Mahlraum 6 strömt. Vorteilhafterweise wird das Fluid gezielt aus der Wellenlagerung 3 in Richtung des Mahlraums 6 geführt. Dies gelingt durch einen größeren Druck des Fluids in der Wellenlagerung 3 verglichen zum Druck im Mahlraum 6. So ist sichergestellt, dass keine Faserstoffsuspension bzw. kein Faserstoff aus dem Mahlraum 6 in die Wellenlagerung 3 eingebracht wird. Weiter bietet sich an, eine Dichtung 8 mit einer von der Strömungsrichtung des Fluids abhängigen Dichtwirkung zu realisieren. Besonders vorteilhaft ist eine Dichtung 8, die bei Strömung des Fluids durch die Wellenlagerung 3 in den Mahlraum 6 eine Dichtwirkung aufweist, die geringer ist als bei Strömung des Fluids aus dem Mahlraum 6 in die Wellenlagerung 3. So kann bei einem größeren Druck im Mahlraum 6 und kleinerem Druck in der Wellenlagerung 3 ein Strömen von Faserstoffsuspension aus dem Mahlraum 6 in die Wellenlagerung 3 minimiert bzw. unterbunden werden. Vorteilhafterweise umfasst der Refiner 17 auch ein Dämpfungselement 9, das der Wellenlagerung 3 zugeordnet ist. Das Dämpfungselement 9 ist zwischen Rotorscheibe 2 und Motor 10 (nicht dargestellt) angeordnet und bevorzugt zwischen Rotorscheibe 2 und Kupplung 11. Das Dämpfungselement 9 kann dabei mit der Wellenlagerung 3 hydraulisch verbunden sein, wobei das Dämpfungselement 9 einen Dämpfungsbereich 15 und ein Drosselelement 16 umfasst. Das der Wellenlagerung 3 zugeführte Fluid durchströmt dabei die Wellenlagerung 3 und erfüllt auch den Dämpfungsbereich 15. Durch eine Bewegung der Welle 1 in Axialrichtung 7 ist das Volumen des Dämpfungsbereichs 15 veränderbar, wobei bei einer Volumenvergrößerung des Dämpfungsbereichs 15 dem Dämpfungselement 9 Fluid zuströmt und bei einer Volumenverkleinerung des Dämpfungsbereichs 15 aus dem Dämpfungselement 9 Fluid abströmt, wobei das Fluid jeweils über das Drosselelement 16 dem Dämpfungsbereich15 zu- bzw. abfließt. 2 shows a refiner according to the invention with a cantilever mounting. A rotor disk 2 is arranged on a shaft 1 in a housing 19 , the rotor disk 2 being fixedly connected to the shaft 1 and the shaft 1 being movable in the axial direction 7 . The pulp suspension is fed to the refiner 17 via an inlet area 12 and is distributed through openings 13 (not shown) in the rotor disc 2 in the grinding chamber 6. The pulp suspension is ground in a first grinding gap between the rotor disc 2 and the first stator disc 4 and in a second grinding gap between the rotor disc 2 and the second stator disc 5 and leaves the refiner 17 via the outlet area 18. At the rotor disc 2 or the St ator discs 4.5 replaceable grinding plates are arranged. The second stator disk 5 can be moved in the axial direction 7 via an adjusting device 20 and the distance between the stator disks 4.5 or between the rotor disk 2 and the stator disks 4.5 can be adjusted. The axial mobility of the shaft 1 and thus of the rotor disk 2, which is firmly connected to the shaft 1, allows the rotor disk 2 to be centered independently between the stator disks 4.5, with comparable grinding gaps being established. Corresponding to the mobility of the shaft 1 in the axial direction 7 , the shaft 1 is connected to a motor 10 (not shown) via a coupling 11 , the coupling 11 being able to absorb the movement of the shaft 1 in the axial direction 7 . The shaft 1 is cantilevered via a shaft bearing 3 , the rotor disk 2 being arranged outside of the shaft bearing 3 . According to the invention, the shaft bearing 3 is hydraulically connected to the grinding chamber 6 . The shaft bearing 3 is designed as a fluid-lubricated slide bearing 23, with a fluid—preferably water—serving as a lubricating medium in the shaft bearing 3 and being at least partially feedable to the grinding chamber 6 via the shaft bearing 3. The seal 8 arranged between the shaft bearing 3 and the grinding chamber 6 limits the amount of fluid that flows between the shaft bearing 3 and the grinding chamber 6 in accordance with the pressure conditions. The fluid is advantageously guided in a targeted manner from the shaft bearing 3 in the direction of the grinding chamber 6 . This succeeds through a greater pressure of the fluid in the shaft bearing 3 compared to the pressure in the grinding chamber 6. This ensures that no pulp suspension or no pulp from the grinding chamber 6 is introduced into the shaft bearing 3. It is also possible to implement a seal 8 with a sealing effect that is dependent on the direction of flow of the fluid. A seal 8 is particularly advantageous which, when the fluid flows through the shaft bearing 3 into the grinding chamber 6, has a sealing effect which is less than when the fluid flows from the grinding chamber 6 into the shaft bearing 3. In this way, with a higher pressure in the grinding chamber 6 and a lower pressure in the shaft bearing 3, a flow of fibrous suspension from the grinding chamber 6 into the shaft bearing 3 can be minimized or prevented. Advantageously, the refiner 17 also includes a damping element 9 which is assigned to the shaft bearing 3 . The damping element 9 is arranged between the rotor disk 2 and the motor 10 (not shown) and preferably between the rotor disk 2 and the clutch 11. The damping element 9 can be hydraulically connected to the shaft bearing 3, with the damping element 9 comprising a damping area 15 and a throttle element 16. The fluid supplied to the shaft bearing 3 flows through the shaft bearing 3 and also fills the damping area 15. The volume of the damping area 15 can be changed by a movement of the shaft 1 in the axial direction 7, with an increase in volume of the damping area 15 fluid flowing to the damping element 9 and a reduction in volume of the damping area 15 fluid flowing out of the damping element 9, the fluid flowing through the throttle element 16 to the damping area 15. or drains off.

Fig. 3 zeigt Details einer erfindungsgemäßen fliegenden Wellenlagerung 3. Über einen Fluideinlass 21 wird das Fluid der Wellenlagerung 3 zugeführt und durchströmt das fluidgeschmierte Gleitlager 23 bzw. erfüllt den Dämpfungsbereich 15. Zwischen Wellenlagerung 3 und Mahlraum 6 ist die Dichtung 8 angeordnet und beschränkt die Menge an Fluid, die entsprechend den Druckverhältnissen zwischen Wellenlagerung 3 und Mahlraum 6 strömt, wobei der Großteil des Fluids über den Fluidrücklauf 22 aus der Wellenlagerung 3 abgeführt wird. Vorteilhafterweise wird das Fluid durch einen größeren Druck des Fluids in der Wellenlagerung 3 verglichen zum Druck im Mahlraum 6 gezielt in Richtung des Mahlraums 6 geführt. Das Dämpfungselement 9 ist mit der Wellenlagerung 3 hydraulisch verbunden, und umfasst den Dämpfungsbereich 15 und das Drosselelement 16. Das Drosselelement 16 ist in Fig. 3 mit der Welle 1 verbunden, wobei der Dämpfungsbereich 15 durch die Welle 1, das Lagergehäuse 14 und das Drosselelement 16 begrenzt wird. Durch eine Bewegung der Welle 1 in Axialrichtung 7 ist das Volumen des Dämpfungsbereichs 15 veränderbar, wobei bei einer Volumenvergrößerung des Dämpfungsbereiches 15 dem Dämpfungselement 9 Fluid zuströmt und bei einer Volumenverkleinerung des Dämpfungsbereichs 15 aus dem Dämpfungselement 9 Fluid abströmt, wobei das Fluid jeweils über das Drosselelement 16 dem Dämpfungsbereich15 zu- bzw. abströmt. 3 shows details of a floating shaft bearing 3 according to the invention. The fluid is fed to the shaft bearing 3 via a fluid inlet 21 and flows through the fluid-lubricated plain bearing 23 or fills the damping area 15. The seal 8 is arranged between the shaft bearing 3 and the grinding chamber 6 and limits the amount of fluid that flows according to the pressure conditions between the shaft bearing 3 and the grinding chamber 6, with the majority of the fluid being discharged from the shaft bearing 3 via the fluid return 22. The fluid is advantageously guided in a targeted manner in the direction of the grinding chamber 6 by a greater pressure of the fluid in the shaft bearing 3 compared to the pressure in the grinding chamber 6 . The damping element 9 is hydraulically connected to the shaft bearing 3, and includes the damping area 15 and the throttle element 16. The throttle element 16 is in 3 connected to the shaft 1, the damping area 15 being delimited by the shaft 1, the bearing housing 14 and the throttle element 16. The volume of the damping area 15 can be changed by moving the shaft 1 in the axial direction 7, with fluid flowing into the damping element 9 when the volume of the damping area 15 increases, and fluid flowing out of the damping element 9 when the volume of the damping area 15 decreases, the fluid flowing in and out of the damping area 15 in each case via the throttle element 16.

Fig. 4a und Fig 4b zeigen jeweils eine vorteilhafte Dichtung 8 der Wellenlagerung 3, die eine von der Strömungsrichtung des Fluids abhängige Dichtwirkung erlaubt. Die Dichtung 8 ist über ein Befestigungselement 24 im Lagergehäuse 14 fixiert, wobei Dichtlippen 25 gegen die Welle 1 geführt sind. Entsprechend der kegelstumpfförmigen Ausbildung der Dichtlippen 25 wird bei Strömung des Fluids durch die Wellenlagerung 3 in den Mahlraum 6 eine Dichtwirkung erzielt, die geringer ist als bei Strömung des Fluids aus dem Mahlraum 6 in die Wellenlagerung 3. Eine Strömung des Fluids von der Basis zur gedachten Kegelspitze der kegelstumpfförmigen Dichtlippe 25 - und somit von der Wellenlagerung 3 in Richtung des Mahlraums 6 - führt zu einer Aufweitung der Dichtlippe 25, zu einem Abheben der Dichtlippe 25 von der Welle 1 oder zumindest zu einer Reduzierung des für die Dichtung 8 und die Gleitreibung maßgeblichen Anpressdrucks der Dichtung 8 gegen die Welle 1. Bei einer Umkehrung der Strömungsrichtung, d.h. einer Strömung des Fluids von der gedachten Kegelspitze zur Basis der kegelstumpfförmigen Dichtlippe 25 - bzw. vom Mahlraum 6 in Richtung der Wellenlagerung 3 - presst das Fluid die Dichtlippe 25 gegen die Welle 1 und führt zu einer Vergrößerung des Anpressdrucks der Dichtlippe 25 an die Welle 1. In Fig 4a ist eine Dichtung 8 mit zwei freistehenden Dichtlippen 25 dargestellt. In Fig 4b ist eine Dichtung 8 mit zwei Dichtlippen 25 dargestellt, wobei eine freistehende Dichtlippe 25 näher an der Wellenlagerung 3 angeordnet ist und die Dichtlippe 25, die näher an dem Mahlraum 6 angeordnet ist, auf eine zum Mahlraum 6 hin orientierte Kavität 26 verzichtet, wodurch vorteilhafterweise eine Einlagerung von Faserstoff und eventuelle Aushärtung von Faserstoff in der zum Mahlraum 6 hin orientierten Kavität 26 vermieden wird. Figure 4a and Figure 4b each show an advantageous seal 8 of the shaft bearing 3, which allows a sealing effect dependent on the direction of flow of the fluid. The seal 8 is fixed in the bearing housing 14 via a fastening element 24 , sealing lips 25 being guided against the shaft 1 . Corresponding to the frustoconical design of the sealing lips 25, when the fluid flows through the shaft bearing 3 into the grinding chamber 6, a sealing effect is achieved which is less than when the fluid flows from the grinding chamber 6 into the shaft bearing 3. A flow of the fluid from the base to the imaginary cone tip of the frustoconical sealing lip 25 - and thus from the shaft bearing 3 in the direction of the grinding chamber 6 - leads to a widening of the sealing lip 25, to a lifting of the sealing lip 25 from the shaft 1 or at least to a reduction in the contact pressure of the seal 8 against the shaft 1, which is decisive for the seal 8 and the sliding friction. When the direction of flow is reversed, i.e. a flow of the fluid from the imaginary apex of the cone to the base of the truncated cone-shaped sealing lip 25 - or from the grinding chamber 6 in the direction of the shaft bearing 3 - the fluid presses the sealing lip 25 against the shaft 1 and leads to an increase in the contact pressure of the sealing lip 25 on the shaft 1st in Figure 4a a seal 8 with two free-standing sealing lips 25 is shown. In Figure 4b a seal 8 with two sealing lips 25 is shown, with a free-standing sealing lip 25 being arranged closer to the shaft bearing 3 and the sealing lip 25, which is arranged closer to the grinding chamber 6, does without a cavity 26 oriented towards the grinding chamber 6, which advantageously prevents fibrous material from being stored and possibly hardening in the cavity 26 oriented toward the grinding chamber 6.

Die vorliegende Erfindung bietet somit zahlreiche Vorteile. Besonders vorteilhaft ist der geringe Verschleiß der Rotorscheiben und Statorscheiben - und insbesondere der Mahlplatten auf diesen Scheiben, was durch die sehr leichtgängige Positionierbarkeit der Rotorscheibe, die auch im durchgehenden Betrieb erhalten bleibt, erzielt wird. Dabei erlaubt die erfindungsgemäße Lösung, eine Verschmutzung durch Faserstoff im Dichtungsbereich und Lagerungsbereich zu vermeiden. Ebenso vermeidet die erfindungsgemäße Lagerung die Gefahr einer Ölkontamination der Faserstoffsuspension, da die Lagerung ölfrei betrieben werden kann und auch die Gefahr einer Kontamination der Lagerung durch den Faserstoff entfällt bzw. ist minimal. Die erfindungsgemäße Lagerung erlaubt ebenso eine kompaktere Ausführung des Refiners und vor allem eine kürzere Baulänge.The present invention thus offers numerous advantages. Particularly advantageous is the low wear of the rotor discs and stator discs - and in particular the grinding plates on these discs, which is achieved by the very easy positioning of the rotor disc, which is also maintained in continuous operation. The solution according to the invention makes it possible to avoid contamination by fibrous material in the sealing area and bearing area. Likewise, the storage according to the invention avoids the risk of oil contamination of the fibrous suspension, since the storage can be operated oil-free and the risk of contamination of the storage by the fibrous material is eliminated or is minimal. The storage according to the invention also allows a more compact design of the refiner and, above all, a shorter overall length.

BezugszeichenReference sign

(1)(1)
WelleWave
(2)(2)
Rotorscheiberotor disc
(3)(3)
Wellenlagerungshaft bearing
(4)(4)
erste Statorscheibefirst stator disc
(5)(5)
zweite Statorscheibesecond stator disc
(6)(6)
Mahlraumgrinding room
(7)(7)
Axialrichtungaxial direction
(8)(8th)
Dichtungpoetry
(9)(9)
Dämpfungselementdamping element
(10)(10)
Motorengine
(11)(11)
Kupplungcoupling
(12)(12)
Einlaufbereichinlet area
(13)(13)
Öffnungenopenings
(14)(14)
Lagergehäusebearing housing
(15)(15)
Dämpfungsbereichdamping range
(16)(16)
Drosselelementthrottle element
(17)(17)
Refinerrefiners
(18)(18)
Auslassbereichoutlet area
(19)(19)
GehäuseHousing
(20)(20)
Verstellvorrichtungadjusting device
(21)(21)
Fluideinlassfluid inlet
(22)(22)
Fluidrücklauffluid return
(23)(23)
Fluidgeschmierte GleitlagerFluid-lubricated plain bearings
(24)(24)
Befestigungselementfastener
(25)(25)
Dichtlippesealing lip
(26)(26)
Kavitätcavity

Claims (13)

  1. Refiner for refining pulps in a fibre pulp suspension, comprising a shaft (1), a rotor disc (2) attached firmly to the shaft (1), and a shaft bearing (3), the rotor disc (2) being disposed between two stator discs (4, 5) and forming a refining chamber (6) between the rotor disc (2) and the stator discs (4, 5), the shaft (1) being movable in an axial direction (7), at least one stator disc (4, 5) being slidable in axial direction (7), the size of the refining chamber (6) being adjustable by means of the spacing between the stator discs (4, 5), and the rotor disc (2) being movable between the stator discs (4, 5) by moving the shaft (1) in axial direction (7), characterized in that the shaft bearing (3) is connected hydraulically to the refining chamber (6).
  2. Refiner according to claim 1, characterized in that the rotor disc (2) is firmly attached to the shaft (1) inside or outside the shaft bearing (3).
  3. Refiner according to claim 1 or 2, characterized in that the shaft bearing (3) is designed as a fluid-lubricated plain bearing (23), where a fluid, preferably water, can be fed to the refining chamber (6) via the shaft bearing (3).
  4. Refiner according to one of claims 1 to 3, characterized in that a seal (8) is arranged between the refining chamber (6) and the shaft bearing (3).
  5. Refiner according to claim 4, characterized in that the sealing effect of the seal (8) depends on the flow direction of the fluid.
  6. Refiner according to claim 5, characterized in that the seal (8) has a lesser sealing effect when the fluid flows through the shaft bearing (3) into the refining chamber (6) than when the fluid flows out of the refining chamber (6) into the shaft bearing (3).
  7. Refiner according to one of claims 1 to 6, characterized in that a damping element (9) is assigned to the shaft bearing (3), the damping element (9) being disposed between the rotor disc (2) and a motor (10), preferably between the rotor disc (2) and a coupling (11), the coupling (11) being disposed between the rotor disc (2) and the motor (10).
  8. Refiner according to claim 7, characterized in that the damping element (9) is connected hydraulically to the shaft bearing (3).
  9. Refiner according to claim 1, characterized in that the fibre pulp suspension can be fed to the refining chamber (6) through an inlet area (12) or through the shaft (1).
  10. Refiner according to claim 9, characterized in that the rotor disc (2) contains openings (13), these openings (13) providing even distribution of the fibre pulp suspension in the refining chamber (6), which can be fed in through the inlet area (12) or shaft (1).
  11. Refiner according to claim 1, characterized in that the shaft (1) is connected via a coupling (11) to a motor (10), where the shaft (1) movement in axial direction (7) can be absorbed by the coupling (11).
  12. Refiner according to claim 11, characterized in that the coupling (11) is designed as a curved teeth coupling and a radial and/or axial movement of the shaft is possible in the curved teeth coupling.
  13. Refiner according to one of Claims 1 to 12, characterized in that the shaft (1) is supported entirely on fluid-lubricated plain bearings (23).
EP21712970.9A 2020-04-01 2021-03-12 Apparatus for grinding a fibrous material suspension Active EP4127310B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA50275/2020A AT523590B1 (en) 2020-04-01 2020-04-01 DEVICE FOR GRINDING A FIBER STOCK SUSPENSION
PCT/EP2021/056317 WO2021197805A1 (en) 2020-04-01 2021-03-12 Apparatus for grinding a fibrous material suspension

Publications (3)

Publication Number Publication Date
EP4127310A1 EP4127310A1 (en) 2023-02-08
EP4127310C0 EP4127310C0 (en) 2023-07-26
EP4127310B1 true EP4127310B1 (en) 2023-07-26

Family

ID=76876009

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21712970.9A Active EP4127310B1 (en) 2020-04-01 2021-03-12 Apparatus for grinding a fibrous material suspension

Country Status (4)

Country Link
US (1) US20230047528A1 (en)
EP (1) EP4127310B1 (en)
CN (1) CN113164967B (en)
BR (1) BR112022013920A2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB745987A (en) * 1954-02-17 1956-03-07 E D Jones & Sons Company A refining apparatus, attrition mill or the like
CH410612A (en) * 1962-01-15 1966-03-31 Sprout Waldron & Co Inc Grinding mill
NO128777B (en) * 1962-08-08 1974-01-07 K Thomas
CA1246374A (en) * 1983-10-24 1988-12-13 Steve Rowland Two stage high consistency refiner
DE69833001T2 (en) * 1997-10-09 2006-08-24 Kadant Black Clawson Inc., Mason DEVICE AND METHOD FOR CONTROLLING A PAPER BROKEN REFINEUR
US6673211B2 (en) * 2001-07-11 2004-01-06 Voith Paper Patent Gmbh Apparatus for loading fibers in a fiber suspension with calcium carbonate
DE202006002999U1 (en) * 2006-02-24 2007-06-28 Voith Paper Patent Gmbh Disc refiner for grinding suspended fibrous materials comprises a rotor and stators, each having grinding tools that cooperate to form a conical grinding zone

Also Published As

Publication number Publication date
CN113164967B (en) 2022-02-25
BR112022013920A2 (en) 2022-10-11
US20230047528A1 (en) 2023-02-16
CN113164967A (en) 2021-07-23
EP4127310A1 (en) 2023-02-08
EP4127310C0 (en) 2023-07-26

Similar Documents

Publication Publication Date Title
DE19613609C2 (en) Axial piston machine with internal flushing circuit
DE19937440C1 (en) Lubricating device for multiple disc clutch of motor cycle internal combustion engine, has radial oil antitussive webs installed to surrounding wall inclined inner surface, at free-end section vicinity
DE20317497U1 (en) Plain thrust bearing for bearings in an exhaust gas turbocharger's rotating shaft linked to a lubricating oil circuit, has a sliding surface and a bearing surface with lubricating gap
EP2816226A1 (en) Wind power plant with a mechanical bearing
EP2420651B1 (en) Bearing assembly for the compressor of a turbocharger of a combustion engine
DE102019130844A1 (en) Hydraulic piston machine
EP4127310B1 (en) Apparatus for grinding a fibrous material suspension
DE19852478B4 (en) Device for supplying flowable medium to a circulating device, in particular for a mechanical press
AT523590B1 (en) DEVICE FOR GRINDING A FIBER STOCK SUSPENSION
DE2539425C2 (en)
DE2559667C3 (en) Liquid ring seal for flowing media
DE102017206686B4 (en) Bearing arrangement for supporting a transmission shaft
WO2012045394A1 (en) Axial piston machine having a control plate which is inserted in a groove of a housing part
DE102017106942A1 (en) Hydrodynamic coupling
DE102007025402B4 (en) Pump for a household appliance
DE10122649C2 (en) deflection roll
DE102016124283A1 (en) Hydrodynamic coupling
DE69722640T2 (en) DISC CLUTCH COOLED WITH OIL
EP0761968A1 (en) Valve for a gerotor motor with hydrostatic bearing
DE102004016296A1 (en) Hydrodynamic unit, e.g. centrifugal pump, has impellers which rotate at different speeds, axial force on impellers being adjusted by adjusting gap between their inner faces
EP2216550B1 (en) Gear wheel pump with shaft seal
DE102015201251A1 (en) Slide bearing arrangement for a loaded with a rotating radial force shaft
DE102021110357B4 (en) Gasket bushing and high-pressure cleaning device
DE202006007672U1 (en) Spiral housing-centrifugal pump, has sealing system, arranged in area of seal gap, comprising washer disc fixedly arranged at rotor and slip ring adjacent to washer disc, where ring is pressed against washer disc in operating condition
DE102022119348B3 (en) Actuating arrangement designed for cooling and lubricating a bearing; as well as clutch

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220715

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
INTG Intention to grant announced

Effective date: 20230309

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021001097

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20230726

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20230801

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231026

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231126

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502021001097

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

U20 Renewal fee paid [unitary effect]

Year of fee payment: 4

Effective date: 20240325

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20240429