EP4066306A1 - Electrochemical element, as well as modules and batteries containing same - Google Patents

Electrochemical element, as well as modules and batteries containing same

Info

Publication number
EP4066306A1
EP4066306A1 EP20812047.7A EP20812047A EP4066306A1 EP 4066306 A1 EP4066306 A1 EP 4066306A1 EP 20812047 A EP20812047 A EP 20812047A EP 4066306 A1 EP4066306 A1 EP 4066306A1
Authority
EP
European Patent Office
Prior art keywords
envelope
stack
layer
element according
pet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20812047.7A
Other languages
German (de)
French (fr)
Inventor
Vincent PELE
Christian Jordy
Nadège ROUMEGOUS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAFT Societe des Accumulateurs Fixes et de Traction SA
Original Assignee
SAFT Societe des Accumulateurs Fixes et de Traction SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAFT Societe des Accumulateurs Fixes et de Traction SA filed Critical SAFT Societe des Accumulateurs Fixes et de Traction SA
Publication of EP4066306A1 publication Critical patent/EP4066306A1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/122Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • H01M50/133Thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/14Primary casings; Jackets or wrappings for protecting against damage caused by external factors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/229Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/231Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of energy storage, and more specifically to accumulators, in particular of the lithium type.
  • Rechargeable lithium-ion batteries indeed offer excellent energy and volume densities and today occupy a prominent place in the market for portable electronics, electric and hybrid vehicles and stationary energy storage systems.
  • Solid electrolytes also offer a significant improvement in terms of safety as they present a much lower risk of flammability than liquid electrolytes.
  • US2016 / 0351973 describes a protective nanolayer for the active material of the anode, the cathode or the electrolyte.
  • the layer is described at the interface between the active material and the electrolyte, and has the effect of preventing electronic transfer between the active material and the passivation layer that forms on the surface of the electrodes.
  • US2019 / 0013546 describes the encapsulation of solid electrolyte by a nanofilm, the film encapsulating the electrolyte on all surfaces of the electrolyte, in order to protect it during storage or manufacture of the battery.
  • US2016 / 0293907 describes the external packaging of an inter-digitized multilayer stack, as well as its internal encapsulation which however covers the entire arrangement of the stack.
  • the batteries described are of the thin film micro battery type, and do not involve sulfur-containing electrolyte.
  • the encapsulation or packaging described is nevertheless insufficient when it comes to effectively avoiding contact of an electrolyte, in particular sulfur-containing electrolyte with the atmosphere, and the constraints associated with “macroscopic” batteries, as opposed to batteries. microbatteries, (mechanical forces, volume variations, roughness, materials used, etc.).
  • one of the aims of the invention is therefore to solve these objectives by proposing an electrochemical cell comprising a protective envelope applied above all or part of the electrolytic material capable of being in contact with humidity, in particular on all or part of the cell.
  • the present invention relates to an electrochemical element comprising at least one sulfur-containing electrolytic compound, said element comprising a stack between two electronically conductive current collectors, said stack comprising
  • a layer comprising a solid electrolytic composition separating said positive electrode and said negative electrode; the cell being characterized in that at least the lateral surface of the stack is at least partially covered with an electrically insulating chemical protection and / or mechanical reinforcement envelope.
  • electrochemical element an elementary electrochemical cell made up of the positive electrode / electrolyte / negative electrode assembly, allowing the electrical energy supplied by a chemical reaction to be stored and returned in the form of current.
  • the positive electrode can be of any known type.
  • the cathode generally consists of a conductive support used as a collector of current which is coated with a layer containing the cathodic active material and generally additionally a binder and an electronically conductive material.
  • the cathodic active material is not particularly limited. It can be chosen from the following groups or their mixtures:
  • M represents at least one element chosen from the group consisting of Na, K, Mg, Ca, B, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Al, Y, Zr, Nb, Mo, Ru, Ag, Sn, Sb, Ta, W, Bi, La, Pr, Eu, Nd and Sm and where 0 ⁇ x ⁇ 0.5 and 0 ⁇ y ⁇ 1.
  • the current collector is preferably a two-dimensional conductive support such as a solid or perforated strip, based on carbon or metal, for example nickel, steel, stainless steel or aluminum, preferably aluminum.
  • the current collector can be coated on one or both sides with a carbon layer.
  • the negative electrode can be of any known type. It generally consists of a conductive support used as a current collector which is coated with a layer containing the anode active material and further generally a binder and an electronically conductive material. It is understood that in “anode free” systems, a negative electrode is also present (generally initially limited to the single current collector).
  • the cathodic active material is not particularly limited. It can be chosen from the following groups and their mixtures:
  • M and M 'each represent at least one element selected from the group consisting of
  • X represents at least one element selected from the group consisting of S, F, Cl and Br.
  • the index d represents an oxygen deficiency.
  • the index d can be less than or equal to 0.5.
  • Said at least one titanium and niobium oxide can be chosen from TiNb 2 0, Ti 2 Nb 2 0 , TÎ2Nb20g and Ti 2 Nbi 0 O2 9 .
  • LTO is selected from the following oxides: i) Lix-aMaTiy-bM'b0 4 -c-dXc in which 0 ⁇ x ⁇ 3; £ 1 y £ 2.5; 0 ⁇ a ⁇ 1; 0 ⁇ b ⁇ 1; 0 ⁇ c ⁇ 2 and - 2.5 £ d £ 2.5;
  • M represents at least one element selected from the group consisting of Na, K, Mg, Ca, B, Mn, Fe, Co, Cr, Ni, Al, Cu, Ag, Pr, Y and La;
  • M represents at least one element selected from the group consisting of B, Mo, Mn, Ce, Sn, Zr, Si, W, V, Ta, Sb, Nb, Ru, Ag, Fe, Co, Ni, Zn, Al , Cr, La, Pr, Bi, Sc, Eu, Sm, Gd, Ti, Ce, Y and Eu;
  • X represents at least one element selected from the group consisting of S, F, Cl and Br;
  • the index d represents an oxygen deficiency.
  • the index d can be less than or equal to 0.5.
  • Examples of lithiated titanium oxides belonging to group i) are the spinel Li Ti 5 0i 2 , Li 2 TiC> 3, the ramsdellite LhThO ?, LiTi 2 C> 4, Li x Ti 2 C> 4, with 0 ⁇ x ⁇ 2 and Li 2 Na 2 Ti60i4.
  • a preferred compound has the formula LTO LU-a M a TIS b M 'b C, e.g. 5 LLTI 0i 2 writes still u / 3 P 5/3 q4.
  • the binder present at the cathode and the anode has the function of strengthening the cohesion between the particles of active materials as well as improving the adhesion of the mixture according to the invention to the current collector.
  • the binder may contain one or more of the following: polyvinylidene fluoride (PVDF) and its copolymers, polytetrafluoroethylene (PTFE) and its copolymers, polyacrylonitrile (PAN), poly (methyl) - or (butyl) methacrylate, polyvinyl chloride (PVC) ), poly (vinyl formai), polyester, block polyetheramides, polymers of acrylic acid, methacrylic acid, acrylamide, itaconic acid, sulfonic acid, elastomer and cellulose compounds.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PAN polyacrylonitrile
  • PVC poly (methyl) - or (butyl) methacrylate
  • the elastomer (s) which can be used as binder can be chosen from styrene-butadiene (SBR), butadiene-acrylonitrile (NBR), hydrogenated butadiene-acrylonitrile (HNBR), and a mixture of several of these.
  • SBR styrene-butadiene
  • NBR butadiene-acrylonitrile
  • HNBR hydrogenated butadiene-acrylonitrile
  • the electronically conductive material is generally chosen from graphite, carbon black, acetylene black, soot, graphene, carbon nanotubes or a mixture of these.
  • the element according to the invention has an assembly in the form of a stack, defining a lower surface and an upper surface, opposite, and an external lateral peripheral surface, on which the electrodes and the electrolytic layer are generally in contact with the atmosphere. .
  • at least the outer side surface of the electrolytic layer is at least partially covered with the protective casing, to avoid contact with the atmosphere.
  • the envelope completely or partially covers the lateral surface of the elementary stack of an element, in that it covers at least part of the lateral surface of the electrolytic layer, but it can also cover the entire lateral surface. of the electrolytic layer, and the side surface of the electrodes.
  • the envelope may partially be present in particular in the interstices which may form between the electrodes and the electrolytic layer.
  • the envelope can also cover the external surfaces of the element's electrodes (with the exception of the connector elements). However, the envelope does not completely cover the internal interfaces between the electrolytic layer and the electrodes.
  • microbatteries typically have an electrical charge greater than 100 mAh. They differ from micro-batteries and typically have a capacity greater than 0.1 Ah.
  • module refers to the assembly of several electrochemical elements.
  • battery is meant the assembly of several modules.
  • Said assemblies can be in series and / or parallel.
  • the electrochemical element according to the invention is particularly suitable for lithium accumulators, such as Li-ion, primary Li (non-rechargeable) and Li-S accumulators
  • current collector is understood to mean an element such as a pad, plate, sheet or other, made of a conductive material, connected to the positive or negative electrode, and ensuring the conduction of the flow of electrons between the electrode and the terminals of the battery. .
  • positive electrode refers to the electrode where electrons enter, and where cations (Li +) arrive in discharge.
  • negative electrode designates the electrode from which electrons leave, and from which cations (Li +) are released in discharge
  • the electrochemical element comprises at least one sulfur-containing electrolytic compound, i.e. comprising sulfur.
  • the electrolyte layer contains an electrolyte composition, which may include one or more electrolyte constituents.
  • electrolyte constituents mention may in particular be made of sulfur-containing compounds alone or as a mixture with other constituents, such as polymers or gels. Mention may thus be made of partially or completely crystallized sulphides as well as amorphous ones.
  • Electrolytic materials may also include oxysulphides, oxides (garnet, phosphate, anti-perovskite, etc.), hydrides, polymers, gels or ionic liquids which conduct lithium ions.
  • the electrolytic compounds can be included in the electrolyte layer, but can also be partially included within the electrodes.
  • the protective envelope may consist of one or more constituents. It can also include one or more layers, each consisting of one or more constituents.
  • the envelope consists of a first layer of chemical protection and of a second layer of mechanical reinforcement.
  • the envelope is applied in direct contact with at least all or part of the lateral surface of the electrolytic layer.
  • At least one of the constituent materials of the envelope has sufficient affinity with the sulfur-containing electrolyte, so as to ensure direct contact between the envelope and the electrolytic layer and / or the electrolyte. sulfur, without degrading it.
  • the envelope is not in direct contact with the elements of the stack, in that a space is created between the envelope and the elements of the stack.
  • This space can be under vacuum or filled with a gas, in particular an inert gas.
  • the envelope according to the invention provides chemical protection by inhibiting the contact of the elements of the element, in particular the electrolytic layer, with the atmosphere and humidity.
  • the envelope In addition to preventing the degradation of sulfur-containing materials in the event of exposure to humidity or oxygen (and therefore adversely affect the electrochemical performance of the cell), the envelope also limits the release of H 2 S (harmful gas) which may result from this exposure.
  • the enclosure therefore solves a double risk in terms of safety and performance.
  • the envelope provides chemical protection in that it makes it possible to reduce the generation of H 2 S to less than 1 g / h per m 2 of beam area, preferably less than 0.1 g / h / m 2 .
  • beam used here illustrates the volume delimited by the plane defined by each of the electrodes, the thickness of the beam corresponding to the geometric dimension perpendicular to the plane of the electrodes.
  • the envelope comprises at least one material having a water permeability of less than 0.1 g / m 2 / day / pm.
  • the envelope comprises at least one material having a permeability to air, nitrogen and oxygen of less than 0.1 g / m 2 / day / pm.
  • the envelope has an elongation before rupture of greater than 150%.
  • the envelope can have an elastic modulus of between 0.001 and 50 GPa.
  • the envelope can withstand a variation in beam thickness of more than 10%, preferably at least 20%.
  • the envelope retains its water permeability properties even after volume variation of more than 10%, preferably greater than 20%.
  • the protective envelope is insulating: it has an electronic conductivity typically less than 10 9 S / cm.
  • the envelope is made of an electronically non-conductive material.
  • the envelope comprises at least:
  • thermoplastic or thermosetting polymers an organic material chosen from thermoplastic or thermosetting polymers. They can also be co-polymers or mixtures of polymers and optionally - an inorganic material of nanometric size which may be in the form of particles, fibers or tubes.
  • nanometric additives there may be mentioned, for example, alumina, silicates or titanates.
  • elastomers eg natural or synthetic rubbers, etc.
  • dyMAT ClrPYE MONO marketed by COVEME
  • dyMAT HDPYE SPV L marketed by COVEME
  • Ultra Barrier Solar Film marketed by 3M
  • PET polyethylene terephthalate
  • PE polyethylene
  • PE poly (methyl methacrylate)
  • PVDF polyvinylidene fluoride
  • PP polypropylene
  • PC polycarbonate
  • PC poly (ethylene-co-tetrafluoroethylene)
  • PI polyimide
  • PIB Polyisobutene
  • DyMAT HDPYE SPV L PET / PET / Primer (50 pm/250pm/50pm);
  • Ultra Barrier Solar Film Fluoropolymer / Black tape / Pressure sensitive adhesive / PET.
  • the envelope has a total thickness which is less than 100 ⁇ m, preferably less than 50 ⁇ m, in particular less than 30 ⁇ m.
  • the perimeter of the envelope depends on the thickness of the beam and the perimeter of the beam.
  • the perimeter of the envelope can be advantageously defined by the following relation:
  • the casing has a melting temperature greater than or equal to 150 ° C.
  • the casing advantageously has a basis weight of less than 5 mg / cm 2 .
  • the electrochemical cells according to the invention are suitable for operation over a wide range of temperatures, typically at temperatures below 70 ° C. They can be stored stably at temperatures down to -40 ° C.
  • the present invention also relates to a method of manufacturing an element according to the invention, said method comprising:
  • ALD thin atomic layer deposition
  • MLD molecular layer deposition
  • lamination sealing, sputtering and / or physical vapor deposition.
  • the envelope is deposited by depositing a thin layer, a few atoms or molecules several tens of nanometers thick.
  • This deposition can advantageously be carried out by ALD (atomic layer deposition), MLD (molecular layer deposition) or any other technique making it possible to optimally cover the exposed surface and the interstices with the material retained.
  • ALD atomic layer deposition
  • MLD molecular layer deposition
  • the thicker protective envelopes (1 to 1000 ⁇ m) can also be deposited by techniques adapted according to the configuration of the cell (PVD, spraying, dip coating, lamination, thermoforming, etc.).
  • the method can also comprise the deposition of two successive distinct layers: a first layer ensuring insulation and chemical stability at the nano / micrometric level, followed by the deposition of a second layer to maintain the mechanical cohesion of the film. stacking.
  • the electrochemical element according to the invention can be manufactured by a process comprising the steps of:
  • Sealing can for example be carried out by welding, melting, rolling.
  • the envelope can for example be thermoformed before insertion of the cell and sealing.
  • the envelope comprises an adhesive material permitting the sealing of the envelope.
  • the invention also relates to an electrochemical module comprising the stack of at least two elements according to the invention, each element being electrically connected with one or more other element (s), in particular via their current collectors.
  • This assembly can be carried out in a stack.
  • the envelope is then present at least on all or part of the side surface of the module.
  • the external lateral surface of the module and / or the external lower and upper surfaces of the electrodes can be covered with said envelope.
  • the module can also include said envelope on its lower and upper outer surfaces, defined by the outer face of the lower electrode and the outer face of the upper electrode.
  • the module can be encapsulated within a sealed box, allowing the module to be contained in the event of an overheating incident or a leak, for example.
  • the present invention also relates to a battery comprising one or more modules according to the invention, and / or one or more boxes according to the invention.
  • Figure 1 shows an unprotected element according to the invention (A), protected by an envelope according to the invention (B and C), the envelope providing a chemical protection layer (B) or a mechanical reinforcement layer (VS).
  • Figure 2 shows a module comprising an assembly of elements according to the invention.
  • FIG. 3 Figure 3 illustrates the inhibition of the production of FI2S using an envelope according to the invention.
  • a stack suitable for the invention consists of an elementary assembly of a positive electrode (1), and a negative electrode (2) separated by a catalytic layer (3).
  • the electrodes (1) and (2) can of course be reversed.
  • FIG. 1 B and 1 C An element comprising a protective envelope (4) according to the invention is illustrated in Figures 1 B and 1 C: according to a variant, the envelope (4) consists of a thin layer (4) providing chemical protection. According to another variant, the envelope (4) consists of a first layer (4) providing protection chemical, and a second thicker layer (4 ') providing mechanical reinforcement.
  • a module consists of three elements, assembled in a stack. Each element consists of a positive electrode (1), and a negative electrode (2) separated by a catalytic layer (3). According to the variant shown, the casing (4) covers the side surface of the module, as well as the lower and upper surfaces of the module, defined by the outer surfaces of the lower and rear electrode of the assembly.
  • An argyrodite sulfide electrolyte of Li 6 PS 5 CI composition was manufactured by mechanical synthesis (500 rpm, 20 h) from the precursors Li 2 S, P2S5 and LiCI in stoichiometric proportions.
  • the ionic conductivity of this electrolyte was measured by impedance spectroscopy on a pellet compressed at 250 MPa in a pressure cell and reached 1 mS / cm at room temperature.
  • the obtained sulphide electrolyte powder was compressed at 250 MPa to form a pellet 400 ⁇ m thick and 10 mm in diameter.
  • An envelope (example # 2) was made by placing, on either side of the sulphide electrolyte pellet, a sheet of dyMAT ClrPYE MONO materials (285 pm - marketed by COVEME) and a sheet of Ultra Barrier Solar material Film (203 ⁇ m - marketed by 3M TM). The edges of the envelope thus formed protruding from the pellet are then heat-sealed at 150 ° C. so as to contain the pellet without degrading it. In a sealed container of known volume filled with ambient humid air, the pellet thus enveloped is introduced and the H 2 S level is measured using a specific sensor as a function of time.
  • the unprotected material rapidly emits a large quantity of H 2 S gas (10 cm 3 / g in less than 15 minutes) exceeding the authorized regulations.
  • H 2 S rate remains below 1 ppm (detection limit of the sensor used) for more than 30 minutes (# 2) to more than 2 hours (# 3) and remains low after 24h.
  • the sulphide material can be handled safely in ambient air.
  • Sulfide electrolyte powder (as manufactured in Example 1) is cold pressed (200 MPa) in a pelletizing mold to form a pellet about 400 ⁇ m thick called an electrolytic layer.
  • Sulfide electrolyte powder is mixed in the mortar and pestle with powder of positive active material (NCA) in NCA: SE 70:30 mass proportions until a homogeneous distribution is reached.
  • NCA positive active material
  • This mixture (which constitutes the positive electrode) is added on one side of the electrolytic layer in the pellet mold, the whole being again compressed (200 MPa) to form a dense and solid pellet (with a thickness of positive electrode close to 100 ⁇ m).
  • the negative electrode composed of graphite powder and solid electrolyte previously mixed manually with the mortar (electrolyte mass proportions: graphite 40:60).
  • the entire stack is again cold compressed (500 MPa) in a pelletizing mold with an electrically insulating body so as to form the negative electrode layer of approximately 100 ⁇ m in thickness.
  • the positive and negative electrode masses are balanced to have a slight excess capacity of the negative electrode.
  • the stack obtained is placed between stainless steel current collectors.
  • the encapsulation treatment according to the invention can be carried out on the stack thus produced.
  • the envelopes described in Example 1 are used to achieve this encapsulation.
  • the stack is introduced into one of these envelopes, the sides of which are then heat sealed. Sealed current passages (wires or latches used for the assembly of pouch cells) provide the electrical connection between the current collectors and the cycling cell without degrading the seal of the enclosure.
  • the stack thus encapsulated is then placed in a cycling cell making it possible to apply a pressure (1-500 MPa) along the axis of symmetry of the pellet, on the two collectors without generating a short-circuit or degrading the envelope. .
  • the cell thus assembled is then subjected to galvanostatic cycling between 2.8 and 4.1 V with a constant current such that the full charge of the cell is carried out in 20 hours.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)

Abstract

The present invention relates to an electrochemical element, in particular a sulphur-containing solid electrolyte, comprising a protective casing, as well as to the modules and batteries comprising such elements.

Description

TITRE : ÉLÉMENT ÉLECTROCHIMIQUE, AINSI QUE MODULES ETTITLE: ELECTROCHEMICAL ELEMENT, AS WELL AS MODULES AND
BATTERIES LE CONTENANT BATTERIES CONTAINER
La présente invention concerne le domaine du stockage de l’énergie, et plus précisément les accumulateurs, notamment de type lithium. The present invention relates to the field of energy storage, and more specifically to accumulators, in particular of the lithium type.
Les accumulateurs rechargeables lithium-ion offrent en effet d’excellentes densités énergétique et volumique et occupent aujourd’hui une place prépondérante sur le marché de l’électronique portable, des véhicules électriques et hybrides ou encore des systèmes stationnaires de stockage de l’énergie. Rechargeable lithium-ion batteries indeed offer excellent energy and volume densities and today occupy a prominent place in the market for portable electronics, electric and hybrid vehicles and stationary energy storage systems.
Leur fonctionnement est basé sur l’échange réversible de l’ion lithium entre une électrode positive et une électrode négative, séparées par un électrolyte. Their operation is based on the reversible exchange of lithium ion between a positive electrode and a negative electrode, separated by an electrolyte.
Les électrolytes solides offrent de plus une amélioration notable en terme de sécurité dans la mesure où ils présentent un risque d’inflammabilité bien moindre que les électrolytes liquides. Solid electrolytes also offer a significant improvement in terms of safety as they present a much lower risk of flammability than liquid electrolytes.
Cependant les propriétés des électrolytes solides souffrent d’une dégradation au contact de l’humidité. Dans le cas des électrolytes soufrés, l’humidité conduit notamment à l’émission de gaz nocif (H2S). However, the properties of solid electrolytes suffer from degradation on contact with humidity. In the case of sulfur-containing electrolytes, humidity leads in particular to the emission of harmful gas (H 2 S).
Il convient donc de développer des solutions pour protéger les éléments constitutifs des cellules électrochimiques solides afin de prolonger leur durée de vie. It is therefore necessary to develop solutions to protect the constituent elements of solid electrochemical cells in order to prolong their lifespan.
US2016/0351973 décrit une nanocouche protectrice pour le matériau actif de l’anode, la cathode ou l’électrolyte. Néanmoins, la couche est décrite à l’interface entre le matériau actif et l’électrolyte, et a pour effet d’empêcher le transfert électronique entre le matériau actif et la couche de passivation qui se forme sur la surface des électrodes. US2016 / 0351973 describes a protective nanolayer for the active material of the anode, the cathode or the electrolyte. However, the layer is described at the interface between the active material and the electrolyte, and has the effect of preventing electronic transfer between the active material and the passivation layer that forms on the surface of the electrodes.
US2019/0013546 décrit l’encapsulation d’électrolyte solide par un nanofilm, le film encapsulant l’électrolyte sur l’ensemble des surfaces de l’électrolyte, afin de le protéger pendant le stockage ou la fabrication de la batterie. US2019 / 0013546 describes the encapsulation of solid electrolyte by a nanofilm, the film encapsulating the electrolyte on all surfaces of the electrolyte, in order to protect it during storage or manufacture of the battery.
US2016/0293907 décrit l’empaquetage externe d’une pile multicouche inter digitée, ainsi que son encapsulation interne qui couvre cependant l’ensemble de l’arrangement de la pile. Cependant, les batteries décrites sont de type micro batteries en couche mince, et n’impliquent pas d’électrolyte soufré. L’encapsulation ou empaquetage décrit se montre néanmoins insuffisant lorsqu’il s’agit d’éviter efficacement le contact d’un électrolyte notamment soufré avec l’atmosphère, et les contraintes liées aux batteries « macroscopiques », par opposition aux microbatteries, (efforts mécaniques, variations volumiques, rugosité, matériaux utilisés ...). US2016 / 0293907 describes the external packaging of an inter-digitized multilayer stack, as well as its internal encapsulation which however covers the entire arrangement of the stack. However, the batteries described are of the thin film micro battery type, and do not involve sulfur-containing electrolyte. The encapsulation or packaging described is nevertheless insufficient when it comes to effectively avoiding contact of an electrolyte, in particular sulfur-containing electrolyte with the atmosphere, and the constraints associated with “macroscopic” batteries, as opposed to batteries. microbatteries, (mechanical forces, volume variations, roughness, materials used, etc.).
Il reste donc à mettre à disposition une protection efficace des surfaces électrolytiques soufrées exposées à des traces d’humidité pour les isoler et éviter toute dégradation des matériaux constitutifs. De plus, la protection doit également permettre de compenser les variations volumiques des électrodes dont les dimensions peuvent varier de façon substantielle (plus de 10 pm, par opposition aux micro-batteries en couches minces). Par ailleurs, il convient de ne pas affecter les performances électrochimiques de la cellule. It therefore remains to provide effective protection of electrolytic sulfur surfaces exposed to traces of moisture to insulate them and prevent any degradation of the constituent materials. In addition, the protection must also make it possible to compensate for the volume variations of the electrodes, the dimensions of which can vary substantially (more than 10 μm, as opposed to thin-film micro-batteries). Furthermore, the electrochemical performance of the cell should not be affected.
Ainsi, un des buts de l’invention est donc de résoudre ces objectifs en proposant une cellule électrochimique comprenant une enveloppe de protection appliquée surtout ou partie du matériau électrolytique susceptible d’être au contact avec l’humidité, notamment sur tout ou partie de la surface latérale externe de la couche électrolytique de l’empilement électrode négative / électrolyte / électrode positive, et/ou la surface des électrodes susceptibles de contenir un composant électrolytique. Thus, one of the aims of the invention is therefore to solve these objectives by proposing an electrochemical cell comprising a protective envelope applied above all or part of the electrolytic material capable of being in contact with humidity, in particular on all or part of the cell. outer side surface of the electrolytic layer of the negative electrode / electrolyte / positive electrode stack, and / or the surface of the electrodes capable of containing an electrolytic component.
Selon un premier objet, la présente invention concerne un élément électrochimique comprenant au moins un composé électrolytique soufré ledit élément comprenant un empilement entre deux collecteurs de courant conducteurs électroniques, ledit empilement comprenant According to a first object, the present invention relates to an electrochemical element comprising at least one sulfur-containing electrolytic compound, said element comprising a stack between two electronically conductive current collectors, said stack comprising
- une électrode positive; - a positive electrode;
- une électrode négative; et - a negative electrode; and
- une couche comprenant une composition électrolytique solide séparant ladite électrode positive et ladite électrode négative ; la cellule étant caractérisée en ce que au moins la surface latérale de l’empilement est au moins partiellement recouverte d’une enveloppe de protection chimique et/ou de renforcement mécanique, isolante électriquement. a layer comprising a solid electrolytic composition separating said positive electrode and said negative electrode; the cell being characterized in that at least the lateral surface of the stack is at least partially covered with an electrically insulating chemical protection and / or mechanical reinforcement envelope.
On entend par « élément électrochimique » une cellule électrochimique élémentaire constituée de l’assemblage électrode positive/électrolyte/électrode négative, permettant d’emmagasiner l’énergie électrique fournie par une réaction chimique et de la restituer sous forme de courant. By "electrochemical element" is meant an elementary electrochemical cell made up of the positive electrode / electrolyte / negative electrode assembly, allowing the electrical energy supplied by a chemical reaction to be stored and returned in the form of current.
Dans le cadre de la présente invention, l’électrode positive peut être de tout type connu. La cathode consiste généralement en un support conducteur utilisé comme collecteur de courant qui est revêtu d'une couche contenant le matériau actif cathodique et généralement en outre un liant et un matériau conducteur électronique. In the context of the present invention, the positive electrode can be of any known type. The cathode generally consists of a conductive support used as a collector of current which is coated with a layer containing the cathodic active material and generally additionally a binder and an electronically conductive material.
Le matériau actif cathodique n’est pas particulièrement limité. Il peut être choisi dans les groupes suivants ou leurs mélanges : The cathodic active material is not particularly limited. It can be chosen from the following groups or their mixtures:
- un composé (a) de formule LixMi-y-z-wM’yM”zM’”w02 (LM02) où M, M’, M” et M’” sont choisis dans le groupe consistant en B, Mg, Al, Si, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, W et Mo à la condition qu'au moins M ou M’ ou M” ou M’” soit choisi parmi Mn, Co, Ni, ou Fe ; M, M’, M” et M’” étant différents les uns des autres; et 0,8<x<1 ,4 ; 0<y<0,5 ; 0<z£0,5 ; 0<w£0,2 et x+y+z+w<2,1 ; - a compound (a) of formula Li x Mi-y- zw M'yM ” z M '” w 0 2 (LM02) where M, M', M ”and M '” are chosen from the group consisting of B, Mg, Al, Si, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, W and Mo provided that at least M or M 'or M ”or M '”is selected from Mn, Co, Ni, or Fe; M, M ', M ”and M'” being different from each other; and 0.8 <x <1.4; 0 <y <0.5; 0 <z £ 0.5; 0 <w £ 0.2 and x + y + z + w <2.1;
- un composé (b) de formule LixMn2-y-zM'yM"z04 (LMO), où M' et M" sont choisis dans le groupe consistant en B, Mg, Al, Si, Ca, Ti, V, Cr, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb et Mo ;. M' et M" étant différents l’un de l’autre, et 1£x£1 ,4 ; 0<y<0,6 ; 0<z£0,2 ; - a compound (b) of formula Li x Mn 2 -y- z M'yM " z 0 4 (LMO), where M 'and M" are chosen from the group consisting of B, Mg, Al, Si, Ca, Ti, V, Cr, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb and Mo ;. M 'and M "being different from each other, and 1 £ x £ 1.4; 0 <y <0.6; 0 <z £ 0.2;
- un composé (c) de formule UxFei-yMyPC>4 (LFMP) où M est choisi dans le groupe consistant en B, Mg, Al, Si, Ca, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Y, Zr, Nb et Mo; et 0,8<x<1 ,2 ; 0£y£0,6 ; - a compound (c) of formula U x Fei-yMyPC> 4 (LFMP) where M is chosen from the group consisting of B, Mg, Al, Si, Ca, Ti, V, Cr, Mn, Co, Ni, Cu , Zn, Y, Zr, Nb and Mo; and 0.8 <x <1.2; 0 £ y £ 0.6;
- un composé (d) de formule LixMni-y-zM’yM”zP04 (LMP), où M’ et M” sont différents l’un de l’autre et sont choisis dans le groupe consistant en B, Mg, Al, Si, Ca, Ti, V, Cr, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb et Mo, avec 0,8£x£1 ,2 ; 0<y<0,6 ; 0,0<z£0,2 ; - a compound (d) of formula Li x Mni-y- z M ' y M ” z P04 (LMP), where M' and M” are different from each other and are selected from the group consisting of B , Mg, Al, Si, Ca, Ti, V, Cr, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb and Mo, with 0.8 £ x £ 1.2; 0 <y <0.6; 0.0 <z £ 0.2;
- un composé (e) de formule xL^MnOs; (1-x)LiMC>2 où M est au moins un élément choisi parmi Ni, Co et Mn et x£1 . - a compound (e) of formula xL ^ MnOs; (1-x) LiMC> 2 where M is at least one element selected from Ni, Co and Mn and x £ 1.
- un composé (f) de formule Lii+xM02-yFy de structure cubique où M représente au moins un élément choisi dans le groupe constitué de Na, K, Mg, Ca, B, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Al, Y, Zr, Nb, Mo, Ru, Ag, Sn, Sb, Ta, W, Bi, La, Pr, Eu, Nd et Sm et où 0 < x < 0,5 et 0 < y < 1 . - a compound (f) of formula Lii + x M0 2 -yF y of cubic structure where M represents at least one element chosen from the group consisting of Na, K, Mg, Ca, B, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Al, Y, Zr, Nb, Mo, Ru, Ag, Sn, Sb, Ta, W, Bi, La, Pr, Eu, Nd and Sm and where 0 <x <0.5 and 0 <y <1.
Le collecteur de courant est de préférence un support conducteur bidimensionnel tel qu'un feuillard plein ou perforé, à base de carbone ou de métal, par exemple en nickel, en acier, en acier inoxydable ou en aluminium, de préférence aluminium. Le collecteur de courant peut être revêtu sur l’une ou sur ses deux faces d’une couche de carbone. The current collector is preferably a two-dimensional conductive support such as a solid or perforated strip, based on carbon or metal, for example nickel, steel, stainless steel or aluminum, preferably aluminum. The current collector can be coated on one or both sides with a carbon layer.
Dans le cadre de la présente invention, l’électrode négative peut être de tout type connu. Elle consiste généralement en un support conducteur utilisé comme collecteur de courant qui est revêtu d'une couche contenant le matériau actif anodique et en outre généralement un liant et un matériau conducteur électronique. Il est entendu que dans les systèmes « anode free », une électrode négative est également présente (généralement limitée initialement au seul collecteur de courant). In the context of the present invention, the negative electrode can be of any known type. It generally consists of a conductive support used as a current collector which is coated with a layer containing the anode active material and further generally a binder and an electronically conductive material. It is understood that in “anode free” systems, a negative electrode is also present (generally initially limited to the single current collector).
Le matériau actif cathodique n’est pas particulièrement limité. Il peut être choisi dans les groupes suivants et leurs mélanges : The cathodic active material is not particularly limited. It can be chosen from the following groups and their mixtures:
- Lithium métallique ou un alliage de lithium métallique - Metallic lithium or a metallic lithium alloy
- Graphite Silicium - Silicon Graphite
- De type Anode-free - Anode-free type
- un oxyde de titane et de niobium TNO ayant pour formule : - an oxide of titanium and niobium TNO having the formula:
L ί xTla-yM yNbb-zM zO ((x+4a+5b)/2)-c-dXc où 0 £ x £ 5 ; 0 < y < 1 ; 0 < z £ 2 ; 1 £ a £ 5 ; 1 < b < 25 ; 0,25 < a/b < 2 ; 0 < c < 2 et 0 < d < 2 ; a-y > 0 ; b-z > 0 ; L ί xTla-yM yNbb-zM zO ((x + 4a + 5b) / 2) -c-dXc where 0 £ x £ 5; 0 <y <1; 0 <z £ 2; £ 1 to £ 5; 1 <b <25; 0.25 <a / b <2; 0 <c <2 and 0 <d <2; a-y> 0; b-z> 0;
M et M’ représentent chacun au moins un élément choisi dans le groupe constitué deM and M 'each represent at least one element selected from the group consisting of
Li, Na, K, Mg, Ca, B, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Al, Y, Zr, Nb, Mo, Ru, Ag, Sn, Sb, Ta, W, Bi, La, Pr, Eu, Nd et Sm ; Li, Na, K, Mg, Ca, B, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Al, Y, Zr, Nb, Mo, Ru, Ag, Sn, Sb, Ta, W, Bi, La, Pr, Eu, Nd and Sm;
X représente au moins un élément choisi dans le groupe constitué de S, F, Cl et Br. L’indice d représente une lacune en oxygène. L’indice d peut être inférieur ou égal à 0,5. Ledit au moins un oxyde de titane et de niobium peut être choisi parmi TiNb20 , Ti2Nb20 , TÎ2Nb20g et Ti2Nbi0O29. X represents at least one element selected from the group consisting of S, F, Cl and Br. The index d represents an oxygen deficiency. The index d can be less than or equal to 0.5. Said at least one titanium and niobium oxide can be chosen from TiNb 2 0, Ti 2 Nb 2 0 , TÎ2Nb20g and Ti 2 Nbi 0 O2 9 .
- un oxyde de titane lithié ou un oxyde de titane capable d’être lithié. LTO est choisi parmi les oxydes suivants : i) Lix-aMaTiy-bM’b04-c-dXc dans lequel 0<x<3 ; 1£y£2,5 ; 0<a<1 ; 0<b<1 ; 0<c<2 et - 2,5£d£2,5 ; a lithiated titanium oxide or a titanium oxide capable of being lithiated. LTO is selected from the following oxides: i) Lix-aMaTiy-bM'b0 4 -c-dXc in which 0 <x <3; £ 1 y £ 2.5; 0 <a <1; 0 <b <1; 0 <c <2 and - 2.5 £ d £ 2.5;
M représente au moins un élément choisi dans le groupe constitué de Na, K, Mg, Ca, B, Mn, Fe, Co, Cr, Ni, Al, Cu, Ag, Pr, Y et La ; M represents at least one element selected from the group consisting of Na, K, Mg, Ca, B, Mn, Fe, Co, Cr, Ni, Al, Cu, Ag, Pr, Y and La;
M’ représente au moins un élément choisi dans le groupe constitué de B, Mo, Mn, Ce, Sn, Zr, Si, W, V, Ta, Sb, Nb, Ru, Ag, Fe, Co, Ni, Zn, Al, Cr, La, Pr, Bi, Sc, Eu, Sm, Gd, Ti, Ce, Y et Eu ; M 'represents at least one element selected from the group consisting of B, Mo, Mn, Ce, Sn, Zr, Si, W, V, Ta, Sb, Nb, Ru, Ag, Fe, Co, Ni, Zn, Al , Cr, La, Pr, Bi, Sc, Eu, Sm, Gd, Ti, Ce, Y and Eu;
X représente au moins un élément choisi dans le groupe constitué de S, F, Cl et Br ; X represents at least one element selected from the group consisting of S, F, Cl and Br;
L’indice d représente une lacune en oxygène. L’indice d peut être inférieur ou égal à 0,5. ii) HxTiyC>4 dans lequel 0<x<1 ; 0<y<2, et iii) un mélange des composés i) à ii). Des exemples d’oxydes lithiés de titane appartenant au groupe i) sont la spinelle Li Ti50i2, Li2TiC>3, la ramsdellite LhThO?, LiTi2C>4, LixTi2C>4, avec 0<x<2 et Li2Na2Ti60i4. The index d represents an oxygen deficiency. The index d can be less than or equal to 0.5. ii) H x TiyC> 4 where 0 <x <1; 0 <y <2, and iii) a mixture of compounds i) to ii). Examples of lithiated titanium oxides belonging to group i) are the spinel Li Ti 5 0i 2 , Li 2 TiC> 3, the ramsdellite LhThO ?, LiTi 2 C> 4, Li x Ti 2 C> 4, with 0 < x <2 and Li 2 Na 2 Ti60i4.
Un composé LTO préféré a pour formule LU-aMaTis-bM’bC , par exemple LLTi50i2 qui s’écrit encore u /3 P5/3q4. A preferred compound has the formula LTO LU-a M a TIS b M 'b C, e.g. 5 LLTI 0i 2 writes still u / 3 P 5/3 q4.
Le liant présent à la cathode et l’anode a pour fonction de renforcer la cohésion entre les particules de matériaux actifs ainsi que d'améliorer l'adhérence du mélange selon l’invention au collecteur de courant. Le liant peut contenir un ou plusieurs des éléments suivants : polyfluorure de vinylidène (PVDF) et ses copolymères, polytétrafluoroéthylène (PTFE) et ses copolymères, polyacrylonitrile (PAN), poly(méthyl)- ou (butyl)méthacrylate, polychlorure de vinyle (PVC), poly(vinyl formai), polyester, polyétheramides séquencés, polymères d'acide acrylique, acide méthacrylique, acrylamide, acide itaconique, acide sulfonique, élastomère et les composés cellulosiques. Le ou les élastomères pouvant être utilisés comme liant peuvent être choisis parmi le styrène-butadiène (SBR), le butadiène- acrylonitrile (NBR), le butadiène-acrylonitrile hydrogéné (HNBR), et un mélange de plusieurs de ceux-ci. The binder present at the cathode and the anode has the function of strengthening the cohesion between the particles of active materials as well as improving the adhesion of the mixture according to the invention to the current collector. The binder may contain one or more of the following: polyvinylidene fluoride (PVDF) and its copolymers, polytetrafluoroethylene (PTFE) and its copolymers, polyacrylonitrile (PAN), poly (methyl) - or (butyl) methacrylate, polyvinyl chloride (PVC) ), poly (vinyl formai), polyester, block polyetheramides, polymers of acrylic acid, methacrylic acid, acrylamide, itaconic acid, sulfonic acid, elastomer and cellulose compounds. The elastomer (s) which can be used as binder can be chosen from styrene-butadiene (SBR), butadiene-acrylonitrile (NBR), hydrogenated butadiene-acrylonitrile (HNBR), and a mixture of several of these.
Le matériau conducteur électronique est généralement choisi parmi le graphite, le noir de carbone, le noir d'acétylène, la suie, le graphène, les nanotubes de carbones ou un mélange de ceux-ci. The electronically conductive material is generally chosen from graphite, carbon black, acetylene black, soot, graphene, carbon nanotubes or a mixture of these.
L’élément selon l’invention présente un assemblage sous forme d’empilement, définissant une surface inférieure et une surface supérieure, opposées, et une surface périphérique latérale externe, sur laquelle les électrodes et la couche électrolytique sont généralement en contact avec l’atmosphère. Selon l’invention, au moins la surface latérale externe de la couche électrolytique est au moins partiellement recouverte de l’enveloppe de protection, pour éviter le contact avec l’atmosphère. The element according to the invention has an assembly in the form of a stack, defining a lower surface and an upper surface, opposite, and an external lateral peripheral surface, on which the electrodes and the electrolytic layer are generally in contact with the atmosphere. . According to the invention, at least the outer side surface of the electrolytic layer is at least partially covered with the protective casing, to avoid contact with the atmosphere.
L’enveloppe recouvre de façon totale ou partielle la surface latérale de l’empilement élémentaire d’un élément, en ce qu’elle revêt au moins une partie de la surface latérale de la couche électrolytique, mais elle peut également revêtir toute la surface latérale de la couche électrolytique, et la surface latérale des électrodes. The envelope completely or partially covers the lateral surface of the elementary stack of an element, in that it covers at least part of the lateral surface of the electrolytic layer, but it can also cover the entire lateral surface. of the electrolytic layer, and the side surface of the electrodes.
Il est entendu que l’enveloppe peut partiellement être présente notamment dans les interstices qui peuvent se former entre les électrodes et la couche électrolytique. L’enveloppe peut également recouvrir les surfaces externes des électrodes de l’élément (à l’exception des éléments de connectiques). Néanmoins, l’enveloppe ne recouvre pas totalement les interfaces internes entre la couche électrolytique et les électrodes. It is understood that the envelope may partially be present in particular in the interstices which may form between the electrodes and the electrolytic layer. The envelope can also cover the external surfaces of the element's electrodes (with the exception of the connector elements). However, the envelope does not completely cover the internal interfaces between the electrolytic layer and the electrodes.
Les éléments électrochimiques selon l’invention appelées ici « macrobatteries » présentent typiquement une charge électrique supérieure à 100 mAh. Elles se distinguent des micro-batteries et présentent typiquement une capacité supérieure à 0.1 Ah. The electrochemical elements according to the invention called here "macrobatteries" typically have an electrical charge greater than 100 mAh. They differ from micro-batteries and typically have a capacity greater than 0.1 Ah.
Le terme « module » désigne ici l’assemblage de plusieurs éléments électrochimiques. The term "module" here refers to the assembly of several electrochemical elements.
On entend par « batterie », l’assemblage de plusieurs modules. By "battery" is meant the assembly of several modules.
Lesdits assemblages peuvent être en série et/ou parallèle. Said assemblies can be in series and / or parallel.
L’élément électrochimique selon l’invention convient particulièrement aux accumulateurs lithium, tel que les accumulateurs Li-ion, Li primaire (non rechargeable) et Li-S The electrochemical element according to the invention is particularly suitable for lithium accumulators, such as Li-ion, primary Li (non-rechargeable) and Li-S accumulators
On entend par collecteur de courant un élément tel que plot, plaque, feuille ou autre, en matériau conducteur, relié à l’électrode positive ou négative, et assurant la conduction du flux d’électrons entre l’électrode et les bornes de la batterie. The term “current collector” is understood to mean an element such as a pad, plate, sheet or other, made of a conductive material, connected to the positive or negative electrode, and ensuring the conduction of the flow of electrons between the electrode and the terminals of the battery. .
Le terme électrode positive désigne l’électrode où entrent les électrons, et où arrivent les cations (Li+) en décharge. The term positive electrode refers to the electrode where electrons enter, and where cations (Li +) arrive in discharge.
Le terme électrode négative désigne l’électrode d’où partent les électrons, et d’où sont libérés les cations (Li+) en décharge The term negative electrode designates the electrode from which electrons leave, and from which cations (Li +) are released in discharge
L’élément électrochimique comprend au moins un composé électrolytique soufré, c’est-à-dire comprenant du soufre. The electrochemical element comprises at least one sulfur-containing electrolytic compound, i.e. comprising sulfur.
La couche électrolytique contient une composition électrolytique, pouvant comprendre un ou plusieurs constituants électrolytiques. A titre de constituants d’électrolyte solide, on peut notamment citer les composés soufrés seuls ou en mélange avec d’autres constituants, tels que des polymères ou gels. On peut ainsi citer les sulfures partiellement ou complètement cristallisés ainsi que les amorphes. Des exemples de ces matériaux peuvent être sélectionnés parmi les sulfures de composition A Li2S - B P2S5 (avec 0<A<1 ,0<B<1 et A+B = 1) et leurs dérivés (par exemple avec dopage Lil, LiBr, LiCI, ...) ; les sulfures de structure argyrodite ; ou type LGPS (Lii0GeP2Si2), et ses dérivés. Les matériaux électrolytiques pourront également comprendre des oxysulfures, des oxydes (grenat, phosphate, anti- perovskite, ...), des hydrures, des polymères, des gels ou des liquides ioniques conducteurs des ions lithium. The electrolyte layer contains an electrolyte composition, which may include one or more electrolyte constituents. As solid electrolyte constituents, mention may in particular be made of sulfur-containing compounds alone or as a mixture with other constituents, such as polymers or gels. Mention may thus be made of partially or completely crystallized sulphides as well as amorphous ones. Examples of these materials can be selected from the sulphides of composition A Li 2 S - BP 2 S 5 (with 0 <A <1, 0 <B <1 and A + B = 1) and their derivatives (for example with doping Lil, LiBr, LiCI, ...); sulphides of argyrodite structure; or LGPS type (Lii 0 GeP 2 Si 2 ), and its derivatives. Electrolytic materials may also include oxysulphides, oxides (garnet, phosphate, anti-perovskite, etc.), hydrides, polymers, gels or ionic liquids which conduct lithium ions.
Des exemples de compositions électrolytiques sulfures sont décrits notamment dans Park, K. H., Bai, Q., Kim, D. H., Oh, D. Y., Zhu, Y., Mo, Y., & Jung, Y. S. (2018). Design Strategies, Practical Considérations, and New Solution Processes of Sulfide Solid Electrolytes for AllDSolidDState Batteries. Advanced Energy Materials, 1800035. Examples of sulfide electrolyte compositions are described in particular in Park, K. H., Bai, Q., Kim, D. H., Oh, D. Y., Zhu, Y., Mo, Y., & Jung, Y. S. (2018). Design Strategies, Practical Considerations, and New Solution Processes of Sulfide Solid Electrolytes for AllDSolidDState Batteries. Advanced Energy Materials, 1800035.
Dans les éléments de type tout solide, les composés électrolytiques peuvent être inclus dans la couche électrolytique, mais peuvent également être compris en partie au sein des électrodes. In all-solid-type elements, the electrolytic compounds can be included in the electrolyte layer, but can also be partially included within the electrodes.
Selon l’invention, l’enveloppe de protection peut être constituée d’un ou plusieurs constituants. Elle peut également comprendre une ou plusieurs couches, chacune constituée d’un ou plusieurs constituants. According to the invention, the protective envelope may consist of one or more constituents. It can also include one or more layers, each consisting of one or more constituents.
Selon un mode de réalisation, l’enveloppe est constituée d’une première couche de protection chimique et d’une deuxième couche de renforcement mécanique. According to one embodiment, the envelope consists of a first layer of chemical protection and of a second layer of mechanical reinforcement.
Selon un mode de réalisation, l’enveloppe est appliquée au contact direct de au moins tout ou partie de la surface latérale de la couche électrolytique. According to one embodiment, the envelope is applied in direct contact with at least all or part of the lateral surface of the electrolytic layer.
Pour cela, il est souhaitable que au moins l’un des matériaux constitutifs de l’enveloppe présente une affinité suffisante avec l’électrolyte soufré, de façon à assurer un contact direct entre l’enveloppe et la couche électrolytique et/ou l’électrolyte soufré, sans le dégrader. For this, it is desirable that at least one of the constituent materials of the envelope has sufficient affinity with the sulfur-containing electrolyte, so as to ensure direct contact between the envelope and the electrolytic layer and / or the electrolyte. sulfur, without degrading it.
Selon un autre mode de réalisation, l’enveloppe n’est pas au contact direct des éléments de l’empilement, en ce qu’un espace est créé entre l’enveloppe et les éléments de l’empilement. Cet espace peut être sous vide ou comblé par un gaz notamment inerte. According to another embodiment, the envelope is not in direct contact with the elements of the stack, in that a space is created between the envelope and the elements of the stack. This space can be under vacuum or filled with a gas, in particular an inert gas.
L’enveloppe selon l’invention assure une protection chimique en inhibant les contacts des éléments de l’élément, notamment la couche électrolytique, avec l’atmosphère et l’humidité. En plus d’éviter la dégradation des matériaux soufrés en cas d’exposition à l’humidité ou l’oxygène (et donc de nuire aux performances électrochimiques de la cellule), l’enveloppe permet également de limiter le dégagement d’H2S (gaz nocif) pouvant résulter de cette exposition. L’enveloppe résout donc un double risque en termes de sécurité et de performances. Ainsi, selon l’invention l’enveloppe assure une protection chimique en ce qu’elle permet de réduire la génération de H2S à moins de 1 g/h par m2 de surface de faisceau, préférentiellement moins de 0.1 g/h/m2. The envelope according to the invention provides chemical protection by inhibiting the contact of the elements of the element, in particular the electrolytic layer, with the atmosphere and humidity. In addition to preventing the degradation of sulfur-containing materials in the event of exposure to humidity or oxygen (and therefore adversely affect the electrochemical performance of the cell), the envelope also limits the release of H 2 S (harmful gas) which may result from this exposure. The enclosure therefore solves a double risk in terms of safety and performance. Thus, according to the invention, the envelope provides chemical protection in that it makes it possible to reduce the generation of H 2 S to less than 1 g / h per m 2 of beam area, preferably less than 0.1 g / h / m 2 .
Le terme « faisceau » utilisé ici illustre le volume délimité par le plan défini par chacune des électrodes, l’épaisseur du faisceau correspondant à la dimension géométrique perpendiculaire au plan des électrodes. The term "beam" used here illustrates the volume delimited by the plane defined by each of the electrodes, the thickness of the beam corresponding to the geometric dimension perpendicular to the plane of the electrodes.
Ainsi, selon un mode de réalisation, l’enveloppe comprend au moins un matériau ayant une perméabilité à l’eau inférieure à 0,1 g/m2/jour/pm. Thus, according to one embodiment, the envelope comprises at least one material having a water permeability of less than 0.1 g / m 2 / day / pm.
Selon un mode de réalisation, l’enveloppe comprend au moins un matériau ayant une perméabilité à l’air, l’azote et l’oxygène inférieure à 0,1 g/m2/jour/pm. According to one embodiment, the envelope comprises at least one material having a permeability to air, nitrogen and oxygen of less than 0.1 g / m 2 / day / pm.
De façon additionnelle, elle peut également assurer un renforcement mécanique, notamment en absorbant les variations volumiques de l’élément lors des cycles de charge et de décharge. Ceci permet de résoudre avantageusement les problèmes de pertes de cohésion et de contact pouvant apparaître suite aux gonflement/dégonflement des matériaux lors du transfert du lithium (exemple des matériaux d’alliage et conversion à fortes variations volumiques ou du platting de lithium). Additionally, it can also provide mechanical reinforcement, in particular by absorbing the volume variations of the element during the charging and discharging cycles. This advantageously resolves the problems of loss of cohesion and contact that may appear as a result of the swelling / deflation of the materials during the transfer of lithium (example of alloy materials and conversion with large volume variations or lithium platting).
Ainsi, selon un mode de réalisation, l’enveloppe présente une élongation avant rupture supérieure à 150%. Thus, according to one embodiment, the envelope has an elongation before rupture of greater than 150%.
Notamment, l’enveloppe peut présenter un module élastique compris entre 0.001 et 50 GPa. In particular, the envelope can have an elastic modulus of between 0.001 and 50 GPa.
Typiquement, l’enveloppe peut supporter une variation d’épaisseur du faisceau de plus de 10%, préférentiellement au moins 20%. Typically, the envelope can withstand a variation in beam thickness of more than 10%, preferably at least 20%.
De façon avantageuse, l’enveloppe conserve ses propriétés de perméabilité à l’eau même après variation volumique de plus de 10%, préférentiellement supérieure à 20%. Advantageously, the envelope retains its water permeability properties even after volume variation of more than 10%, preferably greater than 20%.
Selon l’invention, l’enveloppe de protection est isolante : elle présente une conductivité électronique typiquement inférieure à 109 S/cm. According to the invention, the protective envelope is insulating: it has an electronic conductivity typically less than 10 9 S / cm.
Selon un mode de réalisation, l’enveloppe est constituée d’un matériau non conducteur électronique. According to one embodiment, the envelope is made of an electronically non-conductive material.
Selon un mode de réalisation, l’enveloppe comprend au moins : According to one embodiment, the envelope comprises at least:
- un matériau organique choisi parmi des polymères thermoplastiques ou thermodurcissables. Il peut également s’agir de co-polymères ou de mélanges de polymères et éventuellement - un matériau inorganique de taille nanométrique pouvant être sous forme de particules, de fibres ou de tubes. Parmi les possibles additifs nanométriques, on peut citer par exemple l’alumine, les silicates ou les titanates. - an organic material chosen from thermoplastic or thermosetting polymers. They can also be co-polymers or mixtures of polymers and optionally - an inorganic material of nanometric size which may be in the form of particles, fibers or tubes. Among the possible nanometric additives, there may be mentioned, for example, alumina, silicates or titanates.
A titre de matériau convenant à titre de constituant de l’enveloppe, on peut notamment citer : les élastomères (e.g. caoutchoucs naturels ou synthétiques, ...), dyMAT ClrPYE MONO (commercialisé par COVEME), dyMAT HDPYE SPV L (commercialisé par COVEME), Ultra Barrier Solar Film (commercialisé par 3M), le polyéthylène téréphtalate (PET), polyéthylène (PE), poly(méthacrylate de méthyle) (PMMA), polyfluorure de vinylidène (PVDF), polypropylène (PP), polycarbonate (PC), poly(éthylène-co-tétrafluoroéthylène) (ETFE), polyimide (PI), Polyisobutene (PIB) et leurs dérivés et leurs mélanges. As material suitable as constituent of the envelope, mention may in particular be made of: elastomers (eg natural or synthetic rubbers, etc.), dyMAT ClrPYE MONO (marketed by COVEME), dyMAT HDPYE SPV L (marketed by COVEME ), Ultra Barrier Solar Film (marketed by 3M), polyethylene terephthalate (PET), polyethylene (PE), poly (methyl methacrylate) (PMMA), polyvinylidene fluoride (PVDF), polypropylene (PP), polycarbonate (PC) , poly (ethylene-co-tetrafluoroethylene) (ETFE), polyimide (PI), Polyisobutene (PIB) and their derivatives and mixtures thereof.
Certains de ces matériaux présentent une structure multi-couches : Some of these materials have a multi-layered structure:
ClrPYE Mono : Ultra protective coating/PET/primer (5pm/175pm/100pm) ; ClrPYE Mono: Ultra protective coating / PET / primer (5 pm/175pm/100pm);
DyMAT HDPYE SPV L : PET/PET/Primer (50pm/250pm/50pm) ; DyMAT HDPYE SPV L: PET / PET / Primer (50 pm/250pm/50pm);
Ultra Barrier Solar Film : Fluoropolymer/Black tape/Pressure sensitive adhesive/PET. Ultra Barrier Solar Film: Fluoropolymer / Black tape / Pressure sensitive adhesive / PET.
Typiquement, l’enveloppe présente une épaisseur totale qui est inférieure à 100 pm, préférentiellement inférieure à 50 pm, notamment inférieure à 30 pm. Typically, the envelope has a total thickness which is less than 100 μm, preferably less than 50 μm, in particular less than 30 μm.
Généralement, le périmètre de l’enveloppe dépend de l’épaisseur du faisceau et du périmètre du faisceau. Ainsi, sans être lié par la théorie, le périmètre de l’enveloppe peut être avantageusement définit par la relation suivante : Usually, the perimeter of the envelope depends on the thickness of the beam and the perimeter of the beam. Thus, without being bound by theory, the perimeter of the envelope can be advantageously defined by the following relation:
2 * k * épaisseur du faisceau + périmètre du faisceau, 2 * k * beam thickness + beam perimeter,
Tel que k>0.1 , notamment tel que 0.2£k£0.3. Such as k> 0.1, especially such as 0.2 £ k £ 0.3.
Typiquement, l’enveloppe présente une température de fusion supérieure ou égale à 150°C. Typically, the casing has a melting temperature greater than or equal to 150 ° C.
Afin de limiter la perte énergétique, l’enveloppe présente avantageusement un grammage inférieur à 5mg/cm2. In order to limit the energy loss, the casing advantageously has a basis weight of less than 5 mg / cm 2 .
Les éléments électrochimiques selon l’invention conviennent à un fonctionnement sur une vaste gamme de températures, typiquement à des températures inférieures à 70°C. Elles peuvent être stockées de façon stable à des températures pouvant atteindre -40°C. The electrochemical cells according to the invention are suitable for operation over a wide range of temperatures, typically at temperatures below 70 ° C. They can be stored stably at temperatures down to -40 ° C.
Selon un autre objet, la présente invention concerne également un procédé de fabrication d’un élément selon l’invention, ledit procédé comprenant: According to another object, the present invention also relates to a method of manufacturing an element according to the invention, said method comprising:
- la fabrication dudit empilement, et - le dépôt d’une enveloppe telle que définie ci-avant, par exemple par dépôt de couche mince atomique (ALD), dépôt de couche moléculaire (MLD), laminage, scellement, pulvérisation et/ou dépôt physique en phase vapeur. - the manufacture of said stack, and the deposition of an envelope as defined above, for example by thin atomic layer deposition (ALD), molecular layer deposition (MLD), lamination, sealing, sputtering and / or physical vapor deposition.
Selon un mode de réalisation, le dépôt de l’enveloppe se fait par dépôt de couche mince, quelques atomes ou molécules à plusieurs dizaines de nanomètres d’épaisseur. According to one embodiment, the envelope is deposited by depositing a thin layer, a few atoms or molecules several tens of nanometers thick.
Ce dépôt peut avantageusement être effectué par ALD ( atomic layer déposition), MLD (molecular layer déposition) ou tout autre technique permettant de couvrir de manière optimale la surface exposée et les interstices avec le matériau retenu. This deposition can advantageously be carried out by ALD (atomic layer deposition), MLD (molecular layer deposition) or any other technique making it possible to optimally cover the exposed surface and the interstices with the material retained.
Selon un autre mode de réalisation, les enveloppes de protection plus épaisses (1 à 1000 pm) peuvent également être déposées par des techniques adaptées selon la configuration de la cellule (PVD, pulvérisation, revêtement par immersion, laminage, thermoformage ...). According to another embodiment, the thicker protective envelopes (1 to 1000 μm) can also be deposited by techniques adapted according to the configuration of the cell (PVD, spraying, dip coating, lamination, thermoforming, etc.).
Selon les cas, des matériaux différents peuvent être utilisés pour réaliser ce dépôt de protection pour chacune des électrodes et l’électrolyte. Depending on the case, different materials can be used to make this protective deposit for each of the electrodes and the electrolyte.
Selon un mode de réalisation, le procédé peut également comprendre le dépôt de deux couches distinctes successives : une première couche assurant l’isolation et la stabilité chimique au niveau nano/micrométrique, suivie du dépôt d’une deuxième couche pour maintenir la cohésion mécanique de l’empilement. According to one embodiment, the method can also comprise the deposition of two successive distinct layers: a first layer ensuring insulation and chemical stability at the nano / micrometric level, followed by the deposition of a second layer to maintain the mechanical cohesion of the film. stacking.
Selon un mode de réalisation, l’élément électrochimique selon l’invention peut être fabriqué par un procédé comprenant les étapes de : According to one embodiment, the electrochemical element according to the invention can be manufactured by a process comprising the steps of:
- fabrication d’un élément selon l’invention; - manufacture of an element according to the invention;
- insertion de la cellule formée dans une enveloppe comprenant au moins un matériau polymérique étanche à l’eau; et - insertion of the cell formed in an envelope comprising at least one waterproof polymeric material; and
- scellement de l’enveloppe. - sealing of the envelope.
Le scellement peut par exemple être réalisé par soudage, fusion, laminage.Sealing can for example be carried out by welding, melting, rolling.
L’enveloppe peut par exemple être thermoformée avant insertion de la cellule et scellement. The envelope can for example be thermoformed before insertion of the cell and sealing.
Selon un mode de réalisation, l’enveloppe comprend un matériau adhésif permettant le scellement de l’enveloppe. According to one embodiment, the envelope comprises an adhesive material permitting the sealing of the envelope.
Selon un autre objet, l’invention concerne également un module électrochimique comprenant l’empilement d’au moins deux éléments selon l’invention, chaque élément étant connecté électriquement avec un ou plusieurs autre(s) élément(s), notamment via leurs collecteurs de courant. According to another object, the invention also relates to an electrochemical module comprising the stack of at least two elements according to the invention, each element being electrically connected with one or more other element (s), in particular via their current collectors.
Dans un tel assemblage, il est donc entendu que tout ou partie de la surface externe du module est donc recouvert de l’enveloppe telle que définie ci-avantIn such an assembly, it is therefore understood that all or part of the external surface of the module is therefore covered with the envelope as defined above
Cet assemblage peut être réalisé en empilement. L’enveloppe est alors présente au moins sur tout ou partie de la surface latérale du module. Ainsi, la surface latérale externe du module et/ou les surfaces inférieure et supérieure externes des électrodes peuvent être recouvertes de ladite enveloppe . This assembly can be carried out in a stack. The envelope is then present at least on all or part of the side surface of the module. Thus, the external lateral surface of the module and / or the external lower and upper surfaces of the electrodes can be covered with said envelope.
Selon un mode de réalisation, le module peut également comprendre ladite enveloppe sur ses surfaces externes inférieure et supérieure, définies par la face externe de l’électrode inférieure et la face externe de l’électrode supérieure. According to one embodiment, the module can also include said envelope on its lower and upper outer surfaces, defined by the outer face of the lower electrode and the outer face of the upper electrode.
Le module peut être encapsulé au sein d’un caisson étanche, permettant le confinement du module en cas d’incident de surchauffe ou de fuite par exemple. The module can be encapsulated within a sealed box, allowing the module to be contained in the event of an overheating incident or a leak, for example.
Selon un autre objet, la présente invention concerne également une batterie comprenant un ou plusieurs modules selon l’invention, et/ou un ou plusieurs caissons selon l’invention. According to another object, the present invention also relates to a battery comprising one or more modules according to the invention, and / or one or more boxes according to the invention.
Figures : Figures:
[Fig. 1] La Figure 1 représente un élément selon l’invention non protégé (A), protégé par une enveloppe selon l’invention (B et C), l’enveloppe assurant une couche de protection chimique (B) ou une couche de renforcement mécanique (C). [Fig. 1] Figure 1 shows an unprotected element according to the invention (A), protected by an envelope according to the invention (B and C), the envelope providing a chemical protection layer (B) or a mechanical reinforcement layer (VS).
[Fig. 2] La Figure 2 représente un module comprenant un assemblage d’éléments selon l’invention. [Fig. 2] Figure 2 shows a module comprising an assembly of elements according to the invention.
[Fig. 3] La Figure 3 illustre l’inhibition de la production de FI2S au moyen d’une enveloppe selon l’invention. [Fig. 3] Figure 3 illustrates the inhibition of the production of FI2S using an envelope according to the invention.
Tel qu’illustré à la Figure 1 , un empilement convenant à l’invention est constitué d’un assemblage élémentaire d’une électrode positive (1 ), et d’une électrode négative (2) séparées par une couche catalytique (3). Selon un variante les électrodes (1) et (2) peuvent bien entendu être inversées. As illustrated in Figure 1, a stack suitable for the invention consists of an elementary assembly of a positive electrode (1), and a negative electrode (2) separated by a catalytic layer (3). According to a variant, the electrodes (1) and (2) can of course be reversed.
Un élément comprenant une enveloppe (4) de protection selon l’invention est illustré aux Figures 1 B et 1 C : selon une variante, l’enveloppe (4) est constituée d’une fine couche (4) assurant une protection chimique. Selon une autre variante, l’enveloppe (4) est constituée d’une première couche (4) assurant une protection chimique, et d’une seconde couche (4’) plus épaisse assurant le renforcement mécanique. An element comprising a protective envelope (4) according to the invention is illustrated in Figures 1 B and 1 C: according to a variant, the envelope (4) consists of a thin layer (4) providing chemical protection. According to another variant, the envelope (4) consists of a first layer (4) providing protection chemical, and a second thicker layer (4 ') providing mechanical reinforcement.
Un module illustratif selon l’invention est représenté à la Figure 2. Selon cette représentation schématique, un module est constitué de trois éléments, assemblés en empilement. Chaque élément est constitué d’une électrode positive (1), et d’une électrode négative (2) séparées par une couche catalytique (3). Selon la variante représentée, l’enveloppe (4) recouvre la surface latérale du module, ainsi que les surfaces inférieures et supérieures du module, définies par les surfaces externes de l’électrode inférieure et postérieure de l’assemblage. An illustrative module according to the invention is shown in Figure 2. According to this schematic representation, a module consists of three elements, assembled in a stack. Each element consists of a positive electrode (1), and a negative electrode (2) separated by a catalytic layer (3). According to the variant shown, the casing (4) covers the side surface of the module, as well as the lower and upper surfaces of the module, defined by the outer surfaces of the lower and rear electrode of the assembly.
Les exemples suivants sont donnés à titre illustratif et non limitatif de l’invention : The following examples are given by way of illustration and without limitation of the invention:
Exemples Examples
Exemple 1 Example 1
Afin de valider la protection chimique de l’enveloppe de l’invention, une expérience a été effectuée avec des pochettes de matériaux d’encapsulation sélectionnés. In order to validate the chemical protection of the envelope of the invention, an experiment was performed with pouches of selected encapsulation materials.
Un électrolyte sulfure argyrodite de composition Li6PS5CI a été fabriqué par mécano-synthèse (500 rpm, 20h) à partir des précurseurs Li2S, P2S5 et LiCI en proportions stoechiométriques. La conductivité ionique de cet électrolyte a été mesurée par spectroscopie d’impédance sur une pastille comprimée à 250 MPa dans une cellule sous pression et atteint 1 mS/cm à température ambiante. An argyrodite sulfide electrolyte of Li 6 PS 5 CI composition was manufactured by mechanical synthesis (500 rpm, 20 h) from the precursors Li 2 S, P2S5 and LiCI in stoichiometric proportions. The ionic conductivity of this electrolyte was measured by impedance spectroscopy on a pellet compressed at 250 MPa in a pressure cell and reached 1 mS / cm at room temperature.
D’autre part, la poudre d’électrolyte sulfure obtenue a été comprimée à 250 MPa pour former une pastille de 400pm d’épaisseur et 10 mm de diamètre. On the other hand, the obtained sulphide electrolyte powder was compressed at 250 MPa to form a pellet 400 µm thick and 10 mm in diameter.
Une enveloppe (exemple #2) a été réalisée en disposant, de part et d’autre de la pastille d’électrolyte sulfure, une feuille de matériaux dyMAT ClrPYE MONO (285 pm - commercialisé par COVEME) et une feuille de matériau Ultra Barrier Solar Film (203 pm - commercialisé par 3M™). Les bords de l’enveloppe ainsi formée dépassant de la pastille sont ensuite thermoscellés à 150°C de manière à contenir la pastille sans la dégrader. Dans un récipient hermétique de volume connu rempli d’air humide ambiant, on introduit la pastille ainsi enveloppée et on réalise une mesure du taux de H2S à l’aide d’un capteur spécifique en fonction du temps. An envelope (example # 2) was made by placing, on either side of the sulphide electrolyte pellet, a sheet of dyMAT ClrPYE MONO materials (285 pm - marketed by COVEME) and a sheet of Ultra Barrier Solar material Film (203 µm - marketed by 3M ™). The edges of the envelope thus formed protruding from the pellet are then heat-sealed at 150 ° C. so as to contain the pellet without degrading it. In a sealed container of known volume filled with ambient humid air, the pellet thus enveloped is introduced and the H 2 S level is measured using a specific sensor as a function of time.
Une autre enveloppe (exemple #3) a été réalisée selon la même procédure, mais avec des feuilles de matériaux dyMAT ClrPYE MONO (285 pm - COVEME) et dyMAT HDPYE SPV L (300 pm - COVEME) de part et d’autre de la pastille. Another envelope (example # 3) was made according to the same procedure, but with sheets of dyMAT ClrPYE MONO (285 pm - COVEME) and dyMAT HDPYE SPV L (300 pm - COVEME) materials on either side of the pellet.
A titre de comparaison, on effectue d’autre part cette mesure avec une pastille d’électrolyte sulfure sans enveloppe. For comparison, this measurement is also carried out with a sulphide electrolyte pellet without an envelope.
Comme montré sur la Figure 3, le matériau non protégé (exemple comparatif) émet rapidement une quantité importante de gaz H2S (10 cm3/g en moins de 15 minutes) dépassant la réglementation autorisée. Avec les protections barrières à l’humidité testées, le taux de H2S reste inférieur à 1 ppm (limite de détection du capteur utilisé) pendant plus de 30 minutes (#2) à plus de 2 heures (#3) et reste faible après 24h. Ainsi le matériau sulfure peut être manipulé en sécurité à l’air ambiant. As shown in Figure 3, the unprotected material (comparative example) rapidly emits a large quantity of H 2 S gas (10 cm 3 / g in less than 15 minutes) exceeding the authorized regulations. With the humidity barrier protections tested, the H 2 S rate remains below 1 ppm (detection limit of the sensor used) for more than 30 minutes (# 2) to more than 2 hours (# 3) and remains low after 24h. Thus the sulphide material can be handled safely in ambient air.
Exemple 2 : Example 2:
Du fait de la sensibilité des matériaux utilisés à l’atmosphère ambiante, les manipulations suivantes sont réalisées dans des milieux présentant un point de rosée inférieur à -50°C, et peuvent être réalisés sous une atmosphère d’argon. Due to the sensitivity of the materials used to the ambient atmosphere, the following manipulations are carried out in environments with a dew point below -50 ° C, and can be carried out under an argon atmosphere.
De la poudre d’électrolyte sulfure (tel que fabriqué dans l’exemple 1) est comprimée à froid (200 MPa) dans un moule à pastiller pour former une pastille d’environ 400pm d’épaisseur appelée couche électrolytique. De la poudre d’électrolyte sulfure est mélangée au mortier et au pilon avec de la poudre de matériau actif positif (NCA) en proportions massique NCA:SE 70:30 jusqu’à atteindre une distribution homogène. Ce mélange (qui constitue l’électrode positive) est rajouté d’un côté de la couche électrolytique dans le moule à pastiller, l’ensemble étant de nouveau comprimé (200 MPa) pour former une pastille dense et solide (avec une épaisseur d’électrode positive proche de 100 pm). De l’autre côté de la couche électrolytique, on vient rajouter l’électrode négative composée de poudre de graphite et d’électrolyte solide préalablement mélangés manuellement au mortier (proportions massiques électrolyte:graphite 40:60). L’ensemble de l’empilement est de nouveau comprimé à froid (500 MPa) dans un moule à pastiller avec corps isolant électrique de manière à former la couche d’électrode négative d’environ 100 pm d’épaisseur. Les masses d’électrodes positives et négatives sont équilibrées pour avoir un léger excès de capacité de l’électrode négative. L’empilement obtenu est disposé entre des collecteurs de courant en acier inoxydable. Sulfide electrolyte powder (as manufactured in Example 1) is cold pressed (200 MPa) in a pelletizing mold to form a pellet about 400 μm thick called an electrolytic layer. Sulfide electrolyte powder is mixed in the mortar and pestle with powder of positive active material (NCA) in NCA: SE 70:30 mass proportions until a homogeneous distribution is reached. This mixture (which constitutes the positive electrode) is added on one side of the electrolytic layer in the pellet mold, the whole being again compressed (200 MPa) to form a dense and solid pellet (with a thickness of positive electrode close to 100 µm). On the other side of the electrolytic layer, we add the negative electrode composed of graphite powder and solid electrolyte previously mixed manually with the mortar (electrolyte mass proportions: graphite 40:60). The entire stack is again cold compressed (500 MPa) in a pelletizing mold with an electrically insulating body so as to form the negative electrode layer of approximately 100 μm in thickness. The positive and negative electrode masses are balanced to have a slight excess capacity of the negative electrode. The stack obtained is placed between stainless steel current collectors.
Le traitement d’encapsulation selon l’invention peut être réalisé sur l’empilement ainsi fabriqué. Dans cet exemple, les enveloppes décrites dans l’exemple 1 sont utilisées pour réaliser cette encapsulation. L’empilement est introduit dans l’une de ces enveloppes dont les côtés sont ensuite thermoscellés. Des passages de courant étanches (fils ou linguets utilisés pour l’assemblage de pouch cells) assurent la connexion électrique entre les collecteurs de courant et la cellule de cyclage sans dégrader l’étanchéité de l’enveloppe. The encapsulation treatment according to the invention can be carried out on the stack thus produced. In this example, the envelopes described in Example 1 are used to achieve this encapsulation. The stack is introduced into one of these envelopes, the sides of which are then heat sealed. Sealed current passages (wires or latches used for the assembly of pouch cells) provide the electrical connection between the current collectors and the cycling cell without degrading the seal of the enclosure.
L’empilement ainsi encapsulé est ensuite disposé dans une cellule de cyclage permettant d’appliquer une pression (1-500 MPa) selon l’axe de symétrie de la pastille, sur les deux collecteurs sans générer de court-circuit ou dégrader l’enveloppe. The stack thus encapsulated is then placed in a cycling cell making it possible to apply a pressure (1-500 MPa) along the axis of symmetry of the pellet, on the two collectors without generating a short-circuit or degrading the envelope. .
Pour l’évaluation des performances électrochimiques, la cellule ainsi assemblée est ensuite soumise à un cyclage galvanostatique entre 2,8 et 4,1 V avec un courant constant tel que la charge complète de la cellule soit effectuée en 20h. For the evaluation of electrochemical performance, the cell thus assembled is then subjected to galvanostatic cycling between 2.8 and 4.1 V with a constant current such that the full charge of the cell is carried out in 20 hours.

Claims

REVENDICATIONS
1. Elément électrochimique comprenant au moins un composé électrolytique soufré ledit élément comprenant un empilement entre deux collecteurs de courant conducteurs électroniques, ledit empilement comprenant1. Electrochemical element comprising at least one sulfur-containing electrolytic compound, said element comprising a stack between two electronically conductive current collectors, said stack comprising
- une électrode positive; - a positive electrode;
- une électrode négative; et - a negative electrode; and
- une couche comprenant une composition électrolytique solide séparant ladite électrode positive et ladite électrode négative ; la cellule étant caractérisée en ce que au moins la surface latérale de l’empilement est au moins partiellement recouverte d’une enveloppe de protection chimique et/ou de renforcement mécanique, isolante électriquement, et en ce que le périmètre de ladite enveloppe est égal à : 2 * k * épaisseur du faisceau + périmètre du faisceau, tel que k>0.1 , et le faisceau est le volume délimité par le plan défini par chacune des électrodes, et l’épaisseur du faisceau correspondant à la dimension géométrique perpendiculaire au plan des électrodes. a layer comprising a solid electrolytic composition separating said positive electrode and said negative electrode; the cell being characterized in that at least the lateral surface of the stack is at least partially covered with an envelope of chemical protection and / or mechanical reinforcement, electrically insulating, and in that the perimeter of said envelope is equal to : 2 * k * thickness of the beam + perimeter of the beam, such as k> 0.1, and the beam is the volume delimited by the plane defined by each of the electrodes, and the thickness of the beam corresponding to the geometric dimension perpendicular to the plane of electrodes.
2. Elément selon la revendication 1 telle que l’enveloppe de protection est constituée d’un matériau non conducteur électronique. 2. Element according to claim 1 such that the protective casing is made of an electronically non-conductive material.
3. Elément selon la revendication 1 ou 2 tel que l’enveloppe comprend au moins : 3. Element according to claim 1 or 2 such that the envelope comprises at least:
- un matériau organique et éventuellement - an organic material and possibly
- un matériau inorganique de taille nanométrique - an inorganic material of nanometric size
4. Elément selon l’une quelconque des revendications précédentes tel que l’enveloppe est constituée d’une première couche de protection chimique et d’une deuxième couche de renforcement mécanique. 4. Element according to any one of the preceding claims, such that the envelope consists of a first layer of chemical protection and of a second layer of mechanical reinforcement.
5. Elément selon l’une quelconque des revendications précédentes tel que l’enveloppe présente une épaisseur totale inférieure à 100 pm, et un grammage inférieur à 5mg/cm2. 5. Element according to any one of the preceding claims, such that the envelope has a total thickness of less than 100 μm, and a basis weight of less than 5 mg / cm 2 .
6. Elément selon l’une quelconque des revendications précédentes telle que l’enveloppe comprend au moins un matériau ayant une perméabilité à l’eau inférieure à 0,1 g/m2/jour/pm. 6. Element according to any one of the preceding claims, such that the envelope comprises at least one material having a water permeability of less than 0.1 g / m 2 / day / pm.
7. Elément selon l’une quelconque des revendications précédentes telle que l’enveloppe présente une élongation avant rupture supérieure à 150%. 7. Element according to any one of the preceding claims, such that the casing has an elongation before rupture of greater than 150%.
8. Elément selon l’une quelconque des revendications précédentes telle que l’enveloppe contient un ou plusieurs constituants choisis parmi les élastomères (e.g. caoutchoucs naturels ou synthétiques, ...), dyMAT ClrPYE MONO (structure multi- couches Ultra protective coating/PET/primer (5pm/175pm/1 OOprn) commercialisé par COVEME), dyMAT HDPYE SPV L (PET/PET/Primer (50pm/250pm/50pm) commercialisé par COVEME), Ultra Barrier Solar Film (Fluoropolymer/Black tape/Pressure sensitive adhesive/PET commercialisé par 3M), le polyéthylène téréphtalate (PET), polyéthylène (PE) ; poly(méthacrylate de méthyle) (PMMA) ; polyfluorure de vinylidène (PVDF) ; polypropylène (PP) ; polycarbonate (PC) ; poly(éthylène-co-tétrafluoroéthylène) (ETFE) ; polyimide (PI) ; Polyisobutene (PIB) et leurs dérivés et leurs mélanges. 8. Element according to any one of the preceding claims, such that the envelope contains one or more constituents chosen from elastomers (eg natural or synthetic rubbers, etc.), dyMAT ClrPYE MONO (multi-layer structure Ultra protective coating / PET / primer (5 pm/175pm/1 OOprn) marketed by COVEME), dyMAT HDPYE SPV L (PET / PET / Primer (50 pm/250pm/50pm) marketed by COVEME), Ultra Barrier Solar Film (Fluoropolymer / Black tape / Pressure sensitive adhesive / PET marketed by 3M), polyethylene terephthalate (PET), polyethylene (PE); poly (methyl methacrylate) (PMMA); polyvinylidene fluoride (PVDF); polypropylene (PP); polycarbonate (PC); poly (ethylene-co-tetrafluoroethylene) (ETFE); polyimide (PI); Polyisobutene (PIB) and their derivatives and mixtures.
9. Procédé de fabrication d’un élément selon l’une quelconque des revendications précédentes comprenant: 9. A method of manufacturing an element according to any one of the preceding claims comprising:
- la fabrication dudit empilement, et - the manufacture of said stack, and
- le dépôt d’une enveloppe telle que définie selon les revendications 1 à 8, notamment par dépôt de couche mince atomique (ALD), dépôt de couche moléculaire (MLD), pulvérisation et/ou dépôt physique en phase vapeur. - The deposition of an envelope as defined in claims 1 to 8, in particular by thin atomic layer deposition (ALD), molecular layer deposition (MLD), sputtering and / or physical vapor deposition.
10. Module électrochimique comprenant l’empilement d’au moins deux éléments selon l’une quelconque des revendications 1 à 8, chaque élément étant connecté électriquement avec un ou plusieurs autre(s) élément(s), et tel que tout ou partie du module recouvert d’une enveloppe telle que définie selon l’une quelconque des revendications 1 à 7. 10. Electrochemical module comprising the stack of at least two elements according to any one of claims 1 to 8, each element being electrically connected with one or more other element (s), and such that all or part of the module covered with an envelope as defined in any one of claims 1 to 7.
11. Module étanche comprenant un module selon la revendication 10 au sein d’un caisson étanche. 11. Waterproof module comprising a module according to claim 10 within a sealed casing.
12. Batterie comprenant un ou plusieurs modules selon la revendication 10 ou 11. 12. Battery comprising one or more modules according to claim 10 or 11.
EP20812047.7A 2019-11-29 2020-11-27 Electrochemical element, as well as modules and batteries containing same Pending EP4066306A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1913453A FR3103969B1 (en) 2019-11-29 2019-11-29 ELECTROCHEMICAL ELEMENT, MODULES AND BATTERIES CONTAINING THEM
PCT/EP2020/083742 WO2021105433A1 (en) 2019-11-29 2020-11-27 Electrochemical element, as well as modules and batteries containing same

Publications (1)

Publication Number Publication Date
EP4066306A1 true EP4066306A1 (en) 2022-10-05

Family

ID=70154505

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20812047.7A Pending EP4066306A1 (en) 2019-11-29 2020-11-27 Electrochemical element, as well as modules and batteries containing same

Country Status (5)

Country Link
US (1) US20220407151A1 (en)
EP (1) EP4066306A1 (en)
CN (1) CN114762169A (en)
FR (1) FR3103969B1 (en)
WO (1) WO2021105433A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022191645A1 (en) * 2021-03-12 2022-09-15 주식회사 엘지에너지솔루션 Electrode and manufacturing method therefor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9368772B1 (en) 2009-06-15 2016-06-14 Sakti3, Inc. Packaging and termination structure for a solid state battery
US20160351973A1 (en) 2015-06-01 2016-12-01 Energy Power Systems LLC Nano-engineered coatings for anode active materials, cathode active materials, and solid-state electrolytes and methods of making batteries containing nano-engineered coatings
US10629950B2 (en) 2017-07-07 2020-04-21 Polyplus Battery Company Encapsulated sulfide glass solid electrolytes and solid-state laminate electrode assemblies
EP3683884B1 (en) * 2017-09-13 2024-02-28 FUJIFILM Corporation All-solid secondary cell, outer cladding material for all-solid secondary cell, and method for manufacturing said all-solid secondary cell
KR102529492B1 (en) * 2017-11-17 2023-05-04 현대자동차주식회사 All-solid battery and method for manufacturing the same
JP6856042B2 (en) * 2018-03-06 2021-04-07 トヨタ自動車株式会社 All solid state battery

Also Published As

Publication number Publication date
FR3103969A1 (en) 2021-06-04
CN114762169A (en) 2022-07-15
WO2021105433A1 (en) 2021-06-03
FR3103969B1 (en) 2024-02-16
US20220407151A1 (en) 2022-12-22

Similar Documents

Publication Publication Date Title
US10497927B2 (en) Methods of applying self-forming artificial solid electrolyte interface (SEI) layer to stabilize cycle stability of electrodes in lithium batteries
JP4168498B2 (en) Nonaqueous electrolyte secondary battery
US10608249B2 (en) Conformal coating of lithium anode via vapor deposition for rechargeable lithium ion batteries
JP4623786B2 (en) Non-aqueous secondary battery
JP6705384B2 (en) Lithium secondary battery
US10141562B2 (en) Anode and battery
EP3840110B1 (en) Encapsulation system for electronic components and batteries
JP5300502B2 (en) Battery active material, non-aqueous electrolyte battery and battery pack
US20140272594A1 (en) Protective structures for electrodes
EP2973806B1 (en) Protective structures for electrodes
US11374218B2 (en) Multilayer siloxane coatings for silicon negative electrode materials for lithium ion batteries
JP2020512669A (en) Positive electrode for secondary battery and lithium secondary battery including the same
US20110086260A1 (en) Thin housing film for electrochemical elements
CN111384399A (en) Protective coating for lithium metal electrodes
EP4165697A1 (en) Surface-treated electrode, protection of solid electrolytes, and elements, modules and batteries comprising said electrode
EP3100315B1 (en) Method for regenerating the capacity of an electrochemical lithium battery, and associated battery housing and battery
Zhang et al. 3D cubic framework of fluoride perovskite SEI inducing uniform lithium deposition for air-stable and dendrite-free lithium metal anodes
WO2021237335A1 (en) Electrochemical cells in the solid state, methods for preparing same and uses thereof
FR3068830B1 (en) ENCAPSULATION SYSTEM FOR ELECTRONIC COMPONENTS AND BATTERIES
EP4066306A1 (en) Electrochemical element, as well as modules and batteries containing same
FR3044831A1 (en) METHOD FOR CAPACITY REGENERATION OF A METAL-ION ELECTROCHEMICAL ACCUMULATOR, ACCUMULATOR THEREFOR
JPWO2019044560A1 (en) Secondary battery and manufacturing method thereof
US11843110B2 (en) Methods for controlling formation of multilayer carbon coatings on silicon-containing electroactive materials for lithium-ion batteries
WO2021260175A1 (en) Graphite/lithium hybrid negative electrode
FR3111475A1 (en) PROTECTION OF SOLID ELECTROLYTES

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220527

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230522