EP4065284A1 - Debris detection system - Google Patents

Debris detection system

Info

Publication number
EP4065284A1
EP4065284A1 EP20803208.6A EP20803208A EP4065284A1 EP 4065284 A1 EP4065284 A1 EP 4065284A1 EP 20803208 A EP20803208 A EP 20803208A EP 4065284 A1 EP4065284 A1 EP 4065284A1
Authority
EP
European Patent Office
Prior art keywords
magnet
module
casing
strainer
bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20803208.6A
Other languages
German (de)
French (fr)
Inventor
Nicolas Oscar Louis Ghislain RAIMARCKERS
Cédric Louis Marie Ghislain FRIPPIAT
Aurélien Guy Edmond Raoul MEUNIER
Frédéric Vallino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aero Boosters SA
Original Assignee
Safran Aero Boosters SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from BE20195850A external-priority patent/BE1027807B1/en
Priority claimed from BE20205204A external-priority patent/BE1028174B1/en
Application filed by Safran Aero Boosters SA filed Critical Safran Aero Boosters SA
Publication of EP4065284A1 publication Critical patent/EP4065284A1/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0656Investigating concentration of particle suspensions using electric, e.g. electrostatic methods or magnetic methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/025High gradient magnetic separators
    • B03C1/031Component parts; Auxiliary operations
    • B03C1/033Component parts; Auxiliary operations characterised by the magnetic circuit
    • B03C1/0332Component parts; Auxiliary operations characterised by the magnetic circuit using permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/28Magnetic plugs and dipsticks
    • B03C1/282Magnetic plugs and dipsticks with associated accumulation indicator, e.g. Hall sensor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/28Magnetic plugs and dipsticks
    • B03C1/286Magnetic plugs and dipsticks disposed at the inner circumference of a recipient, e.g. magnetic drain bolt
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/83Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; viscous liquids; paints; inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2835Oils, i.e. hydrocarbon liquids specific substances contained in the oil or fuel
    • G01N33/2858Oils, i.e. hydrocarbon liquids specific substances contained in the oil or fuel metal particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/18Magnetic separation whereby the particles are suspended in a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/22Details of magnetic or electrostatic separation characterised by the magnetical field, special shape or generation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/24Details of magnetic or electrostatic separation for measuring or calculating parameters, efficiency, etc.
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/30Details of magnetic or electrostatic separation for use in or with vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0053Investigating dispersion of solids in liquids, e.g. trouble

Definitions

  • the invention relates to the monitoring of lubricated mechanical parts in a turbomachine. More specifically, the invention relates to the detection of ferromagnetic debris in the oil of a turbomachine. The invention also relates to a turbomachine, in particular an airplane turbojet or an aircraft turboprop.
  • Document EP 3 363 518 A1 discloses an electrical detection system for the presence of ferrous particles in a fluid.
  • This system has both a magnet and an electric coil. In operation, ferrous particles are attracted to the magnet and electromagnetic field disturbances are measured to infer the presence of debris. To prevent debris from accumulating on the magnet, this system is equipped with magnet protection screens. The strainers can also filter debris of given dimensions so that they are not counted by the detector.
  • This system has a weakness because it can generate pressure drops, negligible for high pressures and flow rates, but which can alter the fluid flow for low pressure flows.
  • the invention aims to solve at least one of the problems posed by the prior art. More specifically, the invention aims to provide a debris detection system with lower pressure drops.
  • the subject of the invention is a system for detecting ferromagnetic debris in an oil flow of a turbomachine, the system comprising a passage intended to be traversed by the flow and a module for detecting the ferromagnetic debris present in the flow, the detection module comprising: a permanent magnet; and a coil capable of detecting the magnetic field generated by the magnet; remarkable in that the detection module is arranged in the passage and the detection module further comprises a flow-tight envelope in which the magnet and the coil are confined.
  • the envelope may include a cavity in which the magnet and the coil are arranged.
  • the coil can alternatively be embedded in the casing and only the magnet is included in the cavity delimited by the casing.
  • the module may include signal processing electronics, integrated into the enclosure, or remote and connected wired or wireless to the module.
  • the signal is processed in particular to detect variations in the magnetic field perceived by the coil.
  • bypassage is meant a volume of the space traversed by the fluid, which may be delimited by a wall or several walls allowing a fluid to flow in at least one direction.
  • the system may include one or more of the following characteristics, taken in isolation or in any technically possible combination:
  • the system includes a strainer with a mesh describing a cylinder or a portion of a cylinder and the module is integrated into the strainer, preferably the module is arranged along the axis of the cylinder or the portion of the cylinder.
  • the strainer is made of non-magnetic material. Its influence on the measurements can therefore be limited;
  • the strainer has a base and the casing is welded or crimped to the base of the strainer. This type of assembly ensures the tightness of the enclosure, otherwise imprecise measurement or additional pressure drops would occur;
  • the module comprises a magnetic bar in contact with the magnet and around which the coil is wound; - the magnetic bar is a first magnetic bar, and the module comprises a second coil arranged around a second magnetic bar, preferably coaxial with the first bar, the second bar being separated from the first bar by the magnet and / or by a separator made of polymer material, electromagnetically insulating the first bar from the second bar.
  • This subdivision of the module makes it possible to measure the particles at different locations in the flow, for example for redundant measurements reinforcing the validity of the measurements, or for measurements in different independent portions of the flow;
  • the bar or bars is / are cylindrical and are positioned coaxially with the casing by one or more ring-shaped spacers. It is indeed important, especially during aircraft movements, to ensure that the bar does not move within the envelope.
  • a potting glue can seal the position of the bar;
  • the passage comprises at least two channels allowing an independent flow of the oil flow in the at least two channels, and the envelope extends in the at least two channels to detect the debris present in the oil passing through each of the channels , the module comprising as many coils as there are channels. This allows the detection of debris independently in multiple oil circuits without requiring multiple detection modules.
  • One circuit can for example lubricate a bearing of the turbojet engine while another circuit communicates with a heat exchanger;
  • the module includes an equal number of magnets and coils, one coil and one magnet being provided per channel through which the casing passes. This allows completely independent measurements. Alternatively, a magnet can be common to two contiguous passages to minimize the weight and the complexity of the module;
  • the passage comprises at least two contiguous channels and separated from one another by a wall, the wall having an orifice which is crossed by the casing and possibly by a strainer, the magnet being positioned in line with this orifice.
  • the magnet attracts debris towards the wall and the respective coils in the channels are remote from the wall;
  • a seal is arranged between the casing and the wall and / or between the casing and the strainer, and / or between the strainer and the wall. This makes it possible to ensure the tightness of the flows between the two contiguous channels;
  • the casing comprises two cylindrical portions of different diameters, the portion of larger diameter receiving the magnet and preferably being embedded in a wall of the passage or in the base of the strainer. This design maximizes the ability of the magnet to attract particles without requiring the presence of an unnecessarily large envelope in the oil flow;
  • the magnet and / or the separator has / have a groove accommodating electric cables connected to the coil (s).
  • the passage of cables is an additional difficulty of the confined space of the enclosure.
  • One or more longitudinal grooves along the axis of the casing allows the passage of cables without affecting the quality of detection;
  • the bar has a distal end located approximately in the center of the passage or in the center of one of the channels.
  • the end of the bar is the place that attracts the most particles and to increase the probability of picking up all particles suspended in the oil, this end can be located between 1 ⁇ 4 and 3 ⁇ 4 of the passage;
  • the passage comprises an elbow in which the module is arranged.
  • the flow is therefore naturally directed to meet the modulus and the ferromagnetic particles are directed by centrifugal force to the outside of the bend where the modulus may be located. This increases the chances that the module will "see” the particles passing by. Particle counting is therefore made more precise;
  • the casing protrudes into the passage by a length which is adjustable and / or the casing is oriented transversely to the main direction of flow of the flow at an angle which is adjustable. Depending on the speed of the flow, the nature of the flow, or the geometry of the passage, this adjustment makes it possible to obtain the most precise detection possible;
  • the magnet is not placed in the passage or in one of the passage channels.
  • the magnet can thus be embedded in a wall of the passage or channels;
  • the coil is an insert in the manufacture of the envelope. This design allows a module which is particularly compact
  • the magnet is cylindrical in shape with two poles separated by a plane which is neither parallel to the axis of the cylinder, nor which is perpendicular thereto.
  • the north-south axis of the magnet is inclined with respect to the axis defined by the cylindrical shape of the magnet, this inclination excluding perpendicularity.
  • This type of magnet allows a good compromise between the attraction of the particles and their detection by the coil.
  • the north-south axis of the magnet coincides with the axis defined by the cylindrical shape of the magnet.
  • the subject of the invention is also an aircraft turbojet comprising a lubrication unit made of a single-piece body receiving several pumps and filters, several oil inlets and outlets, and a debris detection system, remarkable in that the Debris detection system is according to one of the above embodiments and the debris detection system is disposed in an oil inlet upstream of the pumps and filters.
  • the term “filter” designates filtration elements arranged downstream of the pumps to protect the drive components (injectors, enclosures) with filtration of the order of 10 to 150 ⁇ m.
  • the filtration of particles upstream of the pumps is carried out by a "strainer” having a "mesh” preventing the largest particles (greater than a size of the order of 500 to 1000 ⁇ m) from damaging the particles. pumps.
  • the envelope limits the pressure drops of the flow, which only encounters a single, sealed element, instead of several successive elements as is the case in some existing systems.
  • the arrangement of an envelope in the heart of the flow makes it possible to accurately measure the quantity of ferromagnetic debris circulating in the oil flow because a detection in the center of the flow reaches more potential particles than a detection on a wall of a passage.
  • the envelope When the envelope extends through several channels, it is possible to independently detect the presence of debris in each of the channels and to precisely infer the mechanical elements that may be the source of this debris.
  • the size and weight of the system of the present invention are also improved.
  • Figure 1 shows an axial turbomachine according to the invention
  • Figure 2 illustrates an isometric view of the body of a lubrication unit
  • FIGS 3A and 3B show two examples of debris detection systems according to the invention.
  • FIGS. 4A to 4D show four exemplary embodiments of the debris detection module
  • Figures 5 and 6 show a module integrated into a strainer
  • Figures 7 to 9 show three examples of integration of the module in a dual-channel or triple-channel fluid passage
  • Figures 10A-10C show embodiments of the magnet.
  • magnet refers to a permanent magnet.
  • the longitudinal or axial direction is considered according to the South-North orientation of the magnet.
  • the flow of flux in the passage at the level of the magnet proceeds according to a main direction of flow which is transverse (perpendicular or simply secant) to the longitudinal direction. Upstream and downstream are understood in relation to the direction of flow of the flow.
  • FIG. 1 shows in a simplified manner an axial turbomachine.
  • the turbojet 2 comprises a first level of compression, called low-pressure compressor 4, a second level of compression, called high-pressure compressor 6, a combustion chamber 8 and one or more levels of turbines 10.
  • the mechanical power of the turbines 10 is transmitted via shafts to the rotor 12 and sets in motion the two compressors 4 and 6.
  • the latter comprise several rows of rotor blades associated with rows of stator blades.
  • the rotation of the rotor around its axis of rotation 14 thus makes it possible to generate a flow of air and to gradually compress the latter until it enters the combustion chamber 8.
  • a fan 16 is coupled to the rotor 12 and generates an air flow which is divided into a primary flow 18 passing through the aforementioned different levels of the turbomachine, and a secondary flow 20 passing through an annular duct.
  • Reduction means 22 can reduce the speed of rotation of the fan 16 and / or of the low pressure compressor 4 relative to the speed of the associated turbine 10.
  • the rotor 12 comprises several coaxial shafts 24 supported by bearings 26.
  • the cooling and / or the lubrication of the bearings 26 and of the optional reduction gear 22 are provided by a lubrication circuit 28.
  • the lubrication circuit 28 can incidentally supply actuators. such as jacks (not shown).
  • the lubrication circuit 28 may also include a heat exchanger 30 for cooling the oil, the temperature of which may exceed 200 ° C. These temperatures amplify the aggressiveness of the corrosive oil towards gaskets and polymer parts in general.
  • the lubrication circuit 28 may comprise oil recovery pipes 32 collecting the oil in the lubricating chambers of the bearings 26 and conveying it into the reservoir 34. It may also include a pipe 32 for recovering the lubricating oil. the reducer 22 and returning this oil to the reservoir 34.
  • the lubrication circuit 28 may include a lubrication group 36.
  • the lubrication group 36 can be directly mounted on an accessory box of the turbojet 2.
  • the lubrication group 36 is a unit made up of a one-piece body which accommodates several hydraulic functions such as, for example, several pumps and filters. It pressurizes the oil taken from the tank and distributes it in the engine components to be lubricated before reconditioning it (cooling and filtering) and returning it to the reservoir 34.
  • FIG. 2 illustrates an example in isometric view of a body 38 of a lubrication group 36.
  • the body can be manufactured by additive manufacturing and be of particularly complex shape.
  • the body 38 can be in one piece. It may include several oil inlets 40, 42 for sucking the oil from the reservoir or from the components of the turbomachine and several oil outlets 41, 43 for discharging the oil towards the reservoir or towards the components of the turbomachine. .
  • Respective passages connect the inputs to the outputs. Some passages can be completely independent of other passages.
  • Group 36 can be equipped with many functions and contain several pumps and filters. According to the invention, the group 36 may also contain a ferromagnetic debris detection system.
  • FIGS 3A and 3B show schematically two versions of a debris detection system 45 according to the invention.
  • a rectilinear passage 50 for example in the vicinity of the entrance 42, accommodates a detection module 60.
  • the latter projects into the passage 50 and the length from which it protrudes can be adjustable.
  • an angled passage 50 for example in the vicinity of the entrance 40, accommodates a detection module 60.
  • the latter can have an orientation with respect to the flow which is adjustable and / or a protruding length in the passage. 50 which is adjustable.
  • the passage 50 is traversed by a flow of oil F.
  • the orientation and the length with which the module protrudes into the passage are adjusted mechanically by appropriate means (electric motor, screw, piston, etc.).
  • Each detection system 45 makes it possible to detect the presence and / or the circulation of ferromagnetic debris, or ferromagnetic particles, contained in the oil. This debris can in particular result from wear of a bearing or of a gear tooth forming the reducer 22.
  • Each module 60 can be connected to a signal processing unit (not shown). Therefore, the processing unit manages to identify the presence of debris in each pipe.
  • the debris can be between 50 ⁇ m and 1000 ⁇ m, or between 150 ⁇ m and 750 ⁇ m in size.
  • FIGS. 4A to 4C show three examples of detection module 60.
  • the module 60 comprises an envelope 62 which may be cylindrical and of axis A.
  • the envelope 62 defines a cavity 64 which accommodates various components.
  • the casing 62 is sealed and can be placed in the flow F without allowing oil to penetrate inside the cavity 64.
  • the casing can be made of polymer material 1 mm thick (+/- 0.2 mm ). Alternatively, the casing can be thinner, made of a titanium alloy or be made of stainless steel, and have a thickness of approximately 0.1 mm (+/- 0.02 mm).
  • the envelope is made of a non-magnetic material.
  • the module is intended to measure the magnetic field in the flux F and more particularly the variations of the magnetic field resulting from the passage or the presence of ferromagnetic debris.
  • the cavity 64 contains a permanent magnet 66.
  • This magnet can be of the SmCo (Samarium-Cobalt) type and have stable magnetic properties from -54 ° C to 200 ° C.
  • the south-north direction of magnet 66 is along the A axis.
  • a magnetic field 68 is shown schematically in broken lines.
  • the cavity 64 also includes one or more coils 70, 72.
  • Each coil 70, 72 can be made of a winding of several hundred turns of fine wire (for example about 0.01 mm) with local splices to ensure the strength of the wire. .
  • the magnet 66 has the dual role of attracting the ferromagnetic debris found in the oil flow and of generating a magnetic field detectable by the coil 72.
  • the coil 72 passive, makes it possible to measure the variations of the magnetic field 68 created. by the magnet.
  • the coil 70 can be a "Built-in test" coil making it possible to generate a magnetic field and to check the response of the coil 72, for example before starting up a turbojet.
  • the coil 70 is therefore not essential to the operation of the detection module but allows an integrated verification of its correct operation.
  • the detection technology used is similar, for example, to the technology disclosed in document WO 2017/157855 A1 or in document EP 3 363 518 A1.
  • a ferromagnetic particle when a ferromagnetic particle arrives near the envelope, it modifies the magnetic field 68 and creates discontinuities in the intensity of the passive coil 72.
  • the signal comprises a peak which exceeds a given predefined threshold, the modulus 60 recognizes that a ferromagnetic particle has passed.
  • FIG. 4B shows a second exemplary embodiment of the module 60.
  • the casing 62 comprises two portions 62.1, 62.2, including a portion 62.2 of greater diameter than the other portion 62.1. This projection 62.2 facilitates the mounting of the module 60 on a wall of the passage 50.
  • the detection module 60 comprises a magnetic element 74 in the form of a magnetic bar (for example M50).
  • This magnetic element 74 can pass through the coil (s) 70, 72. It is in contact with the magnet 66 at its proximal end 74.1.
  • the bar 74 thus behaves like the extension of the magnet 66.
  • the magnetic field is maximum at the distal end. 74.2 of the bar 74.
  • the bar 74 preferably has a smaller diameter than the magnet 66.
  • the magnet 66, the bar 74 and the coil 72 are sized to attract and / or detect particles of defined dimensions. A magnet 66 that is too powerful can attract many particles but will generate a magnetic field that is too strong and the variations of which will be difficult to detect by the coil 72. A balance is therefore found.
  • FIG. 4C illustrates a third exemplary embodiment of the module 60. This example is substantially similar to that of FIG. 4B. Annular spacers 76 are provided to hold the bar in position in the casing 62. In this example, the magnet may not be confined to the projection 62.2.
  • Figure 4D shows an additional example.
  • the coil or coils 70, 72 are embedded in the polymer casing, such as manufacturing inserts. To do this, a copper wire is wound and the polymer is injected or molded around the wire.
  • Figure 5 shows a first implementation of the module 60 in a strainer 80.
  • the strainer includes a filter mesh 82 extending from a base 84 towards a ceiling 86.
  • the module 60 can be welded to the base 84 of the strainer 80. Alternatively, a press fit or crimp can be used.
  • the mesh 82 may take the form of a cylinder or a portion of a cylinder, for example extending over 180 ° around the axis A.
  • the mesh 82 and the module 60 are advantageously coaxial.
  • Figure 6 illustrates these aspects in a sectional sectional view along axis VI: VI of Figure 5.
  • the mesh size of the mesh 82 may be greater than or equal to 1000 ⁇ m, or to 750 ⁇ m, in particular in order to protect the pumps downstream of the strainer from the largest debris.
  • the strainer 80 can be made entirely, including with its mesh 82, by additive manufacturing.
  • Figure 6 also shows the order of magnitude of the ratio between the diameter of the module 60 and that of the mesh 82 which can be of the order of 3.
  • the strainer 80 can also be multi-stage, with an intermediate wall between the base 84 and the ceiling 86.
  • FIG. 7 illustrates an implementation of a module 60 with such a two-stage strainer 80 in a passage comprising two channels 52, 54 in which circulate two independent oil flows F1, F2.
  • the module 60 comprises two magnets 66, two magnetic bars 74 and two pairs of coils 70, 72.
  • a single module 60 makes it possible to detect the ferromagnetic particles of two independent flows F1, F2 and therefore to deduce therefrom in a distinctive manner the member of the turbojet which emits ferromagnetic particles.
  • the magnets 66, the bars 74 and the coils 72 dedicated to the two channels 52, 54 can be different. Indeed, it may be advantageous to provide particle detection thresholds which are different according to the organs which are respectively connected to each channel 52, 54. Alternatively, or in addition, the detection thresholds can be distinguished on the processing. signals from the two coils 72.
  • the strainer 80 comes flush with the walls 90 of the channels 52, 54. Seals 94 may be provided between the module and the intermediate wall 88 of the strainer 80, as well as between the strainer 80 and the walls. 90. An orifice 92 in the wall 90 is provided to receive the module 60 and the strainer 80.
  • This figure also illustrates an alternative mounting of the module 60 in the strainer, via the projection (62.2 in FIG. 4B).
  • the module can be inserted axially against a seal 94.
  • the magnets 66 have a longitudinal groove 66.1 (along the axis A) which allows the passage of the cables 72.1 of the coils 72.
  • the upper magnet in the direction of figure 7) can have a groove 66.1 and the magnet lower which must allow the passage of more numerous son may have two grooves 66.1.
  • Figure 8 illustrates an alternative to the system of Figure 7.
  • a single magnet 66 generates a magnetic flux for the two channels 52, 54.
  • the magnet can be confined to the intermediate wall 88.
  • FIG. 9 shows an example of module 60 allowing measurement in three contiguous channels 52, 54, 56 two by two.
  • the strainer 80 which remains optional is not shown. Note that the strainer is not essential for the distinctive measurement of particles in multiple independent channels.
  • the module 60 can be hybrid, that is to say present a magnet for two channels 52, 54 and a magnet for the third channel 56. Alternatively, three magnets can be provided, with three magnetic bars separated two by two from each other. an insulating block. The number of coils 72 for its part always remains equal to the number of channels 52, 54, 56.
  • each bar will be located around the midpoint of the corresponding channel to attract and detect a maximum of particles.
  • the corresponding detection coil 72 will also be placed in the vicinity of the midpoint of the channels.
  • midpoint is meant the middle of the section of the channel, located between 1 ⁇ 4 and 3 ⁇ 4 of the section of the channel.
  • Figures 10A to 10C show different magnets.
  • the magnet of Figure 10A is the magnet known in the state of the art to have a strong power of attracting particles. This magnet generates a magnetic field whose field lines are perpendicular to the axis of the magnet. It is impossible to detect magnetic field variations with a coil coaxial with such a magnet.
  • the magnet used in the invention is therefore that of Figures 10B or 10C.
  • the magnetic field is as drawn in Figure 4A.
  • This magnet on the other hand, has a lower power to attract particles.
  • the magnet in Figure 10C is a good compromise and has two poles separated by a plane which is inclined with respect to the axis of the cylindrical magnet.
  • the plane P is neither perpendicular nor parallel to the axis of the magnet.
  • This representation is schematic.
  • the magnet can be made of smaller elementary magnets making it possible to obtain a magnet which schematically comprises two opposite poles along a section of a cylinder. Such a magnet not only attracts particles but also creates a magnetic field whose variations are detectable by a coil coaxial with the magnet.
  • the angle between the plane P and the axis of the cylinder may preferably be between 60 ° and 80 °.
  • the assembly of the module in the strainer, the presence or not of a bar, of a projection, of a BIT coil, or the presence of a strainer are optional aspects and can be taken from a mode of achievement and applied to another.

Abstract

System (45) for detecting ferromagnetic debris in an oil stream (F1, F2), the system comprising a passage (50) through which the stream (F1, F2) is intended to flow and a module (60) for detecting the ferromagnetic debris present in the stream (F1, F2), the detection module (60) comprising: a permanent magnet (66); and a coil (72) suitable for detecting the magnetic field (68) generated by the magnet; characterised in that the detection module (60) is arranged in the passage (50) and the detection module (60) further comprises a casing (62) which is sealed off from the stream (F1, F2) and in which the magnet (66) and the coil (72) are confined.

Description

Description Description
SYSTEME DE DETECTION DE DEBRIS DEBRIS DETECTION SYSTEM
Domaine technique Technical area
L’invention se rapporte à la surveillance d’organes mécaniques lubrifiés dans une turbomachine. Plus précisément, l’invention concerne la détection de débris ferromagnétiques dans l’huile d’une turbomachine. L’invention a également trait à une turbomachine, notamment un turboréacteur d’avion ou un turbopropulseur d’aéronef. The invention relates to the monitoring of lubricated mechanical parts in a turbomachine. More specifically, the invention relates to the detection of ferromagnetic debris in the oil of a turbomachine. The invention also relates to a turbomachine, in particular an airplane turbojet or an aircraft turboprop.
Technique antérieure Prior art
La présence de débris métalliques dans l’huile d’un circuit de lubrification témoigne de l’usure des éléments mobiles d’une turbomachine. Ainsi, en analysant la quantité et la taille des débris métalliques en circulation dans l’huile, il est possible d’estimer la santé du moteur. En particulier, une augmentation brusque du nombre de débris détectés peut signifier qu’un roulement ou qu’un engrenage s’use prématurément. Dès lors, une maintenance doit être planifiée afin d’éviter une panne ou une casse mécanique. The presence of metallic debris in the oil of a lubrication system indicates the wear of the moving parts of a turbomachine. Thus, by analyzing the amount and size of metallic debris circulating in the oil, it is possible to estimate the health of the engine. In particular, a sharp increase in the number of debris detected can mean that a bearing or gear is wearing prematurely. Therefore, maintenance must be planned in order to avoid mechanical breakdown or breakage.
Le document EP 3 363 518 A1 divulgue un système de détection électrique de présence de particules ferreuses dans un fluide. Ce système comporte à la fois un aimant et une bobine électrique. En fonctionnement, les particules ferreuses sont attirées par l’aimant et les perturbations du champ électro-magnétique sont mesurées pour en déduire la présence des débris. Pour éviter que les débris ne s’accumulent sur l’aimant, ce système est muni de crépines de protection de l’aimant. Les crépines permettent également de filtrer des débris de dimensions donnée pour qu’ils ne soient pas comptés par le détecteur. Document EP 3 363 518 A1 discloses an electrical detection system for the presence of ferrous particles in a fluid. This system has both a magnet and an electric coil. In operation, ferrous particles are attracted to the magnet and electromagnetic field disturbances are measured to infer the presence of debris. To prevent debris from accumulating on the magnet, this system is equipped with magnet protection screens. The strainers can also filter debris of given dimensions so that they are not counted by the detector.
Ce système présente une faiblesse car il peut générer des pertes de charge, négligeables pour des pressions et débits importants, mais qui peut altérer l’écoulement du fluide pour des flux de petite pression. This system has a weakness because it can generate pressure drops, negligible for high pressures and flow rates, but which can alter the fluid flow for low pressure flows.
Résumé de l'invention Summary of the invention
Problème technique Technical problem
L’invention a pour objectif de résoudre au moins un des problèmes posés par l’art antérieur. Plus précisément, l’invention a pour objectif de proposer un système de détection de débris présentant des pertes de charge moindre. The invention aims to solve at least one of the problems posed by the prior art. More specifically, the invention aims to provide a debris detection system with lower pressure drops.
Solution technique L’invention a pour objet un système de détection de débris ferromagnétiques dans un flux d’huile d’une turbomachine, le système comprenant un passage destiné à être parcouru par le flux et un module de détection des débris ferromagnétiques présents dans le flux, le module de détection comprenant : un aimant permanent ; et une bobine apte à détecter le champ magnétique généré par l’aimant ; remarquable en ce que le module de détection est agencé dans le passage et le module de détection comprend en outre une enveloppe étanche au flux dans laquelle sont confinés l’aimant et la bobine. L’enveloppe peut comprendre une cavité dans laquelle sont agencés l’aimant et la bobine. La bobine peut alternativement être noyée dans l’enveloppe et seul l’aimant est compris dans la cavité délimitée par l’enveloppe. Technical solution The subject of the invention is a system for detecting ferromagnetic debris in an oil flow of a turbomachine, the system comprising a passage intended to be traversed by the flow and a module for detecting the ferromagnetic debris present in the flow, the detection module comprising: a permanent magnet; and a coil capable of detecting the magnetic field generated by the magnet; remarkable in that the detection module is arranged in the passage and the detection module further comprises a flow-tight envelope in which the magnet and the coil are confined. The envelope may include a cavity in which the magnet and the coil are arranged. The coil can alternatively be embedded in the casing and only the magnet is included in the cavity delimited by the casing.
Il est entendu que le module peut comprendre une électronique de traitement du signal, intégrée à l’enveloppe, ou déportée et connectée avec ou sans fil au module. Le signal est traité en particulier pour détecter les variations du champ magnétique perçu par la bobine. It is understood that the module may include signal processing electronics, integrated into the enclosure, or remote and connected wired or wireless to the module. The signal is processed in particular to detect variations in the magnetic field perceived by the coil.
Par « passage », on entend un volume de l’espace parcouru par le fluide, qui peut être délimité par une paroi ou plusieurs parois permettant à un fluide de s’écouler selon au moins une direction. By "passage" is meant a volume of the space traversed by the fluid, which may be delimited by a wall or several walls allowing a fluid to flow in at least one direction.
Le fait de proposer une enveloppe pour les éléments du détecteur fait que le flux ne rencontre qu’un seul élément au lieu de plusieurs, résultant en une perte de charge moindre. Providing an envelope for the detector elements means that the flow only encounters one element instead of several, resulting in less pressure drop.
Selon des modes de réalisation avantageux de l’invention, le système peut comprendre une ou plusieurs des caractéristiques suivantes, prises isolément ou selon toutes les combinaisons techniquement possibles : According to advantageous embodiments of the invention, the system may include one or more of the following characteristics, taken in isolation or in any technically possible combination:
- le système comprend une crépine avec un treillis décrivant un cylindre ou une portion de cylindre et le module est intégré à la crépine, préférentiellement le module est disposé le long de l’axe du cylindre ou de la portion de cylindre. Cette intégration de la détection dans la crépine permet à la fois de limiter les pertes de charge et de limiter l’encombrement du dispositif entier ; - the system includes a strainer with a mesh describing a cylinder or a portion of a cylinder and the module is integrated into the strainer, preferably the module is arranged along the axis of the cylinder or the portion of the cylinder. This integration of detection in the strainer makes it possible both to limit pressure drops and to limit the size of the entire device;
- la crépine est faite d’un matériau amagnétique. Son influence sur les mesures peut donc être limitée ; - the strainer is made of non-magnetic material. Its influence on the measurements can therefore be limited;
- la crépine comprend une base et l’enveloppe est soudée ou sertie à la base de la crépine. Ce type d’assemblage permet d’assurer l’étanchéité de l’enveloppe, sans quoi une mesure imprécise ou des pertes de charge supplémentaires auraient lieu ; - the strainer has a base and the casing is welded or crimped to the base of the strainer. This type of assembly ensures the tightness of the enclosure, otherwise imprecise measurement or additional pressure drops would occur;
- le module comprend un barreau magnétique au contact de l’aimant et autour duquel est enroulée la bobine ; - le barreau magnétique est un premier barreau magnétique, et le module comprend une seconde bobine agencée autour d’un second barreau magnétique, préférentiellement coaxial au premier barreau, le second barreau étant séparé du premier barreau par l’aimant et/ou par un séparateur en matériau polymère, isolant électromagnétiquement le premier barreau du second barreau. Cette subdivision du module permet de mesurer les particules à différents endroits du flux, par exemple pour des mesures redondantes renforçant la validité des mesures, ou pour des mesures dans différentes portions indépendantes du flux ; the module comprises a magnetic bar in contact with the magnet and around which the coil is wound; - the magnetic bar is a first magnetic bar, and the module comprises a second coil arranged around a second magnetic bar, preferably coaxial with the first bar, the second bar being separated from the first bar by the magnet and / or by a separator made of polymer material, electromagnetically insulating the first bar from the second bar. This subdivision of the module makes it possible to measure the particles at different locations in the flow, for example for redundant measurements reinforcing the validity of the measurements, or for measurements in different independent portions of the flow;
- le barreau ou les barreaux est/sont cylindriques et sont positionnés coaxialement à l’enveloppe par une ou plusieurs entretoises de forme annulaire. Il est en effet important, notamment lors des mouvements de l’aéronef, de s’assurer que le barreau ne se déplace pas au sein de l’enveloppe. Alternativement aux entretoises un potting (colle) peut sceller la position du barreau ; - The bar or bars is / are cylindrical and are positioned coaxially with the casing by one or more ring-shaped spacers. It is indeed important, especially during aircraft movements, to ensure that the bar does not move within the envelope. As an alternative to spacers, a potting (glue) can seal the position of the bar;
- le passage comprend au moins deux canaux permettant un écoulement du flux d’huile indépendamment dans les au moins deux canaux, et l’enveloppe s’étend dans les au moins deux canaux pour détecter les débris présents dans l’huile parcourant chacun des canaux, le module comprenant autant de bobines qu’il y a de canaux. Ceci permet la détection des débris indépendamment dans plusieurs circuits d’huile sans nécessiter plusieurs modules de détection. Un circuit peut par exemple lubrifier un roulement du turboréacteur alors qu’un autre circuit communique avec un échangeur de chaleur ;- the passage comprises at least two channels allowing an independent flow of the oil flow in the at least two channels, and the envelope extends in the at least two channels to detect the debris present in the oil passing through each of the channels , the module comprising as many coils as there are channels. This allows the detection of debris independently in multiple oil circuits without requiring multiple detection modules. One circuit can for example lubricate a bearing of the turbojet engine while another circuit communicates with a heat exchanger;
- le module comprend un nombre égal d’aimants et de bobines, une bobine et un aimant étant prévu par canal traversé par l’enveloppe. Ceci permet des mesures complètement indépendantes. Alternativement, un aimant peut être commun à deux passages contigus pour minimiser le poids et la complexité du module ; - The module includes an equal number of magnets and coils, one coil and one magnet being provided per channel through which the casing passes. This allows completely independent measurements. Alternatively, a magnet can be common to two contiguous passages to minimize the weight and the complexity of the module;
- le passage comprend au moins deux canaux contigus et séparés l’un de l’autre par une paroi, la paroi disposant d’un orifice qui est traversé par l’enveloppe et éventuellement par une crépine, l’aimant étant positionné au droit de cet orifice. Ainsi, l’aimant attire les débris vers la paroi et les bobines respectives dans les canaux sont à distance de la paroi ; - the passage comprises at least two contiguous channels and separated from one another by a wall, the wall having an orifice which is crossed by the casing and possibly by a strainer, the magnet being positioned in line with this orifice. Thus, the magnet attracts debris towards the wall and the respective coils in the channels are remote from the wall;
- un joint d’étanchéité est agencé entre l’enveloppe et la paroi et/ou entre l’enveloppe et la crépine, et/ou entre la crépine et la paroi. Ceci permet de s’assurer de l’étanchéité des flux entre les deux canaux contigus ; - A seal is arranged between the casing and the wall and / or between the casing and the strainer, and / or between the strainer and the wall. This makes it possible to ensure the tightness of the flows between the two contiguous channels;
- l’enveloppe comprend deux portions cylindriques de diamètres différents, la portion de plus gros diamètre recevant l’aimant et étant préférentiellement noyée dans une paroi du passage ou dans la base de la crépine. Cette conception permet de maximiser la capacité de l’aimant à attirer les particules sans nécessiter la présence d’une enveloppe inutilement imposante dans le flux d’huile ; - The casing comprises two cylindrical portions of different diameters, the portion of larger diameter receiving the magnet and preferably being embedded in a wall of the passage or in the base of the strainer. This design maximizes the ability of the magnet to attract particles without requiring the presence of an unnecessarily large envelope in the oil flow;
- l’aimant et/ou le séparateur a/ont une rainure accueillant des câbles électriques reliés à la / aux bobine(s). Le passage des câbles est une difficulté supplémentaire de l’espace confiné de l’enveloppe. Une ou plusieurs rainures longitudinales selon l’axe de l’enveloppe permet le passage des câbles sans affecter la qualité de la détection ;- the magnet and / or the separator has / have a groove accommodating electric cables connected to the coil (s). The passage of cables is an additional difficulty of the confined space of the enclosure. One or more longitudinal grooves along the axis of the casing allows the passage of cables without affecting the quality of detection;
- le barreau a une extrémité distale située environ au centre du passage ou au centre d’un des canaux. L’extrémité du barreau est l’endroit attirant le plus de particules et pour augmenter la probabilité de capter toutes les particules en suspension dans l’huile, cette extrémité peut être située entre ¼ et ¾ du passage ; - the bar has a distal end located approximately in the center of the passage or in the center of one of the channels. The end of the bar is the place that attracts the most particles and to increase the probability of picking up all particles suspended in the oil, this end can be located between ¼ and ¾ of the passage;
- le passage comprend un coude dans lequel est agencé le module. Le flux est donc naturellement dirigé pour rencontrer le module et les particules ferromagnétiques sont dirigées par force centrifuge vers l’extérieur du coude où peut se trouver le module. Ceci augmente les chances que le module « voit » passer les particules. Le comptage des particules est donc rendu plus précis ; - The passage comprises an elbow in which the module is arranged. The flow is therefore naturally directed to meet the modulus and the ferromagnetic particles are directed by centrifugal force to the outside of the bend where the modulus may be located. This increases the chances that the module will "see" the particles passing by. Particle counting is therefore made more precise;
- l’enveloppe est en saillie dans le passage d’une longueur qui est ajustable et/ou l’enveloppe est orientée transversalement à la direction principale d’écoulement du flux d’un angle qui est ajustable. Selon la vitesse du flux, la nature du flux, ou la géométrie du passage, cet ajustement permet d’obtenir une détection la plus précise possible ;- the casing protrudes into the passage by a length which is adjustable and / or the casing is oriented transversely to the main direction of flow of the flow at an angle which is adjustable. Depending on the speed of the flow, the nature of the flow, or the geometry of the passage, this adjustment makes it possible to obtain the most precise detection possible;
- l’aimant n’est pas disposé dans le passage ou dans un des canaux du passage. L’aimant peut ainsi être noyé dans une paroi du passage ou des canaux ; - the magnet is not placed in the passage or in one of the passage channels. The magnet can thus be embedded in a wall of the passage or channels;
- la bobine est un insert de fabrication de l’enveloppe. Cette conception permet un module qui soit particulièrement compact ; - the coil is an insert in the manufacture of the envelope. This design allows a module which is particularly compact;
- l’aimant est de forme cylindrique avec deux pôles séparés par un plan qui n’est ni parallèle à l’axe du cylindre, ni qui y est perpendiculaire. Dit autrement, l’axe Nord-Sud de l’aimant est incliné par rapport à l’axe défini par la forme cylindrique de l’aimant, cette inclinaison excluant la perpendicularité. Ce type d’aimant permet un bon compromis entre l’attraction des particules et leur détection par la bobine. Alternativement, l’axe Nord-Sud de l’aimant coïncide avec l’axe défini par la forme cylindrique de l’aimant. L’invention a également pour objet un turboréacteur d’aéronef comprenant un groupe de lubrification fait d’un corps monobloc recevant plusieurs pompes et filtres, plusieurs entrées et sorties d’huile, et un système de détection de débris, remarquable en ce que le système de détection des débris est selon l’un des modes de réalisation ci-dessus et le système de détection des débris est disposé dans une entrée d’huile en amont des pompes et des filtres. Dans la présente demande, le terme « filtre » désigne des éléments de filtration disposés en aval des pompes pour protéger les organes moteur (injecteurs, enceintes) avec une filtration de l’ordre de 10 à 150 pm. La filtration des particules en amont des pompes est effectuée quant à elle par une « crépine » disposant d’un « treillis » empêchant les particules les plus grosses (supérieure à une taille de l’ordre de 500 à 1000 pm) d’abîmer les pompes. - the magnet is cylindrical in shape with two poles separated by a plane which is neither parallel to the axis of the cylinder, nor which is perpendicular thereto. In other words, the north-south axis of the magnet is inclined with respect to the axis defined by the cylindrical shape of the magnet, this inclination excluding perpendicularity. This type of magnet allows a good compromise between the attraction of the particles and their detection by the coil. Alternatively, the north-south axis of the magnet coincides with the axis defined by the cylindrical shape of the magnet. The subject of the invention is also an aircraft turbojet comprising a lubrication unit made of a single-piece body receiving several pumps and filters, several oil inlets and outlets, and a debris detection system, remarkable in that the Debris detection system is according to one of the above embodiments and the debris detection system is disposed in an oil inlet upstream of the pumps and filters. In the present application, the term “filter” designates filtration elements arranged downstream of the pumps to protect the drive components (injectors, enclosures) with filtration of the order of 10 to 150 μm. The filtration of particles upstream of the pumps is carried out by a "strainer" having a "mesh" preventing the largest particles (greater than a size of the order of 500 to 1000 μm) from damaging the particles. pumps.
Avantages apportés Benefits provided
L’enveloppe permet de limiter les pertes de charge du flux qui ne rencontre qu’un seul élément, étanche, au lieu de plusieurs éléments successifs comme c’est le cas dans certains systèmes existants. The envelope limits the pressure drops of the flow, which only encounters a single, sealed element, instead of several successive elements as is the case in some existing systems.
De plus, l’agencement d’une enveloppe au cœur du flux permet de mesurer avec précision la quantité de débris ferromagnétique circulant dans le flux d’huile car une détection au centre du flux atteint plus de particules potentielles qu’une détection sur une paroi d’un passage. In addition, the arrangement of an envelope in the heart of the flow makes it possible to accurately measure the quantity of ferromagnetic debris circulating in the oil flow because a detection in the center of the flow reaches more potential particles than a detection on a wall of a passage.
Lorsque l’enveloppe s’étend au travers de plusieurs canaux, il est possible de détecter indépendamment la présence de débris dans chacun des canaux et d’en déduire précisément les éléments mécaniques qui peuvent être source de ces débris. L’encombrement et le poids du système de la présente invention sont également améliorés. When the envelope extends through several channels, it is possible to independently detect the presence of debris in each of the channels and to precisely infer the mechanical elements that may be the source of this debris. The size and weight of the system of the present invention are also improved.
Brève description des dessins Brief description of the drawings
La figure 1 représente une turbomachine axiale selon l’invention ; Figure 1 shows an axial turbomachine according to the invention;
La figure 2 illustre une vue isométrique du corps d’un groupe de lubrification ; Figure 2 illustrates an isometric view of the body of a lubrication unit;
Les figures 3A et 3B montrent deux exemples de systèmes de détection de débris selon l’invention ; Figures 3A and 3B show two examples of debris detection systems according to the invention;
Les figures 4A à 4D montrent quatre exemples de modes de réalisation du module de détection de débris ; Figures 4A to 4D show four exemplary embodiments of the debris detection module;
Les figures 5 et 6 montrent un module intégré à une crépine ; Figures 5 and 6 show a module integrated into a strainer;
Les figures 7 à 9 montrent trois exemples d’intégration du module dans un passage de fluide double-canaux ou triple-canaux ; Figures 7 to 9 show three examples of integration of the module in a dual-channel or triple-channel fluid passage;
Les figures 10A à 10C montrent des modes de réalisation de l’aimant. Figures 10A-10C show embodiments of the magnet.
Description des modes de réalisation Description of the embodiments
Dans la description qui va suivre, le terme « aimant » renvoie à un aimant permanent. La direction longitudinale ou axiale est considérée selon l’orientation Sud-Nord de l’aimant. L’écoulement du flux dans le passage au niveau de l’aimant se déroule selon une direction principale d’écoulement qui est transversale (perpendiculaire ou simplement sécante) à la direction longitudinale. L’amont et l’aval sont entendus en relation avec le sens d’écoulement du flux. In the description which follows, the term “magnet” refers to a permanent magnet. The longitudinal or axial direction is considered according to the South-North orientation of the magnet. The flow of flux in the passage at the level of the magnet proceeds according to a main direction of flow which is transverse (perpendicular or simply secant) to the longitudinal direction. Upstream and downstream are understood in relation to the direction of flow of the flow.
La figure 1 représente de manière simplifiée une turbomachine axiale. Il s’agit dans ce cas précis d’un turboréacteur double-flux. Le turboréacteur 2 comprend un premier niveau de compression, dit compresseur basse-pression 4, un deuxième niveau de compression, dit compresseur haute-pression 6, une chambre de combustion 8 et un ou plusieurs niveaux de turbines 10. En fonctionnement, la puissance mécanique des turbines 10 est transmise via des arbres jusqu’au rotor 12 et met en mouvement les deux compresseurs 4 et 6. Ces derniers comportent plusieurs rangées d’aubes de rotor associées à des rangées d’aubes de stators. La rotation du rotor autour de son axe de rotation 14 permet ainsi de générer un débit d’air et de comprimer progressivement ce dernier jusqu’à l’entrée dans la chambre de combustion 8. FIG. 1 shows in a simplified manner an axial turbomachine. In this specific case, it is a double-flow turbojet. The turbojet 2 comprises a first level of compression, called low-pressure compressor 4, a second level of compression, called high-pressure compressor 6, a combustion chamber 8 and one or more levels of turbines 10. In operation, the mechanical power of the turbines 10 is transmitted via shafts to the rotor 12 and sets in motion the two compressors 4 and 6. The latter comprise several rows of rotor blades associated with rows of stator blades. The rotation of the rotor around its axis of rotation 14 thus makes it possible to generate a flow of air and to gradually compress the latter until it enters the combustion chamber 8.
Une soufflante 16 est couplée au rotor 12 et génère un flux d’air qui se divise en un flux primaire 18 traversant les différents niveaux susmentionnés de la turbomachine, et un flux secondaire 20 traversant un conduit annulaire. Des moyens de démultiplication 22 peuvent réduire la vitesse de rotation de la soufflante 16 et/ou du compresseur basse pression 4 par rapport à la vitesse de la turbine 10 associée. A fan 16 is coupled to the rotor 12 and generates an air flow which is divided into a primary flow 18 passing through the aforementioned different levels of the turbomachine, and a secondary flow 20 passing through an annular duct. Reduction means 22 can reduce the speed of rotation of the fan 16 and / or of the low pressure compressor 4 relative to the speed of the associated turbine 10.
Le rotor 12 comporte plusieurs arbres 24 coaxiaux supportés par des paliers 26. Le refroidissement et/ou la lubrification des paliers 26 et de l’optionnel réducteur 22 sont assurés par un circuit de lubrification 28. Le circuit de lubrification 28 peut accessoirement alimenter des actionneurs tels des vérins (non représentés). Le circuit de lubrification 28 peut également comprendre un échangeur de chaleur 30 pour refroidir l’huile dont la température peut dépasser 200°C. Ces températures amplifient l’agressivité de l’huile corrosive vis-à-vis des joints et des parties polymères en général. Le circuit de lubrification 28 peut comprendre des conduites 32 de récupération d’huile collectant l’huile dans les enceintes de lubrification des paliers 26 et l’acheminant dans le réservoir 34. Il peut également comporter une conduite 32 de récupération de l’huile lubrifiant le réducteur 22 et retournant cette huile dans le réservoir 34. The rotor 12 comprises several coaxial shafts 24 supported by bearings 26. The cooling and / or the lubrication of the bearings 26 and of the optional reduction gear 22 are provided by a lubrication circuit 28. The lubrication circuit 28 can incidentally supply actuators. such as jacks (not shown). The lubrication circuit 28 may also include a heat exchanger 30 for cooling the oil, the temperature of which may exceed 200 ° C. These temperatures amplify the aggressiveness of the corrosive oil towards gaskets and polymer parts in general. The lubrication circuit 28 may comprise oil recovery pipes 32 collecting the oil in the lubricating chambers of the bearings 26 and conveying it into the reservoir 34. It may also include a pipe 32 for recovering the lubricating oil. the reducer 22 and returning this oil to the reservoir 34.
Afin de forcer la circulation de l’huile lors de sa récupération, le circuit de lubrification 28 peut comprendre un groupe de lubrification 36. In order to force the circulation of the oil during its recovery, the lubrication circuit 28 may include a lubrication group 36.
Le groupe de lubrification 36 peut être directement monté sur une boîte d'accessoires du turboréacteur 2. Le groupe de lubrification 36 est une unité composée d’un corps monobloc qui accueille plusieurs fonctions hydrauliques comme par exemples plusieurs pompes et filtres. Il met en pression l'huile prélevée dans le réservoir et la distribue dans les organes du moteur à lubrifier avant de la reconditionner (refroidir et filtrer) et de la renvoyer vers le réservoir 34. The lubrication group 36 can be directly mounted on an accessory box of the turbojet 2. The lubrication group 36 is a unit made up of a one-piece body which accommodates several hydraulic functions such as, for example, several pumps and filters. It pressurizes the oil taken from the tank and distributes it in the engine components to be lubricated before reconditioning it (cooling and filtering) and returning it to the reservoir 34.
La figure 2 illustre un exemple en vue isométrique d’un corps 38 de groupe de lubrification 36. Le corps peut être fabriqué par fabrication additive et être de forme particulièrement complexe. Le corps 38 peut être monobloc. Il peut comporter plusieurs entrées d’huile 40, 42 pour aspirer l’huile depuis le réservoir ou depuis les organes de la turbomachine et plusieurs sorties d’huile 41, 43 pour refouler l’huile vers le réservoir ou vers les organes de la turbomachine. Des passages respectifs relient les entrées aux sorties. Certains passages peuvent être complètement indépendants d’autres passages. Le groupe 36 peut être équipé de nombreuses fonctions et contenir plusieurs pompes et plusieurs filtres. Selon l’invention, le groupe 36 peut aussi contenir un système de détection de débris ferromagnétiques. FIG. 2 illustrates an example in isometric view of a body 38 of a lubrication group 36. The body can be manufactured by additive manufacturing and be of particularly complex shape. The body 38 can be in one piece. It may include several oil inlets 40, 42 for sucking the oil from the reservoir or from the components of the turbomachine and several oil outlets 41, 43 for discharging the oil towards the reservoir or towards the components of the turbomachine. . Respective passages connect the inputs to the outputs. Some passages can be completely independent of other passages. Group 36 can be equipped with many functions and contain several pumps and filters. According to the invention, the group 36 may also contain a ferromagnetic debris detection system.
Les figures 3A et 3B schématisent deux versions d’un système de détection de débris 45 selon l’invention. Sur la figure 3A, un passage rectiligne 50, par exemple au voisinage de l’entrée 42, accueille un module de détection 60. Celui-ci vient en saillie dans le passage 50 et la longueur dont il vient en saillie peut être ajustable. Figures 3A and 3B show schematically two versions of a debris detection system 45 according to the invention. In FIG. 3A, a rectilinear passage 50, for example in the vicinity of the entrance 42, accommodates a detection module 60. The latter projects into the passage 50 and the length from which it protrudes can be adjustable.
Sur la figure 3B, un passage coudé 50 par exemple au voisinage de l’entrée 40, accueille un module de détection 60. Celui-ci peut avoir une orientation par rapport au flux qui est ajustable et/ou une longueur en saillie dans le passage 50 qui est ajustable. In FIG. 3B, an angled passage 50, for example in the vicinity of the entrance 40, accommodates a detection module 60. The latter can have an orientation with respect to the flow which is adjustable and / or a protruding length in the passage. 50 which is adjustable.
Le passage 50 est parcouru par un flux d’huile F. L’orientation et la longueur avec laquelle le module vient en saillie dans le passage sont ajustées mécaniquement par des moyens appropriés (moteur électrique, vis, piston, etc.). The passage 50 is traversed by a flow of oil F. The orientation and the length with which the module protrudes into the passage are adjusted mechanically by appropriate means (electric motor, screw, piston, etc.).
Chaque système de détection 45 permet de détecter la présence et/ou la circulation de débris ferromagnétiques, ou particules ferromagnétiques, contenus dans l’huile. Ces débris peuvent notamment résulter d’une usure d’un palier ou d’une dent d’engrenage formant le réducteur 22. Each detection system 45 makes it possible to detect the presence and / or the circulation of ferromagnetic debris, or ferromagnetic particles, contained in the oil. This debris can in particular result from wear of a bearing or of a gear tooth forming the reducer 22.
Chaque module 60 peut être connecté à une unité de traitement du signal (non représentée). Dès lors, l’unité de traitement parvient à identifier la présence de débris au niveau de chaque conduite. Les débris peuvent avoir une taille comprise entre 50 pm et 1000 pm, ou entre 150 pm et 750 pm. Each module 60 can be connected to a signal processing unit (not shown). Therefore, the processing unit manages to identify the presence of debris in each pipe. The debris can be between 50 µm and 1000 µm, or between 150 µm and 750 µm in size.
Les figures 4A à 4C montrent trois exemples de module de détection 60. Le module 60 comprend une enveloppe 62 qui peut être cylindrique et d’axe A. L’enveloppe 62 délimite une cavité 64 qui accueille différents composants. L’enveloppe 62 est étanche et peut être disposée dans le flux F sans laisser pénétrer l’huile à l’intérieur de la cavité 64. L’enveloppe peut être faite de matériau polymère de 1 mm d’épaisseur (+/- 0.2 mm). Alternativement, l’enveloppe peut être plus fine, faite d’un alliage de titane ou être en acier inoxydable, et avoir une épaisseur d’environ 0.1 mm (+/- 0.02 mm). L’enveloppe est faite d’un matériau amagnétique. FIGS. 4A to 4C show three examples of detection module 60. The module 60 comprises an envelope 62 which may be cylindrical and of axis A. The envelope 62 defines a cavity 64 which accommodates various components. The casing 62 is sealed and can be placed in the flow F without allowing oil to penetrate inside the cavity 64. The casing can be made of polymer material 1 mm thick (+/- 0.2 mm ). Alternatively, the casing can be thinner, made of a titanium alloy or be made of stainless steel, and have a thickness of approximately 0.1 mm (+/- 0.02 mm). The envelope is made of a non-magnetic material.
Le module est destiné à mesurer le champ magnétique dans le flux F et plus particulièrement les variations du champ magnétique résultant du passage ou de la présence de débris ferromagnétiques. The module is intended to measure the magnetic field in the flux F and more particularly the variations of the magnetic field resulting from the passage or the presence of ferromagnetic debris.
À cet effet, la cavité 64 renferme un aimant permanent 66. Cet aimant peut être du type SmCo (Samarium-Cobalt) et avoir des propriétés magnétiques stables de -54°C à 200°C. La direction Sud-Nord de l’aimant 66 est selon l’axe A. Un champ magnétique 68 est schématiquement illustré en traits interrompus. For this purpose, the cavity 64 contains a permanent magnet 66. This magnet can be of the SmCo (Samarium-Cobalt) type and have stable magnetic properties from -54 ° C to 200 ° C. The south-north direction of magnet 66 is along the A axis. A magnetic field 68 is shown schematically in broken lines.
La cavité 64 comprend également une ou plusieurs bobines 70, 72. Chaque bobine 70, 72 peut être faite d’un enroulement de plusieurs centaines de spires de fil fin (par exemple environ 0.01 mm) avec des épissures locales pour assurer la robustesse du fil. L’aimant 66 a le double rôle d’attirer les débris ferromagnétiques se trouvant dans le flux d’huile et de générer un champ magnétique détectable par la bobine 72. La bobine 72, passive, permet de mesurer les variations du champ magnétique 68 créé par l’aimant. La bobine 70 peut être une bobine « Built-in test » permettant de générer un champ magnétique et de vérifier la réponse de la bobine 72, par exemple avant la mise en fonctionnement d’un turboréacteur. La bobine 70 n’est donc pas essentielle au fonctionnement du module de détection mais permet une vérification intégrée de son bon fonctionnement. The cavity 64 also includes one or more coils 70, 72. Each coil 70, 72 can be made of a winding of several hundred turns of fine wire (for example about 0.01 mm) with local splices to ensure the strength of the wire. . The magnet 66 has the dual role of attracting the ferromagnetic debris found in the oil flow and of generating a magnetic field detectable by the coil 72. The coil 72, passive, makes it possible to measure the variations of the magnetic field 68 created. by the magnet. The coil 70 can be a "Built-in test" coil making it possible to generate a magnetic field and to check the response of the coil 72, for example before starting up a turbojet. The coil 70 is therefore not essential to the operation of the detection module but allows an integrated verification of its correct operation.
De manière générale, la technologie de détection employée est semblable par exemple à la technologie divulguée dans le document WO 2017/157855 A1 ou dans le document EP 3 363 518 A1. In general, the detection technology used is similar, for example, to the technology disclosed in document WO 2017/157855 A1 or in document EP 3 363 518 A1.
Ainsi, lorsqu’une particule ferromagnétique arrive à proximité de l’enveloppe, elle modifie le champ magnétique 68 et crée des discontinuités dans l’intensité de la bobine passive 72. Lorsque le signal comprend un pic qui dépasse un seuil donné prédéfini, le module 60 reconnaît qu’une particule ferromagnétique est passée. Thus, when a ferromagnetic particle arrives near the envelope, it modifies the magnetic field 68 and creates discontinuities in the intensity of the passive coil 72. When the signal comprises a peak which exceeds a given predefined threshold, the modulus 60 recognizes that a ferromagnetic particle has passed.
La figure 4B montre un second exemple de mode de réalisation du module 60. Dans cet exemple, l’enveloppe 62 comprend deux portions 62.1, 62.2, dont une portion 62.2 de diamètre supérieur à l’autre portion 62.1. Ce ressaut 62.2 facilite le montage du module 60 sur une paroi du passage 50. FIG. 4B shows a second exemplary embodiment of the module 60. In this example, the casing 62 comprises two portions 62.1, 62.2, including a portion 62.2 of greater diameter than the other portion 62.1. This projection 62.2 facilitates the mounting of the module 60 on a wall of the passage 50.
Dans l’exemple de la figure 4B, le module de détection 60 comprend un élément magnétique 74 sous forme de barreau magnétique (par exemple M50). Cet élément magnétique 74 peut traverser la ou les bobine(s) 70, 72. Il est au contact de l’aimant 66 au niveau de son extrémité proximale 74.1. Le barreau 74 se comporte ainsi comme le prolongement de l’aimant 66. Le champ magnétique est maximum à l’extrémité distale 74.2 du barreau 74. Le barreau 74 a préférentiellement un diamètre plus petit que l’aimant 66. L’aimant 66, le barreau 74 et la bobine 72 sont dimensionnés pour attirer et/ou détecter des particules de dimensions définies. Un aimant 66 trop puissant peut attirer de nombreuses particules mais générera un champ magnétique trop important et dont les variations seront difficilement décelables par la bobine 72. Un équilibre est donc trouvé. In the example of FIG. 4B, the detection module 60 comprises a magnetic element 74 in the form of a magnetic bar (for example M50). This magnetic element 74 can pass through the coil (s) 70, 72. It is in contact with the magnet 66 at its proximal end 74.1. The bar 74 thus behaves like the extension of the magnet 66. The magnetic field is maximum at the distal end. 74.2 of the bar 74. The bar 74 preferably has a smaller diameter than the magnet 66. The magnet 66, the bar 74 and the coil 72 are sized to attract and / or detect particles of defined dimensions. A magnet 66 that is too powerful can attract many particles but will generate a magnetic field that is too strong and the variations of which will be difficult to detect by the coil 72. A balance is therefore found.
La figure 4C illustre un troisième exemple de mode de réalisation du module 60. Cet exemple est sensiblement similaire à celui de la figure 4B. Des entretoises annulaires 76 sont prévues pour maintenir en position le barreau dans l’enveloppe 62. Dans cet exemple, l’aimant peut ne pas être confiné au ressaut 62.2. FIG. 4C illustrates a third exemplary embodiment of the module 60. This example is substantially similar to that of FIG. 4B. Annular spacers 76 are provided to hold the bar in position in the casing 62. In this example, the magnet may not be confined to the projection 62.2.
La figure 4D montre un exemple supplémentaire. Dans cet exemple la ou les bobines 70, 72, sont noyées dans l’enveloppe polymère, tels des inserts de fabrication. Pour ce faire, un fil de cuivre est enroulé et le polymère est injecté ou moulé autour du fil. Figure 4D shows an additional example. In this example, the coil or coils 70, 72 are embedded in the polymer casing, such as manufacturing inserts. To do this, a copper wire is wound and the polymer is injected or molded around the wire.
La figure 5 montre une première implémentation du module 60 dans une crépine 80. La crépine comprend un treillis de filtration 82 s’étendant d’une base 84 vers un plafond 86. Le module 60 peut être soudé à la base 84 de la crépine 80. Alternativement, un montage serré ou sertis peut être utilisé. Le treillis 82 peut prendre la forme d’un cylindre ou d’une portion de cylindre, par exemple s’étendant sur 180° autour de l’axe A. Le treillis 82 et le module 60 sont avantageusement coaxiaux. La figure 6 illustre ces aspects dans une section en vue en coupe selon l’axe VI: VI de la figure 5. Figure 5 shows a first implementation of the module 60 in a strainer 80. The strainer includes a filter mesh 82 extending from a base 84 towards a ceiling 86. The module 60 can be welded to the base 84 of the strainer 80. Alternatively, a press fit or crimp can be used. The mesh 82 may take the form of a cylinder or a portion of a cylinder, for example extending over 180 ° around the axis A. The mesh 82 and the module 60 are advantageously coaxial. Figure 6 illustrates these aspects in a sectional sectional view along axis VI: VI of Figure 5.
La taille des mailles du treillis 82 peut être supérieure ou égale à 1000 pm, ou à 750 pm, afin notamment de protéger les pompes en aval de la crépine des plus gros débris.The mesh size of the mesh 82 may be greater than or equal to 1000 μm, or to 750 μm, in particular in order to protect the pumps downstream of the strainer from the largest debris.
La crépine 80 peut être intégralement faite, y compris avec son treillis 82, par fabrication additive. The strainer 80 can be made entirely, including with its mesh 82, by additive manufacturing.
La figure 6 montre également l’ordre de grandeur du ratio entre le diamètre du module 60 et celui du treillis 82 qui peut être de l’ordre de 3. Figure 6 also shows the order of magnitude of the ratio between the diameter of the module 60 and that of the mesh 82 which can be of the order of 3.
L’ensemble de la figure 5 formé du module 60 et de la crépine 80 peut être inséré dans un passage 50 d’huile. The assembly of Figure 5 formed by the module 60 and the strainer 80 can be inserted into an oil passage 50.
La crépine 80 peut également être multi-étages, avec une paroi intermédiaire entre la base 84 et le plafond 86. La figure 7 illustre une implémentation d’un module 60 avec une telle crépine 80 à deux étages dans un passage comprenant deux canaux 52, 54 dans lesquels circulent deux flux d’huile indépendants F1, F2. Dans cet exemple, le module 60 comprend deux aimants 66, deux barreaux magnétiques 74 et deux paires de bobines 70,72. Un bloc 78 en matériau isolant magnétique, par exemple un polymère, vient isoler le champ magnétique d’un aimant du champ magnétique de l’autre aimant, pour que les bobines 72 mesurent un champ magnétique issu de leur aimant 66 respectif sans interférence de l’autre aimant 66. Ainsi, un seul module 60 permet de détecter les particules ferromagnétiques de deux flux indépendants F1 , F2 et donc d’en déduire de façon distinctive l’organe du turboréacteur qui émet des particules ferromagnétiques. Les aimants 66, les barreaux 74 et les bobines 72 dédiés aux deux canaux 52, 54 peuvent être différents. En effet, il peut être avantageux de prévoir des seuils de détection de particules qui soient différents selon les organes qui sont reliés respectivement à chaque canal 52, 54. Alternativement, ou en complément, la distinction des seuils de détection peut se faire sur le traitement des signaux provenant des deux bobines 72. The strainer 80 can also be multi-stage, with an intermediate wall between the base 84 and the ceiling 86. FIG. 7 illustrates an implementation of a module 60 with such a two-stage strainer 80 in a passage comprising two channels 52, 54 in which circulate two independent oil flows F1, F2. In this example, the module 60 comprises two magnets 66, two magnetic bars 74 and two pairs of coils 70, 72. A block 78 of magnetic insulating material, for example a polymer, isolates the magnetic field of one magnet from the magnetic field of the other magnet, so that the coils 72 measure a magnetic field coming from their respective magnet 66 without interference from the other magnet 66. Thus, a single module 60 makes it possible to detect the ferromagnetic particles of two independent flows F1, F2 and therefore to deduce therefrom in a distinctive manner the member of the turbojet which emits ferromagnetic particles. The magnets 66, the bars 74 and the coils 72 dedicated to the two channels 52, 54 can be different. Indeed, it may be advantageous to provide particle detection thresholds which are different according to the organs which are respectively connected to each channel 52, 54. Alternatively, or in addition, the detection thresholds can be distinguished on the processing. signals from the two coils 72.
Dans cet exemple, la crépine 80 vient affleurer les parois 90 des canaux 52, 54. Des joints d’étanchéité 94 peuvent être prévus entre le module et la paroi intermédiaire 88 de la crépine 80, ainsi qu’entre la crépine 80 et les parois 90. Un orifice 92 dans la paroi 90 est prévu pour recevoir le module 60 et la crépine 80. In this example, the strainer 80 comes flush with the walls 90 of the channels 52, 54. Seals 94 may be provided between the module and the intermediate wall 88 of the strainer 80, as well as between the strainer 80 and the walls. 90. An orifice 92 in the wall 90 is provided to receive the module 60 and the strainer 80.
Cette figure illustre également un montage alternatif du module 60 dans la crépine, via le ressaut (62.2 sur la figure 4B). Le module peut être inséré axialement contre un joint d’étanchéité 94. This figure also illustrates an alternative mounting of the module 60 in the strainer, via the projection (62.2 in FIG. 4B). The module can be inserted axially against a seal 94.
Sur la droite de la figure 7 sont illustrés les aimants 66 en coupe. Les aimants 66 disposent d’une rainure longitudinale 66.1 (selon l’axe A) qui permet le passage des câbles 72.1 des bobines 72. L’aimant supérieur (dans le sens de la figure 7) peut avoir une rainure 66.1 et l’aimant inférieur qui doit permettre le passage de plus nombreux fils peut avoir deux rainures 66.1. On the right of Figure 7 are shown the magnets 66 in section. The magnets 66 have a longitudinal groove 66.1 (along the axis A) which allows the passage of the cables 72.1 of the coils 72. The upper magnet (in the direction of figure 7) can have a groove 66.1 and the magnet lower which must allow the passage of more numerous son may have two grooves 66.1.
La figure 8 illustre une alternative au système de la figure 7. Dans ce cas, un seul aimant 66 génère un flux magnétique pour les deux canaux 52, 54. L’aimant peut être confiné à la paroi intermédiaire 88. Figure 8 illustrates an alternative to the system of Figure 7. In this case, a single magnet 66 generates a magnetic flux for the two channels 52, 54. The magnet can be confined to the intermediate wall 88.
Cette figure illustre également le fait que l’enveloppe 62 du module 60 peut être cylindrique sans ressaut et être sertie ou montée serrée dans la base 84 de la crépine. La figure 9 montre un exemple de module 60 permettant la mesure dans trois canaux 52, 54, 56 contigus deux à deux. Dans cet exemple, la crépine 80 qui reste optionnelle n’est pas représentée. On notera bien que la crépine n’est pas essentielle pour la mesure distinctive des particules dans plusieurs canaux indépendants. Le module 60 peut être hybride, c’est-à-dire présenter un aimant pour deux canaux 52, 54 et un aimant pour le troisième canal 56. Alternativement, trois aimants peuvent être prévus, avec trois barreaux magnétiques séparés deux à deux d’un bloc isolant. Le nombre de bobines 72 reste quant à lui toujours égal au nombre de canaux 52, 54, 56. This figure also illustrates the fact that the casing 62 of the module 60 can be cylindrical without a projection and be crimped or mounted tight in the base 84 of the strainer. FIG. 9 shows an example of module 60 allowing measurement in three contiguous channels 52, 54, 56 two by two. In this example, the strainer 80 which remains optional is not shown. Note that the strainer is not essential for the distinctive measurement of particles in multiple independent channels. The module 60 can be hybrid, that is to say present a magnet for two channels 52, 54 and a magnet for the third channel 56. Alternatively, three magnets can be provided, with three magnetic bars separated two by two from each other. an insulating block. The number of coils 72 for its part always remains equal to the number of channels 52, 54, 56.
De manière générale, l’extrémité distale 74.2 de chaque barreau sera située aux environs du point médian du canal correspondant pour attirer et détecter un maximum de particules. La bobine de détection 72 correspondante sera également placée au voisinage du point médian des canaux. Par « point médian », on entend le milieu de la section du canal, situé entre ¼ et ¾ de la section du canal. Generally speaking, the distal end 74.2 of each bar will be located around the midpoint of the corresponding channel to attract and detect a maximum of particles. The corresponding detection coil 72 will also be placed in the vicinity of the midpoint of the channels. By "midpoint" is meant the middle of the section of the channel, located between ¼ and ¾ of the section of the channel.
Les figures 10A à 10C montrent différents aimants. L’aimant de la figure 10A est l’aimant connu de l’état de l’art pour avoir un fort pouvoir d’attraction des particules. Cet aimant génère un champ magnétique dont les lignes de champ sont perpendiculaires à l’axe de l’aimant. Il est impossible de détecter des variations de champ magnétique avec une bobine coaxiale à un tel aimant. Figures 10A to 10C show different magnets. The magnet of Figure 10A is the magnet known in the state of the art to have a strong power of attracting particles. This magnet generates a magnetic field whose field lines are perpendicular to the axis of the magnet. It is impossible to detect magnetic field variations with a coil coaxial with such a magnet.
L’aimant utilisé dans l’invention est donc celui des figures 10B ou 10C. Dans la figure 10B, le champ magnétique est tel que dessiné sur la figure 4A. Cet aimant présente par contre un plus faible pouvoir d’attraction des particules. The magnet used in the invention is therefore that of Figures 10B or 10C. In Figure 10B, the magnetic field is as drawn in Figure 4A. This magnet, on the other hand, has a lower power to attract particles.
L’aimant de la figure 10C est un bon compromis et présente deux pôles séparés par un plan qui est incliné par rapport à l’axe de l’aimant cylindrique. Le plan P n’est ni perpendiculaire ni parallèle à l’axe de l’aimant. Cette représentation est schématique. L’aimant peut être fait de plus petits aimants élémentaires permettant d’obtenir un aimant qui schématiquement comprend deux pôles opposés selon un tronçon de cylindre. Un tel aimant permet de bien attirer les particules mais également de créer un champ magnétique dont les variations sont détectables par une bobine coaxiale à l’aimant. L’angle entre le plan P et l’axe du cylindre peut être compris préférentiellement entre 60° et 80°. The magnet in Figure 10C is a good compromise and has two poles separated by a plane which is inclined with respect to the axis of the cylindrical magnet. The plane P is neither perpendicular nor parallel to the axis of the magnet. This representation is schematic. The magnet can be made of smaller elementary magnets making it possible to obtain a magnet which schematically comprises two opposite poles along a section of a cylinder. Such a magnet not only attracts particles but also creates a magnetic field whose variations are detectable by a coil coaxial with the magnet. The angle between the plane P and the axis of the cylinder may preferably be between 60 ° and 80 °.
L’homme du métier comprendra que les détails techniques de chaque mode de réalisation sont applicables aux autres modes de réalisation. Notamment, le montage du module dans la crépine, la présence ou non d’un barreau, d’un ressaut, d’une bobine BIT, ou la présence d’une crépine sont des aspects optionnels et peuvent être tirés d’un mode de réalisation et appliqués à un autre. Those skilled in the art will understand that the technical details of each embodiment are applicable to the other embodiments. In particular, the assembly of the module in the strainer, the presence or not of a bar, of a projection, of a BIT coil, or the presence of a strainer are optional aspects and can be taken from a mode of achievement and applied to another.

Claims

Revendications Claims
1. Système (45) de détection de débris ferromagnétiques dans un flux d’huile (F, F1, F2) d’une turbomachine (2), le système comprenant un passage (50) destiné à être parcouru par le flux (F, F1, F2) et un module de détection (60) des débris ferromagnétiques présents dans le flux (F, F1, F2), le module de détection (60) comprenant : 1. System (45) for detecting ferromagnetic debris in an oil flow (F, F1, F2) of a turbomachine (2), the system comprising a passage (50) intended to be traversed by the flow (F, F1, F2) and a detection module (60) of the ferromagnetic debris present in the flow (F, F1, F2), the detection module (60) comprising:
- un aimant permanent (66) ; et - a permanent magnet (66); and
- une bobine (72) apte à détecter le champ magnétique (68) généré par l’aimant ; caractérisé en ce que le module de détection (60) est agencé dans le passage (50) et le module de détection (60) comprend en outre une enveloppe (62) étanche au flux (F, F1, F2) dans laquelle sont confinés l’aimant (66) et la bobine (72). - a coil (72) capable of detecting the magnetic field (68) generated by the magnet; characterized in that the detection module (60) is arranged in the passage (50) and the detection module (60) further comprises a casing (62) sealed to the flow (F, F1, F2) in which are confined the magnet (66) and coil (72).
2. Système (45) selon la revendication 1 , caractérisé en ce qu’il comprend une crépine (80) avec un treillis (82) décrivant un cylindre ou une portion de cylindre et le module (60) est intégré à la crépine (80), préférentiellement le module (60) est disposé le long de l’axe (A) du cylindre ou de la portion de cylindre. 2. System (45) according to claim 1, characterized in that it comprises a strainer (80) with a mesh (82) describing a cylinder or a portion of a cylinder and the module (60) is integrated into the strainer (80). ), preferably the module (60) is arranged along the axis (A) of the cylinder or of the cylinder portion.
3. Système (45) selon la revendication 2, caractérisé en ce que la crépine (80) est faite d’un matériau amagnétique. 3. System (45) according to claim 2, characterized in that the strainer (80) is made of a non-magnetic material.
4. Système (45) selon l’une des revendications 2 ou 3, caractérisé en ce que la crépine (80) comprend une base (84) et l’enveloppe (62) du module (60) est soudée ou sertie à la base (84) de la crépine (80). 4. System (45) according to one of claims 2 or 3, characterized in that the strainer (80) comprises a base (84) and the casing (62) of the module (60) is welded or crimped to the base. (84) of the strainer (80).
5. Système (45) selon l’une des revendications 1 à 4, caractérisé en ce que le module (60) comprend un barreau magnétique (74) au contact de l’aimant (66) et autour duquel est enroulée la bobine (72). 5. System (45) according to one of claims 1 to 4, characterized in that the module (60) comprises a magnetic bar (74) in contact with the magnet (66) and around which the coil (72) is wound. ).
6. Système (45) selon la revendication 5, caractérisé en ce que le barreau magnétique (74) est un premier barreau magnétique, et en ce que le module (60) comprend une seconde bobine (72) agencée autour d’un second barreau magnétique (74), préférentiellement coaxial au premier barreau (74), le second barreau (74) étant séparé du premier barreau (74) par l’aimant (66) et/ou par un séparateur (78) en matériau polymère, isolant électromagnétiquement le premier barreau (74) du second barreau (74). 6. System (45) according to claim 5, characterized in that the magnetic bar (74) is a first magnetic bar, and in that the module (60) comprises a second coil (72) arranged around a second bar magnetic (74), preferably coaxial with the first bar (74), the second bar (74) being separated from the first bar (74) by the magnet (66) and / or by a separator (78) made of polymer material, electromagnetically insulating the first bar (74) of the second bar (74).
7. Système (45) selon l’une des revendications 5 ou 6, caractérisé en ce que le barreau (74) ou les barreaux (74) est/sont cylindriques et est/sont positionné(s) coaxialement à l’enveloppe (62) par une ou plusieurs entretoises (76) de forme annulaire. 7. System (45) according to one of claims 5 or 6, characterized in that the bar (74) or the bars (74) is / are cylindrical and is / are positioned (s) coaxially with the casing (62 ) by one or more spacers (76) of annular shape.
8. Système (45) selon l’une des revendications 1 à 7, caractérisé en ce que le passage (50) comprend au moins deux canaux (52, 54, 56) permettant un écoulement du flux d’huile (F, F 1 , F2) indépendamment dans les au moins deux canaux (52, 54, 56), et l’enveloppe (62) s’étend dans les au moins deux canaux (52, 54, 56) pour détecter les débris présents dans l’huile parcourant chacun des canaux (52, 54, 56), le module (60) comprenant autant de bobines (72) qu’il y a de canaux (52, 54, 56).8. System (45) according to one of claims 1 to 7, characterized in that the passage (50) comprises at least two channels (52, 54, 56) allowing flow of the oil flow (F, F 1 , F2) independently in the at least two channels (52, 54, 56), and the casing (62) extends into the at least two channels (52, 54, 56) to detect debris present in the oil traversing each of the channels (52, 54, 56), the module (60) comprising as many coils (72) as there are channels (52, 54, 56).
9. Système (45) selon l’une des revendications 1 à 8, caractérisé en ce que le passage (50) comprend au moins deux canaux (52, 54, 56) contigus et séparés l’un de l’autre par une paroi (90), la paroi (90) disposant d’un orifice (92) qui est traversé par l’enveloppe (62) et éventuellement par une crépine (80), l’aimant (66) étant positionné au droit de cet orifice (92). 9. System (45) according to one of claims 1 to 8, characterized in that the passage (50) comprises at least two channels (52, 54, 56) contiguous and separated from one another by a wall. (90), the wall (90) having an orifice (92) which is crossed by the casing (62) and possibly by a strainer (80), the magnet (66) being positioned in line with this orifice ( 92).
10. Système (45) selon la revendication 9, caractérisé en ce qu’un joint d’étanchéité (94) est agencé entre l’enveloppe (62) et la paroi (90), et/ou entre l’enveloppe (62) et la crépine (80), et/ou entre la crépine (80) et la paroi (90). 10. System (45) according to claim 9, characterized in that a seal (94) is arranged between the casing (62) and the wall (90), and / or between the casing (62) and the strainer (80), and / or between the strainer (80) and the wall (90).
11. Système (45) selon l’une des revendications 1 à 10, caractérisé en ce que l’enveloppe (62) comprend deux portions cylindriques (62.1, 62.2) de diamètres différents, la portion (62.2) de plus gros diamètre recevant l’aimant (66) et étant préférentiellement noyée dans une paroi (90) du passage (50) ou dans la base (84) de la crépine (80). 11. System (45) according to one of claims 1 to 10, characterized in that the casing (62) comprises two cylindrical portions (62.1, 62.2) of different diameters, the portion (62.2) of larger diameter receiving the 'magnet (66) and being preferably embedded in a wall (90) of the passage (50) or in the base (84) of the strainer (80).
12. Système (45) selon l’une des revendications 1 à 11 , caractérisé en ce que l’aimant (66) et/ou le séparateur (78) a/ont une rainure (66.1) accueillant des câbles électriques (72.1) reliés à la / aux bobine(s) (72). 12. System (45) according to one of claims 1 to 11, characterized in that the magnet (66) and / or the separator (78) has / have a groove (66.1) accommodating electric cables (72.1) connected. to the coil (s) (72).
13. Système (45) selon l’une des revendications précédentes en combinaison de l’une des revendications 5 à 7, caractérisé en ce que le barreau (74) a une extrémité distale (74.2) située environ au centre du passage (50) ou au centre d’un des canaux (52, 54, 56). 13. System (45) according to one of the preceding claims in combination with one of claims 5 to 7, characterized in that the bar (74) has a distal end (74.2) located approximately at the center of the passage (50) or in the center of one of the channels (52, 54, 56).
14. Système (45) selon l’une des revendications 1 à 13, caractérisé en ce que le passage (50) comprend un coude dans lequel est agencé le module (60). 14. System (45) according to one of claims 1 to 13, characterized in that the passage (50) comprises an elbow in which the module (60) is arranged.
15. Système (45) selon l’une des revendications 1 à 14, caractérisé en ce que l’enveloppe (62) est en saillie dans le passage (50) d’une longueur qui est ajustable et/ou l’enveloppe (62) est orientée transversalement à la direction principale d’écoulement du flux (F, F 1 , F2) d’un angle qui est ajustable. 15. System (45) according to one of claims 1 to 14, characterized in that the casing (62) projects into the passage (50) by a length which is adjustable and / or the casing (62). ) is oriented transversely to the main flow direction of the flow (F, F 1, F2) at an angle which is adjustable.
16. Système (45) selon l’une des revendications 1 à 15, caractérisé en ce que la bobine (72) est un insert de fabrication de l’enveloppe (62). 16. System (45) according to one of claims 1 to 15, characterized in that the coil (72) is an insert for manufacturing the casing (62).
17. Système (45) selon l’une des revendications 1 à 16, caractérisé en ce que l’aimant (66) est de forme cylindrique avec deux pôles (N, S) séparés par un plan (P) qui n’est ni parallèle à l’axe du cylindre, ni qui y est perpendiculaire. 17. System (45) according to one of claims 1 to 16, characterized in that the magnet (66) is cylindrical in shape with two poles (N, S) separated by a plane (P) which is neither parallel to the axis of the cylinder, nor which is perpendicular to it.
18. Turboréacteur (2) d’aéronef comprenant un groupe de lubrification (36) fait d’un corps monobloc (38) recevant plusieurs pompes et filtres, plusieurs entrées et sorties d’huile (40-43), et un système de détection de débris, caractérisé en ce que le système (45) de détection des débris est selon l’une des revendications 1 à 17 et le système (45) de détection des débris est disposé dans une entrée d’huile (40, 42) en amont des pompes et des filtres. 18. Aircraft turbojet (2) comprising a lubrication unit (36) made of a single-piece body (38) receiving several pumps and filters, several oil inlets and outlets (40-43), and a detection system. debris, characterized in that the debris detection system (45) is according to one of claims 1 to 17 and the debris detection system (45) is disposed in an oil inlet (40, 42) in upstream of pumps and filters.
EP20803208.6A 2019-11-29 2020-11-12 Debris detection system Pending EP4065284A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
BE20195850A BE1027807B1 (en) 2019-11-29 2019-11-29 DEBRIS DETECTION SYSTEM
BE20205204A BE1028174B1 (en) 2020-03-30 2020-03-30 DEBRIS ATTRACTION AND DETECTION MODULE
PCT/EP2020/081945 WO2021104892A1 (en) 2019-11-29 2020-11-12 Debris detection system

Publications (1)

Publication Number Publication Date
EP4065284A1 true EP4065284A1 (en) 2022-10-05

Family

ID=73138862

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20803208.6A Pending EP4065284A1 (en) 2019-11-29 2020-11-12 Debris detection system

Country Status (2)

Country Link
EP (1) EP4065284A1 (en)
WO (1) WO2021104892A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3092010B1 (en) * 2019-01-25 2021-01-22 Zodiac Fluid Equipment Magnetic head for magnetic detector of metal particles and magnetic detector provided with such a head.

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1261170A (en) * 1985-10-11 1989-09-26 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of National Defence Of Her Majesty's Canadian Government Ferromagnetic wear detector and method
FR2686693B1 (en) * 1992-01-27 1994-04-08 Lebozec Aeronautique Sa MAGNETIC DETECTOR.
EP2455774B1 (en) * 2010-11-19 2013-08-21 ARGO-HYTOS GmbH Sensor device and method for its operation
BE1023324B1 (en) * 2015-08-06 2017-02-06 Safran Aero Boosters Sa TURBOMACHINE ENGINE OIL STRAINER
BE1023946B1 (en) 2016-03-14 2017-09-19 Safran Aero Boosters Sa PARTICLE SENSOR IN A FLUID OF A LUBRICATION SYSTEM
BE1024987B1 (en) 2017-02-15 2018-09-14 Safran Aero Boosters S.A. METHOD AND SYSTEM FOR DETECTING DEBRIS FOR TURBOMACHINE

Also Published As

Publication number Publication date
WO2021104892A1 (en) 2021-06-03

Similar Documents

Publication Publication Date Title
EP3363518B1 (en) Method and system for detecting debris for a turbine engine
BE1028174B1 (en) DEBRIS ATTRACTION AND DETECTION MODULE
BE1005798A3 (en) Particle probe.
EP3220168B1 (en) Particle sensor in a fluid of a lubrication system
EP4065284A1 (en) Debris detection system
EP3493373B1 (en) Device for compressing a fluid driven by an electric machine with a rotor shaft having a non-magnetic ring
BE1027807B1 (en) DEBRIS DETECTION SYSTEM
EP3900170A1 (en) Electric machine with device for forcibly demagnetising permanent magnets
WO2020089555A1 (en) Device and method for monitoring the lifetime of a hydraulic apparatus of an aircraft
BE1029383B1 (en) DEBRIS ATTRACTION AND DETECTION MODULE
FR2877990A1 (en) Aeronautic turbomachine for aircraft, has inductor formed of magnets, and ferromagnetic particle detection device supplied of current by electromagnetic induction having transmitter to transmit particles` density indicating signal to FADEC
FR3015143A1 (en) ELECTRIC MACHINE
FR3007462A1 (en) TURBOMACHINE ACCESSORY BOX EQUIPPED WITH CENTRIFUGAL PUMP
EP3913779B1 (en) Gear motor comprising a stator with double diameter
FR2906567A1 (en) Turbo compressor for e.g. petrol engine of hybrid vehicle, has turbine and compressor blades located on both sides of median plane normal to rotation axis of impeller that is carried by case using air bearing, where bearing surrounds blades
FR3026776B1 (en) POWER TRANSMISSION DEVICE FOR AN AIRCRAFT TURBOMACHINE
JP4685617B2 (en) Rotating electric machine
BE1025005B1 (en) Electric power generation system
EP3921547B1 (en) Device for compressing a fluid driven by an electric machine with a rotor equipped with a solid cylindrical magnet
GB2563244A (en) Diesel HP pump with debris collector
EP4133164B1 (en) Analysis device for detecting solid particles in a lubricant
BE1025462B1 (en) Determination of clogging of a filter of a hydraulic system
WO2020160878A1 (en) Device for compressing a fluid driven by an electric machine with a compression shaft passing through the rotor
FR3111958A3 (en) Device, method for monitoring deposits and vacuum pump
FR3086003A1 (en) DISPENSING SYSTEM FOR A PRIMARY FLUID AND A SECONDARY FLUID

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220616

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20240223