EP4106908A1 - Device for removing a gas from an aqueous liquid - Google Patents

Device for removing a gas from an aqueous liquid

Info

Publication number
EP4106908A1
EP4106908A1 EP21710192.2A EP21710192A EP4106908A1 EP 4106908 A1 EP4106908 A1 EP 4106908A1 EP 21710192 A EP21710192 A EP 21710192A EP 4106908 A1 EP4106908 A1 EP 4106908A1
Authority
EP
European Patent Office
Prior art keywords
compartment
proton donor
lines
membrane
blood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21710192.2A
Other languages
German (de)
French (fr)
Inventor
Albert Omlor
Philipp Lepper
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universitaet des Saarlandes
Original Assignee
Universitaet des Saarlandes
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitaet des Saarlandes filed Critical Universitaet des Saarlandes
Publication of EP4106908A1 publication Critical patent/EP4106908A1/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/04Hollow fibre modules comprising multiple hollow fibre assemblies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/1654Dialysates therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/1698Blood oxygenators with or without heat-exchangers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3687Chemical treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/08Plasma substitutes; Perfusion solutions; Dialytics or haemodialytics; Drugs for electrolytic or acid-base disorders, e.g. hypovolemic shock
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0005Degasification of liquids with one or more auxiliary substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0031Degasification of liquids by filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/031Two or more types of hollow fibres within one bundle or within one potting or tube-sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/034Lumen open in more than two directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/36Polytetrafluoroethene
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/02Gases
    • A61M2202/0225Carbon oxides, e.g. Carbon dioxide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3324PH measuring means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/42Ion-exchange membranes

Definitions

  • the invention relates to a device for removing a gas from an aqueous liquid, preferably a blood liquid.
  • the invention also relates to a composition containing a liquid proton donor and a use of the composition for the treatment of hypercapnia.
  • Hypercapnia is an elevated level of carbon dioxide in the blood.
  • the presence of carbon dioxide in the blood is normal as it is a waste product of cell metabolism.
  • the carbon dioxide is transported from the cells via the bloodstream into the Luge and exhaled there. If the lungs are insufficiently ventilated, for example in the presence of a lung disease or in the event of lung failure, the carbon dioxide accumulates in the blood. This leads to a breath-related acidification of the blood, which can lead to death if its pH value falls below 7.0.
  • ECMO extracorporeal membrane oxygenation
  • the blood interacts with a sweeping gas via a membrane.
  • Carbon dioxide is withdrawn from the blood via the membrane in the oxygenator and at the same time enriched with oxygen.
  • membrane oxygenation large-lumen vessels are used for blood collection and re-supply (e.g. femoral vein or internal jugular vein). Therefore, while the method is being carried out, a not insignificant amount of blood which has been withdrawn from the patient circulates in the ECMO machine.
  • the aim of the present invention is to improve the removal of carbon dioxide from an aqueous liquid, in the case of a blood liquid in particular to the effect that the removal of carbon dioxide can be carried out through a relatively small access in the patient and at the same time takes place more efficiently, so that the patient less blood has to be drawn and the process can remove a sufficiently large proportion of the carbon dioxide contained in the blood in a shorter (shorter) time.
  • a device for removing a gas from an aqueous liquid which has: a first compartment, which during operation of the Device is traversed by the aqueous liquid, a second compartment through which a flushing gas flows when the device is in operation, the first compartment and the second compartment being separated from one another by a semipermeable membrane, and a third compartment, which in operation of the device from a liquid proton donor is flowed through, the first compartment and the third compartment being separated from one another by an ion-permeable membrane.
  • the device according to the invention serves to at least partially remove a gas from an aqueous liquid, in particular to at least partially remove carbon dioxide from blood.
  • Each of the compartments is part of an individual cycle and a corresponding substance flows through it during operation.
  • a pump can be provided, which is used to create a corresponding flow.
  • the device according to the invention is designed so that, during operation, the substance in the first compartment interacts with the substance in the second compartment through the semipermeable membrane and the substance in the first compartment simultaneously interacts with the substance in the third compartment through the ion-permeable membrane or interacts.
  • the substances that flow through the second and third compartments do not interact with one another.
  • This property is achieved in that the second compartment and the third compartment are spatially separated from each other in such a way that the substance in the second compartment has no direct contact with the membrane of the third compartment, which is permeable to ions, and conversely, the substance in the third compartment does not have direct contact with the semipermeable one Has membrane of the second compartment.
  • An interaction here means a material exchange between two substances through a separating layer, such as a membrane.
  • the suitable or desired interaction can be achieved by providing concentration gradients between the first and second compartments and between the first and third compartments with regard to a gas to be removed and the ions involved.
  • the liquid proton donor can be organic or act inorganic acid, for example hydrochloric acid (HCl).
  • the liquid proton donor is preferably non-toxic.
  • a buffer solution can also be used which has the same number of ions (for example hydrogen cations), but has a more moderate pH than hydrochloric acid (for example 6.9).
  • the aqueous liquid can be a blood liquid, preferably blood.
  • carbon dioxide can then be at least partially removed from blood by means of the device.
  • the purge gas can be pure oxygen, as is customary in ECMO applications.
  • the device can be viewed as an extended ECMO machine in which the membrane oxygenator, in which carbon dioxide is removed from the blood and enriched with oxygen, is additionally provided with the third compartment, which is from the liquid Proton donor is flowed through.
  • the carbon dioxide physically dissolved in the blood passes into the flushing gas and is thus removed from the blood fluid.
  • the physically dissolved (physically bound) carbon dioxide is understood to mean carbon dioxide which is dissolved as a gas in the blood fluid.
  • the blood is enriched with oxygen from the flushing gas. This process corresponds to the conventional oxygenation of the blood through an ECMO or ECC02R membrane (ECC02R: extracorporeal C0 2 removal, extracorporeal removal of C0 2 ).
  • chemically dissolved carbon dioxide reacts with hydrogen ions (H + ), which diffuse through the membrane from the liquid proton donor into the blood fluid.
  • Chemically dissolved (chemically bound) carbon dioxide is understood to mean carbon dioxide which is "trapped" in bicarbonate compounds, for example in potassium hydrogen carbonate, sodium hydrogen carbonate or magnesium bicarbonate. This involves an exchange of protons between the liquid proton donor, for example hydrochloric acid (HCl), and those in the blood fluid contained bicarbonate compounds instead, which leads to the formation of carbonic acid (H 2 C0 3 ). However, this is very unstable and breaks down into water (H 2 0) and carbon dioxide (C0 2 ).
  • This carbon dioxide is now off its original bicarbonate compound and is available for removal via the flushing gas.
  • the proton exchange in which a cation from the blood fluid is transferred to the side of the liquid proton donor in exchange for the hydrogen cation (H + ) provided by it, ensures that no electrical potential builds up between the substances within the device according to the invention and thus the substances and the device remain electrically neutral.
  • the liquid proton donor can contain, for example, potassium and / or calcium and / or magnesium, so that a concentration gradient to the blood fluid can be avoided with regard to these substances, through which these physiologically important minerals would be released from the blood fluid.
  • the aim is to balance the electrochemical potential with regard to certain substances (such as potassium and calcium) between the liquid proton donor and the blood fluid, so that these are not released from the blood fluid and transfer to the liquid proton donor.
  • Sodium can preferably be leached out of the blood fluid as part of the ion exchange that is brought about and pass through the membrane permeable to ions as an exchange cation into the liquid proton donor.
  • the diffusion of sodium as an exchange ion can be adjusted via a corresponding concentration gradient for this substance between the blood fluid and the liquid proton donor.
  • the liquid proton donor cannot contain any sodium for this purpose.
  • an additional mechanism is consequently provided, by means of which additional carbon dioxide can be released from the blood than in the context of the usual ECMO treatment.
  • an additional carbon dioxide source in the blood fluid can be "tapped", as a result of which the carbon dioxide elimination takes place more efficiently / faster.
  • This makes it possible to operate the device according to the invention with a smaller amount of blood than with a conventional ECMO treatment is the case, so that even a small access is sufficient and no large-lumen vessel has to be used for taking blood Minute.
  • ventilation can be set to be more protective, for example with lower ventilation pressures, as a result of which there is less lung damage.
  • the device according to the invention can be designed in such a way that the second and third compartments each have a plurality of elongated structures, for example a plurality of high channels, for example in the form of hollow fibers. Due to a long compartment length (and a correspondingly set flow rate), the enrichment of the blood fluid with the protons of the liquid proton donor can take place slowly, so that a pH shock can be avoided. The decisive factor for this is the contact time between the substances in the first and third compartments.
  • the second compartment can be delimited or have a plurality of lines, preferably hollow fibers, made of the semipermeable material.
  • the lines can, for example, essentially be made of a polyolefin and comprise, for example, polymethylpentene (PMP).
  • PMP polymethylpentene
  • the lines forming the second compartment can all have a common inflow and outflow which is separate from the inflows and outflows of the other compartments.
  • the third compartment can be delimited or have a plurality of lines, preferably hollow fibers, made of the material that is permeable to ions.
  • the lines can be made of a plastic which is permeable to ions, in particular to hydrogen cations.
  • the lines forming the third compartment can all have a common inflow and outflow which is separate from the inflows and outflows of the other compartments.
  • the membrane permeable to ions can have a cation conductor, for example Nafion, or a cation and anion conductor.
  • the cation conductor can be selective.
  • the selectivity with regard to its permeability can be achieved by bringing about a concentration gradient between the aqueous liquid and the liquid proton donor for the cations which are to participate in the ion exchange (e.g. H + and Na +).
  • the membrane that is permeable to ions can also be a plastic that is permeable to both anions and cations, that is to say an ion conductor.
  • the membrane that is permeable to ions is understood to mean a membrane which is only permeable to ions, but not to neutral atoms and molecules. Furthermore, the membrane permeable to ions can only be permeable to certain ions, for example ions up to a certain ion radius.
  • the term “membrane permeable to ions” can mean an ion exchange membrane, that is to say an ion exchanger processed into a thin film.
  • the ion exchange membrane can be used to selectively allow certain ions to pass through.
  • the ion exchange membrane can only be permeable for cations (cation conductors) or for both cations and anions (cation and anion conductors).
  • a preferred cation conductor is Nafion.
  • Nafion (2- [1- [difluoro [(trifluoroethenyl) oxy] methyl] -1,2,2,2-tetrafluoroethoxy] -1,1,2,2-tetrafluoroethanesulfonic acid; CAS number: 31175-20-9) a perfluorinated copolymer containing a sulfo group as an ionic group.
  • the substructures of Nafion are perfluoro-3,6-dioxa-4-methyl-7-octene-1-sulfonic acid and tetrafluoroethene.
  • the acidic sulfonic acid groups in the Nafion enable a perfluorinated polymer with ionic properties. Nafion is selectively conductive for protons and other cations. So it has a blocking effect for anions.
  • the electrical exchange for the displacement of the cations of the liquid proton donor could then take place in addition to the displacement of target cations from the blood fluid, e.g. Na + , also by a displacement of anions from the liquid proton donor, e.g. CI in the case of hydrochloric acid as liquid proton donor.
  • the lines of the second compartment and the lines of the third compartment apart from their inflows and outflows, can be contained in the first compartment. This allows the surface that is used for the Interaction between the substances of the first and second compartment and between the substances of the first and third compartment is available to be maximized. By separating the inflows and outflows of the compartments, the flow rate and the flow direction of the corresponding substance can be set individually in each of them.
  • the lines of the second compartment and the lines of the third compartment can always be separated from one another by a partial volume of the first compartment.
  • the lines of the second compartment and those of the third compartment are always arranged at a distance from one another, so that the substance contained in the first compartment can flow through between these lines. This design is useful because the substance in the first compartment is the target substance for interaction with the substances in the second and third compartment.
  • the first compartment can have an inflow and an outflow in order to conduct blood through the first compartment, the inflow and outflow being arranged such that a flow of the aqueous liquid through the first compartment can be set during operation of the device is.
  • the inflow and the outflow can expediently be arranged on opposite sides of the compartment so that the aqueous liquid essentially flows through the entire first compartment (vertically, horizontally or obliquely, based on the direction of action of gravity) in order to move from its inflow to its outflow reach.
  • the device according to the invention can have further fluid-technical elements, such as, for example, flow restrictors, heaters and the like.
  • a pH sensor for example, can be arranged in the circuit that circulates through the third compartment.
  • a closed control loop can be provided in which the pH value of the liquid proton donor can be automatically regulated to the pH value of the blood. If the pH of the liquid proton donor is too low, for example, its flow rate through the third compartment can be slowed down.
  • the pH sensor can also be provided in the first compartment in order to measure the pH value of the aqueous liquid directly.
  • a composition is also provided containing a liquid proton donor, which flows through the third compartment of the device according to the invention, for use in a method for the treatment or therapy of hypercapnia.
  • a use of a composition containing a liquid proton donor, which flows through the third compartment of the device according to the invention, for the treatment of hypercapnia is also provided.
  • the use of the composition can at the same time include blood flowing through the first compartment of the device according to the invention and a flushing gas flowing through the second compartment of the device according to the invention.
  • the liquid proton donor can contain an acid which is preferably non-toxic, for example hydrochloric acid, or an acidic buffer solution.
  • the acidic buffer solution can be slightly over-acidic relative to the physiological pH value of But, which is between 7.35 and 7.45 in humans and, for example, have a pH value in the range between 6.5 and 7.
  • the acidic buffer solution can have a pH in the range between 4 and 6.5, preferably between 4 and 6, more preferably between 4 and 5.5, more preferably between 4 and 5, more preferably between 4 and 4.5 exhibit,
  • the liquid proton donor can contain at least one physiologically relevant type of metal cation in an at least physiological concentration.
  • the liquid proton donor can preferably contain several or essentially all physiologically relevant metal cations (K + , Ca 2+ and Mg 2+ ) at least in their respective physiological concentration.
  • the physiologically relevant metal cations can be present in the liquid proton donor in the same or higher concentration as in the blood serum. This can prevent the physiologically relevant metal cations from being withdrawn from the blood due to a concentration gradient and diffusing into the third compartment.
  • the liquid proton donor preferably does not contain any sodium.
  • the hypercapnia can be caused by COPD (chronic obstructive pulmonary disease), ARDS (acute lung failure), asthma, pneumonia or sleep apnea.
  • the composition can furthermore have a flushing gas which flows through the second compartment of a device described herein.
  • the flushing gas can be the usual flushing gas used in an ECMO treatment.
  • the treatment can comprise the following steps: providing a flow of the aqueous liquid through the first compartment; Providing a flow of the purge gas through the second compartment; and providing a flow of the liquid proton donor through the third compartment.
  • FIG. 1 shows the schematic structure of a device for removing a gas from an aqueous liquid according to various exemplary embodiments.
  • FIG. 2 shows a schematic view of the three compartments and the chemical reactions taking place during operation of the device according to the invention.
  • FIGS. 3A to 3C show possible positions of the three compartments of the device according to the invention relative to one another.
  • a schematic structure of the device 1 according to the invention for removing a gas from an aqueous liquid is shown in a side view.
  • the focus is on the interaction space of the device 1, that is to say the area in which the substances in the respective compartments can interact with one another; the other fluid-technical components (lines, pumps, sensors, etc.) have been left out.
  • the device 1 has a first compartment 2, a second compartment 3 and a third compartment 4.
  • Each of the compartments 2, 3, 4 has two connections: the first compartment 2 has a first connection 21 and a second connection 22, the second compartment 3 has a third connection 31 and a fourth connection 32 and the third compartment 4 has a fifth port 41 and a sixth port 42.
  • One connection of each of the compartments 2, 3, 4 functions as an inflow when the device according to the invention is in operation and the corresponding other connection functions as an outflow, depending on the direction in which the respective substance is to be flowed through the corresponding compartment.
  • a pump can be arranged between each connection pair of a respective compartment 2, 3, 4 in order to maintain a circulation of the substance.
  • the first compartment 2 through which the aqueous liquid flows can have any shape, for example, as shown in FIG. 1, a cylindrical shape.
  • a connector can be attached close to the bottom and close to the lid of a compartment.
  • the second compartment 3 has a plurality of first lines 33, preferably hollow fibers, which provide a fluid connection between the third connection 31 and the fourth connection 32. Both in the upper as well as in the lower area of the interaction space of the device 1, the third connection 31 and the fourth connection 32 each open into a reservoir, which is not a mandatory feature, with each reservoir extending over the entire base area of the interaction space in the exemplary embodiment shown.
  • the first lines 33 connect the two reservoirs to one another.
  • the third compartment 4 has a plurality of second lines 43, preferably hollow fibers, which are arranged between the fifth connection 41 and the sixth connection 42. Both in the upper and in the lower area of the interaction space of the device 1, the fifth connection 41 and the sixth connection 42 each open into a reservoir, whereby in the exemplary embodiment shown each reservoir extends over the entire base area of the interaction space 1. Since the reservoirs of the second compartment 3, viewed from the outside, enclose the reservoirs of the third compartment 4 or are arranged above and below them, the first lines 33 run through the reservoirs of the third compartment 4. For this purpose, the second lines 43 of the third compartment 4 are expediently longer designed as the first lines 33 of the second compartment 3, since the former still run through the reservoirs of the third compartment 4.
  • a cross-sectional view Q is shown in the middle region of the interaction space in a plan view.
  • the first lines 33 of the second compartment 3 and the second lines 43 of the third compartment 4 each run through the first compartment 2 at a distance from one another.
  • the first lines 33 and the second lines 43 are arranged at a distance from one another in the volume of the first compartment 2.
  • the arrangement or position of the second compartment 3 and the third compartment 4, as shown in FIG. 1 embodies one of many possible arrangements.
  • the position of the second and third compartments 3, 4, as shown in FIG. 1 can be interchanged.
  • the flow direction (in FIG. 1 this would be from top to bottom or from bottom to top) of the substance flowing therein can be set individually and independently of the other two compartments.
  • the number and the cross section of the first lines 33 and the second lines 43 can be selected as required.
  • FIG. 2 the chemical processes taking place during the operation of the device 1 according to the invention are illustrated, which take place between the first and second compartments 2, 3 and between the first and third compartments 2, 4.
  • the first compartment 2 is flowed through by the aqueous liquid, preferably blood, from which a gas, preferably carbon dioxide, is to be removed.
  • the blood fluid contains physically dissolved carbon dioxide.
  • the flushing gas which usually contains pure oxygen (O 2 ), flows through the second compartment 3.
  • the semipermeable membrane 5 is arranged between the first compartment 2 and the third compartment 3.
  • a concentration gradient between the first compartment 2 and the second compartment 3 with respect to carbon dioxide (C0 2 ) releases the carbon dioxide physically bound in the blood 7 and diffuses into the second compartment 3 via the semipermeable membrane 5.
  • oxygen diffuses from the flushing gas Via the semipermeable membrane 5 into the blood fluid and is taken up therein by the erythrocytes 7.
  • This process which is already well known from the usual ECMO application, is sketched in the first marked area 8.
  • the carbon dioxide chemically bound in the bicarbonate compounds is released from the bicarbonate compounds with the aid of the liquid proton sensor flowing through the third compartment 4.
  • a cation exchange takes place through the ion-permeable membrane 6 arranged between the first compartment 2 and the third compartment 4, which is shown in the second marked area 9. This process is also induced by a concentration gradient with respect to an exchange.
  • the exchange ion is sodium (Na + ), which in the example shown represents the target exchange ion.
  • the sodium diffuses through the ion-permeable membrane 6 into the (low-sodium) third compartment 4.
  • hydrogen cations contained in the liquid proton donor diffuse from the third compartment 4 into the first compartment 2.
  • the hydrogen cation binds to the bicarbonate (HCO ⁇ 3 ) , which leads to the formation of carbonic acid (H 2 C0 3 ), which, however, is unstable and ultimately breaks down relatively quickly into water (H 2 0) and carbon dioxide.
  • the carbon dioxide molecule released in this way migrates analogously to the physically dissolved carbon dioxide molecules via the semipermeable membrane 5 into the second compartment 3.
  • the liquid proton donor in the third compartment 4 thus serves to release the chemically bound carbon dioxide while the carbon dioxide released in this way is transported away the Blood fluid is still carried out by means of the flushing gas flowing through the second compartment 3.
  • FIGS. 3A to 3C Three basic configurations are outlined in FIGS. 3A to 3C.
  • a bar represents a compartment in the interaction area of the device 1 and is correspondingly provided with the reference number of the respective compartment.
  • the longitudinal extent of each bar also defines the axis along which the respective compartment is flowed through by the associated substance. Accordingly, there are basically two flow directions per compartment 2, 3, 4.
  • FIG. 3A essentially corresponds to the embodiment of the device 1 according to the invention shown in FIG. 1, in which the lines of the second compartment 3 and the third compartment 4 are aligned parallel to one another and the flow directions of the substances through all three compartments 2, 3, 4 are aligned parallel to each other.
  • the actual direction of flow of the substance through a respective compartment can be from top to bottom or from bottom to top, regardless of the flow directions in the other two compartments.
  • the position of the compartments 2, 3, 4 in the interaction area 1 r sketched in FIG. 3A only serves to illustrate the relative arrangement of the flow directions through the compartments relative to one another, so that in particular the number of bars shown does not correspond to the number of lines belonging to a compartment .
  • the number and the arrangement of the hollow channels forming the second compartment 3 and the third compartment 4 relative to one another can be configured in a variety of ways.
  • An example of this is shown in the cross-sectional view Q in FIG. 1, where it can be seen that the first lines 33 form a hexagonal grid and the second lines 43 are arranged in the middle of the hexagons (apart from the second lines 43 arranged on the edge).
  • the lines of the second compartment 3 and the third compartment 4 can be arranged in alternating rows one behind the other or next to one another or in other geometric patterns. According to the arrangement of the compartments 2, 3, 4 relative to one another shown in FIG.
  • the direction of flow of the aqueous liquid through the first compartment 2 is perpendicular to the directions of flow of the substances through the second compartment 3 and through the third compartment 4
  • Lines of the second compartment 3 and the fourth compartment 4 correspond relative to one another to one of the arrangements which have been mentioned with reference to FIG. 3A.
  • FIG. 3C shows a further possible embodiment of the interaction space of the device, in which the flow directions through the second compartment 3 and through the third compartment 4 are perpendicular to the flow direction through the first compartment 2.
  • the hollow channels of the second compartment 3 are additionally arranged at an angle a to the hollow channels of the first compartment 2, so that the flow directions are accordingly also arranged at the angle a relative to one another.
  • the angle a can, for example, preferably correspond to 90 °.
  • Compartment 4 can essentially form a rectangular or square lattice structure (from the point of view of the aqueous liquid flowing through the first compartment 2), the interstices of which are traversed by the aqueous liquid.
  • the lattice structure can be designed in such a way that the lines of the second compartment 3 and the lines of the third compartment 4 touch one another and thus
  • the lines of the second compartment 3 and the lines of the third compartment 4 can be arranged in rows perpendicular to one another, the rows being spaced apart from one another.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Anesthesiology (AREA)
  • Emergency Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cardiology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Inorganic Chemistry (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Diabetes (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The invention relates to a device for removing a gas from an aqueous liquid, in particular a blood liquid, said device having: a first compartment, through which the aqueous liquid flows during operation of the device; a second compartment, through which a purge gas flows during operation of the device, the first compartment and the second compartment being separated from one another by a semi-permeable membrane; and a third compartment, through which a liquid proton donor which is an organic or inorganic acid flows during operation of the device, the first compartment and the third compartment being separated from one another by a membrane that is permeable to ions, the membrane that is permeable to ions having at least one cation conductor.

Description

Vorrichtung zum Entfernen eines Gases aus einer wässrigen Flüssigkeit Device for removing a gas from an aqueous liquid
Die Erfindung betrifft eine Vorrichtung zum Entfernen eines Gases aus einer wässrigen Flüssigkeit, bevorzugt einer Blutflüssigkeit. Ferner betrifft die Erfindung eine Zusammensetzung enthaltend einen flüssigen Protonendonator sowie eine Verwendung der Zusammensetzung zur Behandlung von Hyperkapnie. The invention relates to a device for removing a gas from an aqueous liquid, preferably a blood liquid. The invention also relates to a composition containing a liquid proton donor and a use of the composition for the treatment of hypercapnia.
Als Hyperkapnie bezeichnet man einen erhöhten Gehalt an Kohlendioxid im Blut. Das Vorhandensein von Kohlendioxid im Blut ist normal, da es ein Abfallprodukt des Zellstoffwechsels ist. Aus den Zellen wird das Kohlendioxid über den Blutkreislauf in die Luge transportiert und dort abgeatmet. Wird die Lunge unzureichend belüftet, beispielsweise bei Vorliegen einer Lungenkrankheit oder bei Lungenversagen, reichert sich das Kohlendioxid im Blut an. Dadurch kommt es zu einer atembedingten Ansäuerung des Blutes, wobei es zum Tode kommen kann, wenn sein pH-Wert unter 7,0 sinkt. Hypercapnia is an elevated level of carbon dioxide in the blood. The presence of carbon dioxide in the blood is normal as it is a waste product of cell metabolism. The carbon dioxide is transported from the cells via the bloodstream into the Luge and exhaled there. If the lungs are insufficiently ventilated, for example in the presence of a lung disease or in the event of lung failure, the carbon dioxide accumulates in the blood. This leads to a breath-related acidification of the blood, which can lead to death if its pH value falls below 7.0.
In einer solchen Situation muss das Kohlendioxid so schnell wie möglich aus dem Blut entfernt werden. Da der betroffene Patient das nicht aus eigener Kraft leisten kann, wird hierfür üblicherweise die extrakorporale Membranoxygenierung (ECMO) verwendet, bei der das Blut über eine Membran mit einem Spülgas (sweeping gas) interagiert. Über die Membran im Oxygenator wird Kohlendioxid dem Blut entzogen und zugleich mit Sauerstoff angereichert. Bei der Membranoxygenieurng werden für die Blutentnahme und die Wiederzuführung großlumige Gefäße verwendet (z.B. Vena femoralis oder Vena jugularis interna). Daher zirkuliert während der Durchführung des Verfahrens eine nicht zu vernachlässige Menge an Blut in der ECMO-Maschine, die dem Patienten entnommen worden ist. In such a situation, the carbon dioxide must be removed from the blood as soon as possible. Since the affected patient cannot do this on his own, extracorporeal membrane oxygenation (ECMO) is usually used for this, in which the blood interacts with a sweeping gas via a membrane. Carbon dioxide is withdrawn from the blood via the membrane in the oxygenator and at the same time enriched with oxygen. In membrane oxygenation, large-lumen vessels are used for blood collection and re-supply (e.g. femoral vein or internal jugular vein). Therefore, while the method is being carried out, a not insignificant amount of blood which has been withdrawn from the patient circulates in the ECMO machine.
Ziel der vorliegenden Erfindung ist es, die Entfernung von Kohlendioxid aus einer wässrigen Flüssigkeit zu verbessern, im Falle von einer Blutflüssigkeit insbesondere dahingehend, dass die Entfernung von Kohlendioxid über einen relativ kleinen Zugang beim Patienten durchgeführt werden kann und zugleich effizienter abläuft, so dass dem Patienten weniger Blut abgenommen werden muss und der Vorgang in kürzer(er) Zeit einen ausreichend großen Anteil des im Blut enthaltenen Kohlendioxids entfernen kann. The aim of the present invention is to improve the removal of carbon dioxide from an aqueous liquid, in the case of a blood liquid in particular to the effect that the removal of carbon dioxide can be carried out through a relatively small access in the patient and at the same time takes place more efficiently, so that the patient less blood has to be drawn and the process can remove a sufficiently large proportion of the carbon dioxide contained in the blood in a shorter (shorter) time.
Erfindungsgemäß wird eine Vorrichtung zum Entfernen eines Gases aus einer wässrigen Flüssigkeit bereitgestellt, welche aufweist: ein erstes Kompartiment, welches im Betrieb der Vorrichtung von der wässrigen Flüssigkeit durchströmt wird, ein zweites Kompartiment, welches im Betrieb der Vorrichtung von einem Spülgas durchströmt wird, wobei das erste Kompartiment und das zweite Kompartiment durch eine semipermeable Membran voneinander getrennt sind, und ein drittes Kompartiment, welches im Betrieb der Vorrichtung von einem flüssigen Protonendonator durchströmt wird, wobei das erste Kompartiment und das dritte Kompartiment durch eine für Ionen permeable Membran voneinander getrennt sind. According to the invention, a device for removing a gas from an aqueous liquid is provided, which has: a first compartment, which during operation of the Device is traversed by the aqueous liquid, a second compartment through which a flushing gas flows when the device is in operation, the first compartment and the second compartment being separated from one another by a semipermeable membrane, and a third compartment, which in operation of the device from a liquid proton donor is flowed through, the first compartment and the third compartment being separated from one another by an ion-permeable membrane.
Die erfindungsgemäße Vorrichtung dient zum zumindest teilweisen Entfernen eines Gases, aus einer wässrigen Flüssigkeit, insbesondere zum zumindest teilweisen Entfernen von Kohlendioxid aus Blut. Jedes der Kompartimente ist Teil eines individuellen Kreislaufes und wird im Betrieb durch eine entsprechende Substanz durchströmt. In jedem der Kreisläufe kann eine Pumpe bereitgestellt sein, welche zur Ausbildung einer entsprechenden Strömung dient. Die erfindungsgemäße Vorrichtung ist so ausgebildet, dass während des Betriebes die Substanz im ersten Kompartiment mit der Substanz im zweiten Kompartiment durch die semipermeable Membran interagiert bzw. wechselwirkt und die Substanz im ersten Kompartiment zugleich mit der Substanz im dritten Kompartiment durch die für Ionen permeable Membran interagiert bzw. wechselwirkt. Die Substanzen, welche durch das zweite und dritte Kompartiment strömen, treten hingegen nicht in Wechselwirkung miteinander. Diese Eigenschaft wird erreicht, indem das zweite Kompartiment und das dritte Kompartiment räumlich so voneinander getrennt sind, dass die Substanz im zweiten Kompartiment keinen direkten Kontakt zur die für Ionen permeable Membran des dritten Kompartiments hat und umgekehrt die Substanz im dritten Kompartiment keinen direkten Kontakt zur semipermeablen Membran des zweiten Kompartiments hat. Unter einer Wechselwirkung ist hierbei ein stofflicher Austausch zwischen zwei Substanzen durch eine Trennschicht gemeint, etwa eine Membran. Durch geeignete Wechselwirkung der Substanz im ersten Kompartiment mit der Substanz im zweiten Kompartiment und mit der Substanz im dritten Kompartiment wird das Gas aus der Substanz im ersten Kompartiment, also aus der wässrigen Flüssigkeit, zumindest teilweise entfernt. Die geeignete bzw. gewünschte Wechselwirkung kann durch Bereitstellen von Konzentrationsgradienten zwischen dem ersten und zweiten Kompartiment und zwischen dem ersten und dritten Kompartiment eingestellt werden bezüglich eines zu entfernenden Gases sowie der beteiligten Ionen erreicht werden. Bei dem flüssigen Protonendonator kann es sich um eine organische oder anorganische Säure handeln, beispielsweise Salzsäure (HCl). Bevorzugt ist der flüssige Protonendonator nicht toxisch. Ferner kann auch eine Pufferlösung verwendet werden, welche gleich viele Ionen (z.B. Wasserstoff-Kationen) aufweist, aber einen im Vergleich zur Salzsäure gemäßigteren pH-Wert aufweist (beispielsweise 6,9). The device according to the invention serves to at least partially remove a gas from an aqueous liquid, in particular to at least partially remove carbon dioxide from blood. Each of the compartments is part of an individual cycle and a corresponding substance flows through it during operation. In each of the circuits, a pump can be provided, which is used to create a corresponding flow. The device according to the invention is designed so that, during operation, the substance in the first compartment interacts with the substance in the second compartment through the semipermeable membrane and the substance in the first compartment simultaneously interacts with the substance in the third compartment through the ion-permeable membrane or interacts. The substances that flow through the second and third compartments, on the other hand, do not interact with one another. This property is achieved in that the second compartment and the third compartment are spatially separated from each other in such a way that the substance in the second compartment has no direct contact with the membrane of the third compartment, which is permeable to ions, and conversely, the substance in the third compartment does not have direct contact with the semipermeable one Has membrane of the second compartment. An interaction here means a material exchange between two substances through a separating layer, such as a membrane. By suitable interaction of the substance in the first compartment with the substance in the second compartment and with the substance in the third compartment, the gas is at least partially removed from the substance in the first compartment, ie from the aqueous liquid. The suitable or desired interaction can be achieved by providing concentration gradients between the first and second compartments and between the first and third compartments with regard to a gas to be removed and the ions involved. The liquid proton donor can be organic or act inorganic acid, for example hydrochloric acid (HCl). The liquid proton donor is preferably non-toxic. Furthermore, a buffer solution can also be used which has the same number of ions (for example hydrogen cations), but has a more moderate pH than hydrochloric acid (for example 6.9).
Gemäß weiteren Ausführungsformen der Vorrichtung kann die wässrige Flüssigkeit eine Blutflüssigkeit sein, vorzugsweise Blut. Insbesondere kann dann mittels der Vorrichtung Kohlenstoffdioxid aus Blut zumindest teilweise entfernt werden. In diesem Zusammenhang kann es sich bei dem Spülgas um reinen Sauerstoff handeln, wie bei ECMO-Anwendungen üblich. Im Falle von Blut als wässrige Flüssigkeit kann die Vorrichtung als eine erweiterte ECMO-Maschine betrachtet werden, bei welcher im Membran-Oxygenator, in dem Kohlendioxid aus dem Blut entfernt und mit Sauerstoff angereichert wird, zusätzlich das dritte Kompartiment vorgesehen ist, welches von dem flüssigen Protonendonator durchströmt wird. According to further embodiments of the device, the aqueous liquid can be a blood liquid, preferably blood. In particular, carbon dioxide can then be at least partially removed from blood by means of the device. In this context, the purge gas can be pure oxygen, as is customary in ECMO applications. In the case of blood as an aqueous liquid, the device can be viewed as an extended ECMO machine in which the membrane oxygenator, in which carbon dioxide is removed from the blood and enriched with oxygen, is additionally provided with the third compartment, which is from the liquid Proton donor is flowed through.
Durch die Wechselwirkung zwischen der Blutflüssigkeit und dem Spülgas durch die semipermeable Membran geht das physikalisch im Blut gelöste Kohlenstoffdioxid in das Spülgas über und wird so aus der Blutflüssigkeit entfernt. Unter dem physikalisch gelösten (physikalisch gebundenen) Kohlendioxid wird Kohlendioxid verstanden, welches als Gas in der Blutflüssigkeit gelöst ist. Gleichzeitig erfolgt eine Anreicherung des Blutes mit Sauerstoff aus dem Spülgas. Dieser Prozess entspricht der herkömmlichen Oxygenierung des Blutes durch eine ECMO- oder ECC02R-Membran (ECC02R: extracorporal C02 removal, extrakorporales Entfernen von C02). Durch die Wechselwirkung zwischen der Blutflüssigkeit und dem flüssigen Protonendonator durch die für Ionen permeable Membran reagiert in der Blutflüssigkeit chemisch gelöstes Kohlenstoffdioxid mit Wasserstoff-Ionen (H+), welche durch die Membran hindurch aus dem flüssigen Protonendonator in die Blutflüssigkeit diffundieren. Unter dem chemisch gelösten (chemisch gebundenen) Kohlendioxid wird Kohlendioxid verstanden, welches in Bicarbonat-Verbindungen „gefangen" ist, etwa in Kaliumhydrogencarbonat, Natriumhydrogencarbonat oder Magnesiumbicarbonat. Hierbei findet ein Protonenaustausch zwischen dem flüssigen Protonendonator, beispielsweise Salzsäure (HCl) und den in der Blutflüssigkeit enthaltenen Bicarbonat-Verbindungen statt, wodurch es zur Bildung von Kohlensäure (H2C03) kommt. Diese ist jedoch sehr instabil und zerfällt in Wasser (H20) und Kohlenstoffdioxid (C02). Dieses Kohlenstoffdioxid ist nun aus seiner ursprünglichen Bicarbonat-Verbindung gelöst und steht zum Abtransport über das Spülgas zur Verfügung. Der Protonenaustausch, bei dem ein Kation aus der Blutflüssigkeit auf die Seite des flüssigen Protonendonators übergeht im Austausch für das von diesem bereitgestellte Wasserstoff-Kation (H+), sorgt dafür, dass sich innerhalb der erfindungsgemäßen Vorrichtung zwischen den Substanzen kein elektrisches Potenzial aufbaut und damit die Substanzen und die Vorrichtung elektrisch neutral bleiben. As a result of the interaction between the blood fluid and the flushing gas through the semipermeable membrane, the carbon dioxide physically dissolved in the blood passes into the flushing gas and is thus removed from the blood fluid. The physically dissolved (physically bound) carbon dioxide is understood to mean carbon dioxide which is dissolved as a gas in the blood fluid. At the same time, the blood is enriched with oxygen from the flushing gas. This process corresponds to the conventional oxygenation of the blood through an ECMO or ECC02R membrane (ECC02R: extracorporeal C0 2 removal, extracorporeal removal of C0 2 ). Due to the interaction between the blood fluid and the liquid proton donor through the membrane permeable to ions, chemically dissolved carbon dioxide reacts with hydrogen ions (H + ), which diffuse through the membrane from the liquid proton donor into the blood fluid. Chemically dissolved (chemically bound) carbon dioxide is understood to mean carbon dioxide which is "trapped" in bicarbonate compounds, for example in potassium hydrogen carbonate, sodium hydrogen carbonate or magnesium bicarbonate. This involves an exchange of protons between the liquid proton donor, for example hydrochloric acid (HCl), and those in the blood fluid contained bicarbonate compounds instead, which leads to the formation of carbonic acid (H 2 C0 3 ). However, this is very unstable and breaks down into water (H 2 0) and carbon dioxide (C0 2 ). This carbon dioxide is now off its original bicarbonate compound and is available for removal via the flushing gas. The proton exchange, in which a cation from the blood fluid is transferred to the side of the liquid proton donor in exchange for the hydrogen cation (H + ) provided by it, ensures that no electrical potential builds up between the substances within the device according to the invention and thus the substances and the device remain electrically neutral.
Der flüssige Protonendonator kann beispielsweise Kalium und/oder Kalzium und/oder Magnesium enthalten, damit ein Konzentrationsgradient zur Blutflüssigkeit bezüglich dieser Stoffe vermieden werden kann, durch welchen diese physiologisch wichtigen Mineralstoffe aus der Blutflüssigkeit herausgelöst werden würden. Anders ausgedrückt wird ein Ausgleich des elektrochemischen Potenzials hinsichtlich bestimmter Stoffe (etwa Kalium und Kalzium) zwischen dem flüssigen Protonendonator und der Blutflüssigkeit angestrebt, damit diese nicht aus der Blutflüssigkeit herausgelöst werden und auf den flüssigen Protonendonator übergehen. Bevorzugt kann Natrium im Rahmen des herbeigeführten lonenaustausches aus der Blutflüssigkeit herausgelöst werden und durch die für Ionen permeable Membran hindurch als Austauschkation in den flüssigen Protonendonator übergehen. Die Diffusion von Natrium als Austauschion kann über einen entsprechenden Konzentrationsgradienten bezüglich dieses Stoffes zwischen der Blutflüssigkeit und dem flüssigen Protonendonator eingestellt werden. Insbesondere kann zu diesem Zweck der flüssige Protonendonator kein Natrium aufweisen. The liquid proton donor can contain, for example, potassium and / or calcium and / or magnesium, so that a concentration gradient to the blood fluid can be avoided with regard to these substances, through which these physiologically important minerals would be released from the blood fluid. In other words, the aim is to balance the electrochemical potential with regard to certain substances (such as potassium and calcium) between the liquid proton donor and the blood fluid, so that these are not released from the blood fluid and transfer to the liquid proton donor. Sodium can preferably be leached out of the blood fluid as part of the ion exchange that is brought about and pass through the membrane permeable to ions as an exchange cation into the liquid proton donor. The diffusion of sodium as an exchange ion can be adjusted via a corresponding concentration gradient for this substance between the blood fluid and the liquid proton donor. In particular, the liquid proton donor cannot contain any sodium for this purpose.
Durch das Bereitstellen des dritten Kompartiments, welches von dem flüssigen Protonendonator durchströmt wird, wird folglich ein zusätzlicher Mechanismus bereitgestellt, mittels welchem zusätzlich Kohlenstoffdioxid aus dem Blut gelöst werden kann als im Rahmen der üblichen ECMO-Behandlung. Anders ausgedrückt kann so eine zusätzliche Kohlenstoffdioxid-Quelle in der Blutflüssigkeit „angezapft" werden, wodurch die Kohlenstoffdioxid-Eliminierung effizienter/schneller abläuft. Dadurch ist es möglich, die erfindungsgemäße Vorrichtung mit einer geringeren Menge Blut zu betreiben als es bei einer üblichen ECMO-Behandlung der Fall ist, sodass bereits ein kleiner Zugang ausreichend ist und kein großlumiges Gefäß zur Blutentnahme verwendet werden muss. So kann die erfindungsgemäße Vorrichtung bereits eine ausreichende Entfernung von Kohlenstoffdioxid aus der Blutflüssigkeit bereitstellen bei einem Blutzugang, bei dem ca. 400 ml Blut pro Minute abgenommen werden. Zusätzlich ist von Vorteil, dass bei der Verwendung der erfindungsgemäßen Vorrichtung die Beatmung protektiver, z.B. mit geringeren Beatmungsdrücken eingestellt werden kann, wodurch es zu weniger Lungenschäden kommt.By providing the third compartment through which the liquid proton donor flows, an additional mechanism is consequently provided, by means of which additional carbon dioxide can be released from the blood than in the context of the usual ECMO treatment. In other words, an additional carbon dioxide source in the blood fluid can be "tapped", as a result of which the carbon dioxide elimination takes place more efficiently / faster. This makes it possible to operate the device according to the invention with a smaller amount of blood than with a conventional ECMO treatment is the case, so that even a small access is sufficient and no large-lumen vessel has to be used for taking blood Minute. In addition, it is advantageous that when the device according to the invention is used, ventilation can be set to be more protective, for example with lower ventilation pressures, as a result of which there is less lung damage.
Die erfindungsgemäße Vorrichtung kann derart ausgebildet sein, dass das zweite und dritte Kompartiment jeweils eine Mehrzahl von länglichen Strukturen aufweisen, beispielsweise eine Mehrzahl von hohen Kanälen, beispielsweise in Form von Hohlfasern. Durch eine lange Kompartimentlänge (und eine entsprechend eingestellte Durchströmungsgeschwindigkeit) kann das Anreichern der Blutflüssigkeit mit den Protonen des flüssigen Protonendonators langsam erfolgen, so dass ein pH-Schock vermieden werden kann. Entscheidend hierfür ist die Kontaktzeit zwischen den Substanzen im ersten und dritten Kompartiment. The device according to the invention can be designed in such a way that the second and third compartments each have a plurality of elongated structures, for example a plurality of high channels, for example in the form of hollow fibers. Due to a long compartment length (and a correspondingly set flow rate), the enrichment of the blood fluid with the protons of the liquid proton donor can take place slowly, so that a pH shock can be avoided. The decisive factor for this is the contact time between the substances in the first and third compartments.
Gemäß weiteren Ausführungsformen der Vorrichtung kann das zweite Kompartiment durch eine Mehrzahl von Leitungen, bevorzugt Hohlfasern, aus dem semipermeablen Material begrenzt sein bzw. diese aufweisen. Die Leitungen können beispielsweise im Wesentlichen aus einem Polyolefin gefertigt sein und beispielsweise Polymethylpenten (PMP) aufweisen. Die das zweite Kompartiment bildenden Leitungen können alle einen gemeinsamen Zufluss und Abfluss haben, welcher von den Zuflüssen und Abflüssen der anderen Kompartimente getrennt ist. According to further embodiments of the device, the second compartment can be delimited or have a plurality of lines, preferably hollow fibers, made of the semipermeable material. The lines can, for example, essentially be made of a polyolefin and comprise, for example, polymethylpentene (PMP). The lines forming the second compartment can all have a common inflow and outflow which is separate from the inflows and outflows of the other compartments.
Gemäß weiteren Ausführungsformen der Vorrichtung kann das dritte Kompartiment durch eine Mehrzahl von Leitungen, bevorzugt Hohlfasern, aus dem für Ionen permeablen Material begrenzt sein bzw. diese aufweisen. Die Leitungen können aus einem Kunststoff gefertigt sein, welcher für Ionen, insbesondere für Wasserstoff-Kationen durchlässig ist. Die das dritte Kompartiment bildenden Leitungen können alle einen gemeinsamen Zufluss und Abfluss haben, welcher von den Zuflüssen und Abflüssen der anderen Kompartimente getrennt ist.According to further embodiments of the device, the third compartment can be delimited or have a plurality of lines, preferably hollow fibers, made of the material that is permeable to ions. The lines can be made of a plastic which is permeable to ions, in particular to hydrogen cations. The lines forming the third compartment can all have a common inflow and outflow which is separate from the inflows and outflows of the other compartments.
Gemäß weiteren Ausführungsformen der Vorrichtung kann die für Ionen permeable Membran einen Kationenleiter, beispielsweise Nafion, oder einen Kationen- und Anionenleiter aufweisen. Der Kationenleiter kann selektiv sein. Im Falle eines nicht selektiven Kationenleiters kann die Selektivität hinsichtlich seiner Permeabilität erreicht werden, indem für die Kationen, welche am lonenaustausch teilnehmen sollen (etwa H+ und Na+), ein Konzentrationsgradient zwischen der wässrigen Flüssigkeit und dem flüssigen Protonendonator herbeigeführt wird. Für diejenigen Kationen, welche nicht am lonenaustausch teilnehmen sollen (etwa die physiologisch relevanten K+, Ca2+, Mg2+ im Falle von Blut), wird hingegen eine Diffusion von der Blutflüssigkeit in den flüssigen Protonendonator vermieden, indem im Protonendonator mindestens die gleiche Konzentrationen dieser Ionen vorliegen wie in der Blutflüssigkeit. Bei der für Ionen permeablen Membran kann es sich auch um einen Kunststoff handeln der sowohl für Anionen als auch Kationen permeabel ist, also einen lonenleiter. According to further embodiments of the device, the membrane permeable to ions can have a cation conductor, for example Nafion, or a cation and anion conductor. The cation conductor can be selective. In the case of a non-selective cation conductor, the selectivity with regard to its permeability can be achieved by bringing about a concentration gradient between the aqueous liquid and the liquid proton donor for the cations which are to participate in the ion exchange (e.g. H + and Na +). For those cations which should not take part in the ion exchange (for example the physiologically relevant K + , Ca 2+ , Mg 2+ in the case of of blood), on the other hand, diffusion from the blood fluid into the liquid proton donor is avoided by having at least the same concentrations of these ions in the proton donor as in the blood fluid. The membrane that is permeable to ions can also be a plastic that is permeable to both anions and cations, that is to say an ion conductor.
Unter der für Ionen permeablen Membran wird eine Membran verstanden, welche nur für Ionen durchlässig ist, nicht hingegen für neutrale Atome und Moleküle. Ferner kann die für Ionen permeable Membran nur für bestimmte Ionen durchlässig sein, beispielsweise Ionen bis zu einem gewissen lonenradius. Unter der für Ionen permeablen Membran kann eine Ionenaustauscher-Membran gemeint sein, also ein zu einer dünnen Folie verarbeiteter lonentauscher. Die lonentauscher-Membran kann verwendet werden, um selektiv bestimmte Ionen durchzulassen. So kann die lonentauscher-Membran nur für Kationen (Kationenleiter) oder für sowohl Kationen- als auch Anionen (Kationen- und Anionenleiter) permeabel sein. The membrane that is permeable to ions is understood to mean a membrane which is only permeable to ions, but not to neutral atoms and molecules. Furthermore, the membrane permeable to ions can only be permeable to certain ions, for example ions up to a certain ion radius. The term “membrane permeable to ions” can mean an ion exchange membrane, that is to say an ion exchanger processed into a thin film. The ion exchange membrane can be used to selectively allow certain ions to pass through. Thus, the ion exchange membrane can only be permeable for cations (cation conductors) or for both cations and anions (cation and anion conductors).
Ein bevorzugter Kationenleiter ist Nafion. Nafion (2-[l-[Difluor[(trifluorethenyl)oxy]methyl]- l,2,2,2-tetrafluorethoxy]-l,l,2,2-tetrafluorethansulfonsäure; CAS-Nummer: 31175-20-9) ist ein perfluoriertes Copolymer, das als ionische Gruppe eine Sulfogruppe enthält. Die Teilstrukturen von Nafion sind Perfluor-3,6-dioxa-4-methyl-7-octen-l-sulfonsäure und Tetrafluorethen. Die sauren Sulfonsäuregruppen im Nafion ermöglichen ein perfluoriertes Polymer mit ionischen Eigenschaften. Nafion ist selektiv leitend für Protonen und andere Kationen. Es hat also einen Sperreffekt für Anionen. A preferred cation conductor is Nafion. Nafion (2- [1- [difluoro [(trifluoroethenyl) oxy] methyl] -1,2,2,2-tetrafluoroethoxy] -1,1,2,2-tetrafluoroethanesulfonic acid; CAS number: 31175-20-9) a perfluorinated copolymer containing a sulfo group as an ionic group. The substructures of Nafion are perfluoro-3,6-dioxa-4-methyl-7-octene-1-sulfonic acid and tetrafluoroethene. The acidic sulfonic acid groups in the Nafion enable a perfluorinated polymer with ionic properties. Nafion is selectively conductive for protons and other cations. So it has a blocking effect for anions.
Der elektrische Austausch für die Verschiebung der Kationen des flüssigen Protonendonators (z.B. H+) könnte dann zusätzlich zur Verschiebung von Zielkationen aus der Blutflüssigkeit, z.B. Na+, auch durch eine Verschiebung von Anionen aus dem flüssigen Protonendonator erfolgen, etwa CI im Falle von Salzsäure als flüssiger Protonendonator. Hierbei sollte aber bevorzugt gleichzeitig darauf geachtet werden, dass es nicht im Gegenzug zur ungewünschten Verschiebung von Anionen aus der Blutflüssigkeit zum flüssigen Protonendonator kommt. The electrical exchange for the displacement of the cations of the liquid proton donor (e.g. H + ) could then take place in addition to the displacement of target cations from the blood fluid, e.g. Na + , also by a displacement of anions from the liquid proton donor, e.g. CI in the case of hydrochloric acid as liquid proton donor. At the same time, however, care should preferably be taken to ensure that there is no undesired shift of anions from the blood fluid to the liquid proton donor in return.
Gemäß weiteren Ausführungsformen der Vorrichtung können die Leitungen des zweiten Kompartiments und die Leitungen des dritten Kompartiments, bis auf ihre Zu- und Abflüsse, im ersten Kompartiment enthalten sein. Dadurch kann die Oberfläche, welche für die Wechselwirkung zwischen den Substanzen des ersten und zweiten Kompartiments und zwischen den Substanzen des ersten und dritten Kompartiments zur Verfügung steht, maximiert werden. Durch die Trennung der Zu- und Abflüsse der Kompartimente kann in jedem von Ihnen die Durchflussrate sowie die Durchflussrichtung der entsprechenden Substanz individuell eingestellt werden. According to further embodiments of the device, the lines of the second compartment and the lines of the third compartment, apart from their inflows and outflows, can be contained in the first compartment. This allows the surface that is used for the Interaction between the substances of the first and second compartment and between the substances of the first and third compartment is available to be maximized. By separating the inflows and outflows of the compartments, the flow rate and the flow direction of the corresponding substance can be set individually in each of them.
Gemäß weiteren Ausführungsformen der Vorrichtung können die Leitungen des zweiten Kompartiments und die Leitungen des dritten Kompartiments stets durch ein Teilvolumen des ersten Kompartiments voneinander getrennt sein. Anders ausgedrückt sind die Leitungen des zweiten Kompartiments und die des dritten Kompartiments stets in einem Abstand zueinander angeordnet, sodass zwischen diesen Leitungen, die im ersten Kompartiment enthaltene Substanz hindurchströmen kann. Diese Ausbildung ist zweckmäßig, da die Substanz im ersten Kompartiment die Zielsubstanz für die Wechselwirkung mit den Substanzen im zweiten und dritten Kompartiment darstellt. According to further embodiments of the device, the lines of the second compartment and the lines of the third compartment can always be separated from one another by a partial volume of the first compartment. In other words, the lines of the second compartment and those of the third compartment are always arranged at a distance from one another, so that the substance contained in the first compartment can flow through between these lines. This design is useful because the substance in the first compartment is the target substance for interaction with the substances in the second and third compartment.
Gemäß weiteren Ausführungsformen der Vorrichtung kann das erste Kompartiment einen Zufluss und einen Abfluss aufweisen, um Blut durch das erste Kompartiment zu leiten, wobei der Zufluss und Abfluss derart angeordnet sind, dass im Betrieb der Vorrichtung ein Fluss der wässrigen Flüssigkeit durch das erste Kompartiment hindurch einstellbar ist. Der Zufluss und der Abfluss können zweckmäßigerweise auf gegenüberliegenden Seiten des Kompartiments angeordnet sein, so dass die wässrige Flüssigkeit im Wesentlichen das gesamte erste Kompartiment durchströmt (vertikal, horizontal oder schräg, bezogen auf die Wirkungsrichtung der Gravitation), um von dessen Zufluss zu dessen Abfluss zu gelangen.According to further embodiments of the device, the first compartment can have an inflow and an outflow in order to conduct blood through the first compartment, the inflow and outflow being arranged such that a flow of the aqueous liquid through the first compartment can be set during operation of the device is. The inflow and the outflow can expediently be arranged on opposite sides of the compartment so that the aqueous liquid essentially flows through the entire first compartment (vertically, horizontally or obliquely, based on the direction of action of gravity) in order to move from its inflow to its outflow reach.
Die erfindungsgemäße Vorrichtung kann weitere fluidtechnische Elemente aufweisen, wie z.B. Durchflussbegrenzer, Heizer und dergleichen. Im Kreislauf, welcher durch das dritte Kompartiment zirkuliert, kann beispielsweise ein pH-Sensor angeordnet sein. Dadurch ein geschlossener Regelkreis bereitgestellt werden, in welchem der pH-Wert des flüssigen Protonendonators automatisch auf den pH-Wert des Blutes geregelt werden kann. Bei zu geringem pH-Wert des flüssigen Protonendonators kann beispielsweise dessen Durchflussgeschwindigkeit durch das dritte Kompartiment verlangsamt werden. Alternativ kann der pH-Sensor auch im ersten Kompartiment bereitgestellt sein, um direkt den pH- Wert der wässrigen Flüssigkeit zu messen. In verschiedenen Ausführungsformen wird ferner eine Zusammensetzung bereitgestellt, enthaltend einen flüssigen Protonendonator, der das dritte Kompartiment der erfindungsgemäßen Vorrichtung durchströmt, zur Verwendung in einem Verfahren zur Behandlung bzw. Therapie von Hyperkapnie. The device according to the invention can have further fluid-technical elements, such as, for example, flow restrictors, heaters and the like. A pH sensor, for example, can be arranged in the circuit that circulates through the third compartment. As a result, a closed control loop can be provided in which the pH value of the liquid proton donor can be automatically regulated to the pH value of the blood. If the pH of the liquid proton donor is too low, for example, its flow rate through the third compartment can be slowed down. Alternatively, the pH sensor can also be provided in the first compartment in order to measure the pH value of the aqueous liquid directly. In various embodiments, a composition is also provided containing a liquid proton donor, which flows through the third compartment of the device according to the invention, for use in a method for the treatment or therapy of hypercapnia.
In verschiedenen Ausführungsformen wird ferner eine Verwendung einer Zusammensetzung enthaltend einen flüssigen Protonendonator bereitgestellt, der das dritte Kompartiment der erfindungsgemäßen Vorrichtung durchströmt, zur Behandlung von Hyperkapnie. Die Verwendung der Zusammensetzung kann zugleich beinhalten, dass das erste Kompartiment der erfindungsgemäßen Vorrichtung von Blut durchströmt wird und das zweite Kompartiment der erfindungsgemäßen Vorrichtung von einem Spülgas durchströmt wird.In various embodiments, a use of a composition containing a liquid proton donor, which flows through the third compartment of the device according to the invention, for the treatment of hypercapnia is also provided. The use of the composition can at the same time include blood flowing through the first compartment of the device according to the invention and a flushing gas flowing through the second compartment of the device according to the invention.
Gemäß weiteren Ausführungsformen der Zusammensetzung oder der erfindungsgemäßen Verwendung der Zusammensetzung kann der flüssige Protonendonator eine Säure, welche bevorzugt nicht toxisch ist, beispielsweise Salzsäure, oder eine saure Pufferlösung aufweisen. Die saure Pufferlösung kann relativ zum physiologischen pH-Wert von But, welcher beim Menschen zwischen 7,35 und 7,45 liegt, leicht übersäuert sein und beispielsweise einen pH-Wert im Bereich zwischen 6,5 und 7 aufweisen. In weiteren Ausführungsbeispielen kann die saure Pufferlösung einen pH-Wert im Bereich zwischen 4 und 6,5, bevorzugt zwischen 4 und 6, weiter bevorzugt zwischen 4 und 5,5, weiter bevorzugt zwischen 4 und 5, weiter bevorzugt zwischen 4 und 4,5 aufweisen, According to further embodiments of the composition or the use according to the invention of the composition, the liquid proton donor can contain an acid which is preferably non-toxic, for example hydrochloric acid, or an acidic buffer solution. The acidic buffer solution can be slightly over-acidic relative to the physiological pH value of But, which is between 7.35 and 7.45 in humans and, for example, have a pH value in the range between 6.5 and 7. In further exemplary embodiments, the acidic buffer solution can have a pH in the range between 4 and 6.5, preferably between 4 and 6, more preferably between 4 and 5.5, more preferably between 4 and 5, more preferably between 4 and 4.5 exhibit,
Gemäß weiteren Ausführungsformen der Zusammensetzung oder der erfindungsgemäßen Verwendung der Zusammensetzung kann in dem flüssigen Protonendonator mindestens eine physiologisch relevante Metallkationenart in einer mindestens physiologischen Konzentration enthalten sein. Bevorzugt können in dem flüssigen Protonendonator mehrere oder im Wesentlichen alle physiologisch relevanten Metallkationen (K+, Ca2+ und Mg2+) mindestens in ihrer jeweiligen physiologischen Konzentration enthalten sein. Anders ausgedrückt können die physiologisch relevanten Metallkationen im flüssigen Protonendonator in der jeweils gleichen oder höheren Konzentration wie im Blutserum vorliegen. Dadurch kann verhindert werden, dass aufgrund eines Konzentrationsgradienten dem Blut die physiologisch relevanten Metallkationen entzogen werden und in das dritte Kompartiment diffundieren. Bevorzugt ist in dem flüssigen Protonendonator jedoch kein Natrium enthalten. Dadurch besteht im Betrieb der erfindungsgemäßen Vorrichtung ein Konzentrationsgradient zwischen dem ersten Kompartiment und dem dritten Kompartiment bezüglich Natrium, wodurch, wie bereits erläutert, eine Selektion hinsichtlich des Austauschions vorgenommen wird, welches im Gegenzug für das vom flüssigen Protonendonator gespendete Wasserstoffkation aus dem ersten Kompartiment in das dritte Kompartiment diffundiert. According to further embodiments of the composition or the inventive use of the composition, the liquid proton donor can contain at least one physiologically relevant type of metal cation in an at least physiological concentration. The liquid proton donor can preferably contain several or essentially all physiologically relevant metal cations (K + , Ca 2+ and Mg 2+ ) at least in their respective physiological concentration. In other words, the physiologically relevant metal cations can be present in the liquid proton donor in the same or higher concentration as in the blood serum. This can prevent the physiologically relevant metal cations from being withdrawn from the blood due to a concentration gradient and diffusing into the third compartment. However, the liquid proton donor preferably does not contain any sodium. As a result, there is a during operation of the device according to the invention Concentration gradient between the first compartment and the third compartment with respect to sodium, whereby, as already explained, a selection is made with regard to the exchange which diffuses from the first compartment into the third compartment in return for the hydrogen cation donated by the liquid proton donor.
Gemäß weiteren Ausführungsformen der erfindungsgemäßen Zusammensetzung oder der erfindungsgemäßen Verwendung der Zusammensetzung kann die Hyperkapnie durch COPD (chronische obstruktive Lungenerkrankung), ARDS (akutes Lungenversagen), Asthma, Pneumonie oder Schlafapnoe bedingt sein. According to further embodiments of the composition according to the invention or the use of the composition according to the invention, the hypercapnia can be caused by COPD (chronic obstructive pulmonary disease), ARDS (acute lung failure), asthma, pneumonia or sleep apnea.
Gemäß weiteren Ausführungsformen der Zusammensetzung oder der erfindungsgemäßen Verwendung der Zusammensetzung kann die Zusammensetzung ferner ein Spülgas aufweisen, welches das zweite Kompartiment einer hierin beschriebenen Vorrichtung durchströmt. Bei dem Spülgas kann es sich um das übliche bei einer ECMO-Behandlung verwendete Spülgas handeln. According to further embodiments of the composition or the inventive use of the composition, the composition can furthermore have a flushing gas which flows through the second compartment of a device described herein. The flushing gas can be the usual flushing gas used in an ECMO treatment.
Gemäß weiteren Ausführungsformen der Zusammensetzung oder der erfindungsgemäßen Verwendung der Zusammensetzung kann die Behandlung die folgenden Schritte umfassen: Bereitstellen einer Strömung der wässrigen Flüssigkeit durch das erste Kompartiment; Bereitstellen einer Strömung des Spülgases durch das zweite Kompartiment; und Bereitstellen einer Strömung des flüssigen Protonendonators durch das dritte Kompartiment. According to further embodiments of the composition or the use according to the invention of the composition, the treatment can comprise the following steps: providing a flow of the aqueous liquid through the first compartment; Providing a flow of the purge gas through the second compartment; and providing a flow of the liquid proton donor through the third compartment.
Nachfolgend werden bevorzugte Ausführungsbeispiele der Erfindung anhand der beigefügten Zeichnungen genauer erläutert. Preferred exemplary embodiments of the invention are explained in more detail below with reference to the accompanying drawings.
Figur 1 zeigt den schematischen Aufbau einer Vorrichtung zum Entfernen eines Gases aus einer wässrigen Flüssigkeit gemäß verschiedenen Ausführungsbeispielen. FIG. 1 shows the schematic structure of a device for removing a gas from an aqueous liquid according to various exemplary embodiments.
Figur 2 zeigt eine schematische Ansicht der drei Kompartimente und die ablaufenden chemischen Reaktionen im Betrieb der erfindungsgemäßen Vorrichtung. FIG. 2 shows a schematic view of the three compartments and the chemical reactions taking place during operation of the device according to the invention.
Figuren 3A bis 3C zeigen mögliche Lagen der drei Kompartimente der erfindungsgemäßen Vorrichtung relativ zueinander. In Figur 1 ist ein schematischer Aufbau der erfindungsgemäßen Vorrichtung 1 zum Entfernen eines Gases aus einer wässrigen Flüssigkeit in einer Seitenansicht dargestellt. Bei der Darstellung liegt der Fokus auf dem Wechselwirkungsraum der Vorrichtung 1, also dem Bereich, in dem die Substanzen in den jeweiligen Kompartimenten miteinander in Wechselwirkung treten können; die übrigen fluidtechnischen Bestandteile (Leitungen, Pumpen, Sensoren usw.) sind weggelassen worden. Die Vorrichtung 1 weist ein erstes Kompartiment 2, ein zweites Kompartiment 3 und ein drittes Kompartiment 4 auf. Jedes der Kompartimente 2, 3, 4 weist jeweils zwei Anschlüsse auf: das erste Kompartiment 2 weist einen ersten Anschluss 21 und einen zweiten Anschluss 22 auf, dass zweite Kompartiment 3 weist einen dritten Anschluss 31 und einen vierten Anschluss 32 und das dritte Kompartiment 4 weist einen fünften Anschluss 41 und einen sechsten Anschluss 42 auf. Jeweils ein Anschluss jedes der Kompartimente 2, 3, 4 fungiert im Betrieb der erfindungsgemäßen Vorrichtung als Zufluss und der entsprechend andere Anschluss fungiert als Abfluss, je nachdem, in welcher Richtung das entsprechende Kompartiment von der jeweiligen Substanz durchströmt werden soll. Zwischen jedem Anschlusspaar eines jeweiligen Kompartiments 2, 3, 4 kann beispielsweise eine Pumpe angeordnet sein, um einen Kreislauf der Substanz aufrecht zu erhalten. FIGS. 3A to 3C show possible positions of the three compartments of the device according to the invention relative to one another. In FIG. 1, a schematic structure of the device 1 according to the invention for removing a gas from an aqueous liquid is shown in a side view. In the illustration, the focus is on the interaction space of the device 1, that is to say the area in which the substances in the respective compartments can interact with one another; the other fluid-technical components (lines, pumps, sensors, etc.) have been left out. The device 1 has a first compartment 2, a second compartment 3 and a third compartment 4. Each of the compartments 2, 3, 4 has two connections: the first compartment 2 has a first connection 21 and a second connection 22, the second compartment 3 has a third connection 31 and a fourth connection 32 and the third compartment 4 has a fifth port 41 and a sixth port 42. One connection of each of the compartments 2, 3, 4 functions as an inflow when the device according to the invention is in operation and the corresponding other connection functions as an outflow, depending on the direction in which the respective substance is to be flowed through the corresponding compartment. For example, a pump can be arranged between each connection pair of a respective compartment 2, 3, 4 in order to maintain a circulation of the substance.
Das erste Kompartiment 2, welches von der wässrigen Flüssigkeit durchströmt wird, kann eine beliebige Form, beispielsweise, wie in Figur 1 gezeigt, eine zylindrische Form aufweisen. Nahe am Boden und nahe am Deckel eines Kompartiments kann jeweils ein Anschluss angebracht sein. Das zweite Kompartiment 3 weist eine Mehrzahl von ersten Leitungen 33 auf, bevorzugt Hohlfasern, welche eine Fluidverbindung zwischen dem dritten Anschluss 31 und dem vierten Anschluss 32 bereitstellen. Sowohl im oberen wie auch im unteren Bereich des Wechselwirkungsraumes der Vorrichtung 1 mündet der dritte Anschluss 31 und der vierte Anschluss 32 jeweils in ein Reservoir, was kein zwingendes Merkmal ist, wobei sich in dem gezeigten Ausführungsbeispiel jedes Reservoir über die gesamte Grundfläche des Wechselwirkungsraums erstreckt. Die ersten Leitungen 33 verbinden die beiden Reservoirs miteinander. In analoger Weise weist das dritte Kompartiment 4 eine Mehrzahl von zweiten Leitungen 43 auf, bevorzugt Hohlfasern, welche zwischen dem fünften Anschluss 41 und dem sechsten Anschluss 42 angeordnet sind. Sowohl im oberen wie auch im unteren Bereich des Wechselwirkungsraumes der Vorrichtung 1 mündet der fünfte Anschluss 41 und der sechste Anschluss 42 jeweils in ein Reservoir, wobei sich im gezeigten Ausführungsbeispiel jedes Reservoir über die gesamte Grundfläche des Wechselwirkungsraumes 1 erstreckt. Da die Reservoirs des zweiten Kompartiments 3 von außen betrachtet die Reservoirs des dritten Kompartiments 4 umschließen bzw. darüber und darunter angeordnet sind, verlaufen die ersten Leitungen 33 durch die Reservoirs des dritten Kompartiments 4. Dazu sind die zweiten Leitungen 43 des dritten Kompartiments 4 zweckmäßigerweise länger ausgeführt als die ersten Leitungen 33 des zweiten Kompartiments 3, da erstere noch durch die Reservoirs des dritten Kompartiments 4 verlaufen. Zur rechten Seite der Seitenansicht des Wechselwirkungsraumes der Vorrichtung 1 ist eine Querschnittsansicht Q im mittleren Bereich des Wechselwirkungsraumes in einer Draufsicht gezeigt. In der Querschnittsansicht Q sieht man, dass die ersten Leitungen 33 des zweiten Kompartiments 3 und die zweiten Leitungen 43 des dritten Kompartiments 4 jeweils in einem Abstand zueinander durch das erste Kompartiment 2 verlaufen. Zudem sind die ersten Leitungen 33 und die zweiten Leitungen 43 in einem Abstand zueinander im Volumen des ersten Kompartiments 2 angeordnet. The first compartment 2 through which the aqueous liquid flows can have any shape, for example, as shown in FIG. 1, a cylindrical shape. A connector can be attached close to the bottom and close to the lid of a compartment. The second compartment 3 has a plurality of first lines 33, preferably hollow fibers, which provide a fluid connection between the third connection 31 and the fourth connection 32. Both in the upper as well as in the lower area of the interaction space of the device 1, the third connection 31 and the fourth connection 32 each open into a reservoir, which is not a mandatory feature, with each reservoir extending over the entire base area of the interaction space in the exemplary embodiment shown. The first lines 33 connect the two reservoirs to one another. In an analogous manner, the third compartment 4 has a plurality of second lines 43, preferably hollow fibers, which are arranged between the fifth connection 41 and the sixth connection 42. Both in the upper and in the lower area of the interaction space of the device 1, the fifth connection 41 and the sixth connection 42 each open into a reservoir, whereby in the exemplary embodiment shown each reservoir extends over the entire base area of the interaction space 1. Since the reservoirs of the second compartment 3, viewed from the outside, enclose the reservoirs of the third compartment 4 or are arranged above and below them, the first lines 33 run through the reservoirs of the third compartment 4. For this purpose, the second lines 43 of the third compartment 4 are expediently longer designed as the first lines 33 of the second compartment 3, since the former still run through the reservoirs of the third compartment 4. On the right side of the side view of the interaction space of the device 1, a cross-sectional view Q is shown in the middle region of the interaction space in a plan view. In the cross-sectional view Q it can be seen that the first lines 33 of the second compartment 3 and the second lines 43 of the third compartment 4 each run through the first compartment 2 at a distance from one another. In addition, the first lines 33 and the second lines 43 are arranged at a distance from one another in the volume of the first compartment 2.
Es sei darauf hingewiesen, dass die Anordnung bzw. Lage des zweiten Kompartiments 3 und des dritten Kompartiments 4, wie sie in Figur 1 gezeigt ist, eine von vielen Anordnungsmöglichkeiten verkörpert. So kann in einem weiteren Ausführungsbeispiel die Lage des zweiten und dritten Kompartiments 3, 4, wie in Figur 1 dargestellt, gegeneinander vertauscht sein. Ferner kann generell in jedem der Kompartimente 2, 3, 4 die Durchflussrichtung (in Figur 1 wäre das von oben nach unten oder von unten nach oben) der darin strömenden Substanz individuell und unabhängig von den jeweils anderen beiden Kompartimenten eingestellt werden. Die Anzahl und der Querschnitt der ersten Leitungen 33 und der zweiten Leitungen 43 kann nach Bedarf gewählt werden. It should be pointed out that the arrangement or position of the second compartment 3 and the third compartment 4, as shown in FIG. 1, embodies one of many possible arrangements. Thus, in a further exemplary embodiment, the position of the second and third compartments 3, 4, as shown in FIG. 1, can be interchanged. Furthermore, in each of the compartments 2, 3, 4, the flow direction (in FIG. 1 this would be from top to bottom or from bottom to top) of the substance flowing therein can be set individually and independently of the other two compartments. The number and the cross section of the first lines 33 and the second lines 43 can be selected as required.
In Figur 2 sind die im Betrieb der erfindungsgemäßen Vorrichtung 1 ablaufenden chemischen Prozesse veranschaulicht, die zwischen dem ersten und zweiten Kompartiment 2, 3 und zwischen dem ersten und dritten Kompartiment 2, 4 ablaufen. Das erste Kompartiment 2 wird von der wässrigen Flüssigkeit, bevorzugt Blut, durchströmt, aus welcher ein Gas, bevorzugt Kohlenstoffdioxid, entfernt werden soll. In der Blutflüssigkeit ist physikalisch gelöstes Kohlenstoffdioxid enthalten. Zusätzlich befinden sich in der Blutflüssigkeit physiologisch relevante Metallkationen in ihrer jeweiligen physiologischen Konzentration. Diese Metallkationen sind in Bicarbonat-Verbindungen gebunden. Zugleich ist in den Bicarbonat-Verbindungen Kohlenstoffdioxid chemisch gebunden. In FIG. 2, the chemical processes taking place during the operation of the device 1 according to the invention are illustrated, which take place between the first and second compartments 2, 3 and between the first and third compartments 2, 4. The first compartment 2 is flowed through by the aqueous liquid, preferably blood, from which a gas, preferably carbon dioxide, is to be removed. The blood fluid contains physically dissolved carbon dioxide. In addition, there are physiologically relevant metal cations in their respective physiological ones in the blood fluid Concentration. These metal cations are bound in bicarbonate compounds. At the same time, carbon dioxide is chemically bound in the bicarbonate compounds.
Durch das zweite Kompartiment 3 strömt das Spülgas, welches üblicherweise reinen Sauerstoff (02) enthält. Zwischen dem ersten Kompartiment 2 und dem dritten Kompartiment 3 ist die semipermeable Membran 5 angeordnet. Durch einen Konzentrationsgradienten zwischen dem ersten Kompartiment 2 und dem zweiten Kompartiment 3 bezüglich Kohlenstoffdioxid (C02) wird das im Blut 7 physikalisch gebundene Kohlenstoffdioxid herausgelöst und über die semipermeable Membran 5 diffundiert es in das zweite Kompartiment 3. Im Austausch dafür diffundiert Sauerstoff aus dem Spülgas über die semipermeable Membran 5 in die Blutflüssigkeit und wird darin von den Erythrozyten 7 aufgenommen. Dieser bereits aus der üblichen ECMO-Anwendung wohlbekannte Vorgang ist im ersten markierten Bereich 8 skizziert. The flushing gas, which usually contains pure oxygen (O 2 ), flows through the second compartment 3. The semipermeable membrane 5 is arranged between the first compartment 2 and the third compartment 3. A concentration gradient between the first compartment 2 and the second compartment 3 with respect to carbon dioxide (C0 2 ) releases the carbon dioxide physically bound in the blood 7 and diffuses into the second compartment 3 via the semipermeable membrane 5. In exchange, oxygen diffuses from the flushing gas Via the semipermeable membrane 5 into the blood fluid and is taken up therein by the erythrocytes 7. This process, which is already well known from the usual ECMO application, is sketched in the first marked area 8.
Das in den Bicarbonat-Verbindungen chemisch gebundene Kohlenstoffdioxid wird mithilfe des das dritte Kompartiment 4 durchströmenden flüssigen Protonensenators aus den Bicarbonat-Verbindungen herausgelöst. Durch die zwischen dem ersten Kompartiment 2 und dem dritten Kompartiment 4 angeordnete für Ionen permeable Membran 6 findet ein Kationaustausch statt, welcher in dem zweiten markierten Bereich 9 skizziert ist. Auch dieser Vorgang wird durch einen Konzentrationsgradienten bezüglich eines Austauschions induziert. Im gezeigten Ausführungsbeispiel der Oxygenierung von Blut handelt es sich bei dem Austauschion um Natrium (Na+), welches im gezeigten Beispiel das Zielaustauschion darstellt. Das Natrium diffundiert durch die für Ionen permeabel Membran 6 in das (natriumarme) dritte Kompartiment 4. Im Gegenzug dafür diffundieren im flüssigen Protonendonator enthaltene Wasserstoffkationen aus dem dritten Kompartiment 4 in das erste Kompartiment 2. Das Wasserstoffkation bindet an das Bicarbonat (HCO~ 3), wodurch es zur Bildung von Kohlensäure (H2C03) kommt, welche jedoch instabil ist und letztlich relativ schnell zu Wasser (H20) und Kohlendioxid zerfällt. Das so freigewordene Kohlenstoffdioxid- Molekül wandert analog zu den physikalisch gelösten Kohlenstoffdioxid-Molekülen über die semipermeable Membran 5 in das zweite Kompartiment 3. Der flüssige Protonendonator im dritten Kompartiment 4 dient damit zur Freisetzung des chemisch gebundenen Kohlenstoffdioxids, während der Abtransport des so freigesetzten Kohlenstoffdioxids aus der Blutflüssigkeit nach wie vor mittels des das zweite Kompartiment 3 durchströmenden Spülgases erfolgt. The carbon dioxide chemically bound in the bicarbonate compounds is released from the bicarbonate compounds with the aid of the liquid proton sensor flowing through the third compartment 4. A cation exchange takes place through the ion-permeable membrane 6 arranged between the first compartment 2 and the third compartment 4, which is shown in the second marked area 9. This process is also induced by a concentration gradient with respect to an exchange. In the illustrated embodiment of the oxygenation of blood, the exchange ion is sodium (Na + ), which in the example shown represents the target exchange ion. The sodium diffuses through the ion-permeable membrane 6 into the (low-sodium) third compartment 4. In return, hydrogen cations contained in the liquid proton donor diffuse from the third compartment 4 into the first compartment 2. The hydrogen cation binds to the bicarbonate (HCO ~ 3 ) , which leads to the formation of carbonic acid (H 2 C0 3 ), which, however, is unstable and ultimately breaks down relatively quickly into water (H 2 0) and carbon dioxide. The carbon dioxide molecule released in this way migrates analogously to the physically dissolved carbon dioxide molecules via the semipermeable membrane 5 into the second compartment 3. The liquid proton donor in the third compartment 4 thus serves to release the chemically bound carbon dioxide while the carbon dioxide released in this way is transported away the Blood fluid is still carried out by means of the flushing gas flowing through the second compartment 3.
Generell gibt es für die Ausgestaltung des Wechselwirkungsraums zwischen den drei Substanzen, insbesondere für die räumliche Anordnung der ersten Leitungen 33 des zweiten Kompartiments 3 und der zweiten Leitungen 43 des dritten Kompartiments 4 relativ zueinander und innerhalb des ersten Kompartiments 2 viele unterschiedliche Möglichkeiten. Drei grundlegende Ausgestaltungen sind in den Figuren 3A bis 3C skizziert. In den Figuren repräsentiert jeweils ein Balken ein Kompartiment im Wechselwirkungsbereich der Vorrichtung 1 und ist entsprechend mit dem Bezugszeichen des jeweiligen Kompartiments versehen. Die Längsausdehnung jedes Balkens definiert zugleich die Achse, entlang welcher das jeweilige Kompartiment von der dazugehörigen Substanz durchströmt wird. Demnach ergeben sich pro Kompartiment 2, 3, 4 grundlegend zwei Durchströmungsrichtungen. In general, there are many different possibilities for the design of the interaction space between the three substances, in particular for the spatial arrangement of the first lines 33 of the second compartment 3 and the second lines 43 of the third compartment 4 relative to one another and within the first compartment 2. Three basic configurations are outlined in FIGS. 3A to 3C. In the figures, a bar represents a compartment in the interaction area of the device 1 and is correspondingly provided with the reference number of the respective compartment. The longitudinal extent of each bar also defines the axis along which the respective compartment is flowed through by the associated substance. Accordingly, there are basically two flow directions per compartment 2, 3, 4.
Die in Figur 3A skizzierte Ausgestaltung entspricht im Wesentlichen der in Figur 1 gezeigten Ausführungsform der erfindungsgemäßen Vorrichtung 1, bei der die Leitungen des zweiten Kompartiments 3 und des dritten Kompartiments 4 parallel zueinander ausgerichtet sind und die Strömungsrichtungen der Substanzen durch alle drei Kompartimente 2,3, 4 parallel zueinander ausgerichtet sind. Die tatsächliche Strömungsrichtung der Substanz durch ein jeweiliges Kompartiment kann, unabhängig von den Strömungsrichtungen in den anderen beiden Kompartimenten, von oben nach unten oder von unten nach oben erfolgen. Die in Figur 3A skizzierte Lage der Kompartimente 2,3, 4 im Wechselwirkungsbereich 1 r dient nur der Darstellung der relativen Anordnung der Durchflussrichtungen durch die Kompartimente relativ zueinander, so dass insbesondere die Anzahl der dargestellten Balken nicht der Anzahl der zu einem Kompartiment dazugehörigen Leitungen entspricht. Die Anzahl und die Anordnung der das zweite Kompartiment 3 und das dritte Kompartiment 4 bildenden Hohlkanäle relativ zueinander kann vielfältig ausgestaltet werden. Ein Beispiel hierfür ist in der Querschnittsansicht Q in Figur 1 dargestellt, wo zu sehen ist, dass die ersten Leitungen 33 ein hexagonales Gitter bilden und die zweiten Leitungen 43 in den mitten der Hexagone angeordnet sind (bis auf die randseitig angeordneten zweiten Leitungen 43). Ferner können die Leitungen des zweiten Kompartiments 3 und des dritten Kompartiments 4 in alternierenden Reihen hintereinander bzw. nebeneinander oder in sonstigen geometrischen Mustern angeordnet werden. Gemäß der in Figur 3B dargestellten Anordnung der Kompartimente 2, 3,4 relativ zueinander ist die Durchflussrichtung der wässrigen Flüssigkeit durch das erste Kompartiment 2 senkrecht zu den Durchflussrichtungen der Substanzen durch das zweite Kompartiment 3 und durch das dritte Kompartiment 4. Grundsätzlich kann die Anordnung der Leitungen des zweiten Kompartiments 3 und des vierten Kompartiments 4 relativ zueinander einer der Anordnungen entsprechen, welche in Bezug auf die Figur 3A erwähnt worden sind. The configuration sketched in FIG. 3A essentially corresponds to the embodiment of the device 1 according to the invention shown in FIG. 1, in which the lines of the second compartment 3 and the third compartment 4 are aligned parallel to one another and the flow directions of the substances through all three compartments 2, 3, 4 are aligned parallel to each other. The actual direction of flow of the substance through a respective compartment can be from top to bottom or from bottom to top, regardless of the flow directions in the other two compartments. The position of the compartments 2, 3, 4 in the interaction area 1 r sketched in FIG. 3A only serves to illustrate the relative arrangement of the flow directions through the compartments relative to one another, so that in particular the number of bars shown does not correspond to the number of lines belonging to a compartment . The number and the arrangement of the hollow channels forming the second compartment 3 and the third compartment 4 relative to one another can be configured in a variety of ways. An example of this is shown in the cross-sectional view Q in FIG. 1, where it can be seen that the first lines 33 form a hexagonal grid and the second lines 43 are arranged in the middle of the hexagons (apart from the second lines 43 arranged on the edge). Furthermore, the lines of the second compartment 3 and the third compartment 4 can be arranged in alternating rows one behind the other or next to one another or in other geometric patterns. According to the arrangement of the compartments 2, 3, 4 relative to one another shown in FIG. 3B, the direction of flow of the aqueous liquid through the first compartment 2 is perpendicular to the directions of flow of the substances through the second compartment 3 and through the third compartment 4 Lines of the second compartment 3 and the fourth compartment 4 correspond relative to one another to one of the arrangements which have been mentioned with reference to FIG. 3A.
Schließlich ist in Figur 3C eine weitere mögliche Ausgestaltung des Wechselwirkungsraums der Vorrichtung dargestellt, bei welcher die Durchflussrichtungen durch das zweite Kompartiment 3 und durch das dritte Kompartiment 4 senkrecht zur Durchflussrichtung durch das erste Kompartiment 2 sind. In Abwandlung zu der in Figur 3B dargestellten Ausgestaltung sind jedoch zusätzlich die Hohlkanäle des zweiten Kompartiments 3 unter einem Winkel a zu den Hohlkanälen des ersten Kompartiments 2 angeordnet, so dass entsprechend die Durchflussrichtungen ebenfalls unter dem Winkel a relativ zueinander angeordnet sind. Der Winkel a kann beispielsweise bevorzugt 90° entsprechen. Die Leitungen des zweiten Kompartiments 3 und die zweiten Leitungen des drittenFinally, FIG. 3C shows a further possible embodiment of the interaction space of the device, in which the flow directions through the second compartment 3 and through the third compartment 4 are perpendicular to the flow direction through the first compartment 2. In a modification of the embodiment shown in Figure 3B, however, the hollow channels of the second compartment 3 are additionally arranged at an angle a to the hollow channels of the first compartment 2, so that the flow directions are accordingly also arranged at the angle a relative to one another. The angle a can, for example, preferably correspond to 90 °. The lines of the second compartment 3 and the second lines of the third
Kompartiments 4 können dabei im Wesentlichen eine rechteckige bzw. quadratische Gitterstruktur ausbilden (aus Sicht der das erste Kompartiment 2 durchströmenden wässrigen Flüssigkeit), dessen Zwischenräume von der wässrigen Flüssigkeit durchströmt werden. Die Gitterstruktur kann derart ausgestaltet sein, dass sich die Leitungen des zweiten Kompartiments 3 und die Leitungen des dritten Kompartiments 4 berühren und somitCompartment 4 can essentially form a rectangular or square lattice structure (from the point of view of the aqueous liquid flowing through the first compartment 2), the interstices of which are traversed by the aqueous liquid. The lattice structure can be designed in such a way that the lines of the second compartment 3 and the lines of the third compartment 4 touch one another and thus
Kreuzungspunkte der gitterartigen Struktur ausbilden. Alternativ können die Leitungen des zweiten Kompartiments 3 und die Leitungen des dritten Kompartiments 4 senkrecht zueinander in Reihen angeordnet sein, wobei die Reihen einen Abstand zueinander aufweisen. Form intersection points of the lattice-like structure. Alternatively, the lines of the second compartment 3 and the lines of the third compartment 4 can be arranged in rows perpendicular to one another, the rows being spaced apart from one another.

Claims

Ansprüche Expectations
1. Vorrichtung zum Entfernen eines Gases aus einer wässrigen Flüssigkeit, aufweisend: ein erstes Kompartiment, welches im Betrieb der Vorrichtung von Blutflüssigkeit, vorzugsweise Blut durchströmt wird; ein zweites Kompartiment, welches im Betrieb der Vorrichtung von einem Spülgas durchströmt wird, wobei das erste Kompartiment und das zweite Kompartiment durch eine semipermeable Membran voneinander getrennt sind; und ein drittes Kompartiment, welches im Betrieb der Vorrichtung von einem flüssigen Protonendonator, der eine organische oder anorganische Säure ist, durchströmt wird, wobei das erste Kompartiment und das dritte Kompartiment durch eine für Ionen permeable Membran voneinander getrennt sind, wobei die für Ionen permeable Membran zumindest einen Kationenleiter aufweist. 1. A device for removing a gas from an aqueous liquid, comprising: a first compartment through which blood fluid, preferably blood, flows when the device is in operation; a second compartment through which a flushing gas flows when the device is in operation, the first compartment and the second compartment being separated from one another by a semipermeable membrane; and a third compartment through which a liquid proton donor, which is an organic or inorganic acid, flows during operation of the device, the first compartment and the third compartment being separated from one another by an ion-permeable membrane, the ion-permeable membrane has at least one cation conductor.
2. Vorrichtung gemäß Anspruch 1, wobei durch die Wechselwirkung zwischen der Blutflüssigkeit und dem flüssigen Protonendonator durch die für Ionen permeable Membran in der Blutflüssigkeit gelöstes Kohlenstoffdioxid mit Wasserstoff-Ionen des Protonendonators zu Kohlensäure reagiert, wobei die Wasserstoff-Ionen, durch die für Ionen permeable Membran hindurch aus dem flüssigen Protonendonator in die Blutflüssigkeit diffundieren. 2. Device according to claim 1, wherein by the interaction between the blood fluid and the liquid proton donor through the membrane permeable for ions in the blood fluid, dissolved carbon dioxide reacts with hydrogen ions of the proton donor to form carbonic acid, the hydrogen ions being permeable for ions Diffuse through the membrane from the liquid proton donor into the blood fluid.
3. Vorrichtung gemäß Anspruch 1 oder2, wobei die entstehende Kohlensäure in Wasser und Kohlendioxid zerfällt, das vom Spülgas des zweiten Kompartiments abtransportiert werden kann. 3. Device according to claim 1 or 2, wherein the resulting carbonic acid breaks down into water and carbon dioxide, which can be transported away by the flushing gas of the second compartment.
4. Vorrichtung gemäß einem der Ansprüche 1 bis 3, wobei das zweite Kompartiment eine Mehrzahl von Leitungen, bevorzugt Hohlfasern, aus dem semipermeablen Material aufweist. 4. Device according to one of claims 1 to 3, wherein the second compartment has a plurality of lines, preferably hollow fibers, made of the semipermeable material.
5. Vorrichtung gemäß einem der Ansprüche 1 bis 4, wobei das dritte Kompartiment eine Mehrzahl von Leitungen, bevorzugt Hohlfasern, aus der für Ionen permeablen Membran aufweist. 5. Device according to one of claims 1 to 4, wherein the third compartment has a plurality of lines, preferably hollow fibers, from the membrane permeable to ions.
6. Vorrichtung gemäß einem der Ansprüche 1 bis 5, wobei die für Ionen permeable Membran einen Kationen- und Anionenleiter aufweist. 6. Device according to one of claims 1 to 5, wherein the membrane permeable to ions has a cation and anion conductor.
7. Vorrichtung gemäß einem der Ansprüche 4 bis 6, sofern auf die Ansprüche 3 und 4 rückbezogen, wobei die Leitungen des zweiten Kompartiments und die Leitungen des dritten Kompartiments, bis auf ihre Zu- und Abflüsse, im ersten Kompartiment enthalten sind. 7. Device according to one of claims 4 to 6, if back to claims 3 and 4, wherein the lines of the second compartment and the lines of the third compartment, except for their inflows and outflows, are contained in the first compartment.
8. Vorrichtung gemäß einem der Ansprüche 4 bis 7, sofern auf die Ansprüche 3 und 4 rückbezogen, wobei die Leitungen des zweiten Kompartiments und die Leitungen des dritten Kompartiments stets durch ein Teilvolumen des ersten Kompartiments voneinander getrennt sind. 8. Device according to one of claims 4 to 7, if back to claims 3 and 4, wherein the lines of the second compartment and the lines of the third compartment are always separated from each other by a partial volume of the first compartment.
9. Vorrichtung gemäß einem der Ansprüche 4 bis 8, wobei das erste Kompartiment einen Zufluss und einen Abfluss aufweist, um die wässrige Flüssigkeit durch das erste Kompartiment zu leiten, wobei der Zufluss und Abfluss derart angeordnet sind, dass im Betrieb der Vorrichtung ein Blutfluss durch das erste Kompartiment hindurch einstellbar ist. 9. Device according to one of claims 4 to 8, wherein the first compartment has an inflow and an outflow in order to conduct the aqueous liquid through the first compartment, the inflow and outflow being arranged in such a way that, during operation of the device, blood flows through the first compartment is adjustable through it.
10. Zusammensetzung, enthaltend einen flüssigen Protonendonator, der das dritte Kompartiment einer Vorrichtung gemäß einem der Ansprüche 1 bis 9 durchströmt, zur Verwendung in einem Verfahren zur Behandlung von Hyperkapnie. 10. A composition containing a liquid proton donor, which flows through the third compartment of a device according to any one of claims 1 to 9, for use in a method for the treatment of hypercapnia.
11. Verwendung einer Zusammensetzung, enthaltend einen flüssigen Protonendonator, der das dritte Kompartiment einer Vorrichtung gemäß einem der Ansprüche 1 bis 9 durchströmt, zur Behandlung von Hyperkapnie. 11. Use of a composition containing a liquid proton donor, which flows through the third compartment of a device according to one of claims 1 to 9, for the treatment of hypercapnia.
12. Zusammensetzung gemäß Anspruch 10 oder Verwendung gemäß Anspruch 11, wobei der flüssige Protonendonator eine Säure, welche bevorzugt nicht toxisch ist, oder eine saure Pufferlösung aufweist. 12. Composition according to claim 10 or use according to claim 11, wherein the liquid proton donor has an acid, which is preferably non-toxic, or an acidic buffer solution.
13. Zusammensetzung gemäß Anspruch 10 oder 12 oder Verwendung gemäß Anspruch 11 oder 12, wobei in dem flüssigen Protonendonator mindestens eine physiologisch relevante Metallkationenart in einer mindestens physiologischen Konzentration enthalten ist; und wobei in dem flüssigen Protonendonator bevorzugt kein Natrium enthalten ist. 13. Composition according to claim 10 or 12 or use according to claim 11 or 12, wherein the liquid proton donor contains at least one physiologically relevant type of metal cation in an at least physiological concentration; and wherein the liquid proton donor preferably does not contain any sodium.
14. Zusammensetzung gemäß einem der Ansprüche 10, 12 oder 13 oder Verwendung gemäß einem der Ansprüche 11 bis 13, wobei die Zusammensetzung ferner ein Spülgas aufweist, welches das zweite Kompartiment der Vorrichtung gemäß einem der Ansprüche 1 bis 8 durchströmt. 14. The composition according to any one of claims 10, 12 or 13 or use according to any one of claims 11 to 13, wherein the composition further comprises a purge gas which flows through the second compartment of the device according to one of claims 1 to 8.
15. Zusammensetzung gemäß einem der Ansprüche 10, 12 bis 14 oder Verwendung gemäß einem der Ansprüche 11 bis 14, wobei die Behandlung die folgenden Schritte umfasst: Bereitstellen einer Strömung der wässrigen Flüssigkeit durch das erste Kompartiment; Bereitstellen einer Strömung des Spülgases durch das zweite Kompartiment; Bereitstellen einer Strömung des flüssigen Protonendonators durch das dritte Kompartiment. 15. A composition according to any one of claims 10, 12 to 14 or use according to any one of claims 11 to 14, wherein the treatment comprises the steps of: providing a flow of the aqueous liquid through the first compartment; Providing a flow of the purge gas through the second compartment; Providing a flow of the liquid proton donor through the third compartment.
EP21710192.2A 2020-02-18 2021-02-17 Device for removing a gas from an aqueous liquid Pending EP4106908A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020104117.9A DE102020104117A1 (en) 2020-02-18 2020-02-18 Device for removing a gas from an aqueous liquid
PCT/EP2021/053800 WO2021165277A1 (en) 2020-02-18 2021-02-17 Device for removing a gas from an aqueous liquid

Publications (1)

Publication Number Publication Date
EP4106908A1 true EP4106908A1 (en) 2022-12-28

Family

ID=74859395

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21710192.2A Pending EP4106908A1 (en) 2020-02-18 2021-02-17 Device for removing a gas from an aqueous liquid

Country Status (7)

Country Link
US (1) US20230083534A1 (en)
EP (1) EP4106908A1 (en)
JP (1) JP2023514314A (en)
CN (1) CN115397546A (en)
CA (1) CA3167907A1 (en)
DE (1) DE102020104117A1 (en)
WO (1) WO2021165277A1 (en)

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10017690A1 (en) * 2000-04-08 2001-10-25 Simmoteit Robert Device for mass exchange and cultivation of cells
CN101262931A (en) * 2005-04-21 2008-09-10 联邦高等教育系统匹兹堡大学 Paracorporeal respiratory assist lung
US20070048350A1 (en) * 2005-08-31 2007-03-01 Robert Falotico Antithrombotic coating for drug eluting medical devices
ITMI20070913A1 (en) 2007-05-07 2008-11-08 Antonio Pesenti BLOOD TREATMENT METHOD TO ELIMINATE AT LEAST PARTIALLY THE CONTENT OF CARBON DIOXIDE AND ITS DEVICE.
AU2008293431B2 (en) * 2007-08-31 2013-07-04 Cytopherx, Inc. Selective cytopheresis devices and related methods thereof
DE102009008601A1 (en) * 2009-02-12 2010-08-19 Novalung Gmbh Device for the treatment of a biological fluid
ITBO20090437A1 (en) * 2009-07-07 2011-01-08 Hemodec S R L EQUIPMENT FOR BLOOD TREATMENT
DE102011052187A1 (en) * 2011-07-27 2013-01-31 Maquet Vertrieb Und Service Deutschland Gmbh Arrangement for removing carbon dioxide from an extracorporeal blood stream by means of inert gases
DE102014011675A1 (en) * 2014-08-05 2016-02-11 Fresenius Medical Care Deutschland Gmbh Process for washing out gas bubbles in an extracorporeal blood circulation
DE102015000021A1 (en) * 2015-01-07 2016-07-07 Enmodes Gmbh Device for mass transfer between blood and a gas / gas mixture
WO2017084682A1 (en) * 2015-11-20 2017-05-26 Hepa Wash Gmbh Method for extracorporeal carbon dioxide removal
DE102017000896A1 (en) * 2017-02-01 2018-08-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Selective release system for tumor therapeutics and tumor diagnostics and biosensor for tumor tissue
CN111182929B (en) * 2017-09-17 2023-08-15 S·P·凯勒 System, device and method for extracorporeal removal of carbon dioxide
GB2568813B (en) * 2017-10-16 2022-04-13 Terumo Cardiovascular Sys Corp Extracorporeal oxygenator with integrated air removal system

Also Published As

Publication number Publication date
JP2023514314A (en) 2023-04-05
DE102020104117A1 (en) 2021-08-19
WO2021165277A1 (en) 2021-08-26
CA3167907A1 (en) 2021-08-26
US20230083534A1 (en) 2023-03-16
CN115397546A (en) 2022-11-25

Similar Documents

Publication Publication Date Title
DE2325538C2 (en) Apparatus and method for treating body fluid
DE2553379C2 (en) Electrodialyzer
DE69027052T2 (en) DIALYSAT PRODUCTION SYSTEM WITH PILLS
DE931944C (en) Process for the continuous electrodialytic separation of solutions in multi-cell apparatus and device for performing the process
DE69725395T2 (en) Combined arrangement of a chamber for venous blood and a cardiotomy chamber in an extracorporeal blood circuit
EP2396052B1 (en) Device for the treatment of a biological fluid
DE1642887A1 (en) Method of concentrating and separating ions
DE2911508A1 (en) FLUID TREATMENT DEVICE
DE10152105A1 (en) Container for use in dialysis
DE2430171A1 (en) DIALYZING DEVICE WITH SELECTIVE CHEMICAL ACTIVITY
DE3110128A1 (en) Process and apparatus for the detoxication and regeneration of blood, blood constituents and solutions resulting from the purification of blood, as well as kit for carrying out the process
DE2215761A1 (en) Method and apparatus for forced current electrophoresis
DE2455932A1 (en) DEVICE FOR THE REMOVAL OF CARBON DIOXYDE FROM GASES SUCH AS AIR
DE2539574B2 (en) Liquid treatment device
EP4106908A1 (en) Device for removing a gas from an aqueous liquid
EP2440265B1 (en) Dialysis device
WO2001019483A1 (en) Device through which particles can pass, for separating substances using porous, flat adsorption membranes
DE2747381C2 (en)
DE2444583A1 (en) DIALYSIS DEVICE WITH ADSORBER UNIT
DE102018006286B3 (en) Bioreactor with filter unit and method for treating a cell broth
DE2334230A1 (en) DEVICE FOR THE REMOVAL OF URAINIC SUBSTANCES FROM HUMAN BLOOD
DE1442432A1 (en) Process for the continuous separation of ions
DE102020130906B4 (en) Pipe-connected water treatment cartridge
DE1960504A1 (en) Treatment of a dialysate solution to remove urea
DE2032061C3 (en) Method and device for treating a dialysate solution circulating past the membrane of an artificial kidney

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220916

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)