EP4065253A1 - Separation of gases from air - Google Patents

Separation of gases from air

Info

Publication number
EP4065253A1
EP4065253A1 EP20821052.6A EP20821052A EP4065253A1 EP 4065253 A1 EP4065253 A1 EP 4065253A1 EP 20821052 A EP20821052 A EP 20821052A EP 4065253 A1 EP4065253 A1 EP 4065253A1
Authority
EP
European Patent Office
Prior art keywords
zeolitic
lilsx
oxygen
adsorbent
nalsx
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20821052.6A
Other languages
German (de)
French (fr)
Inventor
Guillaume ORTIZ
Quitterie Persillon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Arkema France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France SA filed Critical Arkema France SA
Publication of EP4065253A1 publication Critical patent/EP4065253A1/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • B01D53/0476Vacuum pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • B01D2253/1085Zeolites characterized by a silicon-aluminium ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/304Linear dimensions, e.g. particle shape, diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/12Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/414Further details for adsorption processes and devices using different types of adsorbents
    • B01D2259/4141Further details for adsorption processes and devices using different types of adsorbents within a single bed
    • B01D2259/4145Further details for adsorption processes and devices using different types of adsorbents within a single bed arranged in series
    • B01D2259/4146Contiguous multilayered adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4533Gas separation or purification devices adapted for specific applications for medical purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4541Gas separation or purification devices adapted for specific applications for portable use, e.g. gas masks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the invention relates to the separation of industrial gases in (V) PSA, in particular the separation of nitrogen and oxygen contained in the air, a very suitable application being the preparation of medical oxygen , other possible applications being VPSA applications for the preparation of industrial oxygen.
  • the present invention relates to the use of specific adsorbent materials for the separation of gases from air and industrial gases, and more particularly for the separation of nitrogen by adsorption in gas streams such as as air, as well as the preparation of high purity oxygen (0 2 ) by adsorption of nitrogen (N 2 ), and more particularly for the preparation of oxygen for medical use from air.
  • the air is compressed and sent to an adsorbent column having a marked preference for the nitrogen molecule.
  • oxygen is produced with a purity of about 94-95% and argon.
  • the column is depressurized and then maintained at low pressure, during which time the nitrogen is desorbed. Recompression is then ensured by means of part of the oxygen produced and / or by air, then the cycle continues.
  • the advantage of this process compared to the cryogenic processes commonly used lies in the greater simplicity of the installations, greater ease of maintenance, and consequently more efficient uses and more economical implementations, in particular for small to medium-sized installations, that is, producing a few tens of tonnes or less of purified gas per day.
  • the quality of the adsorbent used remains the key to an efficient and competitive process.
  • the performance of the adsorbent is linked to several factors, including the nitrogen adsorption capacity and the selectivity between nitrogen and oxygen which will be decisive in sizing the column sizes and optimizing the production yield (ratio between oxygen produced and oxygen entered), the kinetics adsorption which will optimize cycle times and improve plant productivity.
  • Patent US6596256 B1 discloses a process for preparing sodium LSX and sodium MSX zeolites, without adding potassium. The zeolites thus prepared are then subjected to cation exchange with lithium ions, calcium ions, rare earth cations, or mixtures of these cations, before being used, for example for the nitrogen / oxygen separation, in the case of LSX zeolite exchanged with lithium.
  • Patent US5464467 A describes a process for preparing nitrogen from a gas mixture comprising passing said gas mixture through at least one adsorption zone containing an X zeolite comprising from 50% to approximately 95% lithium ions.
  • Such lithium zeolites exhibit quite advantageous oxygen production capacities, and in particular better than the absorption capacities obtained with the zeolites of the prior art, or comprising other cations.
  • zeolite adsorbents based on zeolites of faujasite type (FAU), and in particular adsorbents based on zeolites with a low silicon / aluminum molar ratio exchanged with lithium (LiLSX) which are for example described in the international application WO2018100318.
  • FAU zeolites of faujasite type
  • LiLSX lithium
  • These adsorbents have been shown not only to be very suitable but also very effective for oxygen / nitrogen separation, and in particular for the preparation of medical oxygen from air.
  • US Pat. No. 6,027,548 A proposes to use columns of multilayer adsorbents superimposing adsorbents of the NaX and LiX type.
  • the multilayer adsorbents described in this document are of moderate cost and are presented as allowing an interesting cost / performance ratio. Indeed, it is well known that NaX type adsorbents can sometimes be used because of their low manufacturing / marketing cost compared to adsorbents exchanged with lithium.
  • NaX-type adsorbents are, however, less efficient in terms of nitrogen adsorption capacity and nitrogen / oxygen selectivity.
  • a first objective of the present is to provide inexpensive zeolitic adsorbents and having good performance or even very good performance in terms of gas separation, in particular in terms of nitrogen / oxygen separation, and more particularly in terms of production. oxygen and in particular medical oxygen.
  • a zeolitic adsorbent at low cost and which is very selective in the nitrogen / oxygen separation, and in particular which has the capacity to retain nitrogen without the oxygen being retained, more particularly a zeolitic adsorbent which selectively adsorbs nitrogen, while not adsorbing oxygen or only very weakly.
  • One of the objectives of the present invention consists in particular of improving the zeolitic adsorbents (also called “sieves”) existing sodium grades for the separation of nitrogen and oxygen, by providing solids which do not retain or which very little oxygen and very preferably nitrogen. Still other objects will become apparent from the description of the invention which follows.
  • the present invention relates to the use of a zeolitic adsorbent material:
  • non-zeolitic phase (PNZ) content such that 0 ⁇ PNZ ⁇ 25%, preferably 0 ⁇ PNZ ⁇ 20%, more preferably 0 ⁇ PNZ ⁇ 15%, advantageously 0 ⁇ PNZ ⁇ 10%, even more advantageously 0 ⁇ PNZ ⁇ 8%, by weight relative to the total weight of the zeolitic adsorbent material, for the non-cryogenic separation of industrial gases in (V) PSA, in particular for the separation of nitrogen and oxygen (N 2/0 2), and typically for the preparation of medical oxygen from air and for the industrial preparation of oxygen (V) PSA.
  • V non-cryogenic separation of industrial gases in (V) PSA
  • N 2/0 2 separation of nitrogen and oxygen
  • the sodium content of the zeolitic adsorbent which can be used in the context of the present invention is generally greater than 95%, preferably greater than 97%, more preferably greater than 98%, more preferably still. greater than 99%, limits included, these sodium contents being expressed as percentages of exchangeable sites.
  • the zeolitic adsorbent for use in the context of the present invention is hereinafter referred to as “sodium grade zeolitic adsorbent”, or also “sodium grade sieve”.
  • the zeolites which can be used to form the aforementioned zeolitic adsorbents are synthesized from sodium solutions and advantageously do not undergo any ion exchange or else an ion exchange, so that the Exchangeable sites of the zeolitic adsorbent after exchange are occupied to more than 95%, preferably more than 97%, more preferably more than 98%, more preferably more than 99%, limits included, by sodium ions.
  • the zeolitic adsorbents which can be used for the non-cryogenic separation of industrial gases and in particular gases from the air, are sodium-grade zeolitic adsorbents whose exchangeable sites are more than 95% occupied by sodium ions and whose content of cations other than sodium is less than 5% expressed as oxides, and preferably less than 4%, better still less than 2%, the cations other than sodium being chosen from lithium, potassium, barium, calcium, strontium, cesium, and transition metals such as silver, for example and preferably chosen from lithium, potassium, calcium and barium.
  • the zeolite crystals (s) which form the zeolite adsorbents that can be used in the context of the present invention are faujasite-type zeolite crystals (called FAU-type zeolites) whose silicon / molar ratio aluminum (Si / Al molar ratio) is low to moderate.
  • FAU-type zeolites faujasite-type zeolite crystals
  • the zeolite crystals (s) which form the zeolite adsorbent which can be used in the context of the present invention are chosen from zeolite crystals of the FAU LSX type, that is to say with an Si / ratio.
  • the FAU type zeolites which are LSX or MSX zeolites, and in in particular, FAU type zeolites in which the Si / Al molar ratio is between 1.00 and 1.20, preferably between 1.00 and 1.15 and preferably 1.00 and 1.12, limits included.
  • the possible different types of zeolites present in the zeolitic adsorbent material are determined by XRD.
  • the total quantity of zeolite (s) is also measured by XRD and is expressed in% by weight relative to the total weight of the adsorbent material.
  • the zeolitic adsorbent material has a certain amount of non-zeolitic phase, called PNZ.
  • non-zeolitic phase denotes any phase present in the zeolitic adsorbent material according to the invention, other than the zeolite (s) present in said zeolitic adsorbent material. , called “zeolitic phase” or “PZ”.
  • the amount of non-zeolitic phase is expressed by the complement to 100% of the zeolitic phase of the adsorbent, that is to say according to the following equation:
  • % PNZ 100 -% PZ, where% PNZ represents the percentage by weight of PNZ and% PZ the percentage by weight of zeolitic phase, relative to the total weight of the zeolitic adsorbent material.
  • the PNZ of the zeolitic adsorbent material useful in the context of the present invention is such that 0 ⁇ PNZ ⁇ 25%, preferably 0 ⁇ PNZ ⁇ 20%, more preferably 0 ⁇ PNZ ⁇ 15 %, advantageously 0 ⁇ PNZ ⁇ 10%, even more advantageously 0 ⁇ PNZ ⁇ 8%, by weight relative to the total weight of the zeolitic adsorbent material.
  • the zeolitic adsorbent material which can be used in the context of the present invention, whether in the form of beads, extrudates or the like, generally has a diameter average volume, or an average length (greater dimension when it is not spherical), less than or equal to 7 mm, preferably between 0.05 mm and 5 mm, more preferably between 0.2 mm and 3 mm.
  • a zeolitic adsorbent material in the form of beads is preferred.
  • the zeolitic adsorbent materials useful in the context of the present invention also exhibit mechanical properties which are very particularly suitable for the applications for which they are intended, that is to say:
  • a bed crushing strength measured according to standard ASTM 7084-04 greater than 1.5 MPa, preferably greater than 2.0 MPa, preferably greater than 2.5 MPa, for a material of average volume diameter (d 5 o) or a length (largest dimension when the material is not spherical), less than 1 mm, terminals included,
  • a grain crushing resistance measured according to standards ASTM D 4179 (2011) and ASTM D 6175 (2013), between 0.5 daN and 30 daN, preferably between 1 daN and 20 daN, for a material with an average volume diameter (d 5 o) or a length (largest dimension when the material is not spherical) greater than or equal to 1 mm, limits included.
  • the zeolitic adsorbent material is in the form of beads, the average volume diameter of which is between 0.05 mm and 5 mm, limits included. More preferably, and more specifically for applications for preparing oxygen for medical use, this mean volume diameter is between 0.05 mm and 1.0 mm, more preferably between 0.15 mm and 0.65 mm, and most preferably between 0.25 mm and 0.55 mm. For applications such as the separation of industrial gases, this mean volume diameter can be more specifically and more generally between 1.0 mm and 5.0 mm.
  • zeolitic adsorbent material of the invention is its bulk density which is generally between 0.55 kg nr 3 and 0.80 kg nr 3 , preferably between 0.58 kg nr 3 and 0 , 75 kg nr 3 , more preferably between 0.60 kg nr 3 and 0.70 kg nr 3 .
  • the invention also relates to a process for preparing the zeolitic adsorbent material which can be used in the context of the present invention, which comprises the following steps: a / agglomeration of FAU LSX and / or FAU MSX zeolite crystals, with a binder of agglomeration, then shaping, drying and calcination of the agglomerated crystals, b / optional zeolitization of at least part of the binder by the action of a basic alkaline solution, d optional replacement of the cations of the exchangeable sites of the product obtained in step a / or in step b / with sodium cations, then washing and drying the product thus treated, and d / activating the zeolitic adsorbent material obtained.
  • step b / it may be advantageous to add a source of silica during step a /, in order in particular to promote conversion of the binder into an FAU-type zeolite.
  • the type zeolite used in step a / of the process described above is, as indicated above, an FAU type zeolite with an Si / Al molar ratio of between 1.00 and 1.20, limits included, as indicated previously.
  • zeolite crystals can be prepared by any means known to those skilled in the art and can for example be obtained according to a process similar to that described in documents FR2925478 or US6596256.
  • the quantity by weight of FAU-type zeolite crystals is generally between 75% and 95% by weight, relative to the total weight of said product obtained at the end of step a / and the quantity of zeolitisable clay as for it is generally between 5% and 25% by weight, relative to the total weight of said product obtained at the end of step a /.
  • a source of silica When a source of silica is added, an amount of between 0.1% and 10% by weight is preferably added, more preferably between 0.2% and 6% by weight, relative to the total weight of said product obtained at the end of step a /.
  • the source of silica which can be used is of any type known per se, for example solid silica, colloidal silica, sodium silicate, and other sources well known to those skilled in the art.
  • the shaping in step a / is carried out according to techniques well known to those skilled in the art.
  • the drying and calcination are carried out according to the usual descriptions also well known to those skilled in the art. Thus, the drying is typically carried out at a temperature between 50 ° C and 200 ° C.
  • the calcination can be carried out according to any method of calcination known to those skilled in the art and by example, and in a nonlimiting manner, the calcination can be carried out under oxidizing and / or inert gas sweeping, in particular with gases such as oxygen, nitrogen, air, dry and / or decarbonated air, air oxygen-depleted, optionally dry and / or decarbonated, at one or more temperatures above 200 ° C, typically between 250 ° C and 700 ° C, preferably between 300G and 650 ° C, for a few hours, for example between 1 and 6 hours.
  • gases such as oxygen, nitrogen, air, dry and / or decarbonated air, air oxygen-depleted, optionally dry and / or decarbonated
  • the agglomeration binder used in step a / can be chosen from conventional binders known to those skilled in the art and preferably chosen from clays and mixtures of clays, silicas, aluminas, colloidal silicas, alumina gels, and the like, and mixtures thereof.
  • the clays are preferably chosen from: kaolins, kaolinites, nacrites, dickites, halloysites, attapulgites, sepiolites, montmorillonites, bentonites, illites and metakaolins, as well as mixtures of two or more of them in all proportions.
  • fibrous clays of the sepiolite or attapulgite type the clay or clays being able, in general, to be formulated in the form of dry-ground and selected powders, or better still of gel (ie delaminated clays ) and dispersed, and optionally ground, such as the commercial Min-U-Gel ® , Pansil ® , Pangel ® , Cimsil ® , Attagel ® , Actigel ® , etc. clays, which may or may not have undergone one or more chemical treatments.
  • gels are for example described in EP170299 or US6743745.
  • the agglomeration binder used in step a / preferably contains at least 80% by weight of clay (s) zeolite (s) (called “zeolite part”) by relative to the total weight of the agglomeration binder.
  • zeolitisable clay means a clay or a mixture of clays capable of being transformed into zeolitic material by the action of a basic alkaline solution, according to techniques now well known to those skilled in the art.
  • the zeolitisable clays which can be used in the context of the present invention typically belong to the family of kaolinites, halloysites, nacrites, dickites, kaolins and / or metakaolins, clays to which a source can also be added. silica, as described above.
  • zeolitisable clay s
  • non-zeolitisable clays such as for example and without limitation clays chosen from among attapulgites, sepiolites, bentonites, montmorillonites, and others.
  • This embodiment is however not preferred.
  • organic additive s
  • additives are well known to those skilled in the art and can be incorporated at contents of between 0 and 5% by weight relative to the total weight of said product obtained at the end of step a1.
  • Step b / of zeolitization allows the transformation into zeolitic material, of at least 50% and preferably at least 70%, more preferably at least 80% and more preferably at least 85%, by weight of the zeolitisable clay (s) contained in the binder.
  • the zeolitic adsorbent which can be used in the context of the present invention comprises a binder which has not been zeolitized.
  • Zeolithization can be carried out by immersing the agglomerate in a basic alkaline solution, generally aqueous, advantageously an aqueous solution of sodium hydroxide and / or potassium hydroxide, the concentration of which is preferably greater than 0.5 M. Said concentration is generally less than 5 M, preferably less than 4 M, advantageously less than 3 M.
  • Zeolithization is preferably carried out hot (temperature above ambient temperature), typically at temperatures of the order of 80 ° C to 100 ° C, in order to improve the kinetics of the process and thus reduce the times. immersion within 8 hours. However, it would not be departing from the scope of the invention to operate at lower temperatures and longer immersion times. It would also not be departing from the scope of the invention to add, during this zeolitization step, a source of liquid or solid silica in the basic alkaline solution, for example sodium silicate or dissolved silica.
  • a source of liquid or solid silica in the basic alkaline solution for example sodium silicate or dissolved silica.
  • the zeolitization of at least 50% is easily obtained, and preferably at least 70%, more preferably at least 80% and more preferably at least. less 85%, by weight of the zeolitisable clay (s) contained in the binder. Washing is then carried out with water followed by drying.
  • step c / of replacing the cations of the exchangeable sites of the product obtained in step b / with sodium cations is only desirable, or even necessary, when the sodium content of the zeolite is such that less 95% of the exchangeable sites are occupied by sodium ions.
  • Such an exchange can then be carried out according to methods well known to those skilled in the art and such as, for example, those described in patent EP0893157.
  • the term “exchangeable sites” is understood to mean all of the exchangeable sites of the zeolite crystals, as well as the exchangeable sites formed during the zeolitization of the binder.
  • the possible exchange with sodium is carried out so that the sodium content (expressed as a percentage of exchangeable sites) in the zeolitic adsorbent material of the invention is equal to or greater than 95% .
  • the activation (step d /), last step of the process for obtaining the zeolitic adsorbent material according to the invention, aims to fix the water content, as well as the loss on ignition of the adsorbent in optimal limits.
  • the procedure is generally carried out by thermal activation which is preferably carried out between 300 ° C and 650 ° C for a certain time, typically from 1 to 6 hours, depending on the water content and the loss on ignition desired and depending on the intended use of the adsorbent.
  • the calcination of step a / and the activation of step d / can be carried out concomitantly, that is to say at the same time in the same heated chamber, for example a oven.
  • the zeolitic adsorbent material according to the present invention finds a very particularly advantageous use as a nitrogen adsorbent material for the separation of gases from air and excellent adsorbents of nitrogen and / or carbon monoxide. for the purification of hydrogen.
  • the zeolitic adsorbent material according to the present invention most often has a mass adsorption capacity of nitrogen (N 2 ), measured under 4 bar (0.4 MPa) at 25 ° C greater than 23 Ncrrf g -1 more preferably greater than 24 Nom 3 g -1 , more preferably greater than 25 Nom 3 g -1 , very particularly preferably greater than 26 Nom 3 g -1 .
  • the zeolitic adsorbent material according to the present invention also most often has a mass adsorption capacity of oxygen (0 2 ), measured. at 4 bar (0.4 MPa) at 25 ° C less than 12 Ncrrf g -1 , more preferably less than 11 Nom 3 g 1 , more preferably less than 10 Nom 3 g 1 , very particularly preferably less than 9 Ncm 3 g -1 .
  • nitrogen / oxygen selectivity is understood to mean the ratio between the mass adsorption capacity of nitrogen (N 2 ), measured under 4 bar (0.4 MPa) at 25 ° C.
  • Adsorption processes using the zeolite adsorbent material according to the present invention are most often type of PSA, VSA or VPSA, and preferably of the PSA or VPSA for separating N 2/0 2 Industrial Gases and for separating N 2/0 2 in the production of medical oxygen equipment.
  • the zeolitic adsorbent material according to the present invention thus finds a very particularly advantageous application as an adsorption element in oxygen concentrators for respiratory assistance.
  • the zeolitic adsorbent material according to the invention constitutes the active material of a consumable cartridge of zeolitic adsorbent, which can be inserted into a respiratory assistance oxygen concentrator, whether stationary, transportable, or mobile, preferably portable.
  • the zeolitic adsorbent consumable cartridge can be of any suitable shape to be easily inserted and replaced in oxygen concentrators for respiratory assistance.
  • said cartridge can be prepared from the zeolitic adsorbent material according to the invention in the form of beads made cohesive in them thanks to at least one resin, preferably a polymer resin preferably chosen from homo- and / or. thermoplastic copolymers and polycondensates.
  • Nonlimiting examples of such polymer resins are polyolefins, in particular low and / or high and / or ultra-high density polyethylene, polypropylene, ethylene copolymers, ethylene-vinyl acetate copolymers, polyacrylics, acrylonitrile homo- and or copolymers, polyacrylates, polymethacrylates, acrylate copolymers and / or methacrylate copolymers, polystyrenes and / or styrene copolymers, polyesters, p. ex.
  • polyethylene terephthalate polybutylene terephthalate, halogenated polymers and copolymers such as poly (vinylidene difluoride) (PVDF) polymers, poly (tetrafluoroethylene) (PTFE) polymers and or copolymers, polyamides, such as polyamide- 11 and polyamide-12, as well as other even and odd polyamides, aromatic polyamides, polyvinyl chlorides, polyurethanes, polyethersulfones, polyetherketones, polycarbonates, epoxy resins, phenolic resins, thermosetting resins and elastomeric resins, and the like, as well as mixtures of two or more of them in all proportions.
  • PVDF poly (vinylidene difluoride)
  • PTFE poly (tetrafluoroethylene)
  • polyamides such as polyamide- 11 and polyamide-12, as well as other even and odd polyamides, aromatic polyamides, polyvinyl chlorides, polyurethanes,
  • the invention relates to an oxygen concentrator for respiratory assistance, transportable, mobile, preferably portable, comprising at least one zeolitic adsorbent material, or at least one fixed adsorption bed, or at least one composite material, or at least one cartridge, as they have just been described above.
  • the zeolitic material which can be used in the context of the present invention can be used in the form of adsorbent layers (also called adsorbent beds), preferably with one or two, three, or more, other adsorbent layers.
  • adsorbent layers also called adsorbent beds
  • the other adsorbent (s) can be of any type well known to those skilled in the art and mention may be made, by way of non-limiting examples, of adsorbents comprising zeolites chosen from CaLSX, LiTrLSX, 5A, NaX, LiX, LiAgLSX, LiLSX, LiCaLSX.
  • the use according to the present invention uses an adsorbent as defined above in a bilayer with an adsorbent based on LiLSX, thus forming a NaLSX / LiLSX or NaMSX / LiLSX bilayer, preferably a bilayer or NaLSX / LiLSX, and more preferably a NaLSX / LiLSX bilayer in which the NaLSX / LiLSX ratio is between 5/95 and 95/5, and better still between 50/50 and 95/5, in weight.
  • the zeolitic adsorbent material based on NaLSX and / or NaMSX has an oxygen adsorption capacity lower than that of the adsorbent materials available today. , in the use of nitrogen / oxygen separation, according to the present invention, while retaining a very good nitrogen adsorption capacity.
  • This low oxygen adsorption capacity coupled with a good nitrogen adsorption capacity, makes the zeolitic adsorbent material based on NaLSX and / or NaMSX, quite competitive, compared to zeolitic adsorbents commonly used today for nitrogen / oxygen separation and which most often contain lithium in greater or lesser quantity.
  • the zeolitic adsorbent material used in the invention does not contain lithium or else in very small quantities, so that its manufacturing cost makes it quite interesting for users.
  • the invention relates to an oxygen concentrator for respiratory assistance, transportable, mobile, preferably portable, comprising at least one zeolitic adsorbent material, or at least one fixed adsorption bed, or at least a composite material, or at least one cartridge, such as have just been described above.
  • a hub especially suitable for the separation of nitrogen and oxygen (N 2/0 2), and in particular for the preparation of medical oxygen from air and for the industrial preparation of oxygen by (V) PSA comprises a NaLSX / LiLSX or NaMSX / LiLSX bilayer, preferably a bi-layer or NaLSX / LiLSX, and more preferably a NaLSX / LiLSX bilayer in which the NaLSX / LiLSX ratio is between 5/95 and 95/5, and more preferably between 50/50 and 95/5, by weight.
  • the physical properties of the zeolitic agglomerated material according to the invention are evaluated by methods known to those skilled in the art, the main ones of which are recalled below.
  • the estimation of the number-average diameter of the zeolite crystals which are used for the preparation of the zeolitic agglomerated material of the invention is carried out by observation under a scanning electron microscope (SEM).
  • a set of photographs is taken at a magnification of at least 5000.
  • the diameter of at least 200 crystals is then measured using a dedicated software, for example the Smile View software from the LoGraMi editor.
  • the accuracy is in the order of 3%.
  • the size retained for each crystal is that of the largest section of said crystal considered. Particles smaller than 0.5 ⁇ m which could possibly be present in the zeolitic agglomerated material are not taken into account in the count.
  • the resulting particle size distribution is equivalent to the average of the particle size distributions observed on each of the photographs.
  • the width of the peak and the number-average diameter are calculated according to conventional methods known to those skilled in the art, by applying the statistical rules of Gaussian distribution.
  • An elementary chemical analysis of a zeolitic agglomerated material according to the invention can be carried out according to various analytical techniques known to those skilled in the art. Among these techniques, mention may be made of the technique of chemical analysis by X-ray fluorescence as described in standard NF EN ISO 12677: 2011 on a wavelength dispersive spectrometer (WDXRF), for example Tiger S8 from the company Bruker.
  • WDXRF wavelength dispersive spectrometer
  • X fluorescence is a non-destructive spectral technique using the photoluminescence of atoms in the X-ray field, to establish the elemental composition of a sample.
  • the excitation of atoms generally by a beam of X-rays or by bombardment with electrons, generates specific radiations after return to the ground state of the atom.
  • AAS atomic absorption spectrometry
  • ICP-AES atomic emission spectrometry with induced plasma at high frequency
  • the X-ray fluorescence spectrum has the advantage of depending very little on the chemical combination of the element, which offers a precise determination, both quantitative and qualitative.
  • a measurement uncertainty of less than 0.4% by weight is obtained.
  • the elementary chemical analyzes described above make it possible both to verify the Si / Al ratio of the zeolite used within the zeolitic agglomerated material and the Si / Al ratio of the zeolitic agglomerated material.
  • the measurement uncertainty of the Si / Al ratio is ⁇ 5%.
  • the measurement of the Si / Al ratio of the zeolite present in the agglomerated material can also be measured by solid Nuclear Magnetic Resonance (NMR) spectroscopy of silicon.
  • the quality of the ion exchange is linked to the number of moles of the cation considered in the zeolitic agglomerated material after exchange. More precisely, the rate of exchange by a given cation is estimated by evaluating the ratio between the number of moles of said cation and the number of moles of all the exchangeable cations. The respective amounts of each of the cations are evaluated by chemical analysis of the corresponding cations.
  • the exchange rate by sodium ions is estimated by evaluating the ratio between the total number of Na + cation and the total number of exchangeable cations (for example Ca 2+ , K + , Li + , Ba 2+ , Cs + , Na + , etc.), the quantity of each of the cations being evaluated by chemical analysis of the corresponding oxides (Na 2 0, CaO, K 2 0, BaO, Li 2 0, Cs 2 0, etc.).
  • This calculation method also accounts for any oxides present in the residual binder of the zeolitic agglomerated material.
  • the resistance to bed crushing of zeolitic adsorbent materials as described in the present invention is characterized according to standard ASTM 7084-04.
  • the apparent density of the zeolitic agglomerated material according to the present invention is measured as described in standard DIN 8948 / 7.6.
  • the purity of the zeolites in the zeolitic adsorbent materials of the invention is evaluated by X-ray diffraction analysis, known to those skilled in the art by the acronym DRX. This identification is carried out on a DRX device of the Bruker brand. This analysis makes it possible to identify the different zeolites present in the agglomerated material because each of the zeolites has a unique diffractogram defined by the positioning of the diffraction peaks and by their relative intensities.
  • the zeolitic adsorbent materials are ground and then spread and smoothed on a sample holder by simple mechanical compression.
  • the conditions for acquiring the diffractogram produced on the D8 ADVANCE device from Bruker are as follows:
  • the interpretation of the diffractogram obtained is carried out with the EVA software with identification of the zeolites using the ICDD PDF-2 database, release 2011.
  • the amount of FAU zeolite fractions, by weight, is measured by X-ray fluorescence analysis or by XRD, the latter method can also be used to measure the amount of zeolite fractions other than FAU.
  • the XRD analysis is generally carried out on a device of the Bruker brand, then the amount by weight of the zeolitic fractions is evaluated using the TOPAS software from the Bruker company.
  • the zeolitic agglomerated material Prior to adsorption, the zeolitic agglomerated material is degassed between 300 ° C and 450 ° C for a period of between 9 l ⁇ u res and 16 hours, under vacuum (pressure less than 6.7.10 _4 Pa).
  • the measurement of the adsorption isotherms is then carried out on an IGA type device of the Hiden Isochema brand, taking at least 10 points at pressures between 0 and 4 bar (0.4 MPa).
  • the mass adsorption capacity of the zeolitic agglomerated material is read on the isotherm at 25 ° C., under a pressure of 4 bar, and expressed in Ncm 3 g 1 .
  • the mass adsorption capacity at 25 ° C, under 4 bar (0.4 MPa), of the zeolitic agglomerated material is determined from the measurement of the adsorption isotherm of gases, such as nitrogen or oxygen, at 25 ° C.
  • the determination of the mean volume diameter (or “volume mean diameter”) of the zeolitic agglomerated material of the invention is carried out by analyzing the particle size distribution of a sample of adsorbent material by imaging according to the ISO 13322-2 standard. : 2006, using a conveyor belt allowing the sample to pass in front of the camera lens.
  • volume mean diameter is then calculated from the particle size distribution by applying the ISO 9276-2: 2001 standard.
  • volume mean diameter or “size” is used for zeolitic adsorbent materials. The accuracy is on the order of 0.01 mm for the size range of the zeolite adsorbent materials of the present invention.
  • the paste thus prepared is used to produce beads of zeolitic agglomerated material.
  • a selection by sieving of the beads obtained is carried out so as to collect beads with a diameter of between 0.2 mm and 0.8 mm.
  • the beads are dried overnight in a ventilated oven at 80 ° C. They are then calcined for 2 hours at 550 ° C under sweeping in decarbonated air dry.
  • the paste thus prepared is used to produce beads of zeolitic agglomerated material.
  • a selection by sieving of the beads obtained is carried out so as to collect beads with a diameter of between 0.2 mm and 0.8 mm.
  • the sodium exchange rate is 100%.
  • the beads are dried overnight in a ventilated oven at 80 ° C. They are then calcined and activated for 2 h at 550 ° C. under bal3 ⁇ 4 / age in decarbonated dry air.
  • a selection by sieving of the beads obtained is carried out so as to collect beads with a diameter of between 0.2 mm and 0.8 mm.
  • the beads are dried overnight in a ventilated oven at 80 ° C. They are then calcined and activated for 2 h at 550 ° C under bal3 ⁇ 4 / age in decarbonated dry air.
  • the sodium exchange rate is 100%.
  • Example 1 Mass Adsorption Isotherms of Nitrogen and Oxygen
  • the adsorption isotherms for each of the adsorbents A, B and C are plotted according to the conditions described above, using the IGA-type apparatus of Hiden Isochema brand.
  • the isotherms of nitrogen (N 2 ) and oxygen (0 2 ) are shown on the graph in Figure 1.
  • Adsorbents A, B and C have quite similar behavior with regard to the nitrogen adsorption capacities.
  • Adsorbents A and C according to the invention exhibit oxygen adsorption capacities much lower than those observed with comparative Adsorbent B.
  • Adsorbents A (NaLSX) and C (NaMSX) according to the invention while being as effective as comparative Adsorbent B (NaX), as regards adsorption of nitrogen, quite unexpectedly show a lower adsorption capacity with respect to oxygen.
  • the zeolitic adsorbents which can be used in the context of the present invention are particularly well suited for use in medical oxygen concentrators, where the nitrogen is retained on the adsorbents, while the oxygen is much less retained. , and thus may be available more directly from an air oxygen separation apparatus.
  • the mass oxygen adsorption capacity is all the lower the lower the Si / Al molar ratio is than 1.20, preferably less than 1.15 and more preferably less than 1. , 12, while the mass nitrogen adsorption capacity remains substantially constant.
  • adsorbents with an Si / Al molar ratio of less than 1.20, preferably less than 1.15 and more preferably less than 1.12 that is to say adsorbents based on NaLSX or NaMSX zeolites, and preferably based on NaLSX zeolites, for the preparation of medical oxygen obtained by separation of gases from air.

Abstract

The present invention relates to the use of an adsorbent zeolitic material made from crystals of faujasite zeolite (FAU), the molar ratio Si/Al of which is between 1.00 and 1.20, and which have such a non-zeolitic phase content (PNZ) that 0 < PNZ ≤ 25%, for non-cryogenically separating industrial gases with (V)PSA, in particular gases from air. The invention also relates to respiratory aid apparatuses comprising at least the adsorbent zeolitic material.

Description

SÉPARATION DES GAZ DE L’AIR SEPARATION OF GAS FROM AIR
[0001] L’invention concerne la séparation des gaz industriels en (V)PSA, en particulier la séparation de l’azote et de l’oxygène contenus dans l’air, une application tout à fait appropriée étant la préparation d’oxygène médical, d’autres applications possibles étant les applications VPSA pour la préparation d’oxygène industriel. The invention relates to the separation of industrial gases in (V) PSA, in particular the separation of nitrogen and oxygen contained in the air, a very suitable application being the preparation of medical oxygen , other possible applications being VPSA applications for the preparation of industrial oxygen.
[0002] Plus précisément, la présente invention est relative à l’utilisation de matériaux adsorbants spécifiques pour la séparation des gaz de l’air et des gaz industriels, et plus particulièrement pour la séparation de l'azote par adsorption dans des flux gazeux tels que l'air, ainsi que la préparation d’oxygène (02) de haute pureté par adsorption d’azote (N2), et plus particulièrement pour la préparation d’oxygène à usage médical à partir d’air. More specifically, the present invention relates to the use of specific adsorbent materials for the separation of gases from air and industrial gases, and more particularly for the separation of nitrogen by adsorption in gas streams such as as air, as well as the preparation of high purity oxygen (0 2 ) by adsorption of nitrogen (N 2 ), and more particularly for the preparation of oxygen for medical use from air.
[0003] La séparation de l'azote de mélanges de gaz est à la base de plusieurs procédés non cryogéniques industriels, parmi lesquels la production d'oxygène à partir d'air par procédé PSA (« Pressure Swing Adsorption », en langue anglaise, soit « Adsorption modulée en pression ») ou VPSA (« Vacuum and Pressure Swing Adsorption », en langue anglaise, soit « Adsorption modulée en pression et sous vide »), le procédé PSA étant l'un des plus importants. [0003] The separation of nitrogen from gas mixtures is the basis of several non-cryogenic industrial processes, including the production of oxygen from air by the PSA process ("Pressure Swing Adsorption", in English, either "Pressure swing adsorption") or VPSA ("Vacuum and Pressure Swing Adsorption", in English, or "Pressure swing adsorption under vacuum"), the PSA process being one of the most important.
[0004] Dans cette application, l'air est comprimé et envoyé sur une colonne d'adsorbant ayant une préférence marquée pour la molécule d'azote. On produit ainsi pendant le cycle d'adsorption de l'oxygène avec une pureté d’environ 94-95% et de l'argon. Après une certaine durée, la colonne est dépressurisée puis maintenue à la pression basse, période pendant laquelle l'azote est désorbé. Une recompression est ensuite assurée au moyen d'une partie de l'oxygène produit et/ou par de l’air, puis le cycle continue. L'intérêt de ce procédé par rapport aux procédés cryogéniques communément mis en oeuvre réside dans la plus grande simplicité des installations, une plus grande facilité de maintenance, et par conséquent des utilisations plus efficaces et des mises en oeuvre plus économiques, en particulier pour les installations de petite à moyenne taille, c’est-à-dire produisant quelques dizaines de tonnes ou moins de gaz purifié par jour. In this application, the air is compressed and sent to an adsorbent column having a marked preference for the nitrogen molecule. In this way, during the adsorption cycle, oxygen is produced with a purity of about 94-95% and argon. After a certain period of time, the column is depressurized and then maintained at low pressure, during which time the nitrogen is desorbed. Recompression is then ensured by means of part of the oxygen produced and / or by air, then the cycle continues. The advantage of this process compared to the cryogenic processes commonly used lies in the greater simplicity of the installations, greater ease of maintenance, and consequently more efficient uses and more economical implementations, in particular for small to medium-sized installations, that is, producing a few tens of tonnes or less of purified gas per day.
[0005] La qualité de l'adsorbant utilisé reste cependant la clé d'un procédé efficace et compétitif. La performance de l'adsorbant est liée à plusieurs facteurs, parmi lesquels on peut notamment citer la capacité d'adsorption en azote et la sélectivité entre azote et oxygène qui seront déterminantes pour dimensionner les tailles de colonne et optimiser le rendement de production (rapport entre l'oxygène produit et oxygène entré), la cinétique d'adsorption qui permettra d'optimiser la durée des cycles et d'améliorer la productivité de l'installation. [0005] The quality of the adsorbent used, however, remains the key to an efficient and competitive process. The performance of the adsorbent is linked to several factors, including the nitrogen adsorption capacity and the selectivity between nitrogen and oxygen which will be decisive in sizing the column sizes and optimizing the production yield (ratio between oxygen produced and oxygen entered), the kinetics adsorption which will optimize cycle times and improve plant productivity.
[0006] Le brevet US6596256 B1 divulgue un procédé de préparation de zéolithes sodium LSX et sodium MSX, sans ajout de potassium. Les zéolithes ainsi préparées sont ensuite soumises à un échange cationique avec des ions lithium, des ions calcium, des cations de terres rares, ou des mélanges de ces cations, avant d’être utilisées, par exemple pour la séparation azote/oxygène, dans le cas de zéolithe LSX échangée au lithium. [0006] Patent US6596256 B1 discloses a process for preparing sodium LSX and sodium MSX zeolites, without adding potassium. The zeolites thus prepared are then subjected to cation exchange with lithium ions, calcium ions, rare earth cations, or mixtures of these cations, before being used, for example for the nitrogen / oxygen separation, in the case of LSX zeolite exchanged with lithium.
[0007] Le brevet US5464467 A décrit un procédé de préparation d’azote à partir d’un mélange de gaz comprenant le passage dudit mélange de gaz dans au moins une zone d’adsorption contenant une zéolithe X comprenant de 50% à environ 95% d’ions lithium. De telles zéolithes au lithium présentent des capacités de production d’oxygène tout à fait intéressantes, et notamment meilleures que les capacités d’adsorption obtenues avec les zéolithes de l’art antérieur, ou comprenant d’autres cations. [0007] Patent US5464467 A describes a process for preparing nitrogen from a gas mixture comprising passing said gas mixture through at least one adsorption zone containing an X zeolite comprising from 50% to approximately 95% lithium ions. Such lithium zeolites exhibit quite advantageous oxygen production capacities, and in particular better than the absorption capacities obtained with the zeolites of the prior art, or comprising other cations.
[0008] On connaît en outre les adsorbants zéolithiques à base de zéolithes de type faujasite (FAU), et en particulier les adsorbants à base de zéolithes à faible ratio molaire silicium/aluminium échangées au lithium (LiLSX) qui sont par exemple décrits dans la demande internationale W02018100318. Ces adsorbants se sont montrés non seulement tout à fait adaptés mais aussi très efficaces pour la séparation oxygène/azote, et en particulier pour la préparation d’oxygène médical à partir d’air. Also known are zeolite adsorbents based on zeolites of faujasite type (FAU), and in particular adsorbents based on zeolites with a low silicon / aluminum molar ratio exchanged with lithium (LiLSX) which are for example described in the international application WO2018100318. These adsorbents have been shown not only to be very suitable but also very effective for oxygen / nitrogen separation, and in particular for the preparation of medical oxygen from air.
[0009] L’art antérieur enseigne par conséquent à l’homme du métier que la production d’oxygène à partir de mélanges de gaz (par exemple à partir de mélange azote/oxygène ou encore à partir d’air) est optimisée en utilisant des adsorbants zéolithiques à base de zéolithes X, mieux encore à base de zéolithes LSX, et qui comportent des ions lithium. [0010] De fait, on commercialise aujourd’hui des adsorbants zéolithiques échangés au lithium pour la séparation azote/oxygène, qui sont considérés comme les plus performants. Les adsorbants échangés au lithium souffrent cependant d’un coût de fabrication relativement élevé en raison notamment du coût inhérent à celui du lithium métallique qui est un métal dont les ressources naturelles diminuent sans cesse. [0009] The prior art therefore teaches those skilled in the art that the production of oxygen from gas mixtures (for example from a nitrogen / oxygen mixture or even from air) is optimized by using zeolitic adsorbents based on X zeolites, better still based on LSX zeolites, and which contain lithium ions. [0010] In fact, zeolitic adsorbents exchanged with lithium are marketed today for the nitrogen / oxygen separation, which are considered to be the most efficient. However, adsorbents exchanged with lithium suffer from a relatively high manufacturing cost due in particular to the cost inherent in that of metallic lithium, which is a metal whose natural resources are constantly diminishing.
[0011] Afin de pallier ces inconvénients et notamment de diminuer l’utilisation d’adsorbants zéolithiques comprenant du lithium, le brevet US6027548 A propose d’utiliser des colonnes d’adsorbants multicouches superposant des adsorbants de type NaX et LiX. Malgré les performances relativement faibles des adsorbants de type NaX comparées à celles des adsorbants de type LiX, les adsorbants multicouches décrits dans ce document sont d’un coût modéré et sont présentés comme permettant un ratio coût/performance intéressant. [0012] En effet, il est bien connu que les adsorbants de type NaX peuvent être parfois utilisés en raison de leur faible coût de fabrication/commercialisation par rapport au adsorbants échangés au lithium. Les adsorbants de type NaX sont toutefois moins performants en termes de capacité d’adsorption d’azote et de sélectivité azote/oxygène. [0013] Il reste par conséquent un besoin pour des produits restant bon marché et présentant de bonnes performances en termes de capacité d’adsorption d’azote et de sélectivité azote/oxygène. Ainsi un premier objectif de la présente est de proposer des adsorbants zéolithiques bon marché et présentant de bonnes performance voire de très bonnes performances en termes de séparation de gaz, notamment en termes de séparation d’azote/oxygène, et plus particulièrement en termes de production d’oxygène et notamment d’oxygène médical. In order to overcome these drawbacks and in particular to reduce the use of zeolitic adsorbents comprising lithium, US Pat. No. 6,027,548 A proposes to use columns of multilayer adsorbents superimposing adsorbents of the NaX and LiX type. Despite the relatively low performance of NaX type adsorbents compared to those of LiX type adsorbents, the multilayer adsorbents described in this document are of moderate cost and are presented as allowing an interesting cost / performance ratio. Indeed, it is well known that NaX type adsorbents can sometimes be used because of their low manufacturing / marketing cost compared to adsorbents exchanged with lithium. NaX-type adsorbents are, however, less efficient in terms of nitrogen adsorption capacity and nitrogen / oxygen selectivity. [0013] There therefore remains a need for products which remain inexpensive and have good performance in terms of nitrogen adsorption capacity and nitrogen / oxygen selectivity. Thus a first objective of the present is to provide inexpensive zeolitic adsorbents and having good performance or even very good performance in terms of gas separation, in particular in terms of nitrogen / oxygen separation, and more particularly in terms of production. oxygen and in particular medical oxygen.
[0014] Comme objectif tout particulièrement visé, il est proposé un adsorbant zéolithique à faible coût et qui soit très sélectif dans la séparation azote/oxygène, et en particulier qui présente la capacité de retenir l’azote sans que l’oxygène soit retenu, plus particulièrement un adsorbant zéolithique qui adsorbe sélectivement l’azote, en n’adsorbant pas ou que très faiblement l’oxygène. As a very particularly targeted objective, there is proposed a zeolitic adsorbent at low cost and which is very selective in the nitrogen / oxygen separation, and in particular which has the capacity to retain nitrogen without the oxygen being retained, more particularly a zeolitic adsorbent which selectively adsorbs nitrogen, while not adsorbing oxygen or only very weakly.
[0015] Un des objectifs de la présente invention consiste notamment à améliorer les adsorbants zéolithiques (dits encore « tamis ») grades sodiques existant pour la séparation de l’azote et de l’oxygène, en proposant des solides qui ne retiennent pas ou que très peu l’oxygène et très préférentiellement l’azote. D’autres objectifs encore apparaîtront dans la description de l’invention qui suit. One of the objectives of the present invention consists in particular of improving the zeolitic adsorbents (also called "sieves") existing sodium grades for the separation of nitrogen and oxygen, by providing solids which do not retain or which very little oxygen and very preferably nitrogen. Still other objects will become apparent from the description of the invention which follows.
[0016] La demanderesse a maintenant découvert que les objectifs précités peuvent être atteints en totalité, ou tout au moins en partie, grâce à la présente invention qui suit et qui est décrite ci-après. The Applicant has now discovered that the aforementioned objectives can be achieved in whole, or at least in part, by virtue of the present invention which follows and which is described below.
[0017] Il a maintenant été découvert qu’il est possible de préparer des matériaux adsorbants zéolitiques, à partir de cristaux de zéolithe de type FAU, pour la séparation non cryogénique des gaz industriels en (V)PSA, en particulier pour la séparation d’azote et d’oxygène (N2/02), et tout particulièrement pour la préparation d’oxygène médical à partir d’air, ainsi que pour la préparation industrielle d’oxygène par (V)PSA. It has now been discovered that it is possible to prepare zeolite adsorbent materials, from FAU-type zeolite crystals, for the non-cryogenic separation of industrial gases in (V) PSA, in particular for the separation of nitrogen and oxygen (N 2/0 2), especially for the preparation of medical oxygen from air and for the industrial preparation of oxygen (V) PSA.
[0018] Ainsi, et selon un premier aspect, la présente invention a pour objet l’utilisation d’un matériau adsorbant zéolithique : [0018] Thus, and according to a first aspect, the present invention relates to the use of a zeolitic adsorbent material:
- à base de cristaux de zéolithe(s) faujasite (FAU), dont le ratio molaire Si/Al est compris entre 1 ,00 et 1 ,20, mieux entre 1 ,00 et 1 ,15 et de préférence 1 ,00 et 1 ,12, bornes incluses,- based on crystals of faujasite zeolite (s) (FAU), the Si / Al molar ratio of which is between 1.00 and 1.20, better still between 1.00 and 1.15 and preferably 1.00 and 1. , 12, terminals included,
- et de teneur en phase non zéolithique (PNZ) telle que 0 < PNZ < 25%, de préférence 0 < PNZ < 20%, de préférence encore 0 < PNZ < 15%, avantageusement 0 < PNZ < 10%, encore plus avantageusement 0 < PNZ < 8%, en poids par rapport au poids total du matériau adsorbant zéolithique, pour la séparation non cryogénique des gaz industriels en (V)PSA, en particulier pour la séparation d’azote et d’oxygène (N2/02), et typiquement pour la préparation d’oxygène médical à partir d’air, ainsi que pour la préparation industrielle d’oxygène par (V)PSA. [0019] Selon un aspect préféré, la teneur en sodium de l’adsorbant zéolithique utilisable dans le cadre de la présente invention est généralement supérieure à 95%, de préférence supérieure à 97%, de préférence encore supérieure à 98%, de préférence encore supérieure à 99%, bornes incluses, ces teneurs en sodium étant exprimées en pourcentages de sites échangeables. Avec une teneur en sodium supérieure à 95%, l’adsorbant zéolithique pour utilisation dans le cadre de la présente invention est dénommé dans la suite « adsorbant zéolithique grade sodique », ou encore « tamis grade sodique ». [0020] Pour les besoins de la présente invention, il doit être compris que les zéolithes utilisables pour former les adsorbants zéolithiques précités, sont synthétisées à partir de solutions sodiques et avantageusement ne subissent aucun échange ionique ou bien un échange ionique, de sorte que les sites échangeables de l’adsorbant zéolithique après échange soient occupés à plus de 95%, de préférence plus de 97%, de préférence encore plus de 98%, de préférence encore plus de 99%, bornes incluses, par des ions sodium. [0021] Ainsi, et selon un mode de réalisation tout particulièrement préféré de la présente invention, les adsorbants zéolithiques utilisables pour la séparation non cryogénique de gaz industriels et notamment des gaz de l’air, sont des adsorbants zéolithiques grades sodiques dont les sites échangeables sont occupés à plus de 95% par des ions sodium et dont la teneur en cations autres que sodium est inférieure à 5% exprimés en oxydes, et de préférence inférieure à 4%, mieux encore inférieur à 2%, les cations autres que sodium étant choisis parmi lithium, potassium, baryum, calcium, strontium, césium, et métaux de transition tels que argent, par exemple et de préférence choisis parmi le lithium, potassium, calcium et baryum. - and with a non-zeolitic phase (PNZ) content such that 0 <PNZ <25%, preferably 0 <PNZ <20%, more preferably 0 <PNZ <15%, advantageously 0 <PNZ <10%, even more advantageously 0 <PNZ <8%, by weight relative to the total weight of the zeolitic adsorbent material, for the non-cryogenic separation of industrial gases in (V) PSA, in particular for the separation of nitrogen and oxygen (N 2/0 2), and typically for the preparation of medical oxygen from air and for the industrial preparation of oxygen (V) PSA. [0019] According to a preferred aspect, the sodium content of the zeolitic adsorbent which can be used in the context of the present invention is generally greater than 95%, preferably greater than 97%, more preferably greater than 98%, more preferably still. greater than 99%, limits included, these sodium contents being expressed as percentages of exchangeable sites. With a sodium content greater than 95%, the zeolitic adsorbent for use in the context of the present invention is hereinafter referred to as “sodium grade zeolitic adsorbent”, or also “sodium grade sieve”. For the purposes of the present invention, it should be understood that the zeolites which can be used to form the aforementioned zeolitic adsorbents are synthesized from sodium solutions and advantageously do not undergo any ion exchange or else an ion exchange, so that the Exchangeable sites of the zeolitic adsorbent after exchange are occupied to more than 95%, preferably more than 97%, more preferably more than 98%, more preferably more than 99%, limits included, by sodium ions. [0021] Thus, and according to a very particularly preferred embodiment of the present invention, the zeolitic adsorbents which can be used for the non-cryogenic separation of industrial gases and in particular gases from the air, are sodium-grade zeolitic adsorbents whose exchangeable sites are more than 95% occupied by sodium ions and whose content of cations other than sodium is less than 5% expressed as oxides, and preferably less than 4%, better still less than 2%, the cations other than sodium being chosen from lithium, potassium, barium, calcium, strontium, cesium, and transition metals such as silver, for example and preferably chosen from lithium, potassium, calcium and barium.
[0022] En outre, les cristaux de zéolithe(s) qui forment les adsorbants zéolithiques utilisables dans le cadre de la présente invention sont des cristaux de zéolithe(s) de type faujasite (dites zéolithes de type FAU) dont le ratio molaire silicium/aluminium (ratio molaire Si/Al) est faible à modéré. En d’autres termes, les cristaux de zéolithe(s) qui forment l’adsorbant zéolithique utilisable dans le cadre de la présente invention sont choisis parmi les cristaux de zéolithe de type FAU LSX, c’est-à-dire de ratio Si/Al égal à 1 ,00, et les zéolithes de type FAU MSX, c’est-à-dire de ratio Si/Al répondant à l’inéquation 1 ,00 < Si/Al < 1 ,20. [0023] Il a été découvert, de manière tout à fait surprenante que pour des capacités d’adsorption d’azote similaires, les capacités d’adsorption d’oxygène sont d’autant plus faibles que le ratio Si/Al des zéolithes des adsorbants zéolithiques grades sodiques utilisables dans le cadre de l’invention, est faible. Autrement dit, plus le ratio Si/Al des zéolithes des adsorbants zéolithiques grades sodiques est faible, moins l’oxygène est adsorbé, alors que l’azote est quant à lui bien adsorbé. In addition, the zeolite crystals (s) which form the zeolite adsorbents that can be used in the context of the present invention are faujasite-type zeolite crystals (called FAU-type zeolites) whose silicon / molar ratio aluminum (Si / Al molar ratio) is low to moderate. In other words, the zeolite crystals (s) which form the zeolite adsorbent which can be used in the context of the present invention are chosen from zeolite crystals of the FAU LSX type, that is to say with an Si / ratio. Al equal to 1.00, and zeolites of FAU MSX type, that is to say with an Si / Al ratio corresponding to the equation 1.00 <Si / Al <1. 20. It has been discovered, quite surprisingly, that for similar nitrogen adsorption capacities, the oxygen adsorption capacities are even lower than the Si / Al ratio of the zeolites of the adsorbents. zeolite sodium grades which can be used in the context of the invention is low. In other words, the lower the Si / Al ratio of the zeolites of the sodium grade zeolitic adsorbents, the less oxygen is adsorbed, while nitrogen is adsorbed well.
[0024] Ainsi, et comme indiqué plus haut, on préfère parmi les zéolithes qui peuvent être mises en oeuvre pour la préparation des adsorbants zéolithiques utiles pour la présente invention, les zéolithes de type FAU, qui sont des zéolithes LSX ou MSX, et en particulier des zéolithes de type FAU dont le ratio molaire Si/Al est compris entre 1 ,00 et 1 ,20, de préférence entre 1 ,00 et 1 , 15 et de préférence 1 ,00 et 1 , 12, bornes incluses. Thus, and as indicated above, it is preferred among the zeolites which can be used for the preparation of the zeolitic adsorbents useful for the present invention, the FAU type zeolites, which are LSX or MSX zeolites, and in in particular, FAU type zeolites in which the Si / Al molar ratio is between 1.00 and 1.20, preferably between 1.00 and 1.15 and preferably 1.00 and 1.12, limits included.
[0025] Selon un mode de réalisation de la présente invention, on préfère tout particulièrement les zéolithes de type FAU LSX (ratio molaire Si/Al = 1 ,00) pour la préparation des adsorbants zéolithiques utilisables pour la séparation azote/oxygène. [0026] Les éventuels différents types de zéolithes présentes dans le matériau adsorbant zéolithique sont déterminés par DRX. La quantité totale de zéolithe(s) est également mesurée par DRX et est exprimée en % en poids par rapport au poids total du matériau adsorbant. According to one embodiment of the present invention, the zeolites of the FAU LSX type (Si / Al molar ratio = 1.00) are most particularly preferred for the preparation of zeolitic adsorbents which can be used for the nitrogen / oxygen separation. The possible different types of zeolites present in the zeolitic adsorbent material are determined by XRD. The total quantity of zeolite (s) is also measured by XRD and is expressed in% by weight relative to the total weight of the adsorbent material.
[0027] En outre, et comme indiqué précédemment, le matériau adsorbant zéolithique présente une certaine quantité de phase non zéolithique, dite PNZ. Dans la présente invention, le terme « phase non zéolithique » (ou « PNZ ») désigne toute phase présente dans le matériau adsorbant zéolithique selon l’invention, autre que la ou les zéolithe(s) présente(s) dans ledit matériau adsorbant zéolithique, dénommée « phase zéolithique » ou « PZ ». La quantité de phase non zéolithique est exprimée par le complément à 100% de la phase zéolithique de l’adsorbant, c’est-à-dire selon l’équation suivante : In addition, and as indicated above, the zeolitic adsorbent material has a certain amount of non-zeolitic phase, called PNZ. In the present invention, the term “non-zeolitic phase” (or “PNZ”) denotes any phase present in the zeolitic adsorbent material according to the invention, other than the zeolite (s) present in said zeolitic adsorbent material. , called “zeolitic phase” or “PZ”. The amount of non-zeolitic phase is expressed by the complement to 100% of the zeolitic phase of the adsorbent, that is to say according to the following equation:
%PNZ = 100 - %PZ, où %PNZ représente le pourcentage en poids de PNZ et %PZ le pourcentage en poids de phase zéolithique, par rapport au poids total du matériau adsorbant zéolithique. % PNZ = 100 -% PZ, where% PNZ represents the percentage by weight of PNZ and% PZ the percentage by weight of zeolitic phase, relative to the total weight of the zeolitic adsorbent material.
[0028] Ainsi et comme indiqué précédemment, la PNZ du matériau adsorbant zéolithique utile dans le cadre de la présente invention est telle que 0 < PNZ < 25%, de préférence 0 < PNZ < 20%, de préférence encore 0 < PNZ < 15%, avantageusement 0 < PNZ < 10%, encore plus avantageusement 0 < PNZ < 8%, en poids par rapport au poids total du matériau adsorbant zéolithique. Thus and as indicated above, the PNZ of the zeolitic adsorbent material useful in the context of the present invention is such that 0 <PNZ <25%, preferably 0 <PNZ <20%, more preferably 0 <PNZ <15 %, advantageously 0 <PNZ <10%, even more advantageously 0 <PNZ <8%, by weight relative to the total weight of the zeolitic adsorbent material.
[0029] Le matériau adsorbant zéolithique utilisable dans le cadre de la présente invention, qu’il soit sous forme de billes, d’extrudés ou autres, présente en général un diamètre volumique moyen, ou une longueur moyenne (plus grande dimension lorsqu’il n’est pas sphérique), inférieur ou égal à 7 mm, de préférence compris entre 0,05 mm et 5 mm, de manière encore préférée compris entre 0,2 mm et 3 mm. Pour les besoins de la présente invention, on préfère un matériau adsorbant zéolithique sous forme de billes. The zeolitic adsorbent material which can be used in the context of the present invention, whether in the form of beads, extrudates or the like, generally has a diameter average volume, or an average length (greater dimension when it is not spherical), less than or equal to 7 mm, preferably between 0.05 mm and 5 mm, more preferably between 0.2 mm and 3 mm. For the purposes of the present invention, a zeolitic adsorbent material in the form of beads is preferred.
[0030] Les matériaux adsorbants zéolithiques utiles dans le contexte de la présente invention présentent en outre des propriétés mécaniques tout particulièrement appropriées aux applications auxquels ils sont destinés, c’est-à-dire : The zeolitic adsorbent materials useful in the context of the present invention also exhibit mechanical properties which are very particularly suitable for the applications for which they are intended, that is to say:
- soit une résistance à l'écrasement en lit (REL) mesurée selon la norme ASTM 7084-04 supérieure à 1 ,5 MPa, de préférence supérieure à 2,0 MPa, de préférence supérieure à 2,5 MPa, pour un matériau de diamètre volumique moyen (d5o) ou une longueur (plus grande dimension lorsque le matériau n’est pas sphérique), inférieur(e) à 1 mm, bornes incluses, - or a bed crushing strength (REL) measured according to standard ASTM 7084-04 greater than 1.5 MPa, preferably greater than 2.0 MPa, preferably greater than 2.5 MPa, for a material of average volume diameter (d 5 o) or a length (largest dimension when the material is not spherical), less than 1 mm, terminals included,
- soit une résistance à l'écrasement en grain, mesurée selon les normes ASTM D 4179 (2011 ) et ASTM D 6175 (2013), comprise entre 0,5 daN et 30 daN, de préférence comprise entre 1 daN et 20 daN, pour un matériau de diamètre volumique moyen (d5o) ou une longueur (plus grande dimension lorsque le matériau n’est pas sphérique), supérieur(e) ou égal(e) à 1 mm, bornes incluses. - or a grain crushing resistance, measured according to standards ASTM D 4179 (2011) and ASTM D 6175 (2013), between 0.5 daN and 30 daN, preferably between 1 daN and 20 daN, for a material with an average volume diameter (d 5 o) or a length (largest dimension when the material is not spherical) greater than or equal to 1 mm, limits included.
[0031] Plus spécifiquement et selon un mode de réalisation préféré de l’invention, le matériau adsorbant zéolithique se présente sous forme de billes dont le diamètre volumique moyen est compris entre 0,05 mm et 5 mm, bornes incluses. De préférence encore, et plus spécifiquement pour les applications de préparation d’oxygène à usage médical, ce diamètre volumique moyen est compris entre 0,05 mm et 1 ,0 mm, de préférence encore entre 0,15 mm et 0,65mm, et de manière tout à fait préférée entre 0,25 mm et 0,55 mm. Pour des applications comme la séparation de gaz industriels, ce diamètre volumique moyen peut être plus spécifiquement et plus généralement compris entre 1 ,0 mm et 5,0 mm. More specifically and according to a preferred embodiment of the invention, the zeolitic adsorbent material is in the form of beads, the average volume diameter of which is between 0.05 mm and 5 mm, limits included. More preferably, and more specifically for applications for preparing oxygen for medical use, this mean volume diameter is between 0.05 mm and 1.0 mm, more preferably between 0.15 mm and 0.65 mm, and most preferably between 0.25 mm and 0.55 mm. For applications such as the separation of industrial gases, this mean volume diameter can be more specifically and more generally between 1.0 mm and 5.0 mm.
[0032] Une autre caractéristique préférée du matériau adsorbant zéolithique de l’invention est sa masse volumique apparente qui est généralement comprise entre 0,55 kg nr3 et 0,80 kg nr3, de préférence entre 0,58 kg nr3 et 0,75 kg nr3, de préférence encore entre 0,60 kg nr3 et 0,70 kg nr3. Another preferred characteristic of the zeolitic adsorbent material of the invention is its bulk density which is generally between 0.55 kg nr 3 and 0.80 kg nr 3 , preferably between 0.58 kg nr 3 and 0 , 75 kg nr 3 , more preferably between 0.60 kg nr 3 and 0.70 kg nr 3 .
[0033] L'invention concerne également un procédé de préparation du matériau adsorbant zéolithique utilisable dans le cadre de la présente invention qui comprend les étapes suivantes : a / agglomération de cristaux de zéolithe FAU LSX et/ou FAU MSX, avec un liant d’agglomération, puis mise en forme, séchage et calcination des cristaux agglomérés, b / zéolithisation éventuelle d’au moins une partie du liant par action d'une solution alcaline basique, d remplacement éventuel des cations des sites échangeables du produit obtenu à l’étape a / ou à l’étape b / par des cations sodium, puis lavage et séchage du produit ainsi traité, et d/ activation du matériau adsorbant zéolithique obtenu. The invention also relates to a process for preparing the zeolitic adsorbent material which can be used in the context of the present invention, which comprises the following steps: a / agglomeration of FAU LSX and / or FAU MSX zeolite crystals, with a binder of agglomeration, then shaping, drying and calcination of the agglomerated crystals, b / optional zeolitization of at least part of the binder by the action of a basic alkaline solution, d optional replacement of the cations of the exchangeable sites of the product obtained in step a / or in step b / with sodium cations, then washing and drying the product thus treated, and d / activating the zeolitic adsorbent material obtained.
[0034] Si on réalise l’étape b / de zéolithisation, il peut être avantageux d’ajouter une source de silice lors de l’étape a/, afin notamment de favoriser une conversion du liant en une zéolithe de type FAU. If the zeolite step b / is carried out, it may be advantageous to add a source of silica during step a /, in order in particular to promote conversion of the binder into an FAU-type zeolite.
[0035] La zéolithe de type utilisée à l’étape a / du procédé décrit ci-dessus est, comme indiqué précédemment, une zéolithe de type FAU de ratio molaire Si/Al compris entre 1 ,00 et 1 ,20, bornes incluses, comme indiqué précédemment. The type zeolite used in step a / of the process described above is, as indicated above, an FAU type zeolite with an Si / Al molar ratio of between 1.00 and 1.20, limits included, as indicated previously.
[0036] Ces cristaux de zéolithe peuvent être préparés par tout moyen connu de l’homme du métier et peuvent par exemple être obtenus selon un procédé similaire à celui décrit dans les documents FR2925478 ou US6596256. These zeolite crystals can be prepared by any means known to those skilled in the art and can for example be obtained according to a process similar to that described in documents FR2925478 or US6596256.
[0037] Dans le procédé de préparation ci-dessus, toutes les quantités indiquées sont exprimées en équivalents calcinés, c’est-à-dire en poids ou en pourcentage massique, soustraction faite de la perte au feu (PAF) mesurée sur chaque ingrédient introduit. Il est également possible d’utiliser dans cette étape a / des cristaux de zéolithe de type FAU au moins partiellement échangée aux terres rares, comme décrit par exemple dans US5464467. In the preparation process above, all the amounts indicated are expressed in calcined equivalents, that is to say by weight or percentage by mass, subtracting the loss on ignition (PAF) measured on each ingredient introduced. It is also possible to use in this step a / crystals of zeolite of the FAU type at least partially exchanged with rare earths, as described for example in US5464467.
[0038] La quantité pondérale de cristaux de zéolithe de type FAU est généralement comprise entre 75% et 95% en poids, par rapport au poids total dudit produit obtenu à l’issue de l’étape a / et la quantité d’argile zéolithisable quant à elle est généralement comprise entre 5% et 25% en poids, par rapport au poids total dudit produit obtenu à l’issue de l’étape a/. The quantity by weight of FAU-type zeolite crystals is generally between 75% and 95% by weight, relative to the total weight of said product obtained at the end of step a / and the quantity of zeolitisable clay as for it is generally between 5% and 25% by weight, relative to the total weight of said product obtained at the end of step a /.
[0039] Lorsqu’une source de silice est ajoutée, on ajoute de préférence une quantité comprise entre 0,1% et 10% en poids, de préférence encore entre 0,2% et 6% en poids, par rapport au poids total dudit produit obtenu à l’issue de l’étape a/. La source de silice qui peut être utilisée est de tout type connu en soi, par exemple la silice solide, la silice colloïdale, le silicate de sodium, et autres sources bien connues de l’homme du métier. [0040] La mise en forme à l’étape a / est réalisée selon les techniques bien connues de l’homme de l’art. De même, le séchage et la calcination sont réalisés selon les descriptions habituelles également bien connues de l’homme du métier. Ainsi, le séchage est typiquement réalisé à une température comprise entre 50 °C et 200 °C. La calcination peut être effectuée selon toute méthode de calcination connue de l’homme du métier et par exemple, et de manière non limitative, la calcination peut être effectuée sous balayage gazeux oxydant et/ou inerte, avec notamment des gaz tels que l’oxygène, l’azote, l’air, un air sec et/ou décarbonaté, un air appauvri en oxygène, éventuellement sec et/ou décarbonaté, à une ou des températures supérieures à 200 °C, typiquement comprises entre 250 °C et 700 °C, préférentiellement entre 300G et 650 °C, pendant quelques heures, par exemple entre 1 et 6 heures. When a source of silica is added, an amount of between 0.1% and 10% by weight is preferably added, more preferably between 0.2% and 6% by weight, relative to the total weight of said product obtained at the end of step a /. The source of silica which can be used is of any type known per se, for example solid silica, colloidal silica, sodium silicate, and other sources well known to those skilled in the art. The shaping in step a / is carried out according to techniques well known to those skilled in the art. Likewise, the drying and calcination are carried out according to the usual descriptions also well known to those skilled in the art. Thus, the drying is typically carried out at a temperature between 50 ° C and 200 ° C. The calcination can be carried out according to any method of calcination known to those skilled in the art and by example, and in a nonlimiting manner, the calcination can be carried out under oxidizing and / or inert gas sweeping, in particular with gases such as oxygen, nitrogen, air, dry and / or decarbonated air, air oxygen-depleted, optionally dry and / or decarbonated, at one or more temperatures above 200 ° C, typically between 250 ° C and 700 ° C, preferably between 300G and 650 ° C, for a few hours, for example between 1 and 6 hours.
[0041] Le liant d’agglomération utilisé à l’étape a / peut être choisi parmi les liants classiques connus de l’homme du métier et de préférence choisis parmi les argiles et les mélanges d'argiles, les silices, les alumines, les silices colloïdales, les gels d’alumine, et autres, et leurs mélanges. The agglomeration binder used in step a / can be chosen from conventional binders known to those skilled in the art and preferably chosen from clays and mixtures of clays, silicas, aluminas, colloidal silicas, alumina gels, and the like, and mixtures thereof.
[0042] Les argiles sont de préférence choisies parmi : kaolins, kaolinites, nacrites, dickites, halloysites, attapulgites, sépiolites, montmorillonites, bentonites, illites et métakaolins, ainsi que les mélanges de deux ou plusieurs d’entre elles en toutes proportions. [0043] Préférence est donnée aux argiles fibreuses de type sépiolite ou attapulgite, l’argile ou les argiles pouvant, de manière générale, être formulée(s) sous forme de poudres broyées à sec et sélectées, ou mieux de gel (i.e. argiles délaminées) et dispersées, et éventuellement broyées, tels que les argiles commerciales Min-U-Gel®, Pansil®, Pangel®, Cimsil®, Attagel®, Actigel®, etc., ayant ou non subi un ou plusieurs traitements chimiques. De tels gels sont par exemples décrits dans EP170299 ou US6743745. The clays are preferably chosen from: kaolins, kaolinites, nacrites, dickites, halloysites, attapulgites, sepiolites, montmorillonites, bentonites, illites and metakaolins, as well as mixtures of two or more of them in all proportions. Preference is given to fibrous clays of the sepiolite or attapulgite type, the clay or clays being able, in general, to be formulated in the form of dry-ground and selected powders, or better still of gel (ie delaminated clays ) and dispersed, and optionally ground, such as the commercial Min-U-Gel ® , Pansil ® , Pangel ® , Cimsil ® , Attagel ® , Actigel ® , etc. clays, which may or may not have undergone one or more chemical treatments. Such gels are for example described in EP170299 or US6743745.
[0044] Dans un autre mode de réalisation préféré, le liant d’agglomération utilisé à l’étape a / contient de préférence au moins 80% en poids d'argile(s) zéolithisable(s) (dite « partie zéolithisable ») par rapport au poids total du liant d’agglomération. In another preferred embodiment, the agglomeration binder used in step a / preferably contains at least 80% by weight of clay (s) zeolite (s) (called "zeolite part") by relative to the total weight of the agglomeration binder.
[0045] Par « argile(s) zéolithisable(s) », on entend une argile ou un mélange d’argiles susceptible(s) d’être transformée(s) en matière zéolithique par action d’une solution basique alcaline, selon des techniques maintenant bien connues de l’homme du métier. [0046] Les argiles zéolithisables qui peuvent être utilisées dans le cadre de la présente invention appartiennent typiquement à la famille des kaolinites, des halloysites, des nacrites, des dickites, des kaolins et/ou des métakaolins, argiles auxquelles on peut également ajouter une source de silice, comme décrit ci-dessus. The term "zeolitisable clay (s)" means a clay or a mixture of clays capable of being transformed into zeolitic material by the action of a basic alkaline solution, according to techniques now well known to those skilled in the art. The zeolitisable clays which can be used in the context of the present invention typically belong to the family of kaolinites, halloysites, nacrites, dickites, kaolins and / or metakaolins, clays to which a source can also be added. silica, as described above.
[0047] Il est également possible d’incorporer, en plus de la ou des argile(s) zéolithisable(s), un ou plusieurs autres types d’argiles non zéolithisables, telles que par exemple et de manière non limitative des argiles choisies parmi attapulgites, sépiolites, bentonites, montmorillonites, et autres. Ce mode de réalisation n’est cependant pas préféré. [0048] Il est en outre possible, pendant l’étape al d’agglomération, d’incorporer un ou plusieurs additif(s) organique(s), notamment dans le but de faciliter la mise en forme et/ou de conférer des propriétés particulières au matériau aggloméré, telles que tenue mécanique, profils poreux, et autres. Ces additifs sont bien connus de l’homme du métier et peuvent être incorporés à des teneurs comprises entre 0 et 5% en poids par rapport au poids total dudit produit obtenu à l’issue de l’étape ai. It is also possible to incorporate, in addition to the zeolitisable clay (s), one or more other types of non-zeolitisable clays, such as for example and without limitation clays chosen from among attapulgites, sepiolites, bentonites, montmorillonites, and others. This embodiment is however not preferred. It is also possible, during the agglomeration step al, to incorporate one or more organic additive (s), in particular with the aim of facilitating the shaping and / or of imparting properties. particular to the agglomerated material, such as mechanical strength, porous profiles, and others. These additives are well known to those skilled in the art and can be incorporated at contents of between 0 and 5% by weight relative to the total weight of said product obtained at the end of step a1.
[0049] L’étape b/ de zéolithisation permet la transformation en matière zéolithique, d’au moins 50% et de préférence d’au moins 70%, de préférence encore d’au moins 80% et de préférence encore d’au moins 85%, en poids de la ou des argile(s) zéolithisable(s) contenue(s) dans le liant. Dans un mode de réalisation préféré, l’adsorbant zéolithique utilisable dans le cadre de la présente invention, comporte un liant qui n’a pas été zéolithisé. [0050] La zéolithisation peut être pratiquée par immersion de l'aggloméré dans une solution basique alcaline, en général aqueuse, avantageusement une solution aqueuse d’hydroxyde de sodium et/ou d’hydroxyde de potassium, dont la concentration est de préférence supérieure à 0,5 M. Ladite concentration est généralement inférieure à 5 M, de préférence inférieure à 4 M, avantageusement inférieure à 3 M. Step b / of zeolitization allows the transformation into zeolitic material, of at least 50% and preferably at least 70%, more preferably at least 80% and more preferably at least 85%, by weight of the zeolitisable clay (s) contained in the binder. In a preferred embodiment, the zeolitic adsorbent which can be used in the context of the present invention comprises a binder which has not been zeolitized. Zeolithization can be carried out by immersing the agglomerate in a basic alkaline solution, generally aqueous, advantageously an aqueous solution of sodium hydroxide and / or potassium hydroxide, the concentration of which is preferably greater than 0.5 M. Said concentration is generally less than 5 M, preferably less than 4 M, advantageously less than 3 M.
[0051] La zéolithisation s’opère de préférence à chaud (température supérieure à la température ambiante) typiquement à des températures de l'ordre de 80 °C à 100°C, afin d’améliorer la cinétique du processus et ainsi réduire les durées d'immersion à moins de 8 heures. On ne sortirait cependant pas du cadre de l’invention en opérant à des températures plus basses et des durées d’immersion plus longues. On ne sortirait également pas du cadre de l’invention en ajoutant, lors de cette étape de zéolithisation, une source de silice liquide ou solide dans la solution alcaline basique, par exemple du silicate de sodium ou de la silice dissoute. Zeolithization is preferably carried out hot (temperature above ambient temperature), typically at temperatures of the order of 80 ° C to 100 ° C, in order to improve the kinetics of the process and thus reduce the times. immersion within 8 hours. However, it would not be departing from the scope of the invention to operate at lower temperatures and longer immersion times. It would also not be departing from the scope of the invention to add, during this zeolitization step, a source of liquid or solid silica in the basic alkaline solution, for example sodium silicate or dissolved silica.
[0052] Selon ce mode opératoire et comme indiqué précédemment, on obtient aisément la zéolithisation d'au moins 50%, et de préférence d’au moins 70%, de préférence encore d’au moins 80% et de préférence encore d’au moins 85%, en poids de la ou des argile(s) zéolithisable(s) contenue(s) dans le liant. On procède ensuite à un lavage à l'eau suivi d'un séchage. According to this procedure and as indicated above, the zeolitization of at least 50% is easily obtained, and preferably at least 70%, more preferably at least 80% and more preferably at least. less 85%, by weight of the zeolitisable clay (s) contained in the binder. Washing is then carried out with water followed by drying.
[0053] L'éventuelle étape c/ de remplacement des cations des sites échangeables du produit obtenu à l’étape b/ par des cations sodium n’est souhaitable, voire nécessaire, que lorsque la teneur en sodium de la zéolithe est telle que moins de 95% des sites échangeables sont occupés par des ions sodium. Un tel échange peut alors être effectué selon des méthodes bien connues de l’homme du métier et comme par exemple celles décrites dans le brevet EP0893157. [0054] Dans la présente demande, on entend par « sites échangeables », l’ensemble des sites échangeables des cristaux de zéolithe, ainsi que les sites échangeables formés lors de la zéolithisation du liant. Dans un mode de réalisation préféré de l’invention, l’éventuel échange au sodium est réalisé de sorte que la teneur en sodium (exprimée en pourcentage de sites échangeables) dans le matériau adsorbant zéolithique de l’invention soit égale ou supérieure à 95%. The possible step c / of replacing the cations of the exchangeable sites of the product obtained in step b / with sodium cations is only desirable, or even necessary, when the sodium content of the zeolite is such that less 95% of the exchangeable sites are occupied by sodium ions. Such an exchange can then be carried out according to methods well known to those skilled in the art and such as, for example, those described in patent EP0893157. In the present application, the term “exchangeable sites” is understood to mean all of the exchangeable sites of the zeolite crystals, as well as the exchangeable sites formed during the zeolitization of the binder. In a preferred embodiment of the invention, the possible exchange with sodium is carried out so that the sodium content (expressed as a percentage of exchangeable sites) in the zeolitic adsorbent material of the invention is equal to or greater than 95% .
[0055] Outre l’échange éventuel avec des cations sodium, il est également possible de procéder à un échange avec un ou plusieurs autres cations des Groupes IA, MA, NIA et INB (respectivement colonnes 1 , 2, 13 et 3) de la classification périodique des éléments, mais aussi avec un ou plusieurs autres ions trivalents de la série des lanthanides ou terres-rares, l'ion zinc (II), l'ion cuivrique (II), l'ion chromique (III), l'ion ferrique (III), l'ion ammonium et/ou l'ion hydronium, pour autant que le matériau adsorbant zéolithique de l’invention présente un taux de sites échangeables occupés par des ions sodium au moins égal ou supérieur à 95%. In addition to the possible exchange with sodium cations, it is also possible to carry out an exchange with one or more other cations of Groups IA, MA, NIA and INB (respectively columns 1, 2, 13 and 3) of the periodic classification of the elements, but also with one or more other trivalent ions of the lanthanide or rare earth series, the zinc ion (II), the cupric ion (II), the chromic ion (III), the ferric (III) ion, the ammonium ion and / or the hydronium ion, provided that the zeolitic adsorbent material of the invention has a rate of exchangeable sites occupied by sodium ions at least equal to or greater than 95%.
[0056] L'activation (étape d/), dernière étape du procédé d'obtention du matériau adsorbant zéolithique selon l'invention, a pour but de fixer la teneur en eau, ainsi que la perte au feu de l'adsorbant dans des limites optimales. On procède en général par activation thermique qu'on exécute préférentiellement entre 300 °C et 650 °C pendant un certain temps, typiquement de 1 à 6 heures, en fonction de la teneur en eau et de la perte au feu souhaitées et selon l’utilisation de l’adsorbant qui est visée. Dans un mode de réalisation, la calcination de l’étape a / et l’activation de l’étape d/ peuvent être réalisées de manière concomitante, c’est-à-dire en même temps dans la même enceinte chauffée, par exemple un four. The activation (step d /), last step of the process for obtaining the zeolitic adsorbent material according to the invention, aims to fix the water content, as well as the loss on ignition of the adsorbent in optimal limits. The procedure is generally carried out by thermal activation which is preferably carried out between 300 ° C and 650 ° C for a certain time, typically from 1 to 6 hours, depending on the water content and the loss on ignition desired and depending on the intended use of the adsorbent. In one embodiment, the calcination of step a / and the activation of step d / can be carried out concomitantly, that is to say at the same time in the same heated chamber, for example a oven.
[0057] Le matériau adsorbant zéolithique selon la présente invention trouve une utilisation tout particulièrement intéressante en tant que matériau adsorbant d'azote pour la séparation des gaz de l'air et d'excellents adsorbants de l'azote et/ou du monoxyde de carbone pour la purification de l'hydrogène. The zeolitic adsorbent material according to the present invention finds a very particularly advantageous use as a nitrogen adsorbent material for the separation of gases from air and excellent adsorbents of nitrogen and / or carbon monoxide. for the purification of hydrogen.
[0058] Le matériau adsorbant zéolithique selon la présente invention présente le plus souvent une capacité d’adsorption massique d’azote (N2), mesurée sous 4 bar (0,4 MPa) à 25°C supérieure à 23 Ncrrf g-1, de préférence encore supérieure à 24 Nom3 g-1, de préférence encore supérieure à 25 Nom3 g-1, de manière tout particulièrement préférée supérieure à 26 Nom3 g-1. The zeolitic adsorbent material according to the present invention most often has a mass adsorption capacity of nitrogen (N 2 ), measured under 4 bar (0.4 MPa) at 25 ° C greater than 23 Ncrrf g -1 more preferably greater than 24 Nom 3 g -1 , more preferably greater than 25 Nom 3 g -1 , very particularly preferably greater than 26 Nom 3 g -1 .
[0059] Comme déjà indiqué précédemment, il a été observé de manière tout à fait surprenante que le matériau adsorbant zéolithique selon la présente invention présente également le plus souvent une capacité d’adsorption massique d’oxygène (02), mesurée sous 4 bar (0,4 MPa) à 25 °C inférieure à 12 Ncrrf g-1, de préférence encore inférieure à 11 Nom3 g 1, de préférence encore inférieure à 10 Nom3 g 1, de manière tout particulièrement préférée inférieure à 9 Ncm3 g-1. Dans la présente description, on entend par « sélectivité azote/oxygène » le rapport entre la capacité d’adsorption massique d’azote (N2), mesurée sous 4 bar (0,4 MPa) à 25°C et la capacté d’adsorption massique d’oxygène (02), mesurée sous 4 bar (0,4 MPa) à 25 °C, autrement dt le rapport capacité N2/capacité 02, les capacités étant mesurées sous 4 bar (0,4 MPa) à 25 °C. As already indicated above, it has been observed quite surprisingly that the zeolitic adsorbent material according to the present invention also most often has a mass adsorption capacity of oxygen (0 2 ), measured. at 4 bar (0.4 MPa) at 25 ° C less than 12 Ncrrf g -1 , more preferably less than 11 Nom 3 g 1 , more preferably less than 10 Nom 3 g 1 , very particularly preferably less than 9 Ncm 3 g -1 . In the present description, the term “nitrogen / oxygen selectivity” is understood to mean the ratio between the mass adsorption capacity of nitrogen (N 2 ), measured under 4 bar (0.4 MPa) at 25 ° C. and the capacity of mass adsorption of oxygen (0 2 ), measured under 4 bar (0.4 MPa) at 25 ° C, otherwise dt the capacity N 2 / capacity 0 2 ratio, the capacities being measured under 4 bar (0.4 MPa) at 25 ° C.
[0060] Les procédés d'adsorption mettant en oeuvre le matériau adsorbant zéolithique selon la présente invention sont le plus souvent de type PSA, VSA ou VPSA, et de préférence de type PSA ou VPSA pour la séparation N2/02 des gaz industriels et pour la séparation N2/02 dans les appareils de production d’oxygène médical. [0060] Adsorption processes using the zeolite adsorbent material according to the present invention are most often type of PSA, VSA or VPSA, and preferably of the PSA or VPSA for separating N 2/0 2 Industrial Gases and for separating N 2/0 2 in the production of medical oxygen equipment.
[0061] Le matériau adsorbant zéolithique selon la présente invention trouve ainsi une application tout particulièrement intéressante en tant qu’élément d’adsorption dans les concentrateurs d’oxygène d’assistance respiratoire. Selon un aspect particulièrement avantageux de l’invention, le matériau adsorbant zéolithique selon l’invention constitue la matière active d’une cartouche consommable d’adsorbant zéolithique, insérable dans un concentrateur d’oxygène d’assistance respiratoire, qu’il soit stationnaire, transportable, ou mobile, de préférence portatif. The zeolitic adsorbent material according to the present invention thus finds a very particularly advantageous application as an adsorption element in oxygen concentrators for respiratory assistance. According to a particularly advantageous aspect of the invention, the zeolitic adsorbent material according to the invention constitutes the active material of a consumable cartridge of zeolitic adsorbent, which can be inserted into a respiratory assistance oxygen concentrator, whether stationary, transportable, or mobile, preferably portable.
[0062] La cartouche consommable d’adsorbant zéolithique peut être de toute forme adaptée pour être facilement insérée et remplacée dans les concentrateurs d’oxygène d’assistance respiratoire. Selon un mode de réalisation ladite cartouche peut être préparée à partir du matériau adsorbant zéolithique selon l’invention sous forme de billes rendues cohésives en elles grâce à au moins une résine, de préférence une résine polymère choisie parmi de préférence les homo- et/ou copolymères thermoplastiques et les polycondensats. [0063] Des exemples non limitatifs de telles résines polymères sont les polyoléfines, notamment le polyéthylène basse et/ou haute et/ou ultra-haute densité, le polypropylène, les copolymères d'éthylène, les copolymères d'éthylène-acétate de vinyle, les polyacryliques, les homo- et ou copolymères d'acrylonitrile, les polyacrylates, les polyméthacrylates, les copolymères d'acrylate et/ou les copolymères de méthacrylate, les polystyrènes et/ou les copolymères de styrène, les polyesters, p. ex. le polyéthylène téréphtalate, le polybutylène téréphtalate, les polymères et copolymères halogénés tels que les polymères de poly(difluorure de vinylidène) (PVDF), les polymères et ou copolymères de poly(tétrafluoroéthylène) (PTFE), les polyamides, tels que le polyamide-11 et polyamide-12, ainsi que d'autres polyamides pairs et impairs, les polyamides aromatiques, les polychlorures de vinyle, les polyuréthanes, les polyéthersulfones, les polyéthercétones, les polycarbonates, les résines époxy, les résines phénoliques, les résines thermodurcissables et les résines élastomères, et analogues, ainsi que les mélanges de deux ou plusieurs d’entre elles en toutes proportions. The zeolitic adsorbent consumable cartridge can be of any suitable shape to be easily inserted and replaced in oxygen concentrators for respiratory assistance. According to one embodiment, said cartridge can be prepared from the zeolitic adsorbent material according to the invention in the form of beads made cohesive in them thanks to at least one resin, preferably a polymer resin preferably chosen from homo- and / or. thermoplastic copolymers and polycondensates. Nonlimiting examples of such polymer resins are polyolefins, in particular low and / or high and / or ultra-high density polyethylene, polypropylene, ethylene copolymers, ethylene-vinyl acetate copolymers, polyacrylics, acrylonitrile homo- and or copolymers, polyacrylates, polymethacrylates, acrylate copolymers and / or methacrylate copolymers, polystyrenes and / or styrene copolymers, polyesters, p. ex. polyethylene terephthalate, polybutylene terephthalate, halogenated polymers and copolymers such as poly (vinylidene difluoride) (PVDF) polymers, poly (tetrafluoroethylene) (PTFE) polymers and or copolymers, polyamides, such as polyamide- 11 and polyamide-12, as well as other even and odd polyamides, aromatic polyamides, polyvinyl chlorides, polyurethanes, polyethersulfones, polyetherketones, polycarbonates, epoxy resins, phenolic resins, thermosetting resins and elastomeric resins, and the like, as well as mixtures of two or more of them in all proportions.
[0064] Selon encore un autre aspect, l’invention concerne un concentrateur d’oxygène d’assistance respiratoire, transportable, mobile, de préférence portatif, comprenant au moins un matériau adsorbant zéolithique, ou au moins un lit fixe d’adsorption, ou au moins un matériau composite, ou au moins une cartouche, tels qu’ils viennent d’être décrits ci- dessus. According to yet another aspect, the invention relates to an oxygen concentrator for respiratory assistance, transportable, mobile, preferably portable, comprising at least one zeolitic adsorbent material, or at least one fixed adsorption bed, or at least one composite material, or at least one cartridge, as they have just been described above.
[0065] En variante, le matériau zéolithique utilisable dans le cadre de la présente invention peut être mis en oeuvre sous forme de couches d’adsorbants (encore dénommées lits d’adsorbants), de préférence avec une ou deux, trois, ou plus, autres couches d’adsorbants. Le ou les autres adsorbants peuvent être de tout type bien connu de l’homme du métier et on peut citer, à titre d’exemples non-limitatifs les adsorbants comprenant des zéolithes choisies parmi CaLSX, LiTrLSX, 5A, NaX, LiX, LiAgLSX, LiLSX, LiCaLSX. As a variant, the zeolitic material which can be used in the context of the present invention can be used in the form of adsorbent layers (also called adsorbent beds), preferably with one or two, three, or more, other adsorbent layers. The other adsorbent (s) can be of any type well known to those skilled in the art and mention may be made, by way of non-limiting examples, of adsorbents comprising zeolites chosen from CaLSX, LiTrLSX, 5A, NaX, LiX, LiAgLSX, LiLSX, LiCaLSX.
[0066] Selon un aspect tout particulièrement préféré, l’utilisation selon la présente invention met en oeuvre un adsorbant tel que défini précédemment en bi-couche avec un adsorbant à base de LiLSX, formant ainsi un bicouche NaLSX/LiLSX ou NaMSX/LiLSX, de préférence un bi-couche ou NaLSX/LiLSX, et de préférence encore un bicouche NaLSX/LiLSX dans lequel le ratio NaLSX/LiLSX est compris entre 5/95 et 95/5, et mieux encore entre 50/50 et 95/5, en poids. According to a very particularly preferred aspect, the use according to the present invention uses an adsorbent as defined above in a bilayer with an adsorbent based on LiLSX, thus forming a NaLSX / LiLSX or NaMSX / LiLSX bilayer, preferably a bilayer or NaLSX / LiLSX, and more preferably a NaLSX / LiLSX bilayer in which the NaLSX / LiLSX ratio is between 5/95 and 95/5, and better still between 50/50 and 95/5, in weight.
[0067] Il a été observé que le matériau adsorbant zéolithique à base de NaLSX et/ou NaMSX, tel qu’il vient d’être défini, présente une capacité d’adsorption d’oxygène inférieure à celle des matériaux adsorbants disponibles aujourd’hui, dans l’utilisation de séparation azote/oxygène, selon la présente invention, tout en conservant une très bonne capacité d’adsorption d’azote. It has been observed that the zeolitic adsorbent material based on NaLSX and / or NaMSX, as it has just been defined, has an oxygen adsorption capacity lower than that of the adsorbent materials available today. , in the use of nitrogen / oxygen separation, according to the present invention, while retaining a very good nitrogen adsorption capacity.
[0068] Cette faible capacité d’adsorption d’oxygène, couplée à une bonne capacité d’adsorption d’azote, rend le matériau adsorbant zéolithique à base de NaLSX et/ou NaMSX, tout à fait compétitif, par rapport aux adsorbants zéolithiques couramment utilisés aujourd’hui pour la séparation azote/oxygène et qui contiennent le plus souvent du lithium en quantité plus ou moins importante. En effet le matériau adsorbant zéolithique mis en oeuvre dans l’invention ne contient pas de lithium ou bien en quantités très faibles, de sorte que son coût de fabrication le rend tout à fait intéressant pour les utilisateurs. This low oxygen adsorption capacity, coupled with a good nitrogen adsorption capacity, makes the zeolitic adsorbent material based on NaLSX and / or NaMSX, quite competitive, compared to zeolitic adsorbents commonly used today for nitrogen / oxygen separation and which most often contain lithium in greater or lesser quantity. In fact, the zeolitic adsorbent material used in the invention does not contain lithium or else in very small quantities, so that its manufacturing cost makes it quite interesting for users.
[0069] Selon encore un autre aspect, l’invention concerne un concentrateur d’oxygène d’assistance respiratoire, transportable, mobile, de préférence portatif, comprenant au moins un matériau adsorbant zéolithique, ou au moins un lit fixe d’adsorption, ou au moins un matériau composite, ou au moins une cartouche, tels qu’ils viennent d’être décrits ci- dessus. According to yet another aspect, the invention relates to an oxygen concentrator for respiratory assistance, transportable, mobile, preferably portable, comprising at least one zeolitic adsorbent material, or at least one fixed adsorption bed, or at least a composite material, or at least one cartridge, such as have just been described above.
[0070] Un concentrateur tout particulièrement adapté pour la séparation d’azote et d’oxygène (N2/02), et notamment pour la préparation d’oxygène médical à partir d’air, ainsi que pour la préparation industrielle d’oxygène par (V)PSA, comprend un bicouche NaLSX/LiLSX ou NaMSX/LiLSX, de préférence un bi-couche ou NaLSX/LiLSX, et de préférence encore un bicouche NaLSX/LiLSX dans lequel le ratio NaLSX/LiLSX est compris entre 5/95 et 95/5, et mieux encore entre 50/50 et 95/5, en poids. [0070] A hub especially suitable for the separation of nitrogen and oxygen (N 2/0 2), and in particular for the preparation of medical oxygen from air and for the industrial preparation of oxygen by (V) PSA, comprises a NaLSX / LiLSX or NaMSX / LiLSX bilayer, preferably a bi-layer or NaLSX / LiLSX, and more preferably a NaLSX / LiLSX bilayer in which the NaLSX / LiLSX ratio is between 5/95 and 95/5, and more preferably between 50/50 and 95/5, by weight.
[0071] Les propriétés physiques du matériau adsorbant zéolithique utilisable dans le cadre de la présente invention sont évaluées par les méthodes connues de l'homme du métier, dont les principales d’entre elles sont rappelées ci-dessous. The physical properties of the zeolitic adsorbent material which can be used in the context of the present invention are evaluated by methods known to those skilled in the art, the main ones of which are recalled below.
[0072] Les exemples qui suivent servent à illustrer l'invention qui vient d’être décrite ci- dessus, et n’ont pas pour but de limiter la portée de protection conférée par les revendications annexées. The examples which follow serve to illustrate the invention which has just been described above, and are not intended to limit the scope of protection conferred by the appended claims.
Techniques de caractérisations - Méthodes d’analyse Characterization techniques - Analysis methods
[0073] Les propriétés physiques du matériau aggloméré zéolithique selon l’invention sont évaluées par les méthodes connues de l'homme du métier, dont les principales d’entre elles sont rappelées ci-dessous. [0074] L'estimation du diamètre moyen en nombre des cristaux de zéolithe qui sont utilisés pour la préparation du matériau aggloméré zéolithique de l’invention, est réalisée par observation au microscope électronique à balayage (MEB). The physical properties of the zeolitic agglomerated material according to the invention are evaluated by methods known to those skilled in the art, the main ones of which are recalled below. The estimation of the number-average diameter of the zeolite crystals which are used for the preparation of the zeolitic agglomerated material of the invention is carried out by observation under a scanning electron microscope (SEM).
[0075] Afin d’estimer la taille des cristaux de zéolithe sur les échantillons, on effectue un ensemble de clichés à un grossissement d'au moins 5000. On mesure ensuite le diamètre d'au moins 200 cristaux à l’aide d'un logiciel dédié, par exemple le logiciel Smile View de l’éditeur LoGraMi. La précision est de l’ordre de 3%. In order to estimate the size of the zeolite crystals on the samples, a set of photographs is taken at a magnification of at least 5000. The diameter of at least 200 crystals is then measured using a dedicated software, for example the Smile View software from the LoGraMi editor. The accuracy is in the order of 3%.
[0076] La taille retenue pour chaque cristal est celle de la plus grande section dudit cristal considéré. Les particules de taille inférieure à 0,5 pm qui pourraient éventuellement être présentes dans le matériau aggloméré zéolithique ne sont pas prises en considération dans le comptage. The size retained for each crystal is that of the largest section of said crystal considered. Particles smaller than 0.5 µm which could possibly be present in the zeolitic agglomerated material are not taken into account in the count.
[0077] La distribution granulométrique résultante équivaut à la moyenne des distributions granulométriques observées sur chacun des clichés. La largeur du pic et le diamètre moyen en nombre sont calculés selon les méthodes classiques connues de l’homme du métier, en appliquant les règles statistiques de distribution gaussienne. [0078] Une analyse chimique élémentaire d’un matériau aggloméré zéolithique selon l’invention peut être réalisée selon différentes techniques analytiques connues de l’homme du métier. Parmi ces techniques, on peut citer la technique d’analyse chimique par fluorescence de rayons X telle que décrite dans la norme NF EN ISO 12677:2011 sur un spectromètre dispersif en longueur d'onde (WDXRF), par exemple Tiger S8 de la société Bruker. The resulting particle size distribution is equivalent to the average of the particle size distributions observed on each of the photographs. The width of the peak and the number-average diameter are calculated according to conventional methods known to those skilled in the art, by applying the statistical rules of Gaussian distribution. An elementary chemical analysis of a zeolitic agglomerated material according to the invention can be carried out according to various analytical techniques known to those skilled in the art. Among these techniques, mention may be made of the technique of chemical analysis by X-ray fluorescence as described in standard NF EN ISO 12677: 2011 on a wavelength dispersive spectrometer (WDXRF), for example Tiger S8 from the company Bruker.
[0079] La fluorescence X est une technique spectrale non destructive exploitant la photoluminescence des atomes dans le domaine des rayons X, pour établir la composition élémentaire d'un échantillon. L'excitation des atomes généralement par un faisceau de rayons X ou par bombardement avec des électrons, génère des radiations spécifiques après retour à l'état fondamental de l'atome. X fluorescence is a non-destructive spectral technique using the photoluminescence of atoms in the X-ray field, to establish the elemental composition of a sample. The excitation of atoms generally by a beam of X-rays or by bombardment with electrons, generates specific radiations after return to the ground state of the atom.
[0080] D’autres méthodes d’analyse sont par exemple illustrées par les méthodes par spectrométrie d'absorption atomique (AAS) et spectrométrie d'émission atomique avec plasma induit par haute fréquence (ICP-AES) décrites dans les normes NF EN ISO 21587- 3 ou NF EN ISO 21079-3 sur un appareil de type par exemple Perkin Elmer 4300DV. Other analysis methods are for example illustrated by the methods by atomic absorption spectrometry (AAS) and atomic emission spectrometry with induced plasma at high frequency (ICP-AES) described in the NF EN ISO standards. 21587-3 or NF EN ISO 21079-3 on a device such as Perkin Elmer 4300DV.
[0081 ] Le spectre de fluorescence X a l'avantage de dépendre très peu de la combinaison chimique de l'élément, ce qui offre une détermination précise, à la fois quantitative et qualitative. On obtient de manière classique après étalonnage pour chaque oxyde Si02 et AI2O3, ainsi que les différents oxydes (tels que ceux provenant des cations échangeables, par exemple sodium), une incertitude de mesure inférieure à 0,4% en poids. The X-ray fluorescence spectrum has the advantage of depending very little on the chemical combination of the element, which offers a precise determination, both quantitative and qualitative. In a conventional manner, after calibration, for each oxide Si0 2 and Al 2 O 3 , as well as the various oxides (such as those originating from exchangeable cations, for example sodium), a measurement uncertainty of less than 0.4% by weight is obtained.
[0082] Ainsi, les analyses chimiques élémentaires décrites ci-dessus permettent à la fois de vérifier le ratio Si/Al de la zéolithe utilisée au sein du matériau aggloméré zéolithique et le ratio Si/Al du matériau aggloméré zéolithique. Dans la description de la présente invention, l’incertitude de mesure du ratio Si/Al est de ± 5%. La mesure du ratio Si/Al de la zéolithe présente dans le matériau aggloméré peut également être mesurée par spectroscopie de Résonance Magnétique Nucléaire (RMN) solide du silicium. Thus, the elementary chemical analyzes described above make it possible both to verify the Si / Al ratio of the zeolite used within the zeolitic agglomerated material and the Si / Al ratio of the zeolitic agglomerated material. In the description of the present invention, the measurement uncertainty of the Si / Al ratio is ± 5%. The measurement of the Si / Al ratio of the zeolite present in the agglomerated material can also be measured by solid Nuclear Magnetic Resonance (NMR) spectroscopy of silicon.
[0083] La qualité de l'échange ionique est liée au nombre de moles du cation considéré dans le matériau aggloméré zéolithique après échange. Plus précisément, le taux d'échange par un cation donné est estimé en évaluant le rapport entre le nombre de moles dudit cation et le nombre de moles de l’ensemble des cations échangeables. Les quantités respectives de chacun des cations sont évaluées par analyse chimique des cations correspondants. Par exemple, le taux d'échange par les ions sodium est estimé en évaluant le rapport entre le nombre total de cation Na+ et le nombre total de cations échangeables (par exemple Ca2+, K+, Li+, Ba2+, Cs+, Na+, etc.), la quantité de chacun des cations étant évaluée par analyse chimique des oxydes correspondants (Na20, CaO, K20, BaO, Li20, Cs20, etc.). Cette méthode de calcul comptabilise également les éventuels oxydes présents dans le liant résiduel du matériau aggloméré zéolithique. The quality of the ion exchange is linked to the number of moles of the cation considered in the zeolitic agglomerated material after exchange. More precisely, the rate of exchange by a given cation is estimated by evaluating the ratio between the number of moles of said cation and the number of moles of all the exchangeable cations. The respective amounts of each of the cations are evaluated by chemical analysis of the corresponding cations. For example, the exchange rate by sodium ions is estimated by evaluating the ratio between the total number of Na + cation and the total number of exchangeable cations (for example Ca 2+ , K + , Li + , Ba 2+ , Cs + , Na + , etc.), the quantity of each of the cations being evaluated by chemical analysis of the corresponding oxides (Na 2 0, CaO, K 2 0, BaO, Li 2 0, Cs 2 0, etc.). This calculation method also accounts for any oxides present in the residual binder of the zeolitic agglomerated material.
[0084] La résistance à l'écrasement en lit des matériaux adsorbants zéolithiques tels que décrits dans la présente invention est caractérisée selon la norme ASTM 7084-04. The resistance to bed crushing of zeolitic adsorbent materials as described in the present invention is characterized according to standard ASTM 7084-04.
[0085] La masse volumique apparente du matériau aggloméré zéolithique selon la présente invention est mesurée comme décrit dans la norme DIN 8948/7.6. The apparent density of the zeolitic agglomerated material according to the present invention is measured as described in standard DIN 8948 / 7.6.
[0086] La pureté des zéolithes dans les matériaux adsorbants zéolithiques de l’invention est évaluée par analyse de diffraction aux rayons X, connue de l’homme du métier sous l’acronyme DRX. Cette identification est réalisée sur un appareil DRX de la marque Bruker. [0087] Cette analyse permet d’identifier les différentes zéolithes présentes dans le matériau aggloméré car chacune des zéolithes possède un diffractogramme unique défini par le positionnement des pics de diffraction et par leurs intensités relatives. The purity of the zeolites in the zeolitic adsorbent materials of the invention is evaluated by X-ray diffraction analysis, known to those skilled in the art by the acronym DRX. This identification is carried out on a DRX device of the Bruker brand. This analysis makes it possible to identify the different zeolites present in the agglomerated material because each of the zeolites has a unique diffractogram defined by the positioning of the diffraction peaks and by their relative intensities.
[0088] Les matériaux adsorbants zéolithiques sont broyés puis étalés et lissés sur un porte échantillon par simple compression mécanique Les conditions d’acquisition du diffractogramme réalisé sur l’appareil D8 ADVANCE de Bruker sont les suivantes : The zeolitic adsorbent materials are ground and then spread and smoothed on a sample holder by simple mechanical compression. The conditions for acquiring the diffractogram produced on the D8 ADVANCE device from Bruker are as follows:
• tube Cu utilisé à 40 kV - 30 mA ; • Cu tube used at 40 kV - 30 mA;
• taille des fentes de Soller = 2,50 , avec largeur cb la surface d’irradiation de 16 mm ; • size of the Soller's slits = 2.5 0 , with width cb the irradiation surface of 16 mm;
• dispositif d’échantillon tournant : 10 tr.min 1 ; • rotating sample device: 10 rpm 1 ;
• plage de mesure : 4° < 2Q < 70° ; • measuring range: 4 ° <2Q <70 °;
• pas : 0,015° ; • pitch: 0.015 °;
• temps de comptage par pas : 0,8 secondes. • counting time per step: 0.8 seconds.
[0089] L’interprétation du diffractogramme obtenu s’effectue avec le logiciel EVA avec identification des zéolithes à l’aide de la base ICDD PDF-2, release 2011 . The interpretation of the diffractogram obtained is carried out with the EVA software with identification of the zeolites using the ICDD PDF-2 database, release 2011.
[0090] La quantité des fractions zéolithiques FAU, en poids, est mesurée par analyse par fluorescence X ou par DRX, cette dernière méthode peut également être utilisée pour mesurer la quantité des fractions zéolithiques autres que FAU. L’analyse par DRX est généralement réalisée sur un appareil de la marque Bruker, puis la quantité en poids des fractions zéolithiques est évaluée au moyen du logiciel TOPAS de la société Bruker. The amount of FAU zeolite fractions, by weight, is measured by X-ray fluorescence analysis or by XRD, the latter method can also be used to measure the amount of zeolite fractions other than FAU. The XRD analysis is generally carried out on a device of the Bruker brand, then the amount by weight of the zeolitic fractions is evaluated using the TOPAS software from the Bruker company.
[0091] Préalablement à l'adsorption, le matériau aggloméré zéolithique est dégazé entre 300°C et 450°C pendant une durée comprise entre 9 læ u res et 16 heures, sous vide (Pression inférieure à 6,7.10_4 Pa). La mesure des isothermes d’adsorption est ensuite effectuée sur un appareil de type IGA de marque Hiden Isochema en prenant au moins 10 points à des pressions comprises entre 0 et 4 bar (0,4 MPa). La capacité massique d’adsorption du matériau aggloméré zéolithique est lue sur l’isotherme à 25°C, sous une pression de 4 bar, et exprimée en Ncm3 g 1. [0092] La capacité massique d’adsorption à 25°C, sous 4 bar (0,4 MPa), du matériau aggloméré zéolithique est déterminée à partir de la mesure de l’isotherme d’adsorption de gaz, tels que l’azote ou l’oxygène, à 25 °C. Prior to adsorption, the zeolitic agglomerated material is degassed between 300 ° C and 450 ° C for a period of between 9 læ u res and 16 hours, under vacuum (pressure less than 6.7.10 _4 Pa). The measurement of the adsorption isotherms is then carried out on an IGA type device of the Hiden Isochema brand, taking at least 10 points at pressures between 0 and 4 bar (0.4 MPa). The mass adsorption capacity of the zeolitic agglomerated material is read on the isotherm at 25 ° C., under a pressure of 4 bar, and expressed in Ncm 3 g 1 . The mass adsorption capacity at 25 ° C, under 4 bar (0.4 MPa), of the zeolitic agglomerated material is determined from the measurement of the adsorption isotherm of gases, such as nitrogen or oxygen, at 25 ° C.
[0093] La détermination du diamètre volumique moyen (ou « diamètre moyen en volume ») du matériau aggloméré zéolithique de l'invention est effectuée par analyse de la distribution granulométrique d'un échantillon de matériau adsorbant par imagerie selon la norme ISO 13322-2:2006, en utilisant un tapis roulant permettant à l'échantillon de passer devant l'objectif de la caméra. The determination of the mean volume diameter (or “volume mean diameter”) of the zeolitic agglomerated material of the invention is carried out by analyzing the particle size distribution of a sample of adsorbent material by imaging according to the ISO 13322-2 standard. : 2006, using a conveyor belt allowing the sample to pass in front of the camera lens.
[0094] Le diamètre moyen en volume est ensuite calculé à partir de la distribution granulométrique en appliquant la norme ISO 9276-2:2001. Dans le présent document, on emploie l'appellation « diamètre moyen en volume » ou bien « taille » pour les matériaux adsorbants zéolithiques. La précision est de l’ordre de 0,01 mm pour la gamme de taille des matériaux adsorbants zéolithiques de la présente invention. EXEMPLES The volume mean diameter is then calculated from the particle size distribution by applying the ISO 9276-2: 2001 standard. In the present document, the term “volume mean diameter” or “size” is used for zeolitic adsorbent materials. The accuracy is on the order of 0.01 mm for the size range of the zeolite adsorbent materials of the present invention. EXAMPLES
Adsorbant A : NaLSX - Ratio Si/Al = 1 ,00 (selon l’invention) Adsorbent A: NaLSX - Si / Al Ratio = 1.00 (according to the invention)
[0095] On prépare un mélange homogène constitué de 1700 g de cristaux de zéolithe LSX de diamètre moyen en nombre (d5o) = 7 pm, selon le mode opératoire décrit dans la demande de brevet W02009081022, avec 300 g d’attapulgite Zeoclay®, ainsi que de la quantité d’eau telle que la perte au feu de la pâte avant mise en forme est de 39%. On utilise la pâte ainsi préparée pour réaliser des billes de matériau aggloméré zéolithique. [0096] Une sélection par tamisage des billes obtenues est réalisée de façon à recueillir des billes de diamètre compris entre 0,2 mm et 0,8 mm. A homogeneous mixture is prepared consisting of 1700 g of LSX zeolite crystals of number-average diameter (d 5 o) = 7 μm, according to the procedure described in patent application WO2009081022, with 300 g of attapulgite Zeoclay ® , as well as the quantity of water such that the loss on ignition of the dough before shaping is 39%. The paste thus prepared is used to produce beads of zeolitic agglomerated material. A selection by sieving of the beads obtained is carried out so as to collect beads with a diameter of between 0.2 mm and 0.8 mm.
[0097] Les billes sont séchées une nuit en étuve ventilée à 80 °C. Elles sont ensuite calcinées pendant 2 h à 550 °C sous balayage à l’airsec décarbonaté. The beads are dried overnight in a ventilated oven at 80 ° C. They are then calcined for 2 hours at 550 ° C under sweeping in decarbonated air dry.
[0098] On procède ensuite à cinq échanges successifs au moyen de solutions de chlorure de sodium 2 M, à raison de 20 mL g-1 de solide. Chaque échange est poursuivi pendant 4 heures à 100° C, et des lavages intermédiaires sont effectués, permettant ainsi d’éliminer l’excès de sel à chaque étape. À l’étape finale, quatre lavages sont effectués à température ambiante, à raison de 20 mL g-1. Le taux d’échange sodium est de 99,6%. Five successive exchanges are then carried out by means of 2 M sodium chloride solutions, at a rate of 20 mL g -1 of solid. Each exchange is continued for 4 hours at 100 ° C., and intermediate washes are carried out, thus making it possible to eliminate the excess salt at each stage. In the final step, four washes are carried out at room temperature, at a rate of 20 mL g -1 . The sodium exchange rate is 99.6%.
[0099] Les billes sont séchées une nuit en étude ventilée à 80 °C. Elles sont ensuite activées pendant 2 heures à 550 °C sous balayage d’àr sec décarbonaté. Adsorbant B : NaX - Ratio Si/AI = 1,24 (exemple comparatif) The beads are dried overnight in a ventilated study at 80 ° C. They are then activated for 2 hours at 550 ° C. under sweeping with decarbonated dry air. Adsorbent B: NaX - Si / AI ratio = 1.24 (comparative example)
[0100] On prépare un mélange homogène constitué de 1700 g de cristaux de zéolithe X de diamètre moyen en nombre (d5o) = 1 ,8 pm et de rapport Si/Al = 1 ,24 tels que préparés dans l’exemple 1 du brevet US10300455 B2, avec 300 g d’attapulgite Zeoclay®, ainsi que de la quantité d’eau telle que la perte au feu de la pâte avant mise en forme est de 39%. On utilise la pâte ainsi préparée pour réaliser des billes de matériau aggloméré zéolithique. Une sélection par tamisage des billes obtenues est réalisée de façon à recueillir des billes de diamètre compris entre 0,2 mm et 0,8 mm. Le taux d’échange sodium est de 100%. [0101] Les billes sont séchées une nuit en étuve ventilée à 80 °C. Elles sont ensuite calcinées et activées pendant 2 h à 550 °C sous bal¾/age à l’air sec décarbonaté. A homogeneous mixture is prepared consisting of 1700 g of crystals of zeolite X of number-average diameter (d 5 o) = 1.8 μm and of Si / Al ratio = 1.24 as prepared in Example 1 patent US10300455 B2, with 300 g of attapulgite Zeoclay ®, as well as the amount of water such that the loss on ignition of the dough before forming is 39%. The paste thus prepared is used to produce beads of zeolitic agglomerated material. A selection by sieving of the beads obtained is carried out so as to collect beads with a diameter of between 0.2 mm and 0.8 mm. The sodium exchange rate is 100%. The beads are dried overnight in a ventilated oven at 80 ° C. They are then calcined and activated for 2 h at 550 ° C. under bal¾ / age in decarbonated dry air.
Adsorbant C : NaMSX - Ratio Si/Al = 1,13 (selon l’invention) Adsorbent C: NaMSX - Si / Al ratio = 1.13 (according to the invention)
[0102] On prépare un mélange homogène constitué de 1700 g de cristaux de zéolithe MSX (Si/Al = 1 ,13) préparé selon le tableau 4 exemple 26 du brevet US6596256, avec 300 g d’attapulgite Zeoclay®, ainsi que de la quantité d’eau telle que la perte au feu de la pâte avant mise en forme est de 39%. On utilise la pâte ainsi préparée pour réaliser des billes de matériau aggloméré zéolithique. [0102] There was prepared a homogeneous mixture of 1700 g of zeolite crystals MSX (Si / Al = 1, 13) prepared according to Table 4 Example 26 of the patent US6596256, with 300 g of attapulgite Zeoclay ®, as well as the quantity of water such that the loss on ignition of the dough before shaping is 39%. The paste thus prepared is used to produce beads of zeolitic agglomerated material.
[0103] Une sélection par tamisage des billes obtenues est réalisée de façon à recueillir des billes de diamètre compris entre 0,2 mm et 0,8 mm. [0104] Les billes sont séchées une nuit en étuve ventilée à 80 °C. Elles sont ensuite calcinées et activées pendant 2 h à 550 °C sous bal¾/age à l’air sec décarbonaté. Le taux d’échange sodium est de 100%. A selection by sieving of the beads obtained is carried out so as to collect beads with a diameter of between 0.2 mm and 0.8 mm. The beads are dried overnight in a ventilated oven at 80 ° C. They are then calcined and activated for 2 h at 550 ° C under bal¾ / age in decarbonated dry air. The sodium exchange rate is 100%.
Exemple 1 : Isothermes d’adsorption massiques d’azote et d’oxygène [0105] Les isothermes d’adsorption pour chacun des adsorbants A, B et C sont tracées selon les conditions décrites plus haut, grâce à l’appareil de type IGA de marque Hiden Isochema. Les isothermes d’azote (N2) et d’oxygène (02) sont reportées sur le graphe de la Figure 1. Example 1 Mass Adsorption Isotherms of Nitrogen and Oxygen The adsorption isotherms for each of the adsorbents A, B and C are plotted according to the conditions described above, using the IGA-type apparatus of Hiden Isochema brand. The isotherms of nitrogen (N 2 ) and oxygen (0 2 ) are shown on the graph in Figure 1.
[0106] Il ressort très clairement que les Adsorbants A, B et C ont un comportement tout à fait similaire en ce qui concerne les capacités d’adsorption d’azote. En revanche il est observé, de manière tout à fait surprenante, que les Adsorbants A et C selon l’invention présentent des capacités d’adsorption d’oxygène bien inférieures à celles observées avec l’Adsorbant B comparatif. Les Adsorbants A (NaLSX) et C (NaMSX) selon l’invention, tout en étant aussi efficaces que l’Adsorbant B (NaX) comparatif, pour ce qui est de l’adsorption d’azote, montrent de manière tout à fait inattendue une capacité d’adsorption plus faible vis-à-vis de l’oxygène. It emerges very clearly that the adsorbents A, B and C have quite similar behavior with regard to the nitrogen adsorption capacities. On the other hand, it is observed, quite surprisingly, that Adsorbents A and C according to the invention exhibit oxygen adsorption capacities much lower than those observed with comparative Adsorbent B. Adsorbents A (NaLSX) and C (NaMSX) according to the invention, while being as effective as comparative Adsorbent B (NaX), as regards adsorption of nitrogen, quite unexpectedly show a lower adsorption capacity with respect to oxygen.
[0107] Ainsi, les adsorbants zéolithiques utilisables dans le cadre de la présente invention sont particulièrement bien adaptés pour une utilisation dans les concentrateurs d’oxygène médical, où l’azote est retenu sur les adsorbants, alors que l’oxygène est beaucoup moins retenu, et peut ainsi être disponible plus directement depuis un appareil de séparation de l’oxygène de l’air. [0107] Thus, the zeolitic adsorbents which can be used in the context of the present invention are particularly well suited for use in medical oxygen concentrators, where the nitrogen is retained on the adsorbents, while the oxygen is much less retained. , and thus may be available more directly from an air oxygen separation apparatus.
[0108] Cet effet surprenant est particulièrement visible avec les mesures de capacités d’adsorption réalisées à une pression supérieure à 1 ,5 bar (0,15 MPa), de préférence supérieure à 2 bar (0,2 MPa), de préférence encore supérieure à 2,5 bar (0,25 MPa), mieux encore supérieure à 3 bar (0,3 MPa), plus préférentiellement supérieure à 3,5 bar (0,35 MPa), et typiquement supérieure à 4 bar (0,4 MPa), ce qui permet d’envisager des pressions de travail optimales dans les utilisations prévues dans le cadre de l’invention e notamment pour les concentrateurs d’oxygène médical, comme déjà indiqué plus haut. [0109] Le Tableau 1 ci-dessous rassemble les valeurs des capacités massiques d’adsorption d’azote et d’oxygène, mesurées à 4 bar (0,4 MPa). This surprising effect is particularly visible with the adsorption capacity measurements carried out at a pressure greater than 1.5 bar (0.15 MPa), preferably greater than 2 bar (0.2 MPa), more preferably. greater than 2.5 bar (0.25 MPa), better still greater than 3 bar (0.3 MPa), more preferably greater than 3.5 bar (0.35 MPa), and typically greater than 4 bar (0, 4 MPa), which makes it possible to envisage optimal working pressures in the uses provided for in the context of the invention, in particular for medical oxygen concentrators, as already indicated above. [0109] Table 1 below collates the values of the mass nitrogen and oxygen adsorption capacities, measured at 4 bar (0.4 MPa).
-- Tableau 1 -- - Table 1 -
[0110] Il ressort clairement que la capacité massique d’adsorption d’oxygène est d’autant plus faible que le ratio molaire Si/Al est inférieur à 1 ,20, de préférence inférieur à 1 ,15 et de préférence encore inférieur à 1 ,12, alors que la capacité massique d’adsorption d’azote reste sensiblement constante. Il y a donc un très grand intérêt à utiliser des adsorbants de ratio molaire Si/Al est inférieur à 1 ,20, de préférence inférieur à 1 ,15 et de préférence encore inférieur à 1 ,12, c’est-à-dire des adsorbants à base de zéolithes NaLSX ou NaMSX, et de préférence à base de zéolithes NaLSX, pour la préparation d’oxygène médical obtenu par séparation des gaz de l’air. [0110] It clearly emerges that the mass oxygen adsorption capacity is all the lower the lower the Si / Al molar ratio is than 1.20, preferably less than 1.15 and more preferably less than 1. , 12, while the mass nitrogen adsorption capacity remains substantially constant. There is therefore a very great advantage in using adsorbents with an Si / Al molar ratio of less than 1.20, preferably less than 1.15 and more preferably less than 1.12, that is to say adsorbents based on NaLSX or NaMSX zeolites, and preferably based on NaLSX zeolites, for the preparation of medical oxygen obtained by separation of gases from air.

Claims

REVENDICATIONS
1. Utilisation d’un matériau adsorbant zéolithique : 1. Use of a zeolitic adsorbent material:
- à base de cristaux de zéolithe faujasite (FAU), dont le ratio molaire Si/Al est compris entre 1 ,00 et 1 ,20, de préférence entre 1 ,00 et 1 , 15 et de préférence 1 ,00 et 1 , 12, bornes incluses, et - based on faujasite zeolite (FAU) crystals, the Si / Al molar ratio of which is between 1.00 and 1.20, preferably between 1.00 and 1.15 and preferably 1.00 and 1.12 , terminals included, and
- de teneur en phase non zéolithique (PNZ) telle que 0 < PNZ < 25%, de préférence 0 < PNZ < 20%, de préférence encore 0 < PNZ < 15%, avantageusement 0 < PNZ < 10%, encore plus avantageusement 0 < PNZ < 8%, en poids par rapport au poids total du matériau adsorbant zéolithique, pour la séparation non cryogénique des gaz industriels en (V)PSA, en particulier pour la séparation d’azote et d’oxygène (N2/02), et tout particulièrement pour la préparation d’oxygène médical à partir d’air, ainsi que pour la préparation industrielle d’oxygène par (V)PSA. - With a non-zeolitic phase (PNZ) content such that 0 <PNZ <25%, preferably 0 <PNZ <20%, more preferably 0 <PNZ <15%, advantageously 0 <PNZ <10%, even more advantageously 0 <PNZ <8%, by weight relative to the total weight of the adsorbent zeolite material, for the non-cryogenic separation of industrial gases (V) PSA, particularly for the separation of nitrogen and oxygen (N 2/0 2 ), and more particularly for the preparation of medical oxygen from air, as well as for the industrial preparation of oxygen by (V) PSA.
Utilisation selon la revendication 1 , dans laquelle la teneur en sodium de l’adsorbant zéolithique est supérieure à 95%, de préférence supérieure à 97%, de préférence encore supérieure à 98%, de préférence encore supérieure à 99%, bornes incluses, ces teneurs en sodium étant exprimées en pourcentages de sites échangeables. Use according to Claim 1, in which the sodium content of the zeolitic adsorbent is greater than 95%, preferably greater than 97%, more preferably greater than 98%, more preferably greater than 99%, limits included, these sodium contents being expressed as percentages of exchangeable sites.
3. Utilisation selon la revendication 1 ou la revendication 2, dans laquelle les cristaux de zéolithe(s) qui forment ledit adsorbant zéolithique sont choisis parmi les cristaux de zéolithe de type FAU LSX (ratio Si/Al égal à 1 ,00), et les zéolithes de type FAU MSX (ratio Si/Al répondant à l’inéquation 1 ,00 < Si/Al < 1 ,20). 3. Use according to claim 1 or claim 2, wherein the zeolite crystals (s) which form said zeolitic adsorbent are chosen from FAU LSX type zeolite crystals (Si / Al ratio equal to 1.00), and zeolites of the FAU MSX type (Si / Al ratio corresponding to the inequation 1.00 <Si / Al <1. 20).
4. Utilisation selon l’une quelconque des revendications précédentes, dans laquelle le matériau adsorbant zéolithique présente un diamètre volumique moyen inférieur ou égal à 7 mm, de préférence compris entre 0,05 mm et 5 mm, de manière encore préférée compris entre 0,2 mm et 3 mm. 4. Use according to any one of the preceding claims, in which the zeolitic adsorbent material has an average volume diameter less than or equal to 7 mm, preferably between 0.05 mm and 5 mm, more preferably between 0, 2 mm and 3 mm.
5. Utilisation selon l’une quelconque des revendications précédentes, dans laquelle ledit matériau adsorbant zéolithique présente une masse volumique apparente comprise entre 0,55 kg nr3 et 0,80 kg nr3, de préférence entre 0,58 kg nr3 et 0,75 kg nr3, de préférence encore entre 0,60 kg nr3 et 0,70 kg nr3. 5. Use according to any one of the preceding claims, in which said zeolitic adsorbent material has a bulk density of between 0.55 kg nr 3 and 0.80 kg nr 3 , preferably between 0.58 kg nr 3 and 0 , 75 kg nr 3 , more preferably between 0.60 kg nr 3 and 0.70 kg nr 3 .
6. Utilisation selon l’une quelconque des revendications précédentes, dans laquelle ledit matériau adsorbant zéolithique présente une capacité d’adsorption massique d’azote (N ), mesurée sous 4 bar (0,4 MPa) à 25°C supérieure à 23 Nom3 g-1, de préférence supérieure à 24 Nom3 g-1, de préférence encore supérieure à 25 Ncm3 g-1, de manière tout particulièrement préférée supérieure à 26 Ncm3 g-1. 6. Use according to any one of the preceding claims, wherein said zeolitic adsorbent material has a mass nitrogen (N) adsorption capacity, measured under 4 bar (0.4 MPa) at 25 ° C greater than 23 Nom. 3 g -1 , preferably greater than 24 Nom 3 g -1 , more preferably greater than 25 Ncm 3 g -1 , very particularly preferably greater than 26 Ncm 3 g -1 .
7. Utilisation selon l’une quelconque des revendications précédentes, en tant qu’élément d’adsorption dans les concentrateurs d’oxygène d’assistance respiratoire. 7. Use according to any one of the preceding claims, as an adsorption element in oxygen concentrators for respiratory assistance.
8. Utilisation selon l’une quelconque des revendications précédentes, dans laquelle ledit matériau zéolithique est mis en oeuvre sous forme de couches d’adsorbants, de préférence avec une ou deux, trois, ou plus, autres couches d’adsorbants. 8. Use according to any one of the preceding claims, wherein said zeolitic material is implemented in the form of layers of adsorbents, preferably with one or two, three, or more, other layers of adsorbents.
9. Utilisation selon la revendication précédente, dans laquelle le ou les autres adsorbants comprennent des zéolithes choisies parmi CaLSX, LiTrLSX, 5A, NaX, LiX, LiAgLSX, LiLSX, LiCaLSX. 9. Use according to the preceding claim, in which the other adsorbent (s) comprise zeolites chosen from CaLSX, LiTrLSX, 5A, NaX, LiX, LiAgLSX, LiLSX, LiCaLSX.
10. Utilisation selon la revendication 8 ou la revendication 9, mettant en oeuvre ledit adsorbant en bi-couche avec un adsorbant à base de LiLSX, formant un bicouche NaLSX/LiLSX ou NaMSX/LiLSX, de préférence un bi-couche ou NaLSX/LiLSX, et de préférence encore un bicouche NaLSX/LiLSX dans lequel le ratio NaLSX/LiLSX est compris entre 5/95 et 95/5, et mieux encore entre 50/50 et 95/5, en poids. 10. Use according to claim 8 or claim 9, using said adsorbent in a bilayer with an adsorbent based on LiLSX, forming a NaLSX / LiLSX or NaMSX / LiLSX bilayer, preferably a bi-layer or NaLSX / LiLSX. , and more preferably a NaLSX / LiLSX bilayer in which the NaLSX / LiLSX ratio is between 5/95 and 95/5, and better still between 50/50 and 95/5, by weight.
11. Concentrateur d’oxygène d’assistance respiratoire, transportable, mobile, comprenant au moins un matériau adsorbant zéolithique mis en oeuvre dans l’utilisation selon l’une quelconque des revendications 1 à 10. 11. Breathing assistance oxygen concentrator, transportable, mobile, comprising at least one zeolitic adsorbent material used in the use according to any one of claims 1 to 10.
12. Concentrateur selon la revendication 11 , comprenant un bicouche NaLSX/LiLSX ou NaMSX/LiLSX, de préférence un bi-couche ou NaLSX/LiLSX, et de préférence encore un bicouche NaLSX/LiLSX dans lequel le ratio NaLSX/LiLSX est compris entre 5/95 et 95/5, et mieux encore entre 50/50 et 95/5, en poids. 12. Concentrator according to claim 11, comprising a NaLSX / LiLSX or NaMSX / LiLSX bilayer, preferably a bi-layer or NaLSX / LiLSX, and more preferably a NaLSX / LiLSX bilayer in which the NaLSX / LiLSX ratio is between 5. / 95 and 95/5, and better still between 50/50 and 95/5, by weight.
EP20821052.6A 2019-11-27 2020-11-23 Separation of gases from air Pending EP4065253A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1913287A FR3103393B1 (en) 2019-11-27 2019-11-27 AIR GAS SEPARATION
PCT/FR2020/052148 WO2021105598A1 (en) 2019-11-27 2020-11-23 Separation of gases from air

Publications (1)

Publication Number Publication Date
EP4065253A1 true EP4065253A1 (en) 2022-10-05

Family

ID=69811093

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20821052.6A Pending EP4065253A1 (en) 2019-11-27 2020-11-23 Separation of gases from air

Country Status (12)

Country Link
US (1) US20220387923A1 (en)
EP (1) EP4065253A1 (en)
JP (1) JP2023503620A (en)
KR (1) KR20220082077A (en)
CN (1) CN114728230B (en)
AU (2) AU2020394572A1 (en)
CA (1) CA3153854C (en)
FR (1) FR3103393B1 (en)
IL (1) IL292022A (en)
TW (1) TWI801779B (en)
WO (1) WO2021105598A1 (en)
ZA (1) ZA202204148B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114082409A (en) * 2021-11-25 2022-02-25 大连理工大学 Hydrophobic LSX type molecular sieve for air separation oxygen enrichment, and preparation method and application thereof

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3575413D1 (en) 1984-08-02 1990-02-22 Tolsa Sa SEPIOLITE PRODUCT WITH DETERMINED FLOW RESISTANCE AND METHOD FOR THE PRODUCTION THEREOF.
US5152813A (en) * 1991-12-20 1992-10-06 Air Products And Chemicals, Inc. Nitrogen adsorption with a Ca and/or Sr exchanged lithium X-zeolite
US5441557A (en) * 1993-12-14 1995-08-15 Praxair Technology, Inc. Enhanced gas separations and zeolite compositions therefor
US5464467A (en) 1994-02-14 1995-11-07 The Boc Group, Inc. Adsorptive separation of nitrogen from other gases
US6027548A (en) 1996-12-12 2000-02-22 Praxair Technology, Inc. PSA apparatus and process using adsorbent mixtures
FR2766476B1 (en) 1997-07-22 1999-09-03 Ceca Sa IMPROVED ZEOLITIC ADSORBENT FOR THE SEPARATION OF AIR GASES AND PROCESS FOR OBTAINING SAME
FR2784599B1 (en) * 1998-10-20 2000-12-08 Air Liquide PROCESS FOR PURIFYING A GAS STREAM IN ITS N2O IMPURITIES
JP2000202281A (en) * 2000-04-20 2000-07-25 Air Water Inc Selective nitrogen adsorbent and separation of air using same
EP1184067B1 (en) * 2000-08-28 2006-11-08 The Boc Group, Inc. Process for adsorptive purification of air
US6596256B1 (en) 2000-08-28 2003-07-22 The Boc Group, Inc. Synthesis of low silicon sodium X zeolite
US6743745B2 (en) 2002-01-22 2004-06-01 Zeochem Process for production of molecular sieve adsorbent blends
FR2925478B1 (en) 2007-12-20 2009-12-18 Ceca Sa ZEOLITE TYPE LSX WITH CONTROLLED GRANULOMETRY
FR3010402B1 (en) * 2013-09-09 2015-08-28 Ceca Sa EXTERNAL HIGH SURFACE ZEOLITHIC ADSORBENTS, PROCESS FOR THEIR PREPARATION AND USES THEREOF
FR3024667B1 (en) * 2014-08-05 2022-01-14 Ceca Sa ZEOLITHIC ADSORBENTS WITH A LOW BINDER RATE AND A HIGH EXTERNAL SURFACE, THEIR PREPARATION PROCESS AND THEIR USES
FR3024662B1 (en) * 2014-08-05 2016-12-09 Ifp Energies Now METHOD FOR SEPARATING META-XYLENE USING EXTERNAL HIGH SURFACE ZEOLITHIC ADSORBENT
FR3025789B1 (en) 2014-09-12 2018-04-20 Arkema France ZEOLITH NANOCRYSTAL AGGREGATES
FR3028429B1 (en) * 2014-11-13 2016-12-09 Ceca Sa ZEOLITHIC ADSORBENT BASED ON MESOPOROUS ZEOLITE
FR3032130B1 (en) * 2015-02-02 2019-12-27 Arkema France ZEOLITHIC ADSORBENTS WITH A HIGH EXTERNAL SURFACE, THEIR PREPARATION METHOD AND THEIR USES
FR3059571B1 (en) 2016-12-02 2018-11-16 Arkema France ZEOLITHIC ADSORBENT MATERIAL, PROCESS FOR THE PREPARATION AND USE FOR THE NON-CRYOGENIC SEPARATION OF INDUSTRIAL GASES

Also Published As

Publication number Publication date
ZA202204148B (en) 2023-11-29
TWI801779B (en) 2023-05-11
CN114728230B (en) 2024-02-06
CA3153854C (en) 2023-08-29
FR3103393A1 (en) 2021-05-28
FR3103393B1 (en) 2022-07-01
TW202128551A (en) 2021-08-01
KR20220082077A (en) 2022-06-16
US20220387923A1 (en) 2022-12-08
CA3153854A1 (en) 2021-06-03
CN114728230A (en) 2022-07-08
JP2023503620A (en) 2023-01-31
WO2021105598A1 (en) 2021-06-03
AU2020394572A1 (en) 2022-05-26
AU2024201578A1 (en) 2024-03-28
IL292022A (en) 2022-06-01

Similar Documents

Publication Publication Date Title
EP3253484B1 (en) Use of zeolite adsorbents having a high external surface area
EP2931417B1 (en) Zeolitic adsorbents and uses thereof
CA2974765C (en) Zeolite adsorbents having a high external surface area and uses thereof
EP3043902B1 (en) Zeolitic adsorbents with large external surface area comprising baryum and/or potassium and uses thereof
EP2991760B1 (en) Zeolite adsorbents comprising emt zeolite, method for preparing same and uses thereof
CA3044620C (en) Zeolite adsorbent material, method of preparation and use for non-cryogenic separation of industrial gases
EP3319723B1 (en) Zeolitic adsorbents, method for the production thereof, and uses of same
EP3347116B1 (en) Use of molecular sieves for decarbonating natural gas
CA3153854C (en) Separation of gases from air
WO2021123662A1 (en) Zeolite adsorbent for separating hydrocarbon isomers
CA3122607C (en) Zeolite agglomerate material, method of production, and use for the non-cryogenic separation of gas
EP4076732A1 (en) Zeolite adsorbent for the separation of hydrocarbon isomers
EP3727678B1 (en) Zeolitic adsorbents containing strontium and barium

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220425

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)