EP4097778A1 - Electrode formulation for li-ion battery and solvent-free method for electrode manufacturing - Google Patents

Electrode formulation for li-ion battery and solvent-free method for electrode manufacturing

Info

Publication number
EP4097778A1
EP4097778A1 EP21706358.5A EP21706358A EP4097778A1 EP 4097778 A1 EP4097778 A1 EP 4097778A1 EP 21706358 A EP21706358 A EP 21706358A EP 4097778 A1 EP4097778 A1 EP 4097778A1
Authority
EP
European Patent Office
Prior art keywords
electrode
mixing
fluoropolymer
equal
hfp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21706358.5A
Other languages
German (de)
French (fr)
Inventor
Stéphane Bizet
Anthony Bonnet
Oleksandr KORZHENKO
Samuel Devisme
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Arkema France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France SA filed Critical Arkema France SA
Publication of EP4097778A1 publication Critical patent/EP4097778A1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/5835Comprising fluorine or fluoride salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/626Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates generally to the field of electrical energy storage in rechargeable secondary batteries of Li-ion type. More specifically, the invention relates to an electrode formulation for a Li-ion battery, comprising a binder based on a mixture of fluoropolymers. The invention also relates to a process for preparing electrodes using said formulation, by a solvent-free deposition technique on a metal substrate. Finally, the invention relates to an electrode obtained by this process as well as to secondary Li-ion batteries comprising at least one such electrode.
  • a Li-ion battery includes at least one negative electrode or anode coupled to a copper current collector, a positive electrode or cathode coupled to an aluminum current collector, a separator, and an electrolyte.
  • the electrolyte consists of a lithium salt, usually lithium hexafluorophosphate, mixed with a solvent which is a mixture of organic carbonates, chosen to optimize the transport and dissociation of ions.
  • Rechargeable or secondary batteries are more advantageous than primary (non-rechargeable) batteries because the associated chemical reactions that take place at the positive and negative electrodes of the battery are reversible.
  • the electrodes of the secondary cells can be regenerated several times by the application of an electric charge.
  • Many advanced electrode systems have been developed to store electrical charge. At the same time, many efforts have been devoted to the development of electrolytes capable of improving the capacities of electrochemical cells.
  • the electrodes generally comprise at least one current collector on which is deposited, in the form of a film, a composite material which consists of: a so-called active material because it has electrochemical activity with respect to the lithium, a polymer which acts as a binder, plus one or more electronically conductive additives which are generally carbon black or acetylene black, and optionally a surfactant. Binders are counted among the so-called inactive components because they do not directly contribute to the capacity of cells.
  • a composite material which consists of: a so-called active material because it has electrochemical activity with respect to the lithium, a polymer which acts as a binder, plus one or more electronically conductive additives which are generally carbon black or acetylene black, and optionally a surfactant. Binders are counted among the so-called inactive components because they do not directly contribute to the capacity of cells.
  • binders The main relevant physical and chemical properties of binders are: thermal stability, chemical and electrochemical stability, tensile strength (strong adhesion and cohesion), and flexibility.
  • the main objective of the use of a binder is to form stable networks of the solid components of the electrodes, that is to say the active materials and the conductive agents (cohesion).
  • the binder must ensure close contact of the composite electrode to the current collector (adhesion).
  • PVDF Poly (vinylidene fluoride)
  • NMP N-methyl pyrrolidone
  • the use of organic solvents requires the significant investment of means of production, recycling and purification. If lithium-ion battery electrodes are produced using a solvent-free process, meeting the same specifications, then the carbon footprint and production costs will be significantly reduced.
  • the article by Wang et al. (J. Electrochem. Soc. 2019 166 (10): A2151-A2157) analyzed the influence of several properties of PVDF binders on electrodes manufactured by a dry powder coating process (electrostatic spray deposition). To improve the adhesion to the metal substrate and the cohesion of the electrode, a one hour heat treatment step at 200 ° C is performed. The electrode contains 5% by weight of binder. Two binders of different viscosities are used: HSV900 (50 kPoise) and one grade of Alfa Aesar (25 kPoise).
  • the fluid binder leads to the best adhesion but a poorer behavior at high discharge speed than the viscous binder (the capacity retention improves under these conditions, from 17% to 50% without reducing the bond strength and long-term cycling performance).
  • the porosity of the binder layer increases with the molecular weight of PVDF.
  • the aim of the invention is therefore to provide a Li-ion battery electrode composition capable of being transformed.
  • the invention also aims to provide a method for manufacturing an electrode for a Li-ion battery using said formulation, by a solvent-free deposition technique on a metal substrate. Finally, the invention relates to an electrode obtained by this process.
  • the invention aims to provide rechargeable Li-ion secondary batteries comprising at least one such electrode.
  • the technical solution proposed by the present invention is an electrode composition for a Li-ion battery, comprising a binder based on a mixture of at least two fluoropolymers having different melt viscosities.
  • the invention relates firstly to a Li-ion battery electrode comprising an active load for anode or cathode, an electronically conductive load, and a fluoropolymer (based) binder.
  • said binder consists of a mixture of two fluoropolymers, a fluoropolymer A, and a fluoropolymer B, said fluoropolymers A and B having different melt viscosities.
  • the invention also relates to a method of manufacturing a Li-ion battery electrode, said method comprising the following steps: mixing the active filler, the polymer binder and the conductive filler using a method which allows to obtain an electrode formulation applicable on a metal support by a “solvent-free” process; deposition of said electrode formulation on the metal substrate by a so-called “solvent-free” process, to obtain a Li-ion battery electrode, and consolidation of said electrode by a thermal and / or thermomechanical treatment.
  • the invention also relates to a Li-ion battery electrode manufactured by the method described above.
  • Another object of the invention is a Li-ion secondary battery comprising a negative electrode, a positive electrode and a separator, in which at least one electrode is as described above.
  • the present invention overcomes the drawbacks of the state of the art. It more particularly provides a technology which makes it possible to: control the distribution of the binder and of the conductive filler at the surface of the active filler; ensure the cohesion and mechanical integrity of the electrode, guaranteeing good film formation or consolidation of the formulations which may be difficult to achieve for solvent-free processes; generate adhesion to the metal substrate; ensuring the homogeneity of the electrode composition across the thickness and width of the electrode; control the porosity of the electrode and ensure its homogeneity in the thickness and the width of the electrode; reduce the overall level of binder in the electrode, which, in the case of known solvent-free processes, remains higher compared to a standard “slurry” process, improve the mechanical strength of self-supported films of electrode formulations.
  • the formulation makes it possible to obtain a mechanical behavior. sufficient for handling and winding / unwinding phases.
  • the advantage of this technology is to improve the following properties of the electrode: the homogeneity of the composition in thickness, the homogeneity of the porosity, the cohesion, and the adhesion to the metal substrate. It also makes it possible to reduce the level of binder required in the electrode, as well as to reduce the temperature and / or the heat treatment time to control the porosity and improve adhesion.
  • the invention relates to a Li-ion battery electrode comprising an active load for anode or cathode, an electronically conductive load, and a fluoropolymer binder.
  • said binder consists of a mixture of at least two fluoropolymers having different viscosities in the molten state, namely: a fluoropolymer A whose viscosity in the molten state is greater than or equal to 1000 Pa.s to
  • said electrode comprises the following characters, combined where appropriate. The contents indicated are expressed by weight, unless otherwise indicated.
  • fluoropolymer is meant a polymer comprising fluorine -F groups.
  • the fluoropolymer contains in its chain at least one monomer chosen from compounds containing a vinyl group capable of opening in order to polymerize and which contains, directly attached to this vinyl group, at least one fluorine atom, a fluoroalkyl group or a fluoroalkoxy group.
  • the fluoropolymer entering into the composition of each of the polymers A and B can be: a homopolymer, or a copolymer comprising two or more fluorinated monomers listed above, or alternatively mixtures of homopolymer and of copolymer, or mixtures of two copolymers ; it can also include non-fluorinated comonomers such as ethylene.
  • Fluoropolymers A and B can have similar structures (comprising the same monomers), or else have different structures.
  • said binder contains: a fluoropolymer A which comprises a homopolymer of VDF and / or at least one copolymer of vinylidene fluoride (VDF) and of hexafluoropropylene (HFP), of which the viscosity in the molten state is greater than or equal to 1000 Pa.s at 232 ° C and under a shear of 100 s 1 , and a fluoropolymer B which comprises a VDF homopolymer and / or at least one VDF-HFP copolymer, said fluoropolymer B having a viscosity at least 250 Pa.s at 232 ° C and under 100 s shear 1 less than that of polymer A.
  • a fluoropolymer A which comprises a homopolymer of VDF and / or at least one copolymer of vinylidene fluoride (VDF) and of hexafluoropropylene (HFP), of which the viscosity
  • the fluoropolymer A comprises a VDF homopolymer and / or at least one VDF-HFP copolymer having an HFP level greater than or equal to 1% by weight, preferably greater than or equal to 3%, advantageously greater than or equal to 6%.
  • Said VDF-HFP copolymer has an HFP level of less than or equal to 55%, preferably 50%.
  • the fluoropolymer A consists of a single VDF-HFP copolymer with an HFP rate greater than or equal to 1%.
  • the level of HFP in this VDF-HFP copolymer is between 3% and 55% limits included, preferably between 6% and 50% limits included.
  • the fluoropolymer A consists of a mixture of two or more VDF-HFP copolymers, the HFP level of each copolymer being greater than or equal to 1%.
  • each of the copolymers has an HFP level of between 3% and 55% limits included, preferably between 6% and 50% limits included.
  • the fluoropolymer A is a homopolymer of vinylidene fluoride (VDF) or a mixture of homopolymers of vinylidene fluoride.
  • the fluoropolymer A has a melt viscosity greater than or equal to 1000 Pa.s, preferably greater than or equal to 1500 Pa.s, and advantageously greater than or equal to 2000 Pa.s at 232 ° C and at a shear of 100 s 1 .
  • the viscosity is measured at 230 ° C, at a shear gradient of 100 s 1 using a capillary rheometer or a rheometer at parallel plates, according to ASTM D3825. Both methods give similar results.
  • the fluoropolymer B is a mixture of PVDF homopolymer with a VDF-HFP copolymer or else a mixture of two or more VDF-HFP copolymers.
  • the fluoropolymer B is a homopolymer of vinylidene fluoride (VDF) or a mixture of homopolymers of vinylidene fluoride.
  • the fluoropolymer B consists of a single VDF-HFP copolymer with an HFP rate greater than or equal to 1%.
  • the level of HFP in this VDF-HFP copolymer is between 3% and 55% limits included, preferably between 6% and 50% limits included.
  • the fluoropolymer B has a lower viscosity of at least 250 Pa.s at 232 ° C. and under a shear of 100 s 1 than that of polymer A, and preferably at least 500 Pa.s than that of polymer A and advantageously less by at least 750 Pa.s than that of polymer A.
  • the fluoropolymers used in the invention can be obtained by known polymerization methods such as solution, emulsion or suspension polymerization. According to one embodiment, they are prepared by an emulsion polymerization process in the absence of fluorinated surfactant.
  • said mixture contains: i. a mass content of polymer A greater than or equal to 1% and less than or equal to 20%, preferably greater than or equal to 5% and less than or equal to 20%, and ii. a mass content of polymer B less than or equal to 99% and greater than or equal to 80%, preferably less than or equal to 95% and greater than or equal to 80%.
  • the materials active at the negative electrode are generally lithium metal, graphite, silicon / carbon composites, silicon, fluorinated graphites of CF X type with x between 0 and 1 and titanates of LiTisOn type.
  • the materials active at the positive electrode are generally of the L1MO 2 type, of the L1MPO 4 type, of the L1 2 MPO 3 F type, of the LLMSiCL type where M is Co, Ni, Mn, Fe or a combination of these, of the type LiM CL or type Sx.
  • the conductive fillers are chosen from carbon blacks, graphites, natural or synthetic, carbon fibers, carbon nanotubes, metal fibers and powders, and conductive metal oxides. Preferably, they are chosen from carbon blacks, graphites, natural or synthetic, carbon fibers and carbon nanotubes.
  • a mixture of these conductive fillers can also be produced.
  • the reuse of carbon nanotubes in association with another conductive filler such as carbon black can have the advantages of reducing the level of conductive charges in the electrode and of reducing the level of polymer binder due to a specific surface area. less compared to carbon black.
  • a polymeric dispersant which is distinct from said binder, is used in admixture with the conductive filler to break up the agglomerates present and to help its dispersion in the final formulation with the polymeric binder and the active filler.
  • the polymeric dispersant is chosen from poly (vinyl pyrrolidone), poly (phenyl acetylene), poly (meta-phenylene vinylidene), polypyrrole, poly (para-phenylene benzobisoxazole, poly (vinyl alcohol), and mixtures thereof.
  • the mass composition of the electrode is:
  • polymer binder 25 to 0.05% polymer binder, preferably 25 to 0.5%
  • At least one additive chosen from the list: plasticizers, ionic liquid, dispersing agent for conductive fillers, flow agent for the formulation, fibrillation agent such as polytetrafluoroethylene (PTLE). the sum of all these percentages being 100%.
  • the invention also relates to a method of manufacturing a Li-ion battery electrode, said method comprising the following steps:
  • solvent-free process is understood to mean a process which does not require a residual solvent evaporation step downstream of the deposition step.
  • thermo-mechanical process such as extrusion, calendering or thermo-compression
  • the polymers A and B are in powder form, the average particle size of which is between 10 nm and 1 mm, preferably between 50 nm and 500 ⁇ m and even more preferably between 50 nm and 50 ⁇ m.
  • Fluoropolymer powder can be obtained by various methods.
  • the powder can be obtained directly by a process of synthesis in emulsion or suspension by spray drying (“spray drying”), by lyophilization (“freeze drying”).
  • the powder can also be obtained by grinding techniques, such as cryo-grinding.
  • the particle size can be adjusted and optimized by selection or sieving methods.
  • the polymers A and B are introduced at the same time as the active and conductive charges at the time of the mixing step.
  • the polymers A and B are mixed together before mixing with the active and conductive fillers.
  • a mixture of polymers A and B can be produced by co-atomization of the latexes of polymers A and B to obtain a mixture under powder form. The mixture thus obtained can, in turn, be mixed with the active and conductive fillers.
  • Another embodiment of the mixing step is to proceed in two stages. First, either Polymer A, Polymer B, or both, is mixed with a conductive filler by a solvent-free process or by co-atomization. This step makes it possible to obtain an intimate mixture of the binder and the conductive filler. Then, in a second step, the binder, the pre-mixed conductive filler and any fluoropolymer not yet used are mixed with the active filler. The mixing of the active charge with said intimate mixture is done using a solvent-free mixing process, to obtain an electrode formulation.
  • Another embodiment of the mixing step is to proceed in two stages. First, either polymer A or polymer B, or both, is mixed with an active filler by a solvent-free process or a method of spraying a liquid containing the binder and / or the conductive filler onto a fluidized powder bed of the active charge. This step makes it possible to obtain an intimate mixture of the binder and the active filler. Then, in a second step, the binder, the active filler and any fluoropolymer not yet used are mixed with the conductive filler.
  • Another embodiment of the mixing step is to proceed in two stages. First, an active filler is mixed with a conductive filler by a solvent-free process. Then, in a second step, either one mixes the two polymers A and B at the same time with the active filler and the conductive filler premixed, or one mixes the polymers A and B one after the other with the active filler and the conductive filler premixed.
  • mixing by stirring mixing by air jet, mixing at high shear, mixing by V-mixer, mixing by mass mixer. screw, mixing by double cone, mixing by drum, conical mixing, mixing by double Z-arm, mixing in a fluidized bed, mixing in a planetary mixer, mixing by mechanical fusion, mixing by extrusion, mixing by calendering, mixing by grinding.
  • mixing routes using a liquid such as water such as spray drying (co-atomization or “spray drying”) or a process for spraying a liquid containing the binder and / or the spray.
  • a liquid such as water
  • spray drying co-atomization or “spray drying”
  • a process for spraying a liquid containing the binder and / or the spray conductive charge on a fluidized powder bed of the active charge.
  • the formulation obtained can undergo a final step of grinding and / or sieving and / or selection to optimize the size of the particles of the formulation for the deposition step on the substrate.
  • metallic metallic.
  • the powder formulation is characterized by bulk density. It is known in the art of the art that low density formulations are very restrictive in their uses and applications.
  • the main components contributing to the increase in density are carbon additives such as carbon black (bulk density less than 0.4 g / cm 3 ), carbon nanotubes (bulk density less than 0.1 g / cm 3) ), polymer powders (bulk density less than 0.9 g / cm 3 ).
  • a combination of low density components in order to obtain an additive combining polymer binder / electronic conductor / other additive is recommended to improve the premixing step downstream of the deposition of the formulation described above.
  • Such a combination can be carried out by the following methods: a) dispersion of the components in water or the organic solvent followed by the elimination of the solvent (co-atomization, lyophilization, extrusion / compounding in the presence of the solvent or of water ). b) dry or "wet" co-grinding using a grinding method known as a ball or ball mill, followed by a drying step if necessary.
  • Such a method is particularly interesting for the significant increase in bulk density.
  • the electrode is manufactured by a powdering method without solvent, by depositing the formulation on the metal substrate by a method of pneumatic spraying, electrostatic spraying, soaking in a fluidized powder bed, dusting, electrostatic transfer, deposition with rotating brushes, deposition with rotating metering rollers, calendering.
  • the electrode is manufactured by a two-step solvent-free powder coating process.
  • a first step which consists in making a self-supported film from the premixed formulation using a thermomechanical process such as extrusion, calendering or thermo-compression. Then, this self-supported film is assembled with the metal substrate by a process combining temperature and pressure such as calendering or thermo-compression.
  • the metal supports for the electrodes are generally aluminum for the cathode and copper for the anode.
  • Metal substrates can be surface treated and have a conductive primer with a thickness of 5 ⁇ m or more.
  • the supports can also be woven or non-woven carbon fiber.
  • the consolidation of said electrode is carried out by heat treatment by passing it through an oven, under an infrared radiation lamp, in a calender with heated rollers or in a press with heated plates.
  • Another alternative is a two-step process. First, the electrode is heat treated in an oven, under an infrared lamp or in contact with pressureless heating plates. Then a compression step at room temperature or hot is carried out using a calender or a plate press. This step adjusts the porosity of the electrode and improves adhesion to the metal substrate.
  • the invention also relates to a Li-ion battery electrode manufactured by the method described above.
  • said electrode is an anode.
  • said electrode is a cathode.
  • Another object of the invention is a Li-ion secondary battery comprising a negative electrode, a positive electrode and a separator, in which at least one electrode is as described above.

Abstract

The present invention relates generally to the field of electrical energy storage in rechargeable secondary Li-ion batteries. More specifically, the invention relates to an electrode formulation for a Li-ion battery, comprising a binder made from a mixture of fluorinated polymers. The invention also relates to a method for preparing electrodes using said formulation, by means of a technique for solvent-free deposition on a metal substrate. The invention finally relates to an electrode obtained by this method and to secondary Li-ion batteries comprising at least one such electrode.

Description

FORMULATION D’ELECTRODE POUR BATTERIE LI-ION ET PROCEDE DE FABRICATION D’ELECTRODE SANS SOLVANT ELECTRODE FORMULATION FOR LI-ION BATTERY AND SOLVENT-FREE ELECTRODE MANUFACTURING PROCESS
DOMAINE DE L'INVENTION FIELD OF THE INVENTION
La présente invention a trait de manière générale au domaine du stockage d’énergie électrique dans des batteries secondaires rechargeables de type Li-ion. Plus précisément, l’invention concerne une formulation d’électrode pour batterie Li-ion, comprenant un liant à base d’un mélange de polymères fluorés. L’invention concerne aussi un procédé de préparation d’électrodes mettant en œuvre ladite formulation, par une technique de dépôt sans solvant sur un substrat métallique. L’invention se rapporte enfin à une électrode obtenue par ce procédé ainsi qu’aux batteries secondaires Li-ion comprenant au moins une telle électrode. The present invention relates generally to the field of electrical energy storage in rechargeable secondary batteries of Li-ion type. More specifically, the invention relates to an electrode formulation for a Li-ion battery, comprising a binder based on a mixture of fluoropolymers. The invention also relates to a process for preparing electrodes using said formulation, by a solvent-free deposition technique on a metal substrate. Finally, the invention relates to an electrode obtained by this process as well as to secondary Li-ion batteries comprising at least one such electrode.
ARRIERE-PLAN TECHNIQUE TECHNICAL BACKGROUND
Une batterie Li-ion comprend au moins une électrode négative ou anode couplée à un collecteur de courant en cuivre, une électrode positive ou cathode couplée avec un collecteur de courant en aluminium, un séparateur, et un électrolyte. L’électrolyte est constitué d’un sel de lithium, généralement l’hexafluorophosphate de lithium, mélangé à un solvant qui est un mélange de carbonates organiques, choisis pour optimiser le transport et la dissociation des ions. A Li-ion battery includes at least one negative electrode or anode coupled to a copper current collector, a positive electrode or cathode coupled to an aluminum current collector, a separator, and an electrolyte. The electrolyte consists of a lithium salt, usually lithium hexafluorophosphate, mixed with a solvent which is a mixture of organic carbonates, chosen to optimize the transport and dissociation of ions.
Les piles rechargeables ou secondaires sont plus avantageuses que les piles primaires (non rechargeables) car les réactions chimiques associées qui ont lieu aux électrodes positive et négative de la batterie sont réversibles. Les électrodes des cellules secondaires peuvent être régénérées plusieurs fois par l'application d'une charge électrique. De nombreux systèmes d'électrodes avancés ont été développés pour stocker la charge électrique. Parallèlement, de nombreux efforts ont été consacrés au développement d'électrolytes capables d'améliorer les capacités des cellules électrochimiques . Rechargeable or secondary batteries are more advantageous than primary (non-rechargeable) batteries because the associated chemical reactions that take place at the positive and negative electrodes of the battery are reversible. The electrodes of the secondary cells can be regenerated several times by the application of an electric charge. Many advanced electrode systems have been developed to store electrical charge. At the same time, many efforts have been devoted to the development of electrolytes capable of improving the capacities of electrochemical cells.
De leur côté, les électrodes comprennent généralement au moins un collecteur de courant sur lequel est déposé, sous forme d’un film, un matériau composite qui est constitué par : un matériau dit actif car il présente une activité électrochimique vis-à-vis du lithium, un polymère qui joue le rôle de liant, plus un ou des additifs conducteurs électroniques qui sont généralement le noir de carbone ou le noir d’acétylène, et éventuellement un tensioactif. Les liants sont comptés parmi les composants dits inactifs car ils ne contribuent pas directement à la capacité des cellules. Toutefois, leur rôle clé dans le traitement des électrodes et leur influence considérable sur les performances électrochimiques des électrodes ont été largement décrits. Les principales propriétés physiques et chimiques pertinentes des liants sont : la stabilité thermique, la stabilité chimique et électrochimique, la résistance à la traction (forte adhérence et cohésion), et la flexibilité. Le principal objectif de l'utilisation d'un liant est de former des réseaux stables des composants solides des électrodes, c'est-à-dire les matières actives et les agents conducteurs (cohésion). De plus, le liant doit assurer un contact étroit de l'électrode composite vers le collecteur de courant (adhésion). For their part, the electrodes generally comprise at least one current collector on which is deposited, in the form of a film, a composite material which consists of: a so-called active material because it has electrochemical activity with respect to the lithium, a polymer which acts as a binder, plus one or more electronically conductive additives which are generally carbon black or acetylene black, and optionally a surfactant. Binders are counted among the so-called inactive components because they do not directly contribute to the capacity of cells. However, their key role in the treatment of electrodes and their considerable influence on the electrochemical performance of the electrodes have been widely described. The main relevant physical and chemical properties of binders are: thermal stability, chemical and electrochemical stability, tensile strength (strong adhesion and cohesion), and flexibility. The main objective of the use of a binder is to form stable networks of the solid components of the electrodes, that is to say the active materials and the conductive agents (cohesion). In addition, the binder must ensure close contact of the composite electrode to the current collector (adhesion).
Le poly(fluorure de vinylidène) (PVDF) est le liant le plus couramment utilisé dans les batteries lithium-ion en raison de son excellente stabilité électrochimique, de sa bonne capacité d'adhérence et de sa forte adhérence aux matériaux des électrodes et des collecteurs de courant. Cependant, le PVDF ne peut être dissous que dans certains solvants organiques tels que la N- méthyl pyrrolidone (NMP), qui est volatile, inflammable, explosive et très toxique, ce qui entraîne de graves problèmes environnementaux. L’utilisation de solvants organiques demande l’investissement important de moyens de production, de recyclage et de purification. Si les électrodes de batteries lithium-ion sont produites selon un procédé sans solvant, en respectant les mêmes spécifications, alors le bilan carbone et les coûts de production seront considérablement réduits. Poly (vinylidene fluoride) (PVDF) is the most common binder used in lithium-ion batteries due to its excellent electrochemical stability, good adhesion capacity and strong adhesion to electrode and manifold materials. current. However, PVDF can only be dissolved in certain organic solvents such as N-methyl pyrrolidone (NMP), which is volatile, flammable, explosive and very toxic, causing serious environmental problems. The use of organic solvents requires the significant investment of means of production, recycling and purification. If lithium-ion battery electrodes are produced using a solvent-free process, meeting the same specifications, then the carbon footprint and production costs will be significantly reduced.
L’article de Wang et al. (J. Electrochem. Soc. 2019 166(10): A2151-A2157) a analysé l’influence de plusieurs propriétés des liants PVDF sur des électrodes fabriquées par un procédé de revêtement par poudre sèche (dépôt par pulvérisation électrostatique). Pour améliorer l’adhésion sur le substrat métallique et la cohésion de l’électrode, une étape de traitement thermique d’une heure à 200°C est réalisée. L’électrode contient 5% en poids de liant. Deux liants de viscosités différentes sont utilisés : HSV900 (50 kPoise) et un grade d’ Alfa Aesar (25 kPoise). Le liant fluide conduit à la meilleure adhésion mais à un comportement à vitesse de décharge élevée moins bon que le liant visqueux (la rétention de la capacité s'améliore dans ces conditions, passant de 17 % à 50% sans diminuer la force de liaison et la performance de cyclage à long terme). La porosité de la couche de liant augmente avec la masse moléculaire du PVDF. The article by Wang et al. (J. Electrochem. Soc. 2019 166 (10): A2151-A2157) analyzed the influence of several properties of PVDF binders on electrodes manufactured by a dry powder coating process (electrostatic spray deposition). To improve the adhesion to the metal substrate and the cohesion of the electrode, a one hour heat treatment step at 200 ° C is performed. The electrode contains 5% by weight of binder. Two binders of different viscosities are used: HSV900 (50 kPoise) and one grade of Alfa Aesar (25 kPoise). The fluid binder leads to the best adhesion but a poorer behavior at high discharge speed than the viscous binder (the capacity retention improves under these conditions, from 17% to 50% without reducing the bond strength and long-term cycling performance). The porosity of the binder layer increases with the molecular weight of PVDF.
L’impact de différents mélanges de PVDF sur les propriétés des électrodes fabriquées par un procédé de revêtement par voie sèche n’a cependant pas été décrit. Par rapport à la méthode conventionnelle de fabrication d'électrodes en suspension humide, les procédés de fabrication en voie sèche (sans solvant) sont plus simples ; ces procédés éliminent l'émission de composés organiques volatils, et offrent la possibilité de fabriquer des électrodes ayant des épaisseurs plus élevées (>120pm), avec une densité d'énergie plus élevée du dispositif de stockage d'énergie final. Le changement dans la technologie de production aura un faible impact sur la matière active des électrodes, par contre, les additifs polymères responsables de l’intégrité mécanique des électrodes et de leur comportement électrique, doivent être adaptés aux nouvelles conditions de fabrication. The impact of different PVDF blends on the properties of electrodes made by a dry coating process has not, however, been described. Compared to the conventional method of manufacturing wet suspension electrodes, dry (solvent-free) manufacturing processes are simpler; these processes eliminate the emission of volatile organic compounds, and offer the possibility of manufacturing electrodes having higher thicknesses (> 120pm), with a higher energy density of the final energy storage device. The change in production technology will have a low impact on the active material of the electrodes, on the other hand, the polymer additives responsible for the mechanical integrity of the electrodes and their electrical behavior, must be adapted to the new manufacturing conditions.
Il existe toujours un besoin de développer de nouvelles compositions d’électrodes pour batteries Li-ion qui sont adaptées à une mise en œuvre sans utilisation de solvants organiques. There is still a need to develop new electrode compositions for Li-ion batteries which are suitable for implementation without the use of organic solvents.
L’invention a donc pour but de fournir une composition d’électrode de batterie Li-ion apte à être transformée. The aim of the invention is therefore to provide a Li-ion battery electrode composition capable of being transformed.
L’invention vise également à fournir un procédé de fabrication d’électrode pour batterie Li-ion mettant en œuvre ladite formulation, par une technique de dépôt sans solvant sur un substrat métallique. L’invention se rapporte enfin à une électrode obtenue par ce procédé. The invention also aims to provide a method for manufacturing an electrode for a Li-ion battery using said formulation, by a solvent-free deposition technique on a metal substrate. Finally, the invention relates to an electrode obtained by this process.
Enfin, l’invention vise à fournir des batteries secondaires Li-ion rechargeables comprenant au moins une telle électrode. Finally, the invention aims to provide rechargeable Li-ion secondary batteries comprising at least one such electrode.
RESUME DE L’INVENTION SUMMARY OF THE INVENTION
La solution technique proposée par la présente invention est une composition d’électrode pour batterie Li-ion, comprenant un liant à base d’un mélange d’au moins deux polymères fluorés ayant des viscosités à l’état fondu différentes. The technical solution proposed by the present invention is an electrode composition for a Li-ion battery, comprising a binder based on a mixture of at least two fluoropolymers having different melt viscosities.
L’invention concerne en premier lieu une électrode de batterie Li-ion comprenant une charge active pour anode ou cathode, une charge conductrice électronique, et un liant (à base) de polymère fluoré. De manière caractéristique, ledit liant est constitué d’un mélange de deux polymères fluorés, un polymère fluoré A, et un polymère fluoré B, lesdits polymères fluorés A et B ayant des viscosités à l’état fondu différentes. The invention relates firstly to a Li-ion battery electrode comprising an active load for anode or cathode, an electronically conductive load, and a fluoropolymer (based) binder. Typically, said binder consists of a mixture of two fluoropolymers, a fluoropolymer A, and a fluoropolymer B, said fluoropolymers A and B having different melt viscosities.
L’invention concerne également un procédé de fabrication d’une électrode de batterie Li- ion, ledit procédé comprenant les opérations suivantes: mélange de la charge active, du liant polymère et de la charge conductrice à l’aide d’un procédé qui permet d’obtenir une formulation d’électrode applicable sur un support métallique par un procédé « sans solvant »; dépôt de ladite formulation d’électrode sur le substrat métallique par un procédé dit « sans solvant », pour obtenir une électrode de batterie Li-ion, et la consolidation de ladite électrode par un traitement thermique et/ou thermo mécanique. The invention also relates to a method of manufacturing a Li-ion battery electrode, said method comprising the following steps: mixing the active filler, the polymer binder and the conductive filler using a method which allows to obtain an electrode formulation applicable on a metal support by a “solvent-free” process; deposition of said electrode formulation on the metal substrate by a so-called “solvent-free” process, to obtain a Li-ion battery electrode, and consolidation of said electrode by a thermal and / or thermomechanical treatment.
L’invention concerne également une électrode de batterie Li-ion fabriquée par le procédé décrit ci-dessus. The invention also relates to a Li-ion battery electrode manufactured by the method described above.
Un autre objet de l’invention est une batterie secondaire Li-ion comprenant une électrode négative, une électrode positive et un séparateur, dans laquelle au moins une électrode est telle que décrite ci-dessus. Another object of the invention is a Li-ion secondary battery comprising a negative electrode, a positive electrode and a separator, in which at least one electrode is as described above.
La présente invention permet de surmonter les inconvénients de l’état de la technique. Elle fournit plus particulièrement une technologie qui permet de: maîtriser la répartition du liant et de la charge conductrice à la surface de la charge active ; assurer la cohésion et l’intégrité mécanique de l’électrode, en garantissant une bonne filmification ou consolidation des formulations qui peut être difficile à réaliser pour des procédés sans solvant ; générer de l’adhésion sur le substrat métallique ; assurer l’homogénéité de la composition d’électrode dans l’épaisseur et la largeur de l’électrode ; contrôler la porosité de l’électrode et assurer son homogénéité dans l’épaisseur et la largeur de l’électrode ; diminuer le taux global de liant dans l’électrode, qui, dans le cas des procédés sans solvant connus, reste supérieur par rapport à un procédé « slurry » standard, améliorer la tenue mécanique de films auto-supportés de formulations d’électrodes. Cela signifie que dans le cas où le procédé de fabrication d’électrode sans solvant passe par une phase intermédiaire de fabrication d’un film auto-supporté de la formulation avant assemblage sur le collecteur de courant, la formulation permet d’obtenir un comportement mécanique suffisant pour les phases de manipulation et d’enroulement/déroulement. L’avantage de cette technologie est d’améliorer les propriétés suivantes de l’électrode: l’homogénéité de la composition dans l’épaisseur, l’homogénéité de la porosité, la cohésion, et l’adhésion sur le substrat métallique. Elle permet également la diminution du taux de liant nécessaire dans l’électrode, ainsi que la réduction de la température et/ou du temps de traitement thermique pour contrôler la porosité et améliorer l’adhésion. DESCRIPTION DE MODES DE REALISATION DE L’INVENTION The present invention overcomes the drawbacks of the state of the art. It more particularly provides a technology which makes it possible to: control the distribution of the binder and of the conductive filler at the surface of the active filler; ensure the cohesion and mechanical integrity of the electrode, guaranteeing good film formation or consolidation of the formulations which may be difficult to achieve for solvent-free processes; generate adhesion to the metal substrate; ensuring the homogeneity of the electrode composition across the thickness and width of the electrode; control the porosity of the electrode and ensure its homogeneity in the thickness and the width of the electrode; reduce the overall level of binder in the electrode, which, in the case of known solvent-free processes, remains higher compared to a standard “slurry” process, improve the mechanical strength of self-supported films of electrode formulations. This means that in the case where the solvent-free electrode manufacturing process goes through an intermediate phase of manufacturing a self-supported film of the formulation before assembly on the current collector, the formulation makes it possible to obtain a mechanical behavior. sufficient for handling and winding / unwinding phases. The advantage of this technology is to improve the following properties of the electrode: the homogeneity of the composition in thickness, the homogeneity of the porosity, the cohesion, and the adhesion to the metal substrate. It also makes it possible to reduce the level of binder required in the electrode, as well as to reduce the temperature and / or the heat treatment time to control the porosity and improve adhesion. DESCRIPTION OF EMBODIMENTS OF THE INVENTION
L’invention est maintenant décrite plus en détail et de façon non limitative dans la description qui suit. The invention is now described in more detail and in a non-limiting manner in the description which follows.
Selon un premier aspect, l’invention concerne une électrode de batterie Li-ion comprenant une charge active pour anode ou cathode, une charge conductrice électronique, et un liant de polymère fluoré. According to a first aspect, the invention relates to a Li-ion battery electrode comprising an active load for anode or cathode, an electronically conductive load, and a fluoropolymer binder.
De manière caractéristique, ledit liant est constitué d’un mélange d’au moins deux polymères fluorés ayant des viscosités différentes à l’état fondu, à savoir: un polymère fluoré A dont la viscosité à l’état fondu est supérieure ou égale à 1000 Pa.s àCharacteristically, said binder consists of a mixture of at least two fluoropolymers having different viscosities in the molten state, namely: a fluoropolymer A whose viscosity in the molten state is greater than or equal to 1000 Pa.s to
232°C et sous un cisaillement de 100 s 1, et un polymère fluoré B ayant une viscosité inférieure d’au moins 250 Pa.s à 232°C et sous un cisaillement de 100 s 1 à celle du polymère A. 232 ° C and under a shear of 100 s 1 , and a fluoropolymer B having a lower viscosity of at least 250 Pa.s at 232 ° C and under a shear of 100 s 1 than that of polymer A.
Selon diverses réalisations, ladite électrode comprend les caractères suivants, le cas échéant combinés. Les teneurs indiquées sont exprimées en poids, sauf si indiqué autrement. According to various embodiments, said electrode comprises the following characters, combined where appropriate. The contents indicated are expressed by weight, unless otherwise indicated.
L’invention met en œuvre des polymères fluorés. Par « polymère fluoré », on entend un polymère comportant des groupements fluor -F. Le polymère fluoré contient dans sa chaîne au moins un monomère choisi parmi les composés contenant un groupe vinyle capable de s'ouvrir pour se polymériser et qui contient, directement attaché à ce groupe vinyle, au moins un atome de fluor, un groupe fluoroalkyle ou un groupe fluoroalkoxy. The invention uses fluoropolymers. By “fluoropolymer” is meant a polymer comprising fluorine -F groups. The fluoropolymer contains in its chain at least one monomer chosen from compounds containing a vinyl group capable of opening in order to polymerize and which contains, directly attached to this vinyl group, at least one fluorine atom, a fluoroalkyl group or a fluoroalkoxy group.
A titre d'exemple de monomère vinylique fluoré entrant dans la composition des polymères fluorés A et B on peut citer : le fluorure de vinyle; le fluorure de vinylidène (VDF); le trifluoroéthylène (VF3); le chlorotrifluoroéthylène (CTFE); le 1,2-difluoroéthylène; le tétrafhioroéthylène (TFE); l'hexafluoropropylène (HFP); les perfluoro(alkyl vinyl) éthers tels que le perfluoro(méthyl vinyl)éther (PMVE), le 5 perfluoro(éthyl vinyl) éther (PEVE) et le perfluoro(propyl vinyl) éther (PPVE); le perfluoro(l,3-dioxole); le perfluoro(2,2-diméthyl- 1,3 - dioxole) (PDD); le produit de formule CF2=CFOCF2CF(CF3)OCF2CF2X dans laquelle X est SO2F, CO2H, CH2OH, CH2OCN ou CH2OPO3H; le produit de formule CF2=CF0CF2CF2S02F; le produit de formule F(CF2)nCH20CF=CF2 dans laquelle n est 1, 2, 3, 4 ou 5; le produit de formule RICH20CF=CF2 dans laquelle Ri est l'hydrogène ou F(CF2)m et m vaut 1, 2, 3 ou 4; le produit de formule R20CF=CH2 dans laquelle R2 est F(CF2)p et p est 1, 2, 3 ou 4; le perfluorobutyl éthylène (PFBE); le 3,3,3-trifluoropropène et le 2-trifluorométhyl-3,3,3-trifluoro-l-propène. Le polymère fluoré entrant dans la composition de chacun des polymères A et B peut être : un homopolymère, ou un copolymère comprenant deux ou plusieurs monomères fluorés listés plus haut, ou encore des mélanges d’ homopolymère et de copolymère, ou des mélanges de deux copolymères ; il peut aussi comprendre des comonomères non fluorés tels que l'éthylène. By way of example of fluorinated vinyl monomer entering into the composition of fluorinated polymers A and B, mention may be made of: vinyl fluoride; vinylidene fluoride (VDF); trifluoroethylene (VF3); chlorotrifluoroethylene (CTFE); 1,2-difluoroethylene; tetrafhiorethylene (TFE); hexafluoropropylene (HFP); perfluoro (alkyl vinyl) ethers such as perfluoro (methyl vinyl) ether (PMVE), perfluoro (ethyl vinyl) ether (PEVE) and perfluoro (propyl vinyl) ether (PPVE); perfluoro (1,3-dioxole); perfluoro (2,2-dimethyl-1,3-dioxole) (PDD); the product of formula CF 2 = CFOCF 2 CF (CF 3 ) OCF 2 CF 2 X in which X is SO 2 F, CO 2 H, CH 2 OH, CH 2 OCN or CH 2 OPO 3 H; the product of formula CF 2 = CF0CF 2 CF 2 S0 2 F; the product of formula F (CF 2 ) nCH 2 0CF = CF 2 in which n is 1, 2, 3, 4 or 5; the product of formula RICH 2 0CF = CF 2 in which R 1 is hydrogen or F (CF 2) m and m is 1, 2, 3 or 4; the product of formula R 2 0CF = CH 2 in which R2 is F (CF2) p and p is 1, 2, 3 or 4; perfluorobutyl ethylene (PFBE); 3,3,3-trifluoropropene and 2-trifluoromethyl-3,3,3-trifluoro-1-propene. The fluoropolymer entering into the composition of each of the polymers A and B can be: a homopolymer, or a copolymer comprising two or more fluorinated monomers listed above, or alternatively mixtures of homopolymer and of copolymer, or mixtures of two copolymers ; it can also include non-fluorinated comonomers such as ethylene.
Les polymères fluorés A et B peuvent avoir des structures similaires (comprenant les mêmes monomères), ou bien avoir des structures différentes. Fluoropolymers A and B can have similar structures (comprising the same monomers), or else have different structures.
Selon un mode de réalisation, ledit liant contient : un polymère fluoré A qui comprend un homopolymère de VDF et/ou au moins un copolymère de fluorure de vinylidène (VDF) et d’hexafluoropropylène (HFP), dont la viscosité à l’état fondu est supérieure ou égale à 1000 Pa.s à 232°C et sous un cisaillement de 100 s 1, et un polymère fluoré B qui comprend un homopolymère de VDF et/ou au moins un copolymère VDF-HFP, ledit polymère fluoré B ayant une viscosité inférieure d’au moins 250 Pa.s à 232°C et sous un cisaillement de 100 s 1 à celle du polymère A. According to one embodiment, said binder contains: a fluoropolymer A which comprises a homopolymer of VDF and / or at least one copolymer of vinylidene fluoride (VDF) and of hexafluoropropylene (HFP), of which the viscosity in the molten state is greater than or equal to 1000 Pa.s at 232 ° C and under a shear of 100 s 1 , and a fluoropolymer B which comprises a VDF homopolymer and / or at least one VDF-HFP copolymer, said fluoropolymer B having a viscosity at least 250 Pa.s at 232 ° C and under 100 s shear 1 less than that of polymer A.
Selon un mode de réalisation, le polymère fluoré A comprend un homopolymère de VDF et/ou au moins un copolymère VDF-HFP ayant un taux d’HFP supérieur ou égal à 1% en poids, de préférence supérieur ou égal à 3%, avantageusement supérieur ou égal à 6%. Ledit copolymère VDF-HFP a un taux d’HFP inférieur ou égal à 55%, de préférence à 50%. According to one embodiment, the fluoropolymer A comprises a VDF homopolymer and / or at least one VDF-HFP copolymer having an HFP level greater than or equal to 1% by weight, preferably greater than or equal to 3%, advantageously greater than or equal to 6%. Said VDF-HFP copolymer has an HFP level of less than or equal to 55%, preferably 50%.
Selon un mode de réalisation, le polymère fluoré A est constitué d’un seul copolymère VDF-HFP à taux d’HFP supérieur ou égal à 1%. Selon un mode de réalisation, le taux d’HFP dans ce copolymère VDF-HFP est compris entre 3% et 55% bornes comprises, préférentiellement entre 6% et 50% bornes comprises. According to one embodiment, the fluoropolymer A consists of a single VDF-HFP copolymer with an HFP rate greater than or equal to 1%. According to one embodiment, the level of HFP in this VDF-HFP copolymer is between 3% and 55% limits included, preferably between 6% and 50% limits included.
Selon un mode de réalisation, le polymère fluoré A est constitué d’un mélange de deux ou plusieurs copolymères VDF-HFP, le taux d’HFP de chaque copolymère étant supérieur ou égal à 1%. Selon un mode de réalisation, chacun des copolymères a un taux d’HFP compris entre 3% et 55% bornes comprises, préférentiellement entre 6% et 50% bornes comprises. According to one embodiment, the fluoropolymer A consists of a mixture of two or more VDF-HFP copolymers, the HFP level of each copolymer being greater than or equal to 1%. According to one embodiment, each of the copolymers has an HFP level of between 3% and 55% limits included, preferably between 6% and 50% limits included.
Selon un mode de réalisation, le polymère fluoré A est un homopolymère de fluorure de vinylidène (VDF) ou un mélange d’homopolymères de fluorure de vinylidène. According to one embodiment, the fluoropolymer A is a homopolymer of vinylidene fluoride (VDF) or a mixture of homopolymers of vinylidene fluoride.
Selon un mode de réalisation, le polymère fluoré A a une viscosité à l’état fondu supérieure ou égale à 1000 Pa.s, de préférence supérieure ou égale à 1500 Pa.s, et avantageusement supérieure ou égale à 2000 Pa.s à 232°C et à un cisaillement de 100 s 1. La viscosité est mesurée à 230°C, à un gradient de cisaillement de 100 s 1 à l’aide d’un rhéomètre capillaire ou d’un rhéomètre à plaques parallèles, selon la norme ASTM D3825. Les deux méthodes donnent des résultats similaires. According to one embodiment, the fluoropolymer A has a melt viscosity greater than or equal to 1000 Pa.s, preferably greater than or equal to 1500 Pa.s, and advantageously greater than or equal to 2000 Pa.s at 232 ° C and at a shear of 100 s 1 . The viscosity is measured at 230 ° C, at a shear gradient of 100 s 1 using a capillary rheometer or a rheometer at parallel plates, according to ASTM D3825. Both methods give similar results.
Selon un mode de réalisation, le polymère fluoré B est un mélange de PVDF homopolymère avec un copolymère VDF-HFP ou bien un mélange de deux ou plusieurs copolymères VDF-HFP. According to one embodiment, the fluoropolymer B is a mixture of PVDF homopolymer with a VDF-HFP copolymer or else a mixture of two or more VDF-HFP copolymers.
Selon un mode de réalisation, le polymère fluoré B est un homopolymère de fluorure de vinylidène (VDF) ou un mélange d’homopolymères de fluorure de vinylidène. According to one embodiment, the fluoropolymer B is a homopolymer of vinylidene fluoride (VDF) or a mixture of homopolymers of vinylidene fluoride.
Selon un mode de réalisation, le polymère fluoré B est constitué d’un seul copolymère VDF-HFP à taux d’HFP supérieur ou égal à 1%. Selon un mode de réalisation, le taux d’HFP dans ce copolymère VDF-HFP est compris entre 3% et 55% bornes comprises, préférentiellement entre 6% et 50% bornes comprises. According to one embodiment, the fluoropolymer B consists of a single VDF-HFP copolymer with an HFP rate greater than or equal to 1%. According to one embodiment, the level of HFP in this VDF-HFP copolymer is between 3% and 55% limits included, preferably between 6% and 50% limits included.
Selon un mode de réalisation, le polymère fluoré B a une viscosité inférieure d’au moins 250 Pa.s à 232°C et sous un cisaillement de 100 s 1 à celle du polymère A, et préférentiellement d’au moins 500 Pa.s à celle du polymère A et avantageusement inférieure d’au moins 750 Pa.s à celle du polymère A. According to one embodiment, the fluoropolymer B has a lower viscosity of at least 250 Pa.s at 232 ° C. and under a shear of 100 s 1 than that of polymer A, and preferably at least 500 Pa.s than that of polymer A and advantageously less by at least 750 Pa.s than that of polymer A.
Les polymères fluorés utilisés dans l’invention peuvent être obtenus par des méthodes de polymérisation connues comme la polymérisation en solution, en émulsion ou en suspension. Selon un mode de réalisation, ils sont préparés par un procédé de polymérisation en émulsion en l’absence d’agent tensioactif fluoré. The fluoropolymers used in the invention can be obtained by known polymerization methods such as solution, emulsion or suspension polymerization. According to one embodiment, they are prepared by an emulsion polymerization process in the absence of fluorinated surfactant.
Selon un mode de réalisation ledit mélange contient : i. un taux massique de polymère A supérieur ou égal à 1% et inférieur ou égal à 20%, préférentiellement supérieur ou égal à 5% et inférieur ou égal à 20%, et ii. un taux massique de polymère B inférieur ou égal à 99% et supérieur ou égal à 80%, de préférence inférieur ou égal à 95% et supérieur ou égal à 80%. According to one embodiment, said mixture contains: i. a mass content of polymer A greater than or equal to 1% and less than or equal to 20%, preferably greater than or equal to 5% and less than or equal to 20%, and ii. a mass content of polymer B less than or equal to 99% and greater than or equal to 80%, preferably less than or equal to 95% and greater than or equal to 80%.
Les matériaux actifs à l’électrode négative sont généralement le lithium métal, le graphite, les composites silicium/carbone, le silicium, les graphites fluorés de type CFX avec x compris entre 0 et 1 et les titanates type LiTisOn. The materials active at the negative electrode are generally lithium metal, graphite, silicon / carbon composites, silicon, fluorinated graphites of CF X type with x between 0 and 1 and titanates of LiTisOn type.
Les matériaux actifs à l’électrode positive sont généralement du type L1MO2, du type L1MPO4, du type L12MPO3F, du type LLMSiCL où M est Co, Ni, Mn, Fe ou une combinaison de ces derniers, du type LiM CL ou du type Sx. Les charges conductrices sont choisies parmi les noirs de carbones, les graphites, naturel ou de synthèse, les fibres de carbone, les nanotubes de carbone, les fibres et poudres métalliques, et les oxydes métalliques conducteurs. Préférentiellement, elles sont choisies parmi les noirs de carbone, les graphites, naturel ou de synthèse, les fibres de carbone et les nanotubes de carbone. The materials active at the positive electrode are generally of the L1MO 2 type, of the L1MPO 4 type, of the L1 2 MPO 3 F type, of the LLMSiCL type where M is Co, Ni, Mn, Fe or a combination of these, of the type LiM CL or type Sx. The conductive fillers are chosen from carbon blacks, graphites, natural or synthetic, carbon fibers, carbon nanotubes, metal fibers and powders, and conductive metal oxides. Preferably, they are chosen from carbon blacks, graphites, natural or synthetic, carbon fibers and carbon nanotubes.
Un mélange de ces charges conductrices peut également être réalisé. En particulier, rutilisation de nanotubes de carbone en association avec une autre charge conductrice comme le noir de carbone peut présenter les avantages de diminuer le taux de charges conductrices dans l’électrode et de diminuer le taux de liant polymère du fait d’une surface spécifique moindre par rapport au noir de carbone. A mixture of these conductive fillers can also be produced. In particular, the reuse of carbon nanotubes in association with another conductive filler such as carbon black can have the advantages of reducing the level of conductive charges in the electrode and of reducing the level of polymer binder due to a specific surface area. less compared to carbon black.
Selon un mode de réalisation, un dispersant polymérique, qui est distinct dudit liant, est utilisé en mélange avec la charge conductrice pour désagréger les agglomérats présents et aider à sa dispersion dans la formulation finale avec le liant polymère et la charge active. Le dispersant polymérique est choisi parmi la poly(vinyl pyrrolidone), le poly(phényl acétylène), le poly(meta- phénylène vinylidène), le polypyrrole, le poly(para-phénylène benzobisoxazole, le poly(alcool vinylique), et leurs mélanges. According to one embodiment, a polymeric dispersant, which is distinct from said binder, is used in admixture with the conductive filler to break up the agglomerates present and to help its dispersion in the final formulation with the polymeric binder and the active filler. The polymeric dispersant is chosen from poly (vinyl pyrrolidone), poly (phenyl acetylene), poly (meta-phenylene vinylidene), polypyrrole, poly (para-phenylene benzobisoxazole, poly (vinyl alcohol), and mixtures thereof. .
La composition massique de l’électrode est de : The mass composition of the electrode is:
50% à 99% de charge active, de préférence de 50 à 99%, 50% to 99% active load, preferably 50 to 99%,
25% à 0,05% de charge conductrice, de préférence de 25 à 0,5%, 25% to 0.05% conductive filler, preferably 25 to 0.5%,
25 à 0,05% de liant polymère, de préférence de 25 à 0,5%, 25 to 0.05% polymer binder, preferably 25 to 0.5%,
0 à 5% d’au moins un additif choisi dans la liste : plastifiants, liquide ionique, agent dispersant pour les charges conductrices, agent d’écoulement pour la formulation, agent de fibrillation tel que le polytétrafluoroéthylène (PTLE). la somme de tous ces pourcentages étant de 100%. 0 to 5% of at least one additive chosen from the list: plasticizers, ionic liquid, dispersing agent for conductive fillers, flow agent for the formulation, fibrillation agent such as polytetrafluoroethylene (PTLE). the sum of all these percentages being 100%.
L’invention concerne également un procédé de fabrication d’une électrode de batterie Li- ion, ledit procédé comprenant les étapes suivantes : The invention also relates to a method of manufacturing a Li-ion battery electrode, said method comprising the following steps:
- mélange de la charge active, du liant polymère, de la charge conductrice et des éventuels additifs à l’aide d’un procédé qui permet d’obtenir une formulation d’électrode applicable sur un support métallique par un procédé sans solvant ; - mixing the active filler, the polymer binder, the conductive filler and any additives using a process which makes it possible to obtain an electrode formulation applicable on a metal support by a solvent-free process;
- dépôt de ladite formulation d’électrode sur le substrat métallique par un procédé dit « sans solvant », pour obtenir une électrode de batterie Li-ion, et - la consolidation de ladite électrode par un traitement thermique (application d’une température allant jusqu’à 50°C au-dessus de la température de fusion du polymère, sans pression mécanique), et/ou thermo-mécanique tel que le calandrage. - deposition of said electrode formulation on the metal substrate by a so-called "solvent-free" process, to obtain a Li-ion battery electrode, and - Consolidation of said electrode by thermal treatment (application of a temperature ranging up to 50 ° C. above the melting point of the polymer, without mechanical pressure), and / or thermomechanical such as calendering.
On entend par procédé « sans solvant » un procédé qui ne nécessite pas d’étape d’évaporation de solvant résiduel en aval de l’étape de dépôt. The term "solvent-free" process is understood to mean a process which does not require a residual solvent evaporation step downstream of the deposition step.
Un autre mode de réalisation du procédé de fabrication d’une électrode comprend les étapes suivantes : Another embodiment of the method of manufacturing an electrode comprises the following steps:
- mélange de la charge active, du liant polymère et de la charge conductrice à l’aide d’un procédé qui permet d’obtenir une formulation d’électrode dont les constituants sont mélangés de manière homogène ; - mixing the active filler, the polymer binder and the conductive filler using a process which makes it possible to obtain an electrode formulation in which the constituents are mixed homogeneously;
- fabrication d’un film auto-supporté de la formulation à l’aide d’un procédé thermo-mécanique tel que l’extrusion, le calandrage ou la thermo-compression ; - manufacture of a self-supported film of the formulation using a thermo-mechanical process such as extrusion, calendering or thermo-compression;
- dépôt du film auto-supporté sur le substrat métallique par un procédé de calandrage ou de thermo compression, et - deposition of the self-supported film on the metal substrate by a calendering or thermo compression process, and
- la consolidation de ladite électrode par un traitement thermique et/ou thermo-mécanique tel que le calandrage par exemple, cette dernière étape étant en option si l’étape précédente permet déjà d’atteindre un niveau d’adhésion et/ou de porosité suffisant. - the consolidation of said electrode by a thermal and / or thermomechanical treatment such as calendering for example, this last step being optional if the previous step already makes it possible to achieve a sufficient level of adhesion and / or porosity .
Etape de préparation de la formulation d’électrode Electrode formulation preparation step
Les polymères A et B sont sous forme de poudre, dont la taille moyenne des particules est comprise entre 10 nm et 1 mm, préférentiellement entre 50 nm et 500 pm et encore plus préférentiellement entre 50 nm et 50 pm. The polymers A and B are in powder form, the average particle size of which is between 10 nm and 1 mm, preferably between 50 nm and 500 μm and even more preferably between 50 nm and 50 μm.
La poudre de polymère fluoré peut être obtenue par différents procédés. La poudre peut être obtenue directement par un procédé de synthèse en émulsion ou suspension par séchage par pulvérisation (« spray drying»), par lyophilisation (« freeze drying »). La poudre peut également être obtenue par les techniques de broyage, comme le cryo-broyage. A l’issue de l’étape de fabrication de la poudre, la taille de particule peut être ajustée et optimisée par des méthodes de sélection ou de tamisage. Fluoropolymer powder can be obtained by various methods. The powder can be obtained directly by a process of synthesis in emulsion or suspension by spray drying (“spray drying”), by lyophilization (“freeze drying”). The powder can also be obtained by grinding techniques, such as cryo-grinding. At the end of the powder manufacturing step, the particle size can be adjusted and optimized by selection or sieving methods.
Selon un mode de réalisation, les polymères A et B sont introduits en même temps que les charges actives et conductrices au moment de l’étape de mélange. According to one embodiment, the polymers A and B are introduced at the same time as the active and conductive charges at the time of the mixing step.
Selon un autre mode de réalisation, les polymères A et B sont mélangés entre eux avant le mélange avec les charges actives et conductrices. Par exemple, un mélange des polymères A et B peut être réalisé par co-atomisation des latex des polymères A et B pour obtenir un mélange sous forme de poudre. Le mélange ainsi obtenu peut, à son tour, être mélangé avec les charges actives et conductrices. According to another embodiment, the polymers A and B are mixed together before mixing with the active and conductive fillers. For example, a mixture of polymers A and B can be produced by co-atomization of the latexes of polymers A and B to obtain a mixture under powder form. The mixture thus obtained can, in turn, be mixed with the active and conductive fillers.
Un autre mode de réalisation de l’étape de mélange consiste à procéder en deux temps. Tout d’abord, on mélange soit le polymère A, soit le polymère B, soit les deux, avec une charge conductrice par un procédé sans solvant ou par co-atomisation. Cette étape permet d’obtenir un mélange intime du liant et de la charge conductrice. Puis, dans un second temps, on mélange le liant, la charge conductrice pré-mélangés et l’éventuel polymère fluoré non encore utilisé avec la charge active. Le mélange de la charge active avec ledit mélange intime se fait à l’aide d’un procédé de mélange sans solvant, pour obtenir une formulation d’électrode. Another embodiment of the mixing step is to proceed in two stages. First, either Polymer A, Polymer B, or both, is mixed with a conductive filler by a solvent-free process or by co-atomization. This step makes it possible to obtain an intimate mixture of the binder and the conductive filler. Then, in a second step, the binder, the pre-mixed conductive filler and any fluoropolymer not yet used are mixed with the active filler. The mixing of the active charge with said intimate mixture is done using a solvent-free mixing process, to obtain an electrode formulation.
Un autre mode de réalisation de l’étape de mélange consiste à procéder en deux temps. Tout d’abord, on mélange soit le polymère A, soit le polymère B, soit les deux, avec une charge active par un procédé sans solvant ou un procédé de pulvérisation d’un liquide contenant le liant et/ou la charge conductrice sur un lit de poudre fluidisée de la charge active. Cette étape permet d’obtenir un mélange intime du liant et de la charge active. Puis, dans un second temps, on mélange le liant, la charge active et l’éventuel polymère fluoré non encore utilisé avec la charge conductrice. Another embodiment of the mixing step is to proceed in two stages. First, either polymer A or polymer B, or both, is mixed with an active filler by a solvent-free process or a method of spraying a liquid containing the binder and / or the conductive filler onto a fluidized powder bed of the active charge. This step makes it possible to obtain an intimate mixture of the binder and the active filler. Then, in a second step, the binder, the active filler and any fluoropolymer not yet used are mixed with the conductive filler.
Un autre mode de réalisation de l’étape de mélange consiste à procéder en deux temps. Tout d’abord, on mélange une charge active avec une charge conductrice par un procédé sans solvant. Puis, dans un second temps, soit on mélange les deux polymères A et B en même temps avec la charge active et la charge conductrice pré-mélangées, soit on mélange les polymères A et B l’un après l’autre avec la charge active et la charge conductrice pré-mélangées. Another embodiment of the mixing step is to proceed in two stages. First, an active filler is mixed with a conductive filler by a solvent-free process. Then, in a second step, either one mixes the two polymers A and B at the same time with the active filler and the conductive filler premixed, or one mixes the polymers A and B one after the other with the active filler and the conductive filler premixed.
Comme procédés de mélange sans solvant des différents constituants de la formulation d’électrode, on peut citer sans être exhaustif: mélange par agitation, mélange par jet d'air, mélange à haut cisaillement, mélange par mélangeur en V, mélange par mélangeur de masse à vis, mélange par double cône, mélange par tambour, mélange conique, mélange par double bras en Z, mélange en lit fluidisé, mélange en mélangeur planétaire, mélange par mécano-fusion, mélange par extrusion, mélange par calandrage, mélange par broyage. As solvent-free mixing methods of the different constituents of the electrode formulation, there may be mentioned without being exhaustive: mixing by stirring, mixing by air jet, mixing at high shear, mixing by V-mixer, mixing by mass mixer. screw, mixing by double cone, mixing by drum, conical mixing, mixing by double Z-arm, mixing in a fluidized bed, mixing in a planetary mixer, mixing by mechanical fusion, mixing by extrusion, mixing by calendering, mixing by grinding.
Comme autre procédé de mélange, on peut citer des voies de mélange utilisant un liquide comme Peau tel que le séchage par pulvérisation (co-atomisation ou « spray drying ») ou un procédé de pulvérisation d’un liquide contenant le liant et/ou la charge conductrice sur un lit de poudre fluidisée de la charge active. As another mixing process, there may be mentioned mixing routes using a liquid such as water, such as spray drying (co-atomization or “spray drying”) or a process for spraying a liquid containing the binder and / or the spray. conductive charge on a fluidized powder bed of the active charge.
A l’issue de cette étape de mélange, la formulation obtenue peut subir une dernière étape de broyage et/ou de tamisage et/ou de sélection pour optimiser la taille des particules de la formulation en vue de l’étape de dépôt sur le substrat métallique. La formulation sous forme de poudre est caractérisée par la densité apparente. Il est connu dans l’art du métier que les formulations à densité faible sont très contraignantes dans leurs utilisations et applications. Les principaux composants contribuant à l’augmentation de densité sont les additifs carbonés tels que le noir de carbone (densité apparente inférieure à 0,4 g/cm3), les nanotubes de carbone (densité apparente inférieure à 0,1 g/cm3), les poudres de polymères (densité apparente inférieure à 0,9 g/cm3). Une association des composants à faible densité afin d’obtenir un additif combinant liant polymère/conducteur électronique/autre additif est recommandée pour améliorer l’étape de pré-mélange en aval du dépôt de la formulation décrite ci-dessus. Une telle association peut être réalisée par les méthodes suivantes : a) dispersion des composants dans l’eau ou le solvant organique suivi par l’élimination du solvant (co-atomisation, lyophilisation, extrusion/compoundage en présence du solvant ou de l’eau). b) co-broyage à sec ou en état « humide » à l’aide d’une méthode de broyage connue comme un broyeur à boulets ou à billes, suivi d’une étape de séchage si nécessaire.At the end of this mixing step, the formulation obtained can undergo a final step of grinding and / or sieving and / or selection to optimize the size of the particles of the formulation for the deposition step on the substrate. metallic. The powder formulation is characterized by bulk density. It is known in the art of the art that low density formulations are very restrictive in their uses and applications. The main components contributing to the increase in density are carbon additives such as carbon black (bulk density less than 0.4 g / cm 3 ), carbon nanotubes (bulk density less than 0.1 g / cm 3) ), polymer powders (bulk density less than 0.9 g / cm 3 ). A combination of low density components in order to obtain an additive combining polymer binder / electronic conductor / other additive is recommended to improve the premixing step downstream of the deposition of the formulation described above. Such a combination can be carried out by the following methods: a) dispersion of the components in water or the organic solvent followed by the elimination of the solvent (co-atomization, lyophilization, extrusion / compounding in the presence of the solvent or of water ). b) dry or "wet" co-grinding using a grinding method known as a ball or ball mill, followed by a drying step if necessary.
Une telle méthode est particulièrement intéressante pour l’augmentation importante de la densité apparente. Such a method is particularly interesting for the significant increase in bulk density.
Etape de dépôt de ladite formulation d’électrode sur un support Step of depositing said electrode formulation on a support
Selon un mode de réalisation, à l’issue de l’étape de mélange, l’électrode est fabriquée par une méthode de poudrage sans solvant, en déposant la formulation sur le substrat métallique par un procédé de pulvérisation pneumatique, de pulvérisation électrostatique, de trempage dans un lit de poudre fluidisé, de saupoudrage, de transfert électrostatique, de dépôt avec des brosses rotatives, de dépôt avec des rouleaux doseurs rotatifs, de calandrage. According to one embodiment, at the end of the mixing step, the electrode is manufactured by a powdering method without solvent, by depositing the formulation on the metal substrate by a method of pneumatic spraying, electrostatic spraying, soaking in a fluidized powder bed, dusting, electrostatic transfer, deposition with rotating brushes, deposition with rotating metering rollers, calendering.
Selon un mode de réalisation, à l’issue de l’étape de mélange, l’électrode est fabriquée par un procédé de poudrage sans solvant en deux étapes. Une première étape qui consiste à réaliser un film auto-supporté à partir de la formulation pré-mélangée à l’aide d’un procédé thermo mécanique tel que l’extrusion, le calandrage ou la thermo-compression. Puis, ce film auto-supporté est assemblé avec le substrat métallique par un procédé alliant température et pression comme le calandrage ou la thermo-compression. According to one embodiment, after the mixing step, the electrode is manufactured by a two-step solvent-free powder coating process. A first step which consists in making a self-supported film from the premixed formulation using a thermomechanical process such as extrusion, calendering or thermo-compression. Then, this self-supported film is assembled with the metal substrate by a process combining temperature and pressure such as calendering or thermo-compression.
Les supports métalliques des électrodes sont généralement en aluminium pour la cathode et en cuivre pour l’anode. Les supports métalliques peuvent être traités en surface et avoir un primaire conducteur d’une épaisseur de 5pm ou plus. Les supports peuvent également être des tissés ou des non-tissés en fibre de carbone. Etape de consolidation de l’électrode The metal supports for the electrodes are generally aluminum for the cathode and copper for the anode. Metal substrates can be surface treated and have a conductive primer with a thickness of 5 µm or more. The supports can also be woven or non-woven carbon fiber. Electrode consolidation step
La consolidation de ladite électrode se fait par un traitement thermique par passage dans un four, sous une lampe à rayonnement infra-rouge, dans une calandre avec rouleaux chauffés ou dans une presse à plateaux chauffants. Une autre alternative consiste en un procédé en deux étapes. Tout d’abord, l’électrode subit un traitement thermique dans un four, sous une lampe à rayonnement infra-rouge ou au contact de plateaux chauffants sans pression. Puis une étape de compression à température ambiante ou à chaud est réalisée à l’aide d’une calandre ou d’une presse à plateaux. Cette étape permet d’ajuster la porosité de l’électrode et d’améliorer l’adhésion sur le substrat métallique. The consolidation of said electrode is carried out by heat treatment by passing it through an oven, under an infrared radiation lamp, in a calender with heated rollers or in a press with heated plates. Another alternative is a two-step process. First, the electrode is heat treated in an oven, under an infrared lamp or in contact with pressureless heating plates. Then a compression step at room temperature or hot is carried out using a calender or a plate press. This step adjusts the porosity of the electrode and improves adhesion to the metal substrate.
L’invention concerne également une électrode de batterie Li-ion fabriquée par le procédé décrit ci-dessus. The invention also relates to a Li-ion battery electrode manufactured by the method described above.
Selon un mode de réalisation, ladite électrode est une anode. According to one embodiment, said electrode is an anode.
Selon un mode de réalisation, ladite électrode est une cathode. Un autre objet de l’invention est une batterie secondaire Li-ion comprenant une électrode négative, une électrode positive et un séparateur, dans laquelle au moins une électrode est telle que décrite ci-dessus. According to one embodiment, said electrode is a cathode. Another object of the invention is a Li-ion secondary battery comprising a negative electrode, a positive electrode and a separator, in which at least one electrode is as described above.

Claims

REVENDICATIONS
1. Electrode de batterie Li-ion comprenant une charge active pour anode ou cathode, une charge conductrice électronique, et un liant de polymère fluoré, caractérisé en ce que ledit liant est constitué du mélange d’un polymère fluoré A dont la viscosité à l’état fondu est supérieure ou égale à 1000 Pa.s à 232°C et sous un cisaillement de 100 s-1, et d’un polymère fluoré B ayant une viscosité inférieure d’au moins 250 Pa.s à 232°C et sous un cisaillement de 100 s 1 à celle du polymère A. 1. Li-ion battery electrode comprising an active load for anode or cathode, an electronically conductive load, and a fluoropolymer binder, characterized in that said binder consists of the mixture of a fluoropolymer A whose viscosity at l 'molten state is greater than or equal to 1000 Pa.s at 232 ° C and under a shear of 100 s-1, and of a fluoropolymer B having a lower viscosity of at least 250 Pa.s at 232 ° C and under a shear of 100 s 1 to that of polymer A.
2. Electrode selon la revendication 1, dans laquelle lesdits polymères fluorés A et B contiennent au moins un monomère fluoré choisi parmi : le fluorure de vinyle; le fluorure de vinylidène (VDF); le trifluoroéthylène (VF3); le chlorotrifluoroéthylène (CTFE); le 1,2-difluoroéthylène; le tétrafluoroéthylène (TFE); l'hexafluoropropylène (HFP); les perfluoro(alkyl vinyl) éthers tels que le perfluoro(méthyl vinyl)éther (PMVE), le 5 perfluoro(éthyl vinyl) éther (PEVE) et le perfluoro(propyl vinyl) éther (PPVE); le perfluoro(l,3-dioxole); le perfluoro(2,2-diméthyl- 1,3 -dioxole) (PDD); le produit de formule CF2=CFOCF2CF(CF3)OCF2CF2X dans laquelle X est SO2F, CO2H, CH2OH, CH2OCN ou CH2OPO3H; le produit de formule CF2=CF0CF2CF2S02F; le produit de formule F(CF2)nCH20CF=CF2 dans laquelle n est 1, 2, 3, 4 ou 5; le produit de formule RICH20CF=CF2 dans laquelle Ri est l'hydrogène ou F(CF2)m et m vaut 1, 2, 3 ou 4; le produit de formule R20CF=CH2 dans laquelle R2 est F(CF2)p et p est 1, 2, 3 ou 4; le perfluorobutyl éthylène (PFBE); le 3,3,3-trifluoropropène et le 2- trifhiorométhyl-3 ,3 ,3 -trifluoro- 1 -propène. 2. An electrode according to claim 1, wherein said fluoropolymers A and B contain at least one fluorinated monomer chosen from: vinyl fluoride; vinylidene fluoride (VDF); trifluoroethylene (VF3); chlorotrifluoroethylene (CTFE); 1,2-difluoroethylene; tetrafluoroethylene (TFE); hexafluoropropylene (HFP); perfluoro (alkyl vinyl) ethers such as perfluoro (methyl vinyl) ether (PMVE), perfluoro (ethyl vinyl) ether (PEVE) and perfluoro (propyl vinyl) ether (PPVE); perfluoro (1,3-dioxole); perfluoro (2,2-dimethyl-1,3 -dioxole) (PDD); the product of formula CF 2 = CFOCF 2 CF (CF 3 ) OCF 2 CF 2 X in which X is SO 2 F, CO 2 H, CH 2 OH, CH 2 OCN or CH 2 OPO 3 H; the product of formula CF 2 = CF0CF 2 CF 2 S0 2 F; the product of formula F (CF 2 ) nCH 2 0CF = CF 2 in which n is 1, 2, 3, 4 or 5; the product of formula R I CH 2 0CF = CF 2 in which R 1 is hydrogen or F (CF2) m and m is 1, 2, 3 or 4; the product of formula R 2 0CF = CH 2 in which R2 is F (CF2) p and p is 1, 2, 3 or 4; perfluorobutyl ethylene (PFBE); 3,3,3-trifluoropropene and 2-trifhioromethyl-3, 3, 3 -trifluoro- 1 -propene.
3. Electrode selon l’une des revendications 1 ou 2, dans laquelle ledit liant contient : o un polymère fluoré A qui comprend un homopolymère de VDF et/ou au moins un copolymère de fluorure de vinylidène (VDF) et d’hexafluoropropylène (HFP), dont la viscosité à l’état fondu est supérieure ou égale à 1000 Pa.s à 232°C et sous un cisaillement de 100 s 1, et o un polymère fluoré B qui comprend un homopolymère de VDF et/ou au moins un copolymère VDF-HFP, ledit polymère fluoré B ayant une viscosité inférieure d’au moins 250 Pa.s à 232°C, et sous un cisaillement de 100 s 1 à celle du polymère A. 3. Electrode according to one of claims 1 or 2, wherein said binder contains: o a fluoropolymer A which comprises a homopolymer of VDF and / or at least one copolymer of vinylidene fluoride (VDF) and of hexafluoropropylene (HFP ), whose melt viscosity is greater than or equal to 1000 Pa.s at 232 ° C and under a shear of 100 s 1 , and o a fluoropolymer B which comprises a VDF homopolymer and / or at least one VDF-HFP copolymer, said fluoropolymer B having a lower viscosity of at least 250 Pa.s at 232 ° C, and under a shear of 100 s 1 than that of polymer A.
4. Electrode selon l’une des revendications 1 à 3, dans laquelle ledit polymère fluoré A a une viscosité supérieure ou égale à 1500 Pa.s et avantageusement supérieure ou égale à 2000 Pa.s à 232°C et sous un cisaillement de 100 s 1. 4. Electrode according to one of claims 1 to 3, wherein said fluoropolymer A has a viscosity greater than or equal to 1500 Pa.s and advantageously greater than or equal to 2000 Pa.s at 232 ° C and under a shear of 100 s 1 .
5. Electrode selon l’une des revendications 1 à 4, dans laquelle le taux d’HFP dans ledit au moins un copolymère de VDF-HFP entrant dans la composition dudit polymère fluoré A est supérieur ou égal à 3% et inférieur ou égal à 55%. 5. Electrode according to one of claims 1 to 4, wherein the level of HFP in said at least one VDF-HFP copolymer entering into the composition of said fluoropolymer A is greater than or equal to 3% and less than or equal to 55%.
6. Electrode selon l’une des revendications 1 à 5, dans laquelle le polymère fluoré A est constitué d’un seul copolymère VDF-HFP à taux d’HFP supérieur ou égal à 3%. 6. Electrode according to one of claims 1 to 5, in which the fluoropolymer A consists of a single VDF-HFP copolymer with an HFP level greater than or equal to 3%.
7. Electrode selon l’une des revendications 1 à 5, dans laquelle le polymère fluoré A est constitué d’un mélange de deux ou plusieurs copolymères VDF-HFP, le taux d’HFP de chaque copolymère est supérieur ou égal à 3%. 7. Electrode according to one of claims 1 to 5, wherein the fluoropolymer A consists of a mixture of two or more VDF-HFP copolymers, the HFP level of each copolymer is greater than or equal to 3%.
8. Electrode selon l’une des revendications 1 ou 2, dans laquelle le polymère fluoré A est un homopolymère de fluorure de vinylidène ou un mélange d’homopolymères de fluorure de vinylidène. 8. An electrode according to one of claims 1 or 2, wherein the fluoropolymer A is a homopolymer of vinylidene fluoride or a mixture of homopolymers of vinylidene fluoride.
9. Electrode selon la revendication 1 à 8, dans laquelle ledit polymère fluoré B a une viscosité inférieure d’au moins 500 Pa.s à 232°C, avantageusement inférieure d’au moins 750 Pa.s sous un cisaillement de 100 s 1 à celle du polymère A. 9. An electrode according to claim 1 to 8, wherein said fluoropolymer B has a lower viscosity of at least 500 Pa.s at 232 ° C, preferably lower by at least 750 Pa.s under a shear of 100 s 1. to that of polymer A.
10. Electrode selon l’une des revendications 1 ou 2, dans laquelle le polymère fluoré B est un homopolymère de fluorure de vinylidène ou un mélange d’homopolymères de fluorure de vinylidène. 10. An electrode according to one of claims 1 or 2, wherein the fluoropolymer B is a homopolymer of vinylidene fluoride or a mixture of homopolymers of vinylidene fluoride.
11. Electrode selon l’une des revendications 1 à 9, dans laquelle le polymère fluoré B est constitué d’un seul copolymère VDF-HFP ayantun taux d’HFP compris entre 3 et 55%. 11. Electrode according to one of claims 1 to 9, wherein the fluoropolymer B consists of a single VDF-HFP copolymer having an HFP level of between 3 and 55%.
12. Electrode selon l’une des revendications 1 à 9, dans laquelle le polymère fluoré B est constitué d’un mélange de deux ou plusieurs copolymères VDF-HFP. 12. Electrode according to one of claims 1 to 9, in which the fluoropolymer B consists of a mixture of two or more VDF-HFP copolymers.
13. Electrode selon l’une des revendications 1 à 12, dans laquelle ledit mélange comprend : i. un taux massique de polymère A supérieur ou égal à 1% et inférieur ou égal à 20%, préférentiellement supérieur ou égal à 5% et inférieur ou égal à 20%, et ii. un taux massique de polymère B inférieur ou égal à 99% et supérieur ou égal à 80%, de préférence inférieur ou égal à 95% et supérieur ou égal à 80%. 13. An electrode according to one of claims 1 to 12, wherein said mixture comprises: i. a mass content of polymer A greater than or equal to 1% and less than or equal to 20%, preferably greater than or equal to 5% and less than or equal to 20%, and ii. a mass content of polymer B less than or equal to 99% and greater than or equal to 80%, preferably less than or equal to 95% and greater than or equal to 80%.
14. Electrode selon l’une des revendications 1 à 13, dans laquelle ladite charge active est choisie parmi le lithium métal, le graphite, les composites silicium/carbone, le silicium, les graphites fluorés de type CFx avec x compris entre 0 et 1 et les titanates type LiTisOn pour une électrode négative. 14. Electrode according to one of claims 1 to 13, wherein said active filler is chosen from lithium metal, graphite, silicon / carbon composites, silicon, fluorinated graphites of CFx type with x between 0 and 1 and titanates of LiTisOn type for a negative electrode.
15. Electrode selon l’une des revendications 1 à 14, dans laquelle ladite charge active est choisie parmi les matériaux actifs du type LiMCh, du type LiMPCE, du type LEMPCEF, du type LÎ2MSÎ04 où M est Co, Ni, Mn, Fe ou une combinaison de ces derniers, du type LiM C^ ou du type Ss, pour une électrode positive. 15. Electrode according to one of claims 1 to 14, wherein said active load is chosen from active materials of the LiMCh type, of the LiMPCE type, of the LEMPCEF type, of the LÎ 2 MSÎ0 4 type where M is Co, Ni, Mn. , Fe or a combination of these, of the LiM C ^ type or of the Ss type, for a positive electrode.
16. Electrode selon l’une des revendications 1 à 15, ayant la composition massique suivante: 16. Electrode according to one of claims 1 to 15, having the following mass composition:
- 50% à 99,9% de charge active, - 50% to 99.9% of active load,
- 0,05% à 25% de charge conductrice, - 0.05% to 25% conductive filler,
- 0,05% à 25% de liant polymère, - 0.05% to 25% of polymer binder,
- 0 à 5% d’au moins un additif choisi dans la liste : plastifiants, liquide ionique, agent dispersant pour les charges, agent d’écoulement pour la formulation, agent de fibrillation, la somme de tous ces pourcentages étant de 100%. - 0 to 5% of at least one additive chosen from the list: plasticizers, ionic liquid, dispersing agent for the fillers, flow agent for the formulation, fibrillation agent, the sum of all these percentages being 100%.
17. Procédé de fabrication de l’électrode de batterie Li-ion selon l’une des revendications 1 à 16, ledit procédé comprenant les étapes suivantes : mélange de la charge active, du liant polymère et de la charge conductrice à l’aide d’un procédé qui permet d’obtenir une formulation d’électrode applicable sur un support métallique par un procédé sans solvant; dépôt de ladite formulation d’électrode sur le substrat métallique par un procédé sans solvant, pour obtenir une électrode de batterie Li-ion, et la consolidation de ladite électrode par un traitement thermique et/ou thermo mécanique. 17. A method of manufacturing the Li-ion battery electrode according to one of claims 1 to 16, said method comprising the following steps: mixing the active filler, the polymer binder and the conductive filler using a process which makes it possible to obtain an electrode formulation applicable on a metal support by a solvent-free process; depositing said electrode formulation on the metal substrate by a solvent-free process, to obtain a Li-ion battery electrode, and consolidation of said electrode by thermal and / or thermomechanical treatment.
18. Procédé selon la revendication 17, dans lequel l’étape de mélange se fait en deux temps : o mélange de la charge conductrice et du liant polymère à l’aide d’un procédé sans solvant ou par co-atomisation, pour obtenir un mélange intime, puis o mélange de la charge active avec ledit mélange intime à l’aide d’un procédé de mélange sans solvant, pour obtenir une formulation d’électrode. 18. The method of claim 17, wherein the mixing step is carried out in two stages: mixing the conductive filler and the polymer binder using a solvent-free process or by co-atomization, to obtain a intimate mixing, then mixing of the active filler with said intimate mixture using a mixing process without solvent, to obtain an electrode formulation.
19. Procédé selon l’une des revendications 17 ou 18, dans lequel ladite étape de mélange est réalisée par agitation, mélange par jet d'air, broyage du mélange, mélange à haut cisaillement, mélange par mélangeur en V, mélange par mélangeur de masse à vis, mélange par double cône, mélange par tambour, mélange conique, mélange par double bras en Z, mélange en lit fluidisé, par mélangeur planétaire, par extrusion, par calandrage, par mécano-fusion. 19. Method according to one of claims 17 or 18, wherein said mixing step is carried out by stirring, mixing by air jet, grinding the mixture, mixing at high shear, mixing by V-mixer, mixing by mixing. screw mass, mixing by double cone, mixing by drum, conical mixing, mixing by double Z-arm, mixing in a fluidized bed, by planetary mixer, by extrusion, by calendering, by mechanical fusion.
20. Procédé selon l’une des revendications 17 à 19, dans lequel ladite méthode de poudrage sans solvant se fait en déposant la formulation sur le substrat métallique par un procédé choisi parmi les procédés : de pulvérisation pneumatique, de pulvérisation électrostatique, de trempage dans un lit de poudre fluidisé, de saupoudrage, de transfert électrostatique, de dépôt avec des brosses rotatives, de dépôt avec des rouleaux doseurs rotatifs, de calandrage. 20. Method according to one of claims 17 to 19, wherein said powdering method without solvent is done by depositing the formulation on the metal substrate by a method chosen from the methods: pneumatic spraying, electrostatic spraying, dipping in a fluidized bed of powder, for dusting, for electrostatic transfer, for deposition with rotating brushes, for deposition with rotating metering rollers, for calendering.
21. Procédé selon l’une des revendications 17 à 19, dans lequel ladite méthode de poudrage sans solvant se fait en deux étapes : une première étape qui consiste à réaliser un film auto- supporté à partir de la formulation pré-mélangée à l’aide d’un procédé thermo-mécanique, et une deuxième étape dans laquelle le film auto-supporté est assemblé avec le substrat métallique par un procédé alliant température et pression comme le calandrage ou la thermo-compression. 21. Method according to one of claims 17 to 19, wherein said solvent-free powder coating method is carried out in two steps: a first step which consists in producing a self-supported film from the formulation premixed with the. using a thermo-mechanical process, and a second step in which the self-supported film is assembled with the metal substrate by a process combining temperature and pressure such as calendering or thermo-compression.
22. Procédé selon l’une des revendications 17 à 21, dans lequel la consolidation de ladite électrode se fait par un traitement thermique par passage dans un four, sous une lampe infra-rouge ou dans une calandre avec rouleaux chauffés. 22. Method according to one of claims 17 to 21, wherein the consolidation of said electrode is effected by a heat treatment by passage in an oven, under an infrared lamp or in a calender with heated rollers.
23. Batterie secondaire Li-ion comprenant une anode, une cathode et un séparateur, dans laquelle au moins une des électrodes a la composition selon l’une des revendications 1 à 16. 23. Li-ion secondary battery comprising an anode, a cathode and a separator, wherein at least one of the electrodes has the composition according to one of claims 1 to 16.
EP21706358.5A 2020-01-29 2021-01-29 Electrode formulation for li-ion battery and solvent-free method for electrode manufacturing Pending EP4097778A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2000864A FR3106701B1 (en) 2020-01-29 2020-01-29 ELECTRODE FORMULATION FOR LI-ION BATTERY AND SOLVENTLESS ELECTRODE MANUFACTURING METHOD
PCT/FR2021/050167 WO2021152268A1 (en) 2020-01-29 2021-01-29 Electrode formulation for li-ion battery and solvent-free method for electrode manufacturing

Publications (1)

Publication Number Publication Date
EP4097778A1 true EP4097778A1 (en) 2022-12-07

Family

ID=72088187

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21706358.5A Pending EP4097778A1 (en) 2020-01-29 2021-01-29 Electrode formulation for li-ion battery and solvent-free method for electrode manufacturing

Country Status (7)

Country Link
US (1) US20230084468A1 (en)
EP (1) EP4097778A1 (en)
JP (1) JP2023511719A (en)
KR (1) KR20220133273A (en)
CN (1) CN115004401A (en)
FR (1) FR3106701B1 (en)
WO (1) WO2021152268A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023182083A1 (en) * 2022-03-23 2023-09-28 ダイキン工業株式会社 Composition for secondary battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2987624B1 (en) * 2012-03-01 2015-02-20 Arkema France FLUORINATED POLYMERIC COMPOSITION

Also Published As

Publication number Publication date
WO2021152268A1 (en) 2021-08-05
KR20220133273A (en) 2022-10-04
US20230084468A1 (en) 2023-03-16
JP2023511719A (en) 2023-03-22
CN115004401A (en) 2022-09-02
FR3106701A1 (en) 2021-07-30
FR3106701B1 (en) 2022-07-22

Similar Documents

Publication Publication Date Title
CA2378622C (en) Lithium-ion battery cells made from a microcomposite powder based on a charge and a fluoropolymer
WO2021152269A1 (en) Electrode formulation for a li-ion battery and method for manufacturing an electrode without solvent
EP3266058B1 (en) Electrodes for li-ion batteries with improved conductivity
WO2003067686A1 (en) Microcomposite powder based on flat graphite particles and a fluoropolymer and objects made from same
EP4315487A1 (en) Separator coating for li-ion batteries based on pvdf acrylate latex
EP3948987A1 (en) Electrode formulation for li-ion battery and method for producing an electrode by extrusion at low residence time
EP4097778A1 (en) Electrode formulation for li-ion battery and solvent-free method for electrode manufacturing
WO2021152267A1 (en) Electrode formulation for a li-ion battery and method for manufacturing an electrode without solvent
WO2022234227A1 (en) Fluoropolymer binder
WO2024052624A1 (en) Powder composition based on at least one fluoropolymer and at least one hydrophilic polymer for a separator coating or cathode binder
FR3135167A1 (en) Binder for dry coated electrode
WO2024052623A1 (en) Composition based on at least one fluoropolymer and at least one hydrophilic polymer for a separator coating or cathode binder
WO2024052628A1 (en) Powder composition based on at least one fluoropolymer and at least one hydrophilic polymer for a separator coating
WO2023047064A1 (en) Cathode coating for li-ion battery
WO2024052626A1 (en) Powder composition based on at least one fluoropolymer and at least one hydrophilic polymer for separator coating
WO2023002109A1 (en) Method for manufacturing bipolar plates
WO2023047065A1 (en) Anode coating for all-solid-state li-ion battery
FR3094710A1 (en) Process for preparing a pasty composition comprising carbon nanotubes

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220713

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)