EP4114633A1 - Process for separating polymer materials from an assembly of elements - Google Patents

Process for separating polymer materials from an assembly of elements

Info

Publication number
EP4114633A1
EP4114633A1 EP21714930.1A EP21714930A EP4114633A1 EP 4114633 A1 EP4114633 A1 EP 4114633A1 EP 21714930 A EP21714930 A EP 21714930A EP 4114633 A1 EP4114633 A1 EP 4114633A1
Authority
EP
European Patent Office
Prior art keywords
thermoplastic polymer
support
temperature
polymer
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21714930.1A
Other languages
German (de)
French (fr)
Inventor
Jean-Luc Schnitzler
Jennifer RAVEREAU
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suez International SAS
Original Assignee
Suez International SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suez International SAS filed Critical Suez International SAS
Publication of EP4114633A1 publication Critical patent/EP4114633A1/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0203Separating plastics from plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0213Specific separating techniques
    • B29B2017/0217Mechanical separating techniques; devices therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0213Specific separating techniques
    • B29B2017/0255Specific separating techniques using different melting or softening temperatures of the materials to be separated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • B29B2017/0416Cooling the plastics before disintegration, e.g. freezing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • B29B2017/0424Specific disintegrating techniques; devices therefor
    • B29B2017/0428Jets of high pressure fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • B29K2027/16PVDF, i.e. polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • B29K2027/18PTFE, i.e. polytetrafluorethene, e.g. ePTFE, i.e. expanded polytetrafluorethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/003PET, i.e. poylethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/14Filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a process for separating polymeric materials from elements of an assembly.
  • One field of application envisaged is in particular that of recycling liquid filtration modules. These each comprise a framework made of first polymeric materials and a filter membrane made of a second polymeric material having a porous structure.
  • PVDF poly (vinylidene fluoride)
  • PVDF has the advantage of being resistant to a wide range of chemical compounds and this is one reason it is popular for use as a filter.
  • the membranes of tubular shape can in certain cases be coated with a support, for example braided PET threads.
  • the water is thus filtered radially from the outside to the inside of the membrane, then it flows longitudinally along the support wires.
  • tubular membranes associated with the other frame elements thus constitute filtration modules allowing in particular, the realization of a stage of clarification, or even disinfection, on water treatment installations and processes.
  • these filtration modules cease to be effective, in particular because of the irreversible clogging, or the degradation of the polymers which constitute them, they are interchanged, and the modules at the end of their life or at the end of their life are then, either buried or incinerated, which, in the case of fluorinated polymers such as PVDF, releases hydrofluoric acid which should be neutralized.
  • a problem which then arises and which the present invention aims to solve is to provide an inexpensive and efficient process which makes it possible to recover the polymer materials with high added value from assembled elements.
  • thermoplastic polymer having a temperature of glass transition T g given; b) the temperature of said thermoplastic polymer is lowered to a temperature T inf lower than said glass transition temperature T g of said thermoplastic polymer; c) said thermoplastic polymer is mechanically treated at said temperature Ti nt to detach said thermoplastic polymer from said support; and, d) recovering said detached thermoplastic polymer.
  • a characteristic of the invention lies in taking into account the glass transition temperature T g of the polymer material, in order to bring the temperature of the polymer material to a temperature below this before subjecting it to mechanical processing.
  • T g glass transition temperature
  • the polymer becomes more brittle and it can then more easily break into pieces when subjected to the mechanical treatment.
  • a membrane comprising a braided support, in particular made of PET, coated at least partially with polymer material
  • said polymer material can be easily detached from the support and recovered by means of the process according to the invention, as is done. will explain below.
  • “Thermoplastic polymers” are well known to those skilled in the art.
  • fluorinated polymers such as PVDF or PTFE are more particularly envisaged, but also polyethersulfone (PES) or polypropylene (PP).
  • the "support” is generally itself a polymer material.
  • a "mechanical treatment” means an interaction by contact with the polymer in order to be able to separate it from its support.
  • said temperature Ti nt is less than 240 K. In this way, the temperature of the thermoplastic polymer is for example lowered to 230 K .
  • step b) said support coated with said thermoplastic polymer is immersed in liquid nitrogen.
  • the boiling point of nitrogen in the liquid state being 77.36 K
  • the thermoplastic polymer when the thermoplastic polymer is immersed therein, its temperature drops suddenly below its glass transition temperature.
  • the temperature T inf is between 240 K and 100 K, preferably between 220 K and 195 K.
  • the immersion time must make it possible to rapidly lower the temperature of the polymer directly exposed to liquid nitrogen, without however lowering the temperature of the support material too much if the latter is a polymer material, at the risk that he himself becomes more fragile.
  • thermoplastic polymers do not all exhibit the same behavior when their temperature is lower than that of their glass transition and that some are more resistant to it than others. In addition to their nature, polymers exhibit behaviors which also vary depending on the additives they contain and their method of use.
  • step c) said support coated with said thermoplastic polymer is crushed to detach said thermoplastic polymer from said support.
  • the material of the support when it is a polymer, does not behave in the same way as the thermoplastic polymer in order to be able to detach the first from the second and easily separate the two materials.
  • the support is made of braided threads, its morphology is different from the porous layer of PVDF which covers it.
  • thermoplastic polymer breaks at the level of the bond with the support and comes off easily.
  • said support coated with said thermoplastic polymer is crushed between two rollers.
  • the two rollers bear tangentially along a common generatrix, and the coated support is engaged between the two rotating rollers.
  • the coated supports extend longitudinally, for example, when they are threads coated with the thermoplastic polymer to be recovered.
  • a plurality of pairs of successive rollers can be used to detach the polymer material from the support.
  • dry ice is projected against said thermoplastic polymer to simultaneously lower the temperature and mechanically treat said thermoplastic polymer according to steps b) and c).
  • dry ice is used, that is to say C0 2 in solid form, typically in the form of granules or sticks, the sublimation temperature of which is 195, 6 K.
  • the dry ice, in the form of granules or sticks, is then projected at high speed against the coated support, which provides the double advantage of cooling the thermoplastic polymer covering the support, and moreover of striking the polymer then cooled with high kinetic energy, to detach it from its support.
  • dry ice makes it possible to lower the temperature of the thermoplastic polymer undergoing the impact, below its glass transition temperature, and hence the impacts of the dry ice themselves cause the detachment and separation of the material. polymer of its support.
  • steps b) and c) are simultaneous.
  • Another advantage of dry ice is that it leaves no residue in the thermoplastic polymer, since it turns into gaseous carbon dioxide and escapes into the atmosphere when the materials return to room temperature.
  • dry ice is projected against said thermoplastic polymer at a speed greater than 200 ms 1 .
  • the speed of the granules or rods is close to 300 ms 1 , which produces a high kinetic energy of impact.
  • the speed of the projected dry ice is less than 340 ms 1 , preferably less than 320 ms 1 .
  • a support comprising a plurality of wire braids respectively coated with said thermoplastic polymer.
  • Braided supports for example made of PET, are covered with a porous tubular filter layer constituting the membrane. These coated supports thus constitute the hollow fibers.
  • the support comprises a plurality of films or multilayer plates.
  • a support comprising a plurality of braids of poly (ethylene terephthalate) yarns.
  • said thermoplastic polymer which covers it is poly (vinylidene fluoride). It will be observed that this thermoplastic polymer can cover other wire supports to form filtration membranes.
  • thermoplastic polymer material can also be used on flat supports to form filtration membranes.
  • the method according to the invention is implemented to collect the PVDF from the “backsheets” of photovoltaic panels.
  • a layer of PVDF then covers a flat support, typically of PET. By lowering the temperature of the PVDF to a temperature below its glass transition temperature, it causes cracking and detachment from the PET support.
  • said thermoplastic polymer is poly (difluoromethylene). In other words, the thermoplastic polymer is PTFE.
  • FIG. 1 is a schematic front view of an organ capable of being treated according to a method according to the invention
  • FIG. 2 is a detailed schematic view of the member illustrated in the figure [Fig. 1];
  • FIG. 3 is a schematic view of a device for implementing the method according to the invention in accordance with a first variant embodiment
  • FIG. 4 is a detailed schematic view of the device illustrated in FIG. [FIG. 3] in operation;
  • FIG. 5 is a flowchart illustrating the steps for implementing the method according to the invention in accordance with the first variant embodiment.
  • FIG. 6 is a flowchart illustrating the steps for implementing the method according to the invention in accordance with a second variant embodiment.
  • the process for separating polymeric materials according to the invention applied to the recycling of filtration modules will be described in detail. In particular, these are end-of-life water filtration modules, or defective filtration modules intended for disposal.
  • the beams 12 extend longitudinally in parallel between two heads, one upper 14, the other lower 16, over a length of between 1.50 m and 3 m, for example 2 m.
  • Figure [Fig. 2] shows in a straight section one of the hollow fibers 15. It comprises a braid 18 of son of poly (ethylene terephthalate), commonly referred to as PET according to its ISO code.
  • the wire braid 18 is covered with a tubular layer 20 of Poly (vinylidene fluoride) or PVDF, which tubular layer 20 forms a porous and filtering membrane. It will be observed that the tubular layer 20 and the braid of threads 18 are more or less interpenetrated into one another.
  • the diameter d of the wire braid 18 is of the order of 2 mm while the thickness ⁇ of the tubular layer 20 is of the order of ten micrometers.
  • the ends of the hollow fibers 15 including the support 18 and the tubular layer 20 forming a membrane, are respectively engaged in the upper 14 and lower 16 heads, and are connected in a sealed manner to collectors not shown.
  • the heads 14, 16 include different polymer materials, and in particular acrylonitrile butadiene styrene, or ABS, polyurethane or ethylene-vinyl acetate, or EVA, or even PVC or l epoxy.
  • PVDF which is of very particular interest, even if it represents only a small percentage of the total mass of the module, for example between 5% and 15 %, and that it should be possible to separate it from other polymer materials in order to recover it.
  • the fibers represent for example between 40% and 50% of the weight of the module and the remainder to 100% corresponds to the materials of the two heads.
  • PVDF is a semi-crystalline thermoplastic polymer whose glass transition temperature T g is 233 K.
  • T g glass transition temperature
  • one of the merits of the invention is to have imagined lowering the temperature of the PVDF of the modules filtration to better detach it and thus recover it. This is because, in fact, when a thermoplastic polymer is brought to a temperature below that of its glass transition, it is generally made more fragile and brittle so that it breaks easily. And in this case, this is indeed the case with PVDF as will be illustrated in the examples below.
  • dry ice is projected against the bundles 12 of hollow fibers 15 and therefore directly against the tubular layer 20 of PVDF. Dry ice indeed has a sublimation temperature of 195.6 K.
  • a suitable projection device as shown in the figure [Fig. 3]. It comprises a dry ice reservoir 22 inside which the dry ice is stored in the form of sticks with a diameter of 3 mm for example.
  • the tank ends with a conical bottom, and a The metering mechanism delivers the ice cream sticks into a flow of compressed air supplied by a compressor 24.
  • the flow of compressed air thus loaded with dry ice is guided through a projection duct 26 terminated by a projection nozzle 28.
  • the dry ice sticks reach at the outlet of nozzle 28 a speed of 300 m / s.
  • the two heads are kept parallel to each other in the same substantially horizontal plane so as to extend the bundles 12 of hollow fibers 15 in a chain above a recovery tank.
  • the projection nozzle 28 is applied and maintained from above towards the bundles of hollow fibers and it is maintained substantially perpendicular to the bundle at a distance of between 20 cm and 50 cm for example.
  • the bundles of hollow fibers are extended in a vertical direction. And in the same way, the projection nozzle 28 is applied and maintained perpendicular to the beams.
  • the projection nozzles are used simultaneously against the two opposite surfaces of said module 10. Also, such a variant embodiment is easily implemented when the bundle of hollow fibers is extended. in a vertical direction.
  • the chips of the polymer material are recovered in the recovery tank in order to be able to repackage it into usable polymer.
  • the recovery tank also contains organic and inorganic impurities, in particular earth and sand, which inevitably adhered to the tubular membranes. However, they easily detach from the membranes upon impact of dry ice. And in addition, these impurities and these polymer material chips can then be easily separated. Furthermore, such a separation process can easily be automated, either by means of a robot equipped with a movable arm supporting the nozzle, or by means of movable tables and nozzles maintained substantially perpendicular to said movable tables, in fixed position.
  • the temperature of the PVDF of the tubular layer forming a membrane is lowered and its mechanical treatment is carried out in two successive steps.
  • the module 10 is dismembered as shown in the figure [Fig. 1] so as to detach the bundles 12 of hollow fibers 15 from the two heads 14, 16. In other words, the hollow fibers 15 are separated from the rest of the module 10.
  • an immersion step 46 the bundles of coated fiber son are immersed in liquid nitrogen.
  • the boiling point of liquid nitrogen is 77.36 K. Consequently, the PVDF quickly reaches, after a few seconds of immersion, a temperature below that of its glass transition, for example 210 K. And hence , it becomes brittle and crumbly.
  • a mechanical processing step 48 the bundles of coated son are then driven, in the longitudinal direction of the son, through a pair of rollers.
  • a drip tray is installed under the pair of rollers.
  • the pair of rollers comprises two rollers bearing tangentially against one another along a common generatrix.
  • the rollers are initially in contact with one another and they move away substantially from one another as the hollow fibers of the bundles pass, while maintaining a bearing pressure on these fibers.
  • the rollers are rotated in opposite directions to each other so as to drive the hollow fibers of the bundles in translation as they crush them. Thanks to the pair of rollers through which the wires of the bundles pass, the tubular membrane of the support wire braids bursts and is detached from the braids.
  • the fragments of the polymer material then travel by gravity into the recovery tank.
  • the fragments of the polymer are thus recovered, just as in the first embodiment, in order to be able to recondition it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

A process for separating polymer materials, comprising the following steps: a) a support (18) at least partially coated with a thermoplastic polymer (20) is provided, said thermoplastic polymer having a given glass transition temperature Tg; b) the temperature of said thermoplastic polymer (20) is reduced to a temperature Tinf lower than said glass transition temperature Tg of said thermoplastic polymer; c) said thermoplastic polymer (20) is mechanically treated at said temperature Tinf in order to detach said thermoplastic polymer from said support; and d) said detached thermoplastic polymer (20) is recovered.

Description

DESCRIPTION DESCRIPTION
Titre de l'invention : Procédé de séparation de matériaux polymères d‘un assemblage d’éléments Title of the invention: Process for separating polymer materials from an assembly of elements
[0001] La présente invention se rapporte à un procédé de séparation de matériaux polymères d’éléments d’un assemblage. The present invention relates to a process for separating polymeric materials from elements of an assembly.
[0002] Un domaine d’application envisagé est notamment celui du recyclage des modules de filtration liquide. Ceux-ci comprennent chacun, une ossature réalisée dans des premiers matériaux polymères et une membrane filtrante réalisée dans un second matériau polymère présentant une structure poreuse. [0002] One field of application envisaged is in particular that of recycling liquid filtration modules. These each comprise a framework made of first polymeric materials and a filter membrane made of a second polymeric material having a porous structure.
[0003] La filtration des eaux fait appel à des techniques et à des matériaux permettant de les mettre en oeuvre. Ces techniques consistent essentiellement à filtrer ces eaux au moyen de membrane poreuse dont la taille des pores est fonction de l’application et des objectifs de traitement ou de performances à atteindre. Il en va en effet différemment du dessalement de l’eau, du traitement des eaux usées ou du traitement de l’eau potable. La taille des pores est par exemple de l’ordre de 20 nm. Ces membranes autorisent ainsi le passage des molécules d’eau et retiennent les particules chimiques ou biologiques en suspension de taille supérieure à la taille des pores, tels les virus et les bactéries par exemple. Ces membranes poreuses peuvent présenter des structures et morphologies variées. De manière générale, on distingue les membranes tubulaires des membranes planes. [0003] The filtration of water makes use of techniques and materials enabling them to be implemented. These techniques essentially consist in filtering this water by means of a porous membrane, the pore size of which depends on the application and the treatment or performance objectives to be achieved. It is indeed different for water desalination, wastewater treatment or drinking water treatment. The size of the pores is, for example, of the order of 20 nm. These membranes thus allow the passage of water molecules and retain chemical or biological particles in suspension larger than the size of the pores, such as viruses and bacteria for example. These porous membranes can have various structures and morphologies. In general, a distinction is made between tubular membranes and flat membranes.
[0004] Ces membranes sont généralement réalisées dans un matériau polymère technique à haute valeur ajoutée, par exemple le Poly(fluorure de vinylidène) ou PVDF. Le PVDF présente l’avantage de résister à une large gamme de composés chimiques et c’est une des raisons pour laquelle il est prisé pour son utilisation en tant que filtre. [0004] These membranes are generally made of a technical polymer material with high added value, for example poly (vinylidene fluoride) or PVDF. PVDF has the advantage of being resistant to a wide range of chemical compounds and this is one reason it is popular for use as a filter.
[0005] Les membranes de forme tubulaire, peuvent dans certains cas revêtir un support, par exemple des fils tressés en PET. L’eau est ainsi filtrée radialement de l’extérieur vers l’intérieur de la membrane, puis elle s’écoule longitudinalement le long des fils formant support. [0005] The membranes of tubular shape can in certain cases be coated with a support, for example braided PET threads. The water is thus filtered radially from the outside to the inside of the membrane, then it flows longitudinally along the support wires.
[0006] Ces membranes tubulaires associées aux autres éléments d’ossature, constituent ainsi des modules de filtration permettant notamment, la réalisation d’une étape de clarification, voire de désinfection, sur des installations et procédés de traitement d’eau. These tubular membranes associated with the other frame elements, thus constitute filtration modules allowing in particular, the realization of a stage of clarification, or even disinfection, on water treatment installations and processes.
[0007] Lorsque ces modules de filtration cessent d’être efficaces, notamment à cause du colmatage irréversible, ou de la dégradation des polymères qui le constituent, ils sont inter-changés, et les modules en fin de vie ou au rebut sont alors, soit enfouis, soit incinérés, ce qui, dans le cas de polymères fluorés tel que le PVDF, dégage de l’acide fluorhydrique qu’il convient de neutraliser. When these filtration modules cease to be effective, in particular because of the irreversible clogging, or the degradation of the polymers which constitute them, they are interchanged, and the modules at the end of their life or at the end of their life are then, either buried or incinerated, which, in the case of fluorinated polymers such as PVDF, releases hydrofluoric acid which should be neutralized.
[0008] Ainsi, d’une part on dissémine dans la nature des composés plus ou moins dangereux, et d’autre part, on se prive de matériaux polymères à relativement haute valeur ajoutée, notamment dans le cas du Poly(fluorure de vinylidène), dont les coûts d’obtention sont relativement élevés. Thus, on the one hand, more or less dangerous compounds are disseminated in nature, and on the other hand, we deprive ourselves of polymer materials with relatively high added value, especially in the case of Poly (vinylidene fluoride) , the costs of which are relatively high.
[0009] Un problème qui se pose alors et que vise à résoudre la présente invention est de fournir un procédé bon marché et efficace qui permette de récupérer les matériaux polymères à haute valeur ajoutée d’éléments assemblés. [0009] A problem which then arises and which the present invention aims to solve is to provide an inexpensive and efficient process which makes it possible to recover the polymer materials with high added value from assembled elements.
[0010] Dans le but de résoudre ce problème, il est proposé un procédé de séparation de matériaux polymères, comprenant les étapes suivantes : a) on fournit un support revêtu au moins partiellement d’un polymère thermoplastique, ledit polymère thermoplastique présentant une température de transition vitreuse Tg donnée ; b) on abaisse la température dudit polymère thermoplastique à une température Tinf inférieure à ladite température de transition vitreuse Tg dudit polymère thermoplastique ; c) on traite mécaniquement ledit polymère thermoplastique à ladite température Tint pour détacher ledit polymère thermoplastique dudit support ; et, d) on récupère ledit polymère thermoplastique détaché. In order to solve this problem, there is proposed a process for separating polymeric materials, comprising the following steps: a) providing a support coated at least partially with a thermoplastic polymer, said thermoplastic polymer having a temperature of glass transition T g given; b) the temperature of said thermoplastic polymer is lowered to a temperature T inf lower than said glass transition temperature T g of said thermoplastic polymer; c) said thermoplastic polymer is mechanically treated at said temperature Ti nt to detach said thermoplastic polymer from said support; and, d) recovering said detached thermoplastic polymer.
[0011] Ainsi, une caractéristique de l’invention réside dans la prise en compte de la température de transition vitreuse Tg du matériau polymère, afin de porter la température du matériau polymère à une température inférieure à celle-ci avant de le soumettre à un traitement mécanique. De la sorte, le polymère devient plus cassant et il peut alors se briser plus aisément en morceau lorsqu’il est soumis au traitement mécanique. Par exemple, dans le cas d’une membrane comprenant un support tressé, notamment en PET, revêtu au moins partiellement de matériau polymère, ledit matériau polymère peut être aisément détaché du support et récupéré grâce au procédé selon l’invention, comme on l’expliquera ci-après. [0012] Les « polymères thermoplastiques » sont bien connus de l’homme du métier. Dans la présente invention, on envisage plus particulièrement des polymères fluorés tels que le PVDF ou le PTFE, mais également du Polyethersulfone (PES) ou du polypropylène (PP). Thus, a characteristic of the invention lies in taking into account the glass transition temperature T g of the polymer material, in order to bring the temperature of the polymer material to a temperature below this before subjecting it to mechanical processing. In this way, the polymer becomes more brittle and it can then more easily break into pieces when subjected to the mechanical treatment. For example, in the case of a membrane comprising a braided support, in particular made of PET, coated at least partially with polymer material, said polymer material can be easily detached from the support and recovered by means of the process according to the invention, as is done. will explain below. "Thermoplastic polymers" are well known to those skilled in the art. In the present invention, fluorinated polymers such as PVDF or PTFE are more particularly envisaged, but also polyethersulfone (PES) or polypropylene (PP).
[0013] Dans la présente invention, le « support » est généralement lui-même un matériau polymère. In the present invention, the "support" is generally itself a polymer material.
[0014] Au sens de la présente invention, un « traitement mécanique » s’entend d’une interaction par contact avec le polymère afin de pouvoir le séparer de son support. [0015] Selon un mode de mise en oeuvre de l’invention particulièrement avantageux, à l’étape b), ladite température Tint est inférieure à 240 K. De la sorte, on abaisse par exemple la température du polymère thermoplastique à 230 K. For the purposes of the present invention, a "mechanical treatment" means an interaction by contact with the polymer in order to be able to separate it from its support. According to a particularly advantageous embodiment of the invention, in step b), said temperature Ti nt is less than 240 K. In this way, the temperature of the thermoplastic polymer is for example lowered to 230 K .
[0016] Selon une première variante de réalisation, à l’étape b), on immerge ledit support revêtu dudit polymère thermoplastique dans l’azote liquide. Ainsi, le point d’ébullition de l’azote à l’état liquide étant de 77,36 K, lorsqu’on y immerge le polymère thermoplastique, sa température chute brutalement en-dessous de sa température de transition vitreuse. On observera en effet, que très peu de polymères, et en particulier ceux mis en oeuvre dans les membranes de filtration, présentent une température de transition vitreuse inférieure à 150 K. Partant, le polymère devient rapidement cassant, et sans attendre qu’il atteigne la température de l’azote liquide, il peut subir un traitement mécanique après l’immersion pour pouvoir être détaché de son support. Avantageusement, la température Tinf est comprise entre 240 K et 100 K, de préférence entre 220 K et 195 K. According to a first variant embodiment, in step b), said support coated with said thermoplastic polymer is immersed in liquid nitrogen. Thus, the boiling point of nitrogen in the liquid state being 77.36 K, when the thermoplastic polymer is immersed therein, its temperature drops suddenly below its glass transition temperature. It will in fact be observed that very few polymers, and in particular those used in filtration membranes, have a glass transition temperature of less than 150 K. Therefore, the polymer quickly becomes brittle, and without waiting for it to reach the temperature of the liquid nitrogen, it can undergo a mechanical treatment after immersion in order to be able to be detached from its support. Advantageously, the temperature T inf is between 240 K and 100 K, preferably between 220 K and 195 K.
[0017] Aussi, le temps d’immersion doit permettre de faire baisser rapidement la température du polymère directement exposé à l’azote liquide, sans toutefois trop abaisser la température du matériau support si celui-ci est un matériau polymère, au risque qu’il devienne lui-même plus fragile. On observera que les polymères thermoplastiques ne présentent pas tous le même comportement lorsque leur température est inférieure à celle de leur transition vitreuse et que certains y sont plus résistants que d’autres. Outre leur nature, les polymères présentent des comportements qui varient également en fonction des additifs qu’ils contiennent et de leur procédé de mise en oeuvre. [0017] Also, the immersion time must make it possible to rapidly lower the temperature of the polymer directly exposed to liquid nitrogen, without however lowering the temperature of the support material too much if the latter is a polymer material, at the risk that he himself becomes more fragile. It will be observed that thermoplastic polymers do not all exhibit the same behavior when their temperature is lower than that of their glass transition and that some are more resistant to it than others. In addition to their nature, polymers exhibit behaviors which also vary depending on the additives they contain and their method of use.
[0018] Par ailleurs, l’azote liquide est disponible à très bon marché, et par conséquent, l’étape de refroidissement est peu coûteuse. [0019] Avantageusement, à l’étape c), on écrase ledit support revêtu dudit polymère thermoplastique pour détacher ledit polymère thermoplastique dudit support. Ainsi, en écrasant l’ensemble, polymère et support, on provoque le détachement du polymère de son support. On se place alors dans la situation précitée, où le matériau du support, lorsque c’est un polymère, ne se comporte pas de la même façon que le polymère thermoplastique pour pouvoir détacher le premier du second et séparer aisément les deux matériaux. On observera par ailleurs, que lorsque le support est réalisé en fils tressés, sa morphologie est différente de la couche poreuse en PVDF, qui le recouvre. On the other hand, liquid nitrogen is available very inexpensively, and therefore, the cooling step is inexpensive. Advantageously, in step c), said support coated with said thermoplastic polymer is crushed to detach said thermoplastic polymer from said support. Thus, by crushing the assembly, polymer and support, the detachment of the polymer from its support is caused. We then place ourselves in the aforementioned situation, where the material of the support, when it is a polymer, does not behave in the same way as the thermoplastic polymer in order to be able to detach the first from the second and easily separate the two materials. It will also be observed that when the support is made of braided threads, its morphology is different from the porous layer of PVDF which covers it.
[0020] En effet, lors de l’écrasement, le seul polymère thermoplastique se brise au niveau de la liaison avec le support et s’en détache aisément. [0020] Indeed, during crushing, the only thermoplastic polymer breaks at the level of the bond with the support and comes off easily.
[0021] Préférentiellement, à l’étape c), on écrase ledit support revêtu dudit polymère thermoplastique entre deux rouleaux. Les deux rouleaux sont en appui tangentiel selon une génératrice commune, et le support revêtu est engagé entre les deux rouleaux en rotation. Un tel mode de mise en oeuvre est préféré lorsque les supports revêtus s’étendent longitudinalement, par exemple, lorsqu’il s’agit de fils revêtus du polymère thermoplastique à récupérer. Comme on l’expliquera plus en détail dans la suite de la description, une pluralité de paires de rouleaux successives peut être mise en oeuvre pour détacher le matériau polymère du support. Preferably, in step c), said support coated with said thermoplastic polymer is crushed between two rollers. The two rollers bear tangentially along a common generatrix, and the coated support is engaged between the two rotating rollers. Such an embodiment is preferred when the coated supports extend longitudinally, for example, when they are threads coated with the thermoplastic polymer to be recovered. As will be explained in more detail in the remainder of the description, a plurality of pairs of successive rollers can be used to detach the polymer material from the support.
[0022] Selon une seconde variante de réalisation, on projette de la glace carbonique contre ledit polymère thermoplastique pour simultanément, abaisser la température et traiter mécaniquement ledit polymère thermoplastique selon les étapes b) et c). [0023] Ainsi, selon cette seconde variante, on met en oeuvre de la glace carbonique, c’est-à-dire du C02 sous forme solide, typiquement sous forme de granules ou de bâtonnets dont la température de sublimation est de 195,6 K. On projette alors à grande vitesse la glace carbonique, sous forme de granules ou de bâtonnets, contre le support revêtu, ce qui procure le double avantage, de refroidir le polymère thermoplastique recouvrant le support, et au surplus de venir percuter le polymère alors refroidi avec une importante énergie cinétique, pour le détacher de son support. Dans de nombreux exemples, la glace carbonique permet d’abaisser la température du polymère thermoplastique subissant l’impact, en dessous de sa température de transition vitreuse, et partant, les impacts de la glace carbonique eux-mêmes provoquent le détachement et la séparation du polymère de son support. Ainsi, selon ce mode de réalisation, les étapes b) et c) sont simultanées. Un autre avantage de la glace carbonique, est qu’elle ne laisse aucun résidu dans le polymère thermoplastique, puisqu’elle se transforme en dioxyde de carbone gazeux et s’échappe dans l’atmosphère lors du retour à température ambiante des matériaux. [0024] Par exemple, la glace carbonique est projetée contre ledit polymère thermoplastique à une vitesse supérieure à 200 m.s 1. Avantageusement, la vitesse des granules ou de bâtonnets est voisine de 300 m.s 1, ce qui produit une grande énergie cinétique d’impact. Typiquement, la vitesse de la glace carbonique projetée est inférieure à 340 m.s 1, de préférence inférieure à 320 m.s 1. According to a second variant embodiment, dry ice is projected against said thermoplastic polymer to simultaneously lower the temperature and mechanically treat said thermoplastic polymer according to steps b) and c). Thus, according to this second variant, dry ice is used, that is to say C0 2 in solid form, typically in the form of granules or sticks, the sublimation temperature of which is 195, 6 K. The dry ice, in the form of granules or sticks, is then projected at high speed against the coated support, which provides the double advantage of cooling the thermoplastic polymer covering the support, and moreover of striking the polymer then cooled with high kinetic energy, to detach it from its support. In many examples, dry ice makes it possible to lower the temperature of the thermoplastic polymer undergoing the impact, below its glass transition temperature, and hence the impacts of the dry ice themselves cause the detachment and separation of the material. polymer of its support. Thus, according to this embodiment, steps b) and c) are simultaneous. Another advantage of dry ice is that it leaves no residue in the thermoplastic polymer, since it turns into gaseous carbon dioxide and escapes into the atmosphere when the materials return to room temperature. For example, dry ice is projected against said thermoplastic polymer at a speed greater than 200 ms 1 . Advantageously, the speed of the granules or rods is close to 300 ms 1 , which produces a high kinetic energy of impact. Typically, the speed of the projected dry ice is less than 340 ms 1 , preferably less than 320 ms 1 .
[0025] Selon un mode de mise en oeuvre du procédé selon l’invention, à l’étape a), on fournit un support comprenant une pluralité de tresses de fils respectivement revêtues dudit polymère thermoplastique. Les supports tressés, par exemple en PET, sont recouverts d’une couche poreuse filtrante tubulaire constituant la membrane. Ces supports recouverts constituent ainsi les fibres creuses. Lorsque la température du polymère thermoplastique est abaissée en dessous de sa température de transition vitreuse, il se fragmente aisément ensuite lorsqu’il est déformé mécaniquement, quel qu’en soit le mode. According to one embodiment of the method according to the invention, in step a), a support is provided comprising a plurality of wire braids respectively coated with said thermoplastic polymer. Braided supports, for example made of PET, are covered with a porous tubular filter layer constituting the membrane. These coated supports thus constitute the hollow fibers. When the temperature of the thermoplastic polymer is lowered below its glass transition temperature, it then easily fragments when it is mechanically deformed, regardless of the mode.
[0026] Aussi, selon une variante d’exécution, le support comprend une pluralité de films ou de plaques multicouches. [0026] Also, according to an alternative embodiment, the support comprises a plurality of films or multilayer plates.
[0027] Selon un mode préféré de mise en oeuvre, à l’étape a), on fournit un support comprenant une pluralité de tresses de fils de Poly(téréphtalate d’éthylène). Et, avantageusement, ledit polymère thermoplastique qui le recouvre est le Poly(fluorure de vinylidène). On observera que ce polymère thermoplastique peut recouvrir d’autres supports filaires pour former des membranes de filtration. According to a preferred embodiment, in step a), a support is provided comprising a plurality of braids of poly (ethylene terephthalate) yarns. And, advantageously, said thermoplastic polymer which covers it is poly (vinylidene fluoride). It will be observed that this thermoplastic polymer can cover other wire supports to form filtration membranes.
[0028] De surcroît, le matériau polymère thermoplastique peut également être mis en oeuvre sur des supports plans pour former des membranes de filtration. In addition, the thermoplastic polymer material can also be used on flat supports to form filtration membranes.
[0029] Aussi, selon encore une autre variante d’exécution, la méthode selon l’invention est mise en oeuvre pour recueillir le PVDF des « backsheet » de panneaux photovoltaïques. Une couche de PVDF vient alors recouvrir un support plan, typiquement en PET. En abaissant la température du PVDF, à une température située en dessous de sa température de transition vitreuse, on provoque son craquellement et son détachement du support en PET. [0030] Par ailleurs, et selon un autre mode de réalisation, à l’étape a), ledit polymère thermoplastique est le Poly(difluorométhylène). Autrement dit, le polymère thermoplastique est le PTFE. [0029] Also, according to yet another variant embodiment, the method according to the invention is implemented to collect the PVDF from the “backsheets” of photovoltaic panels. A layer of PVDF then covers a flat support, typically of PET. By lowering the temperature of the PVDF to a temperature below its glass transition temperature, it causes cracking and detachment from the PET support. Furthermore, and according to another embodiment, in step a), said thermoplastic polymer is poly (difluoromethylene). In other words, the thermoplastic polymer is PTFE.
[0031] D’autres particularités et avantages de l’invention ressortiront à la lecture de la description faite ci-après de modes de réalisation particuliers de l’invention, donnés à titre indicatif mais non limitatif, en référence aux dessins annexés sur lesquels : [0031] Other features and advantages of the invention will become apparent on reading the description given below of particular embodiments of the invention, given as an indication but not limited to, with reference to the accompanying drawings in which:
[Fig. 1] est une vue schématique de face d’un organe apte à être traité selon un procédé conforme à l’invention ; [Fig. 1] is a schematic front view of an organ capable of being treated according to a method according to the invention;
[Fig. 2] est une vue schématique de détail de l’organe illustré sur la figure [Fig. 1] ; [Fig. 2] is a detailed schematic view of the member illustrated in the figure [Fig. 1];
[Fig. 3] est une vue schématique d’un dispositif permettant de mettre en oeuvre le procédé selon l’invention conformément à une première variante de réalisation ; [Fig. 3] is a schematic view of a device for implementing the method according to the invention in accordance with a first variant embodiment;
[Fig. 4] est une vue schématique de détail du dispositif illustré sur la figure [Fig. 3] en fonctionnement ; [Fig. 4] is a detailed schematic view of the device illustrated in FIG. [FIG. 3] in operation;
[Fig. 5] est un organigramme illustrant les étapes de mise en oeuvre du procédé selon l’invention conformément à la première variante de réalisation ; et,[Fig. 5] is a flowchart illustrating the steps for implementing the method according to the invention in accordance with the first variant embodiment; and,
[Fig. 6] est un organigramme illustrant les étapes de mise en oeuvre du procédé selon l’invention conformément à une deuxième variante de réalisation. [0032] On décrira en détail le procédé de séparation de matériaux polymères selon l’invention appliqué au recyclage des modules de filtration. En particulier, il s’agit de modules de filtration d’eau en fin de vie, ou bien de modules de filtration défectueux destinés à être mis au rebut. [Fig. 6] is a flowchart illustrating the steps for implementing the method according to the invention in accordance with a second variant embodiment. The process for separating polymeric materials according to the invention applied to the recycling of filtration modules will be described in detail. In particular, these are end-of-life water filtration modules, or defective filtration modules intended for disposal.
[0033] Les modules ici pris en exemple, dont un exemplaire 10 est représenté sur la figure [Fig. 1], comprennent chacun des faisceaux 12 de fibres creuses 15 que l’on décrira en détail ci-après. Les faisceaux 12 s’étendent longitudinalement en parallèle entre deux têtes, l’une supérieure 14, l’autre inférieure 16, sur une longueur comprise entre 1 ,50 m et 3 m, par exemple 2 m. The modules here taken as an example, an example 10 of which is shown in the figure [Fig. 1], each comprise bundles 12 of hollow fibers 15 which will be described in detail below. The beams 12 extend longitudinally in parallel between two heads, one upper 14, the other lower 16, over a length of between 1.50 m and 3 m, for example 2 m.
[0034] La figure [Fig. 2] montre en coupe droite l’une des fibres creuses 15. Elle comprend une tresse 18 de fils en Poly(téréphtalate d’éthylène), communément dénommé PET selon son code ISO. La tresse de fils 18 est recouverte d’une couche tubulaire 20 en Poly(fluorure de vinylidène) ou PVDF, laquelle couche tubulaire 20 forme une membrane poreuse et filtrante. On observera que la couche tubulaire 20 et la tresse de fils 18 sont plus ou moins interpénétrées l’une dans l’autre. [0034] Figure [Fig. 2] shows in a straight section one of the hollow fibers 15. It comprises a braid 18 of son of poly (ethylene terephthalate), commonly referred to as PET according to its ISO code. The wire braid 18 is covered with a tubular layer 20 of Poly (vinylidene fluoride) or PVDF, which tubular layer 20 forms a porous and filtering membrane. It will be observed that the tubular layer 20 and the braid of threads 18 are more or less interpenetrated into one another.
[0035] Le diamètre d de la tresse de fils 18 est de l’ordre de 2 mm tandis que l’épaisseur § de la couche tubulaire 20 est de l’ordre de la dizaine de micromètres. [0036] Les extrémités des fibres creuses 15 incluant le support 18 et la couche tubulaire 20 formant membrane, sont respectivement en prise dans les têtes supérieure 14 et inférieure 16, et sont reliées de manière étanche à des collecteurs non représentés. The diameter d of the wire braid 18 is of the order of 2 mm while the thickness § of the tubular layer 20 is of the order of ten micrometers. The ends of the hollow fibers 15 including the support 18 and the tubular layer 20 forming a membrane, are respectively engaged in the upper 14 and lower 16 heads, and are connected in a sealed manner to collectors not shown.
[0037] Aussi, les têtes 14, 16 comprennent différents matériaux polymères, et notamment de l’acrylonitrile butadiène styrène, ou ABS, du polyuréthane ou de l’éthylène-acétate de vinyle, ou EVA, ou bien encore du PVC ou de l’époxy. Also, the heads 14, 16 include different polymer materials, and in particular acrylonitrile butadiene styrene, or ABS, polyurethane or ethylene-vinyl acetate, or EVA, or even PVC or l epoxy.
[0038] Parmi tous les polymères précités, il en est un, le PVDF, qui présente un intérêt tout particulier, même s’il ne représente qu’un faible pourcentage de la masse totale du module, par exemple compris entre 5 % et 15 %, et qu’il convient de pouvoir séparer des autres matériaux polymères pour le récupérer. Les fibres représentent par exemple entre 40 % et 50 % du poids du module et le complément à 100 % correspond aux matériaux des deux têtes. Among all the aforementioned polymers, there is one, PVDF, which is of very particular interest, even if it represents only a small percentage of the total mass of the module, for example between 5% and 15 %, and that it should be possible to separate it from other polymer materials in order to recover it. The fibers represent for example between 40% and 50% of the weight of the module and the remainder to 100% corresponds to the materials of the two heads.
[0039] On observera que le PVDF est un polymère thermoplastique semi-cristallin dont la température de transition vitreuse Tg est de 233 K. Et l’un des mérites de l’invention est d’avoir imaginé abaisser la température du PVDF des modules de filtration pour mieux l’en détacher et ainsi le récupérer. Car en effet, lorsqu’un polymère thermoplastique est porté à une température inférieure à celle de sa transition vitreuse, il est généralement rendu plus fragile et cassant de sorte qu’il se brise aisément. Et en l’espèce, c’est bien le cas du PVDF comme on va l’illustrer dans les exemples ci-après. It will be observed that PVDF is a semi-crystalline thermoplastic polymer whose glass transition temperature T g is 233 K. And one of the merits of the invention is to have imagined lowering the temperature of the PVDF of the modules filtration to better detach it and thus recover it. This is because, in fact, when a thermoplastic polymer is brought to a temperature below that of its glass transition, it is generally made more fragile and brittle so that it breaks easily. And in this case, this is indeed the case with PVDF as will be illustrated in the examples below.
[0040] Selon un premier mode de mise en oeuvre du procédé conforme à l’invention, on projette de la glace carbonique contre les faisceaux 12 de fibres creuses 15 et par conséquent, directement contre la couche tubulaire 20 en PVDF. La glace carbonique présente en effet une température de sublimation de 195,6 K. According to a first embodiment of the method according to the invention, dry ice is projected against the bundles 12 of hollow fibers 15 and therefore directly against the tubular layer 20 of PVDF. Dry ice indeed has a sublimation temperature of 195.6 K.
[0041] Pour ce faire, on fait usage d’un dispositif de projection adapté tel que représenté sur la figure [Fig. 3]. Il comprend un réservoir de glace carbonique 22 à l’intérieur duquel on vient stocker la glace carbonique sous forme de bâtonnets d’un diamètre de 3 mm par exemple. Le réservoir se termine par un fond conique, et un mécanisme doseur vient délivrer les bâtonnets de glace dans un flux d’air comprimé alimenté par un compresseur 24. Le flux d’air comprimé ainsi chargé de glace carbonique est guidé à travers un conduit de projection 26 terminé par une buse de projection 28. To do this, use is made of a suitable projection device as shown in the figure [Fig. 3]. It comprises a dry ice reservoir 22 inside which the dry ice is stored in the form of sticks with a diameter of 3 mm for example. The tank ends with a conical bottom, and a The metering mechanism delivers the ice cream sticks into a flow of compressed air supplied by a compressor 24. The flow of compressed air thus loaded with dry ice is guided through a projection duct 26 terminated by a projection nozzle 28.
[0042] Ainsi par exemple, sous une pression d’air dans la buse de 5 bar, et un débit voisin de 3 m3/h, les bâtonnets de glace carbonique atteignent en sortie de buse 28 une vitesse de 300 m/s. Thus, for example, under an air pressure in the nozzle of 5 bar, and a flow rate close to 3 m 3 / h, the dry ice sticks reach at the outlet of nozzle 28 a speed of 300 m / s.
[0043] On se référera en surplus à l’organigramme de la figure [Fig. 5] pour décrire les différentes étapes dudit premier mode de mise en oeuvre. Reference will also be made to the flowchart of the figure [Fig. 5] to describe the different steps of said first mode of implementation.
[0044] Ainsi, selon une première étape de préparation 30 du module tel que représenté sur la figure [Fig. 1], on maintient les deux têtes parallèlement entre elles dans un même plan sensiblement horizontal de manière à étendre les faisceaux 12 de fibres creuses 15 en chaînette au-dessus d'un bac de récupération. Thus, according to a first preparation step 30 of the module as shown in the figure [Fig. 1], the two heads are kept parallel to each other in the same substantially horizontal plane so as to extend the bundles 12 of hollow fibers 15 in a chain above a recovery tank.
[0045] Ensuite, dans une double étape de refroidissement et de traitement 32, on applique et on maintient la buse de projection 28 par le dessus vers les faisceaux de fibres creuses et on la maintient sensiblement perpendiculairement au faisceau à une distance comprise entre 20 cm et 50 cm par exemple. On procède alors par balayages successifs d'une tête 14 à l'autre 16 de manière à couvrir toute la surface définie par les faisceaux en chaînette. Then, in a double cooling and treatment step 32, the projection nozzle 28 is applied and maintained from above towards the bundles of hollow fibers and it is maintained substantially perpendicular to the bundle at a distance of between 20 cm and 50 cm for example. One then proceeds by successive scans from one head 14 to the other 16 so as to cover the entire surface defined by the chain beams.
[0046] Selon un autre mode opératoire, on étend les faisceaux de fibres creuses selon une direction verticale. Et de la même façon, on applique et on maintient la buse de projection 28 perpendiculairement aux faisceaux. According to another procedure, the bundles of hollow fibers are extended in a vertical direction. And in the same way, the projection nozzle 28 is applied and maintained perpendicular to the beams.
[0047] De la sorte, dans une première phase la glace carbonique projetée contre les fibres creuses 15 concourt à abaisser la température du matériau polymère de la membrane. On considère qu'après quelques secondes d'impact, le matériau polymère atteint une température Tint située en dessous de sa température de transition vitreuse, par exemple 220 K. Partant, il devient fragile et cassant. Puis, après ces quelques secondes, la glace carbonique sous forme de bâtonnets projetés à 300 m/s contre le matériau polymère des membranes joue un rôle mécanique et provoque ainsi l'éclatement de la couche tubulaire en PVDF 20 de la membrane, comme illustré sur la figure [Fig. 4] et au surplus, la détache des tresses de fils 18. La figure [Fig. 4] montre partiellement la buse 28 de laquelle s'échappe des bâtonnets 34 de glace carbonique qui viennent percuter le matériau polymère de la membrane 36 recouvrant une tresse de fils 38. Le matériau polymère de la couche tubulaire en PVDF de la membrane 36 se brise et se détache en copeaux 40. De la sorte, le matériau polymère des membranes, sous forme de copeaux 40, s'achemine à travers les faisceaux de fibres creuses 15 dans le bac de récupération situé en dessous. In this way, in a first phase the dry ice projected against the hollow fibers 15 contributes to lowering the temperature of the polymer material of the membrane. It is considered that after a few seconds of impact, the polymer material reaches a temperature Ti nt located below its glass transition temperature, for example 220 K. As a result, it becomes fragile and brittle. Then, after these few seconds, the dry ice in the form of sticks projected at 300 m / s against the polymer material of the membranes plays a mechanical role and thus causes the bursting of the tubular layer of PVDF 20 of the membrane, as illustrated on the figure [Fig. 4] and, in addition, detach it from the wire braids 18. Figure [Fig. 4] partially shows the nozzle 28 from which escapes sticks 34 of dry ice which strike the polymer material of the membrane 36 covering a braid of threads 38. The polymer material of the tubular PVDF layer of the membrane 36 breaks and detaches into chips 40. In this way, the polymer material of the membranes, in the form of chips 40, is conveyed through the bundles of hollow fibers 15 into the drip tray below.
[0048] On observera que le flux de bâtonnets 34 de glace carbonique est suffisamment puissant pour atteindre toutes les fibres creuses 15 dans l'épaisseur des faisceaux. Au surplus, après avoir balayé toute la surface des faisceaux de fibres creuses 15 du module 10, on procède au retournement de ce dernier de manière à pouvoir balayer de la même façon la surface opposée. It will be observed that the flow of dry ice sticks 34 is sufficiently powerful to reach all the hollow fibers 15 in the thickness of the bundles. In addition, after having swept the entire surface of the bundles of hollow fibers 15 of the module 10, the latter is turned over so as to be able to sweep the opposite surface in the same way.
[0049] Selon une autre variante de réalisation, on met en oeuvre des buses de projection simultanément contre les deux surfaces opposées dudit module 10. Aussi, une telle variante de réalisation est aisément mise en oeuvre lorsque l’on étend le faisceau de fibres creuses selon une direction verticale. According to another variant embodiment, the projection nozzles are used simultaneously against the two opposite surfaces of said module 10. Also, such a variant embodiment is easily implemented when the bundle of hollow fibers is extended. in a vertical direction.
[0050] De la sorte, toutes les tresses de fils 18 des faisceaux 12 de fibres creuses 15 du module sont débarrassées de leur couche tubulaire en PVDF 20 qui se retrouve en copeaux dans le bac de récupération. In this way, all the wire braids 18 of the bundles 12 of hollow fibers 15 of the module are freed of their tubular layer of PVDF 20 which is found in chips in the recovery tank.
[0051] Dans une ultime étape 42, on récupère les copeaux du matériau polymère dans le bac de récupération pour pouvoir le reconditionner en polymère utilisable. [0052] On observera que le bac de récupération contient également des impuretés organiques et inorganiques, en particulier de la terre et du sable, lesquels adhéraient inévitablement aux membranes tubulaires. Néanmoins, ils se détachent aisément des membranes lors de l’impact de la glace carbonique. Et au surplus, ces impuretés et ces copeaux de matériau polymère sont aisément séparables ensuite. [0053] Par ailleurs, un tel procédé de séparation peut aisément être automatisé, soit au moyen d'un robot équipé d'un bras mobile supportant la buse, soit au moyen de tables mobiles et de buses maintenues sensiblement perpendiculairement auxdites tables mobiles, en position fixe. In a final step 42, the chips of the polymer material are recovered in the recovery tank in order to be able to repackage it into usable polymer. It will be observed that the recovery tank also contains organic and inorganic impurities, in particular earth and sand, which inevitably adhered to the tubular membranes. However, they easily detach from the membranes upon impact of dry ice. And in addition, these impurities and these polymer material chips can then be easily separated. Furthermore, such a separation process can easily be automated, either by means of a robot equipped with a movable arm supporting the nozzle, or by means of movable tables and nozzles maintained substantially perpendicular to said movable tables, in fixed position.
[0054] Selon un deuxième mode de mise en oeuvre du procédé conforme à l’invention, on procède à l'abaissement de la température du PVDF de la couche tubulaire formant membrane et à son traitement mécanique en deux étapes successives. Ainsi, selon une étape initiale de préparation 44, référencée sur l'organigramme de la figure [Fig. 6], on démembre le module 10 tel que représenté sur la figure [Fig. 1] de manière à détacher les faisceaux 12 de fibres creuses 15 des deux têtes 14, 16. Autrement dit, on sépare des fibres creuses 15 du reste du module 10. According to a second embodiment of the method according to the invention, the temperature of the PVDF of the tubular layer forming a membrane is lowered and its mechanical treatment is carried out in two successive steps. Thus, according to an initial preparation step 44, referenced in the flowchart of FIG. [FIG. 6], the module 10 is dismembered as shown in the figure [Fig. 1] so as to detach the bundles 12 of hollow fibers 15 from the two heads 14, 16. In other words, the hollow fibers 15 are separated from the rest of the module 10.
[0055] Ensuite, dans une étape d'immersion 46, on immerge les faisceaux de fils de fibres revêtus dans de l'azote liquide. La température d'ébullition de l'azote liquide est de 77,36 K. Conséquemment, le PVDF atteint rapidement, après quelques secondes d'immersion, une température située en dessous de celle de sa transition vitreuse, par exemple 210 K. Et partant, il devient fragile et friable. Then, in an immersion step 46, the bundles of coated fiber son are immersed in liquid nitrogen. The boiling point of liquid nitrogen is 77.36 K. Consequently, the PVDF quickly reaches, after a few seconds of immersion, a temperature below that of its glass transition, for example 210 K. And hence , it becomes brittle and crumbly.
[0056] Selon une étape de traitement mécanique 48, on entraîne alors les faisceaux de fils revêtus, selon la direction longitudinale des fils, à travers une paire de rouleaux. Un bac de récupération est installé sous la paire de rouleaux. La paire de rouleaux comporte deux rouleaux en appui tangentiel l'un contre l'autre selon une génératrice commune. Les rouleaux sont initialement en contact l'un contre l'autre et ils s'écartent sensiblement l'un de l'autre au passage des fibres creuses des faisceaux en maintenant une pression d'appui sur ces fibres. Les rouleaux sont entraînés en rotation en sens inverse l'un de l'autre de manière à entraîner les fibres creuses des faisceaux en translation à mesure qu'ils les écrasent. Grâce à la paire de rouleaux que traversent les fils des faisceaux, la membrane tubulaire des tresses de fils support éclate et se détache des tresses. Les fragments du matériau polymère s'acheminent alors par gravité dans le bac de récupération. On récupère ainsi dans une ultime étape 50, tout comme dans le premier mode de mise en oeuvre, les fragments du polymère afin de pouvoir le reconditionner. According to a mechanical processing step 48, the bundles of coated son are then driven, in the longitudinal direction of the son, through a pair of rollers. A drip tray is installed under the pair of rollers. The pair of rollers comprises two rollers bearing tangentially against one another along a common generatrix. The rollers are initially in contact with one another and they move away substantially from one another as the hollow fibers of the bundles pass, while maintaining a bearing pressure on these fibers. The rollers are rotated in opposite directions to each other so as to drive the hollow fibers of the bundles in translation as they crush them. Thanks to the pair of rollers through which the wires of the bundles pass, the tubular membrane of the support wire braids bursts and is detached from the braids. The fragments of the polymer material then travel by gravity into the recovery tank. In a final step 50, the fragments of the polymer are thus recovered, just as in the first embodiment, in order to be able to recondition it.
[0057] Selon une autre variante de réalisation, on installe en aval de la paire de rouleaux, des organes de raclage ou de grattage, permettant de mieux désolidariser les fragments de membrane tubulaire des tresses de fils. According to another variant embodiment, is installed downstream of the pair of rollers, scraping or scraping members, making it possible to better separate the tubular membrane fragments from the wire braids.

Claims

REVENDICATION CLAIM
[Revendication 1] i Procédé de séparation de matériaux polymères, caractérisé en ce qu’il comprend les étapes suivantes : [Claim 1] i A process for separating polymer materials, characterized in that it comprises the following steps:
- a) on fournit un support (18) revêtu au moins partiellement d’un polymère thermoplastique (20), ledit polymère thermoplastique présentant une température de transition vitreuse Tg donnée ; - a) providing a support (18) coated at least partially with a thermoplastic polymer (20), said thermoplastic polymer having a given glass transition temperature T g;
- b) on abaisse la température dudit polymère thermoplastique (20) à une température Tint inférieure à ladite température de transition vitreuse Tg dudit polymère thermoplastique ; - B) the temperature of said thermoplastic polymer (20) is lowered to a temperature Ti nt lower than said glass transition temperature T g of said thermoplastic polymer;
- c) on traite mécaniquement ledit polymère thermoplastique à ladite température Tinf pour détacher ledit polymère thermoplastique dudit support ; et,- C) said thermoplastic polymer is mechanically treated at said temperature T inf to detach said thermoplastic polymer from said support; and,
- d) on récupère ledit polymère thermoplastique (20) détaché. - D) said detached thermoplastic polymer (20) is recovered.
[Revendication 2] Procédé de séparation selon la revendication 1 , caractérisé en ce qu’à l’étape b), ladite température Tinf est inférieure à 240 K. [Claim 2] A separation process according to claim 1, characterized in that in step b), said temperature T inf is less than 240 K.
[Revendication 3] Procédé de séparation selon la revendication 1 ou 2, caractérisé en ce qu’à l’étape b), on immerge ledit support (18) revêtu dudit polymère thermoplastique (20) dans l’azote liquide. [Claim 3] A separation process according to claim 1 or 2, characterized in that in step b), said support (18) coated with said thermoplastic polymer (20) is immersed in liquid nitrogen.
[Revendication 4] Procédé de séparation selon l’une quelconque des revendications 1 à 3, caractérisé en ce qu’à l’étape c), on écrase ledit support (18) revêtu dudit polymère thermoplastique (20) pour détacher ledit polymère thermoplastique (20) dudit support (18). [Claim 4] A separation process according to any one of claims 1 to 3, characterized in that in step c), said support (18) coated with said thermoplastic polymer (20) is crushed to detach said thermoplastic polymer ( 20) of said support (18).
[Revendication 5] Procédé de séparation selon la revendication 4, caractérisé en ce qu’à l’étape c), on écrase ledit support (18) revêtu dudit polymère thermoplastique (20) entre deux rouleaux. [Claim 5] A separation process according to claim 4, characterized in that in step c), said support (18) coated with said thermoplastic polymer (20) is crushed between two rollers.
[Revendication 6] Procédé de séparation selon la revendication 1 ou 2, caractérisé en ce qu’on projette de la glace carbonique contre ledit polymère thermoplastique (20) pour simultanément, abaisser la température et traiter mécaniquement ledit polymère thermoplastique (20) selon les étapes b) et c). [Claim 6] A separation process according to claim 1 or 2, characterized in that dry ice is sprayed against said thermoplastic polymer (20) to simultaneously lower the temperature and mechanically treat said thermoplastic polymer (20) according to the steps b) and c).
[Revendication 7] Procédé de séparation selon la revendication 6, caractérisé en ce que ladite glace carbonique est projetée contre ledit polymère thermoplastique (20) à une vitesse supérieure à 200 m.s 1. [Claim 7] A separation process according to claim 6, characterized in that said dry ice is projected against said thermoplastic polymer (20) at a speed greater than 200 ms 1 .
[Revendication 8] Procédé de séparation selon l’une quelconque des revendications 1 à 7, caractérisé en ce qu’à l’étape a), on fournit un support (18) comprenant une pluralité de tresses de fils respectivement revêtues dudit polymère thermoplastique (20). [Claim 8] A method of separation according to any one of claims 1 to 7, characterized in that in step a), a support (18) is provided comprising a plurality of wire braids respectively coated with said thermoplastic polymer ( 20).
[Revendication 9] Procédé de séparation selon la revendication 7, caractérisé en ce qu’à l’étape a), on fournit un support (18) comprenant une pluralité de tresses de fils de Poly(téréphtalate d’éthylène). [Claim 9] A separation process according to claim 7, characterized in that in step a), a support (18) is provided comprising a plurality of braids of poly (ethylene terephthalate) yarns.
[Revendication 10] Procédé de séparation selon l’une quelconque des revendications 1 à 8, caractérisé en ce qu’à l’étape a), ledit polymère thermoplastique (20) est le Poly(fluorure de vinylidène). [Claim 10] A separation process according to any one of claims 1 to 8, characterized in that in step a), said thermoplastic polymer (20) is Poly (vinylidene fluoride).
[Revendication 11] Procédé de séparation selon l’une quelconque des revendications 1 à 8, caractérisé en ce qu’à l’étape a), ledit polymère thermoplastique (20) est le Poly(difluorométhylène). [Claim 11] A separation process according to any one of claims 1 to 8, characterized in that in step a), said thermoplastic polymer (20) is Poly (difluoromethylene).
EP21714930.1A 2020-03-02 2021-03-02 Process for separating polymer materials from an assembly of elements Pending EP4114633A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2002092A FR3107658B1 (en) 2020-03-02 2020-03-02 Process for separating polymeric materials from an assembly of elements
PCT/FR2021/050350 WO2021176174A1 (en) 2020-03-02 2021-03-02 Process for separating polymer materials from an assembly of elements

Publications (1)

Publication Number Publication Date
EP4114633A1 true EP4114633A1 (en) 2023-01-11

Family

ID=70614175

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21714930.1A Pending EP4114633A1 (en) 2020-03-02 2021-03-02 Process for separating polymer materials from an assembly of elements

Country Status (3)

Country Link
EP (1) EP4114633A1 (en)
FR (1) FR3107658B1 (en)
WO (1) WO2021176174A1 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2050752A5 (en) * 1969-06-24 1971-04-02 Air Liquide Removing rubber coating from wire
US4483488A (en) * 1981-06-30 1984-11-20 Air Products And Chemicals, Inc. Method and apparatus for recovering thermoplastic from coated fabric scrap
BE1004619A3 (en) * 1990-10-18 1992-12-22 Mefag Finanz Ag Method and device for the separation of various components of a product
DE10000566A1 (en) * 2000-01-08 2001-07-26 Messer Griesheim Gmbh Recycling of surface coated plastic components, e.g. lacquered car parts, involves loosening bond of coating followed by its removal by cryogenic treatment
US7087655B2 (en) * 2002-12-16 2006-08-08 Kimberly-Clark Worldwide, Inc. Separation process for multi-component polymeric materials
GB0820342D0 (en) * 2008-11-06 2008-12-17 Haydale Ltd Processing of waste materials
CN103752190A (en) * 2013-12-26 2014-04-30 江南大学 Recycling method of waste polyvinylidene fluoride (PVDF) flat sheet membrane
CN108312388A (en) * 2018-04-18 2018-07-24 北京星和众维科技股份有限公司 Separator and separation method

Also Published As

Publication number Publication date
FR3107658A1 (en) 2021-09-03
WO2021176174A1 (en) 2021-09-10
FR3107658B1 (en) 2023-03-10

Similar Documents

Publication Publication Date Title
EP0596764B1 (en) Device and process for carrying out the phase separation by filtration and centrifugation
EP0971783B1 (en) Method and apparatus for separating droplets or particles from a gas stream
FR2732624A1 (en) METHOD FOR DIVIDING AND SEPARATING SELF-ADHESIVE PLASTIC COMPOSITE MATERIALS
FR3040704A1 (en) METHOD AND DEVICE FOR DISASSEMBLING MULTILAYER SYSTEMS COMPRISING AT LEAST ONE ORGANIC COMPONENT
EP0170153B1 (en) Apparatus for removing the liquid phase from a suspension
EP0851785B1 (en) Device and method for agglomerating and precipitating particles in a gas stream
EP2569080A1 (en) Water filtration module and method for the manufacture and use thereof
FR2888761A1 (en) GRAVITY SEPARATION DEVICE FOR WATER TREATMENT
EP2731731A1 (en) Facility and method for depositing a width-adjustable film of ordered particles onto a moving substrate
FR2882678A1 (en) Recovery of non-metal materials of worn tires comprises, moving rotatory liquid projection tube to the surface of an element of tire to treat, and forming a jet
WO2021176174A1 (en) Process for separating polymer materials from an assembly of elements
WO1992006765A1 (en) Process for separating the solid constituents of a suspension and device for carrying out said process
CA2725080C (en) Use of a device for cleaning metal fibers with a view to recycle and recover the same
EP0043774A1 (en) Process and apparatus for coalescing a finely dispersed phase of a fluid mixture
EP4114632A1 (en) Method for separating polymeric materials
EP3383805B1 (en) Purification plant element for a polluted aqueous flow and corresponding method
WO2010052424A1 (en) Filtration membrane having improved resistance to abrasions
EP0808216B1 (en) Method and device for electrostatically purifying organic liquids
WO1999016528A1 (en) Regenerable filter for liquids, in particular food liquids
EP3946867A1 (en) Sacrificial support made of biodegradable polymer material for cutting out a part with abrasive wire
WO2023089266A1 (en) Method and device for desalinating water
EP1281424A1 (en) Method for separating a fluid
FR2905607A1 (en) Effluent screening device, for removing fibrous waste upstream of treatment plant, comprises set of connected hollow fiber membranes and is immersed in channel to trap waste on fiber surface
WO2023083988A1 (en) Installation intended to separate, in an electric field, the components of a mixture of fibres and granules using a tribocharger provided with a grating for the selective confinement of said components
FR2928570A1 (en) Cutting steel component, stainless steel, brass, copper, titanium, aluminum and aluminum alloy or plastic, comprises e.g. conveying laser beam between laser generator and laser head, and introducing recovered air in the laser head

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220929

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAV Requested validation state of the european patent: fee paid

Extension state: MA

Effective date: 20220929

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230705