EP4116640B1 - System zur erzeugung von kälte und strom aus einer thermischen quelle mit niedriger temperatur, das eine regelung des verhältnisses zwischen kälte- und stromerzeugung ermöglicht - Google Patents

System zur erzeugung von kälte und strom aus einer thermischen quelle mit niedriger temperatur, das eine regelung des verhältnisses zwischen kälte- und stromerzeugung ermöglicht Download PDF

Info

Publication number
EP4116640B1
EP4116640B1 EP22183504.4A EP22183504A EP4116640B1 EP 4116640 B1 EP4116640 B1 EP 4116640B1 EP 22183504 A EP22183504 A EP 22183504A EP 4116640 B1 EP4116640 B1 EP 4116640B1
Authority
EP
European Patent Office
Prior art keywords
generator
absorber
cold
ejector
production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP22183504.4A
Other languages
English (en)
French (fr)
Other versions
EP4116640A1 (de
Inventor
Hai Trieu Phan
Simone BRACCIO
Nicolas Tauveron
Nolwenn LE PIERRES
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Universite Savoie Mont Blanc
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Centre National de la Recherche Scientifique CNRS
Commissariat a lEnergie Atomique CEA
Universite Savoie Mont Blanc
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Commissariat a lEnergie Atomique CEA, Universite Savoie Mont Blanc, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP4116640A1 publication Critical patent/EP4116640A1/de
Application granted granted Critical
Publication of EP4116640B1 publication Critical patent/EP4116640B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • F25B15/04Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas the refrigerant being ammonia evaporated from aqueous solution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves

Definitions

  • the present invention relates to the field of thermodynamic systems for the co-production of electrical energy and thermal energy, more particularly cold, from a low-temperature thermal source.
  • the applications of the invention are numerous, among which mention may be made of the field of stationary systems, with heat sources such as heat discharges from industrial processes, solar thermal, biomass, geothermal energy, gas turbines.
  • This problem is particularly significant for the mobility sector because it is responsible for a large part of the energy consumption and the emission of greenhouse gases both for the propulsion itself and for the on-board systems (cold).
  • thermodynamic cycle as such can, alone, achieve all of these functionalities.
  • Ammonia-water absorption systems have advantages that have already been clearly identified, such as allowing negative temperatures to be reached as well as the use of pressures higher than ambient, compared to H 2 O-LiBr absorption cycles. Furthermore, such systems do not include any fluid that could contribute to the destruction of the ozone layer or to the increase of the greenhouse effect, as is the case with most organic fluids used in refrigeration.
  • ES2512990B1 Also known from the patent ES2512990B1 a system for the coproduction of electricity and cold comprising, in addition to the traditional components of a system implementing an absorption cycle, an expander and an ejector arranged downstream of the expander, which has no positive impact on the production of electricity.
  • the D/ function is not possible with a system according to ES2512990B1 .
  • variable section ejectors have recently been used in mechanical vapor compression cycles, with the aim of improving the performance of these cycles outside the nominal point: see for example the publication [3].
  • the ejector can be a simple ejector or with a variable neck section.
  • jector is meant here and in the context of the invention, a mechanical assembly exploiting the depression created by the Venturi effect and making it possible to compress a secondary fluid by mixing it with the pressurized primary fluid, the assembly not comprising any moving parts transmitting energy to the fluids.
  • variable neck section ejector is meant here and in the context of the invention an ejector in which the dimensions of the ejector which are mainly the diameters of the section of the sonic neck and/or of the mixer can be varied.
  • the working fluid comprises ammonia (NH 3 ) as refrigerant and water (H 2 O) as absorbent.
  • NH 3 ammonia
  • H 2 O water
  • Other refrigerant/absorbent pairs may be suitable.
  • the fluid circuit comprises an exchanger arranged on a bypass fluid line, bypassing the fluid connection between the evaporator and the absorber, the bypass line being connected to the fluid injector secondary of the ejector, so that the exchanger heats the secondary fluid before it enters the ejector.
  • the turbine is configured to drive the working fluid circulation pump.
  • the system comprises a refrigerant rectifier, arranged between the generator and the condenser.
  • the flows of so-called rich and lean solutions of the working fluid are separated at the output of the generator or at the output of the rectifier.
  • the fluid at the outlet of the working fluid circulation pump is used as the cold source of the rectifier.
  • the system comprises a bypass fluidic line between the ejector and the absorber, so as to increase the pressure of the working fluid in the latter.
  • the system comprises, as heat source, low temperature heat advantageously between 70°C and 150°C.
  • Another subject of the invention is the use of a system for producing cold and electrical energy as described above for electrical production with a power greater than 100 kWe.
  • the invention essentially consists of a system for producing electricity and cold as described in the application EP3748274A1 to choose a supersonic turbine to reduce the leakage rate and guarantee the efficiency of electricity production, and to add a simple or variable-section ejector upstream, making it possible to continuously increase cold production while maintaining the efficiency of electricity production.
  • the system comprises a working fluid management module piloting a set of adjustment valves, two expansion valves whose opening is adjustable and controls the speed of the pump according to the fluctuation of the hot source or the needs.
  • the ejector according to the invention makes it possible to increase the flow rate passing through the cold part of the working fluid circuit, and therefore the cold power produced, while maintaining good electrical production efficiency (function D/).
  • the D0/ function is ensured by changing the section of the ejector so as to optimize its performance for each operating condition.
  • component C1 fluidically connected to component C2 is synonymous with “C1 is in fluid connection with C2” does not necessarily mean that there is no member between C1 and C2.
  • the expressions "arranged on” or “on” are synonymous with “fluidly connected to”.
  • the set of adjustment valves which operate in on/off mode to carry out the various operations of the system according to the invention described with reference to the figures 1 to 5 is not designated by a reference numeral.
  • a valve considered when a valve considered is in an off state to carry out one of the operations of the system, it is indicated by the symbol in the form of a cross in the figure considered.
  • direct exchange or direct coupling is meant that the exchange of thermal energy takes place directly without any intermediate circuit or component.
  • the direct exchange in the condenser or the evaporator takes place directly between the refrigerant and, for example, an air flow.
  • the system for producing electrical energy and cold according to the invention comprises an absorption machine and a heat source, preferably a low temperature heat source advantageously between 70° C. and 150° C., such as waste heat, which may be fluctuating, such as a solar source or waste heat linked to the start-up of a heat engine or intermittent industrial waste.
  • a heat source preferably a low temperature heat source advantageously between 70° C. and 150° C., such as waste heat, which may be fluctuating, such as a solar source or waste heat linked to the start-up of a heat engine or intermittent industrial waste.
  • An absorption machine uses as a working solution a binary mixture, one of the components of which is more volatile than the other, and constitutes the refrigerant.
  • the refrigerant/absorbent working solution is preferably the ammonia/water (NH 3 /H 2 O) couple.
  • the concentrations of the working fluid and the absorbent in the working solution are adapted to the pressure and the temperature of the air treatment and lower than the crystallization concentration of the solution.
  • the NH 3 /H 2 O couple can be used for air conditioning applications, but also for refrigeration and there is no possible crystallization on the operating ranges in pressure and temperature.
  • this couple the difference in vapor pressure between the absorbent and the refrigerant is low. There are therefore traces of water taken away with the ammonia vapor at the outlet of the generator 1 sometimes requiring the presence of a rectifier 13.
  • the absorption machine comprises a set of four main exchangers, namely a generator 1, a condenser 2, an evaporator 3 and absorber 4, and preferably at least one secondary exchanger.
  • the absorption machine further comprises at least one solution pump 9 and an expansion valve 10 of a loop 11 and an expansion valve 12.
  • the machine operates at three temperature levels: a low temperature level corresponding to the production of cold at the evaporator 3, an intermediate temperature level corresponding to the temperature of condensation of the refrigerant fluid, but also to that of absorption of the refrigerant fluid by the absorbent and a high temperature level corresponding to the driving temperature of the generator 1.
  • the absorption machine comprises a fluidic absorption circuit 100 configured to ensure the fluidic connection of the various components of the system and in particular of the absorption machine.
  • the absorption fluidic circuit 100 is a closed circuit intended to receive the working solution.
  • the absorption machine operates at high pressure between pump 9 upstream of generator 1 and expansion valve 12, downstream of condenser 2, and at low pressure between expansion valve 2, downstream of condenser 2 and pump 9 upstream of generator 1.
  • the generator also commonly called desorber 1 allows the heat exchange between the heat source and the working fluid.
  • a generator 1 therefore comprises a hot source inlet and outlet, not shown, allowing the supply of heat necessary for the vaporization of the refrigerant of the working solution.
  • Generator 1 is fluidically connected to condenser 2 and absorber 4.
  • an economizer 8 described below is arranged between generator 1 and absorber 4 to allow the entry of the so-called rich working solution into the generator 1 and the exit of the so-called lean working solution from the generator 1.
  • the expansion valve 10 allows the pressure of the lean working solution to be released before it is transmitted to the absorber 4.
  • a rectifier 13 is arranged between the generator 1 and the condenser 2.
  • the rectifier 13 possibly makes it possible to rectify the working solution, by removing by condensation the traces of water entrained with the working fluid.
  • the condenser 2 makes it possible to reject heat from the working fluid towards a source at intermediate temperature, by condensing the vapor of refrigerant fluid.
  • Condenser 2 is fluidically connected to generator 1 and to evaporator 3.
  • the fluidic connection between generator 1 and condenser 2 allows the entry of refrigerant vapor into the latter.
  • the expansion valve 12 brings the refrigerant to its evaporation pressure and therefore allows the exit from the condenser 2 of the refrigerant in the liquid state.
  • Condenser 2 also includes a cooling source such as air circulation to ensure its normal operation.
  • the phase change of the refrigerant from the vapor state to the liquid state is accompanied by a release of heat which is transmitted for example to the circulating air flow.
  • the heated air is exhausted from the system.
  • the sub-cooler 6 is arranged between the condenser 2 and the evaporator 3, and between the evaporator 3 and the absorber 4, and makes it possible to sub-cool the refrigerant at the inlet of the evaporator 3 and to preheat the refrigerant in the vapor state at the outlet of the evaporator 3.
  • the sub-cooler 6 therefore makes it possible to reduce the dimensions of the condenser 2 and of the evaporator 3 and thus significantly improve the performance of the machine.
  • the expansion valve 12 is arranged between the sub-cooler 6 and the evaporator 3.
  • the evaporator 3 makes it possible to take heat from the cold source in order to vaporize the refrigerant fluid.
  • the evaporator 3 is fluidly connected to the condenser 2 and to the absorber 4.
  • the phase change of the refrigerant from the liquid state to the vapor state within the evaporator 3 is accompanied by a transmission of heat from the hot source to the outlet of the the evaporator 3, to the refrigerant.
  • This hot source transmits calories and thus sees its temperature drop.
  • the evaporator 3 is the location for the production of cold temperatures.
  • the absorber 4 makes it possible to exchange calories between the working fluid and a source at intermediate temperature, to condense the refrigerant vapor coming from the evaporator 3.
  • the absorber 4 is fluidically connected to the evaporator 3 and to the generator 1 by the loop 11.
  • the pump 9 of this loop 11 makes it possible to circulate the working solution in the circuit 100. More precisely, the pump 9 is intended to circulate the rich working solution from the absorber 4 in the direction of the generator 1. The pump 9 consumes little electricity.
  • the pump 9 is fluidically connected to the economizer 8 through which the rich working solution is heated before being transmitted to the generator 1.
  • the economizer 8 transmits heat from the lean solution coming from the generator 1 to the rich solution coming from the absorber 4.
  • the absorber 4 is fluidly connected to the generator 1 to allow the entry of the lean working solution coming from the generator 1 into the absorber 4 .
  • the expansion valve 10 is arranged between the generator 1 and the absorber 4.
  • the phase change of the refrigerant from the vapor state to the liquid state is accompanied by a release of heat which is transmitted to a cooling source such as an air flow.
  • the heated air is exhausted from the system.
  • a supersonic turbine 5 as an expander driving a generator is arranged between the generator 1 and the absorber 4, by-passing the condenser 2 and the evaporator 3.
  • This supersonic turbine 5 has a reduced leakage rate and it guarantees the efficiency of the electrical production.
  • a single or variable-section ejector 50 is arranged to continuously increase cold production while maintaining the efficiency of electrical production.
  • the ejector 50 can be simple or with variable section, as detailed below.
  • a simple ejector 50 is optimized for a given ratio between cold production and electricity production (function D/), while a variable section ejector 50 allows very precise and efficient regulation for all the ratios between electricity production and cold production (function D0/).
  • the hydraulic connection allows the entry of the refrigerant in the vapor state from the generator 1 directly into the turbine 5 or indirectly, in bypass mode through the ejector 50.
  • a superheater 7 is arranged between the generator 1 and the turbine 5, preferably between the ejector 50 and the turbine to allow an additional heat exchange between a hot source, not shown, and the working fluid in order to obtain better quality steam at the inlet of the turbine 5.
  • the turbine 5 is fluidly connected to the absorber 4 to allow the exit of the refrigerant in the state of expanded vapor from the turbine 5 to the absorber 4 according to a mode of production of electrical energy.
  • the exchanger 14 is arranged on a fluidic line 15 branching from the fluidic connection between the evaporator 3 and the absorber 4. This fluidic line 15 is connected to the secondary fluid injector (driven) of the ejector 50.
  • the exchanger 14 makes it possible to heat the secondary fluid before it enters the ejector 50.
  • the supersonic turbine 5 is advantageously connected to an electric generator which makes it possible to transform the mechanical energy recovered by the turbine 5 into electricity by producing an electric power W turb .
  • the supersonic turbine 5 is configured to allow electrical production greater than 100 kWe, that is to say medium power or even high power of 1 MWe.
  • the system according to the invention further comprises a module for managing the circulation of the working solution within the circuit 100 and the various components of the system which have just been described.
  • the management module is configured to set system operating conditions based on power requirements and source fluctuations, as detailed below. It can be a production of cold alone, or the production of electrical energy, or a co-production of cold and electrical energy, depending on the temperatures of the sources, the price of electricity, etc.
  • This management module comprises the adjustment valves (on/off valves not shown), the two expansion valves 10, 12, the opening of which is adjustable and a control unit which controls the speed of the pump 9, in order to allow fine adjustment of the circulation flow rates of the working solution and the refrigerant for the implementation of the system operation modes according to the fluctuation of the hot source or the needs.
  • the system and the management module according to the invention have the advantage of being compact, advantageously requiring only a few additional components such as valves, possibly temperature and pressure sensors, which reduces the costs and the bulk allowing the system according to the invention to be used in mobile applications.
  • the working solution circulation management module initiates circulation of the working solution in a conventional absorption cycle. To do this, the module closes the adjustment valves on the fluidic line on either side of the ejector 50 and the turbine 5 as well as on the bypass line 15 upstream of the exchanger 14. The function A/ is thus performed.
  • the refrigerant in the working solution leaves generator 1 and passes through rectifier 13 before arriving in condenser 2.
  • the refrigerant leaves condenser 2 to pass through subcooler 6, and expansion valve 12, before arriving in evaporator 3.
  • the refrigerant leaves evaporator 3 to pass through subcooler 6 before arriving in absorber 4.
  • the refrigerant gene is absorbed by the absorbent and the so-called rich working solution emerges from the absorber 4 to circulate in the loop 11.
  • the rich working solution successively passes through the pump 9 and the economizer 8 before arriving in the generator 1.
  • the lean working solution leaves the generator 1 to pass successively through the economizer 8 and the expansion valve 10 before arriving in the absorber 4.
  • the production of cold thus takes place at the level of the evaporator 3 during the evaporation of the refrigerant which is accompanied by a cooling of the hot source.
  • the cooled hot source can then be used for example for air conditioning.
  • the working solution circulation management module triggers circulation of the working solution following a Rankine cycle, more specifically a Kalina cycle. To do this, the module closes the adjustment valves on the fluidic line on either side of the ejector 50, on the fluidic line between the generator 1 and the rectifier 13 downstream of the bypass of the turbine line 5 as well as on the line between the evaporator 3 and the absorber 4 upstream of the bypass of the turbine line 5. The function B/ is thus performed.
  • the refrigerant in the working solution leaves the generator 1 and crosses the superheater 7 before arriving in the turbine 5.
  • the refrigerant leaves the turbine 5 to emerge in the absorber 4.
  • the refrigerant is absorbed by the absorbent and the rich working solution leaves the absorber 4 to cross the loop 11 as described with reference to picture 2 before returning to generator level 1. Electricity is produced by turbine 5 connected to an electric generator.
  • the working solution circulation management module initiates circulation of the working solution through an absorption cycle and a power generation cycle. To do this, the module only closes the adjustment valves on the fluidic line on either side of the ejector 50. The function C/ is thus performed. Due to the implementation of a supersonic turbine 5, the flow rate is a function of the upstream-downstream pressure jump and thus the ratio between the cold and electrical powers produced is fixed and cannot be changed.
  • the refrigerant of the working solution is directed partially towards the part of the circuit 100 implementing a cold production cycle and partially towards the other part implementing an electricity production cycle.
  • Part of the refrigerant at the outlet of generator 1 is diverted to supersonic turbine 5 while the other part circulates to condenser 2 by crossing rectifier 13 upstream.
  • the refrigerant leaves condenser 2 to cross sub-cooler 6 and expansion valve 12 before arriving in evaporator 3.
  • the refrigerant is absorbed by the absorbent and the rich working solution leaves the absorber 4 to circulate in the loop 11 and therefore successively passes through the pump 9, the economizer 8 before arriving in the generator 1.
  • the lean working solution leaves the generator 1 to pass successively through the economizer 8 and the expansion valve 10 before arriving in the absorber 4.
  • the part of the refrigerant passing through the supersonic turbine 5 passes through the superheater 7 upstream.
  • the refrigerant then emerges compressed from the turbine 5 to emerge in the absorber 4.
  • the refrigerant coming from the turbine 5 and the refrigerant coming from the evaporator 3 are mixed before passing through the loop 11.
  • the refrigerant is absorbed by the absorbent and the rich working solution leaves the absorber 4 to circulate in the loop 11 comprising the economizer 8, the pump 9 and the expansion valve 10 as described above.
  • the production of cold takes place at the level of the evaporator 3 during the evaporation of the refrigerant fluid which is accompanied by a cooling of the hot source.
  • the cooled hot source can then be used for example for air conditioning.
  • the electricity is produced by the supersonic turbine 5 connected to an electric generator.
  • the working solution circulation management module initiates circulation of the working solution according to an absorption cycle and a power generation cycle with a ratio between the two. To do this, the module only closes the adjustment valves on the fluidic line branching off from that of the ejector 50 between the generator 1 and the turbine 5: thus all the working fluid necessarily passes through the ejector 50 before leading to the supersonic turbine 5.
  • the function D/ and preferably D0/ are thus achieved.
  • the ejector 50 makes it possible to increase the flow rate passing through the cold part of the circuit 100, and therefore the cold power produced, while maintaining good efficiency in the production of electricity by the turbine 5.
  • the function D0/ is ensured by changing the section of the ejector with variable neck section so as to optimize its performance for each operating condition.
  • the refrigerant of the working solution is directed partially towards the part of the circuit 100 implementing a cold production cycle and partially towards the other part implementing an electricity production cycle.
  • Part of the refrigerant leaving the generator 1 is diverted to the supersonic turbine 5 while the other part circulates to the condenser 2 by crossing the rectifier 13 upstream.
  • the refrigerant leaves the condenser 2 to cross the sub-cooler 6 and the expansion valve 12 before arriving in the evaporator 3.
  • the refrigerant leaves the evaporator 3 to cross the sub-cooler 6.
  • the refrigerant is absorbed by the absorbent and the rich working solution leaves the absorber 4 to circulate in the loop 11 and therefore successively passes through the pump 9, the economizer 8 before arriving in the generator 1.
  • the lean working solution leaves the generator 1 to pass successively through the economizer 8 and the expansion valve 10 before arriving in the absorber 4.
  • the part of the refrigerant passing through the supersonic turbine 5 necessarily passes upstream through the ejector 50 which increases the flow rate and then the superheater 7. The refrigerant then comes out compressed from the turbine 5 to emerge in the absorber 4.
  • the refrigerant coming from the turbine 5 and the refrigerant coming from the evaporator 3 are mixed before passing through the loop 11.
  • the refrigerant is absorbed by the absorbent and the rich working solution leaves the absorber 4 to circulate in the loop 11 comprising the economizer 8, the pump 9 and the expansion valve 10 as described above.
  • the increased cold production compared to the figure 4 takes place at the level of the evaporator 3 during the evaporation of the refrigerant which is accompanied by a cooling of the hot source.
  • the cooled hot source can then be used for example for air conditioning.
  • the electricity is produced by the supersonic turbine 5 connected to an electric generator.
  • Tables 1 and 2 below illustrate the performances that can be achieved with this example of a typical configuration for the operating modes allowing functions A/ to D0 to be performed, case 3 being the comparative one
  • COP Qhot Wturb + wpump
  • Qchaud is the power
  • Q ⁇ des delivered by the heat source at the level of the generator 1 in the form of heat
  • Wturb the electric power delivered by the turbine 5
  • Wpump the electric power consumed by the pump 9.
  • T e is the temperature external to the evaporator
  • T c the temperature external to the condenser
  • T g the temperature external to the generator.
  • the ejector 50 according to the invention is dimensioned at the nominal flow on the turbine 5 for the electrical production (function D/).
  • An example of the arrangement of an ejector 50 upstream of the superheater 7 and the supersonic turbine 5 is shown in figure 6 .
  • the ejector 50 is in this configuration sized so as to have a critical flow rate of 10 kg/h and a small drive ratio.
  • variable section ejector 50 makes it possible to finely and efficiently regulate the electrical production for different speeds (D0/ function).
  • the turbine In all the operating modes in which the turbine 5 operates (functions B/, C/ D/ and D0/), the turbine may not be connected to an electric generator and produce mechanical work only.
  • the flows of the working fluid can be separated at the output of rectifier 13, rather than at the output of generator 1 according to the configuration shown in figure 1 .
  • the fluid leaving the pump 9 can be used as a cold source in order to rectify the ammonia.
  • a bypass fluidic line can be added to increase the pressure of the absorber 4 from the ejector 50.
  • the system can comprise at least one cold storage module associated with the evaporator 3.
  • the cold storage thus allows energy storage when the source and the need are not concomitant.
  • the stored cold can be removed from storage in the form of cold or in the form of electricity depending on the needs.
  • the cold storage module can be a Phase Change Material thermal storage system or directly a cold fluid storage.
  • the cold storage module is associated with the evaporator 3 to store cold during operation for the production of cold.
  • the cold storage module is also associated with the absorber 4 to destock cold to the absorber 4 when a cooling source is desired, that is to say in particular in the different operating modes.
  • the system can include a cold storage module associated with the absorber 4 to remove cold storage.
  • the system can also comprise at least one calorie storage module associated with the absorber 4 or associated with the generator 1 to destock the calories.
  • the system can comprise at least one electricity storage module associated with the supersonic turbine 5 and more specifically with the electric generator associated with the turbine 5.
  • the electricity storage thus allows energy storage when the source and the need are not concomitant.
  • the stored electricity can be destocked in the form of cold or else in the form of electricity depending on the needs.
  • electric batteries can be provided.

Claims (12)

  1. System zur Erzeugung von Kälte und elektrischer Energie, das Folgendes umfasst:
    - eine Desorptionsvorrichtung, die als Generator (1) bezeichnet wird,
    - einen Verdichter (2)
    - einen Verdampfer (3)
    - eine Absorptionsvorrichtung (4)
    - einen Absorptionsfluidkreislauf (100), in welchem ein Arbeitsfluid fließt, das ein Kühlfluid und ein Absorptionsmittel umfasst, wobei der Fluidkreislauf (100) den Generator (1) mit dem Verdichter (2), den Verdichter (2) mit dem Verdampfer (3), den Verdampfer (3) mit der Adsorptionsvorrichtung (4) und die Absorptionsvorrichtung (4) mit dem Generator (1) verbindet,
    - eine Überschallturbine (5), die an dem zwischen dem Generator (1) und der Absorptionsvorrichtung (4) als Nebenstrom zum Verdichter (2) und zum Verdampfer (3) angeordnet ist, wobei die Turbine dafür ausgelegt ist, eine Stromerzeugungsmaschine zu betätigen, um Strom zu erzeugen,
    - mindestens einen Ejektor (50), das zwischen dem Generator und der Turbine an dem Fluidkreislauf angeordnet ist.
  2. System nach Anspruch 1, wobei es sich bei dem Ejektor um einen Ejektor einfacher Bauart oder mit veränderlichem Halsquerschnitt handelt.
  3. System nach Anspruch 1 oder 2, wobei das Arbeitsfluid als Kühlfluid Ammoniak (NH3) und als Absorptionsmittel Wasser (H2O) umfasst.
  4. System nach einem der vorhergehenden Ansprüche, wobei der Fluidkreislauf (100) einen Tauscher (14) umfasst, der an einer Nebenstromfluidleitung (15) als Nebenstrom zur Fluidverbindung zwischen dem Verdampfer (3) und der Absorptionsvorrichtung (4) angeordnet ist, wobei die Nebenstromleitung (15) derart mit dem Einlassorgan für das Sekundärfluid des Ejektors (50) verbunden ist, dass der Tauscher (14) das Sekundärfluid erwärmt, bevor es in den Ejektor (50) gelangt.
  5. System nach einem der vorhergehenden Ansprüche, wobei die Turbine (5) dafür ausgelegt ist, die Umwälzpumpe (9) für das Arbeitsfluid anzutreiben.
  6. System nach einem der vorhergehenden Ansprüche, wobei es Rektifizierungsorgan (13) für das Kühlfluid umfasst, das zwischen dem Generator (1) und dem Verdichter (2) angeordnet ist.
  7. System nach Anspruch 6, wobei die Ströme der als reich beziehungsweise arm bezeichneten Lösungen des Arbeitsfluids ausgangsseitig des Generators (1) oder ausgangsseitig des Rektifizierungsorgans (13) getrennt werden.
  8. System nach Anspruch 6 oder 7, wobei das Fluid an der Austrittsöffnung der Umwälzpumpe (9) für das Arbeitsfluid als Kältequelle für das Rektifizierungsorgan (13) verwendet wird.
  9. System nach einem der vorhergehenden Ansprüche, wobei es eine Nebenstromfluidleitung zwischen dem Ejektor (50) und der Absorptionsvorrichtung (4) umfasst, sodass sich der Druck des Arbeitsfluids in letzterer erhöht.
  10. System nach einem der vorhergehenden Ansprüche, wobei es als Wärmequelle eine Niedertemperaturwärme umfasst, die vorteilhafterweise im Bereich von 70 °C bis 150 °C liegt.
  11. Verfahren zur Erzeugung von elektrischer Energie und Wärmeenergie, wobei es von einem System nach einem beliebigen der vorhergehenden Ansprüche umgesetzt wird und Folgendes umfasst:
    - in einer ersten Betriebsweise zur alleinigen Erzeugung von Kälte, Umwälzen des Arbeitsfluids in dem Fluidkreislauf (100), wobei es nacheinander durch den Generator (1), den Verdichter (2), den Verdampfer (3) und dann die Absorptionsvorrichtung (4) gelangt, und danach erneut in den Generator (1);
    - in einer zweiten Betriebsweise zur alleinigen Erzeugung elektrischer Energie, Umwälzen des Arbeitsfluids in dem Fluidkreislauf (100), wobei es nacheinander durch den Generator (1), die Überschallturbine (5), welche mit einer Stromerzeugungsmaschine in Verbindung steht, die Absorptionsvorrichtung (4) gelangt, und danach erneut in den Generator (1);
    - in einer dritten Betriebsweise zur gleichzeitigen Erzeugung von Kälte und elektrischer Energie, Umwälzen einer Teilmenge des Arbeitsfluids in dem Fluidkreislauf (100), wobei diese nacheinander durch den Generator (1), den Verdichter (2), den Verdampfer (3) und dann die Absorptionsvorrichtung (4) und danach erneut in den Generator (1) gelangt, sowie der anderen Teilmenge des Arbeitsfluids, wobei diese nacheinander durch den Generator (1), die Überschallturbine (5), welche mit einer Stromerzeugungsmaschine in Verbindung steht, die Absorptionsvorrichtung (4) und danach erneut in den Generator (1) gelangt;
    - in einer vierten Betriebsweise zur gleichzeitigen Erzeugung von Kälte und elektrischer Energie mit einem regulierten Verhältnis zwischen Kälteerzeugung und Stromerzeugung, Umwälzen einer Teilmenge des Arbeitsfluids in dem Fluidkreislauf (100), wobei diese nacheinander durch den Generator (1), den Verdichter (2), den Verdampfer (3) und dann die Absorptionsvorrichtung (4) und danach erneut in den Generator (1) gelangt, sowie der anderen Teilmenge des Arbeitsfluid, wobei diese nacheinander durch den Generator (1), den Ejektor (50), die Überschallturbine (5), welche mit einer Stromerzeugungsmaschine in Verbindung steht, die Absorptionsvorrichtung (4) und danach erneut in den Generator (1) gelangt.
  12. Verwendung eines Systems zur Erzeugung von Kälte und elektrischer Energie nach einem beliebigen der Ansprüche 1 bis 10 für eine Stromerzeugung mit einer Leistung von mehr als 100 kWe.
EP22183504.4A 2021-07-08 2022-07-07 System zur erzeugung von kälte und strom aus einer thermischen quelle mit niedriger temperatur, das eine regelung des verhältnisses zwischen kälte- und stromerzeugung ermöglicht Active EP4116640B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR2107442A FR3125112B1 (fr) 2021-07-08 2021-07-08 Système de production de froid et d’électricité à partir d’une source thermique à basse température, permettant un réglage du rapport entre production de froid et production électrique.

Publications (2)

Publication Number Publication Date
EP4116640A1 EP4116640A1 (de) 2023-01-11
EP4116640B1 true EP4116640B1 (de) 2023-07-26

Family

ID=77411904

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22183504.4A Active EP4116640B1 (de) 2021-07-08 2022-07-07 System zur erzeugung von kälte und strom aus einer thermischen quelle mit niedriger temperatur, das eine regelung des verhältnisses zwischen kälte- und stromerzeugung ermöglicht

Country Status (3)

Country Link
EP (1) EP4116640B1 (de)
ES (1) ES2961828T3 (de)
FR (1) FR3125112B1 (de)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT511823B1 (de) * 2012-02-03 2013-03-15 Georg Dr Beckmann Verfahren und einrichtung zur erzeugung von kälte und/oder nutzwärme sowie mechanischer bzw. elektrischer energie mittels eines absorptionskreislaufes
ES2512990B1 (es) 2013-04-23 2015-09-18 Universitat Rovira I Virgili Dispositivo de refrigeración por absorción para la producción de potencia y refrigeración
FR3097039B1 (fr) 2019-06-06 2022-04-22 Commissariat Energie Atomique Système de co-production d'énergie électrique et d'énergie thermique froide et chaude et procédé associé
FR3097038B1 (fr) * 2019-06-06 2021-06-18 Commissariat Energie Atomique Système de co-production d’énergie électrique et d’énergie thermique froide et procédé associé

Also Published As

Publication number Publication date
EP4116640A1 (de) 2023-01-11
FR3125112A1 (fr) 2023-01-13
FR3125112B1 (fr) 2023-06-30
ES2961828T3 (es) 2024-03-14

Similar Documents

Publication Publication Date Title
EP2365192B1 (de) Vorrichtung und Verfahren zur Regelung eines Arbeitsmittels in einem geschlossenen Rankine-Prozess
US20100146930A1 (en) Low Grade Heat Recovery System for Turbine Air Inlet
EP1446298B1 (de) Absorptionstemperaturregelsystem für elektrofahrzeug
EP3732743B1 (de) Energieerzeugungsanlage mit kopplung einer brennstoffzelle und eines reversiblen thermodynamischen systems
EP2764243B1 (de) Verfahren und system zur umwandlung von meereswärmeenergie
EP3748274A1 (de) System zur gleichzeitigen erzeugung von elektrischer energie und kalter und heisser wärmeenergie, und entsprechendes verfahren
WO2018055307A1 (fr) Système de refroidissement d'un circuit d'un premier fluide d'une turbomachine
EP4116640B1 (de) System zur erzeugung von kälte und strom aus einer thermischen quelle mit niedriger temperatur, das eine regelung des verhältnisses zwischen kälte- und stromerzeugung ermöglicht
EP3670854A1 (de) System zur gleichzeitigen erzeugung von elektrischer energie und wärmeenergie mithilfe eines rankine-prozess-moduls
EP3191693B1 (de) System zur stromerzeugung basierend auf einem rankine-prozess
EP3748137A1 (de) System zur gleichzeitigen erzeugung von elektrischer energie und kalter wärmeenergie, und entsprechendes verfahren
EP3584518A1 (de) System, das eine absorptionsmaschine für die kälteerzeugung aus der abwärme vom abgas eines fahrzeugs und ein wärmeenergie-speichermodul umfasst
EP3627074B1 (de) Klimatisierungssystem, das eine absorptionsmaschine und eine mechanische kompressionsmaschine umfasst
EP2920834B1 (de) Gekühlte brennstoffzellenvorrichtung die eine absorptionskälteanlage umfasst
EP4350129A1 (de) System zur energieerzeugung mit einem organischen rankine-zyklus und integriertem absorptionszyklus
EP3627070B1 (de) Kälteerzeugungs- und -steuerungssystem mithilfe einer absorptionsmaschine aus der ungenutzten energie eines verbrennungsmotors
EP4332463A1 (de) Wärmeerzeugungsvorrichtung
EP3667201B1 (de) Kälteerzeugungssystem, das mit einer kompressionsmaschine, einer absorptionsmaschine und einem thermischen speichersystem zur verbindung der beiden ausgestattet ist
WO2015186107A1 (fr) Installation de conversion de chaleur en energie mecanique au refroidissement optimise par un systeme de recuperation et stockage d'une partie de l'energie thermique du fluide de travail
WO2023222971A1 (fr) Système de génération de froid et de fourniture d'énergie électrique à partir de l'eau de mer et du soleil
FR2981144A1 (fr) Turbo pompe a chaleur.
FR3042538A1 (fr) Ensemble moteur a circuit de refroidissement optimise
FR2941741A1 (fr) Dispositif pour la fabrication de moteurs thermiques a haut rendement fonctionnant avec la chaleur solaire et par la combustion de tout ce qui brule
FR2870562A1 (fr) Convertisseur d'energie thermique en energie noble avec recyclage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220707

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F25B 15/04 20060101AFI20230203BHEP

INTG Intention to grant announced

Effective date: 20230223

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602022000249

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230726

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20230401861

Country of ref document: GR

Effective date: 20231113

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1592335

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231127

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231026

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231126

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2961828

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20240314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726