EP4047642A1 - Hybrid substrate with improved insulation - Google Patents
Hybrid substrate with improved insulation Download PDFInfo
- Publication number
- EP4047642A1 EP4047642A1 EP22167250.4A EP22167250A EP4047642A1 EP 4047642 A1 EP4047642 A1 EP 4047642A1 EP 22167250 A EP22167250 A EP 22167250A EP 4047642 A1 EP4047642 A1 EP 4047642A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- zone
- insulation
- active
- semiconductor material
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/7624—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
- H01L21/76264—SOI together with lateral isolation, e.g. using local oxidation of silicon, or dielectric or polycristalline material refilled trench or air gap isolation regions, e.g. completely isolated semiconductor islands
Definitions
- field-effect transistors formed on substrates of the silicon-on-insulator type has numerous advantages, in particular, a simplification of the design of the integrated circuits and an improvement in the performance of the devices.
- the substrates used have increasingly thin silicon and buried oxide thicknesses.
- hybrid substrates are used. As shown in figure 1 , these hybrid substrates comprise a first active zone 1 in first semiconductor material 2, typically a semiconductor-on-insulator zone and a second active zone 3 in second semiconductor material 4 which is of the solid substrate type. The first 1 and second 3 active zones are laterally separated by an isolation zone 5.
- these hybrid substrates are made from a stem substrate of the semiconductor-on-insulator type which is transformed in order to present the two types of active zones 1, 3.
- the stem substrate comprises an insulation layer 6 which is arranged between the first and second semiconductor materials.
- These two types of active areas are then used to form different devices.
- a conventional way of producing such a hybrid substrate is to etch the second semiconductor material 4 and the insulation layer 6 to reach the first semiconductor material 2, once the insulation zones have been produced.
- the silicon substrate is exposed and forms the first active area 1.
- the insulation area 5 sinks into the silicon substrate 2 and is higher than the layer of silicon on insulator of the second active area 3
- the first active zone 1 is therefore enclosed between the different isolation zones 5.
- the process for producing a hybrid substrate is complicated to implement. It requires the alignment of a photolithography and etching step with respect to the various active zones present. A misalignment of the second active 3 protection step results in the obtaining of spurious patterns in the first 1 and/or the second 3 active zones and an at least partial elimination of a insulation patterns 5 bordering the first 1 and/or second 3 active zones. It therefore appears that the production method greatly limits the possibilities of integrating the structure from an industrial point of view.
- the substrate obtained is also not optimal because it is less practical to use than conventional substrates and the circuits obtained do not have a lifetime and a manufacturing yield as good as the circuits produced on conventional substrates.
- the subject of the invention is a substrate which is particularly advantageous for the production of integrated circuits with a high manufacturing yield.
- the insulation zone comprises a first portion bordering at least one lateral edge of the first active zone, the first portion and the first active area having a free main face forming the same plane with the interface between the first semiconductor material layer and the insulation layer, the insulation area and the first active area having complementary shapes along an interface between the isolation zone and the first active zone.
- the starting substrate is a stub substrate which comprises at least one layer of first semiconductor material 2, a layer of second semiconductor material 4 and an insulation layer 6.
- the stub substrate also comprises a support layer 7 .
- the layer of first semiconductor material 2 can be formed on the surface of the support layer 7 or be formed by a surface area of the support layer 7, that is to say in the support layer 7 ( picture 2 ).
- the first semiconductor material layer 2 can also be of the semiconductor-on-insulator type, for example of the partially depleted type. It is then separated from support layer 7 by a dielectric material called buried dielectric (not shown). Therefore, the first semiconductor material 2 can be in the same material as the support layer 7 or else in a different material. It is also possible that the layer support 7 and the first semiconductor material 2 have the same crystallographic orientation or different orientations.
- the second semiconductor material layer 4 is separated from the first semiconductor material layer 2 by at least one insulation layer 6.
- the second semiconductor material 4 is therefore of the semiconductor-on-insulator type.
- the second semiconductor material 4 is separated from the support layer 7 at least by the insulation layer 6 if the first semiconductor material 2 is made directly on the surface of the support layer 7.
- the first 2 and second 4 semiconductor materials can be in the same or different materials and have the same or different orientations.
- the stem substrate comprises at least successively the support layer 7, the layer of first semiconductor material 2, the insulation layer 6 and the second layer. semiconductor material 4.
- the stem substrate may also comprise additional layers of semiconductor materials and additional insulation layers.
- the layer of first semiconductor material 2 is placed between the support layer 7 and the insulation layer 6.
- the insulation layer 6 is placed between the first 2 and second 4 semiconductor materials.
- the source substrate can therefore be of the semiconductor-on-insulator type.
- the hybrid substrate having to be used to produce integrated circuits, it is advantageous to limit as much as possible the difference in height between the main surface of the first active zone 1 in first semiconductor material 2 and the main surface of the second active zone 3 in second semiconductor material 4.
- the main surface of the active zones is the surface on which a transistor or an electronic device in general is formed. More this difference in height is significant and the more difficult it is to carry out good quality photolithography steps because of the depth of field limitations of the equipment used.
- an etching mask 8 is formed on the stem substrate, that is to say on the layer farthest from the support layer 7, here the second semiconductor material 4.
- the mask etching is formed in a hard mask in first protective material 9.
- the etching mask 8 comprises at least a first protective material 9 which covers an additional protective material 10.
- the first protective material 9 and additional protective material 10 may have different structures and therefore different designs.
- the hard mask is structured in order to form the etching mask 8.
- the etching mask 8 delimits at least a first active area 1 of the substrate, a second active area 3 of the substrate and an insulation area 5 of the substrate.
- the etching mask can delimit a plurality of first active zones 1, second active zones 3 and isolation zones 5.
- the first 1 and second 3 active zones and the isolation zone 5 being formed in the etching mask, they are necessarily offset laterally relative to each other.
- An isolation zone 5 separates the first 1 and second 3 active zones. In other words, in an integrated circuit, the first active zone 1 and the second active zone 3 are surrounded by an insulation zone 5 as illustrated in top view at figure 4 .
- the delimitation of the isolation zone 5 is defined by an empty zone whereas the delimitation of the first 1 and second 3 active zones is carried out by a solid zone.
- the etching mask 8 therefore comprises distinct drawings delimiting the first active zones 1, drawings delimiting the second active zones 3 and drawings delimiting the isolation zones 5. These three types of drawings represent the entire surface of the mask of engraving 5 ( figure 4 ).
- the layer of first semiconductor material 2, the layer of second semiconductor material 4 and the insulation layer 6 are structured to delimit the insulation zone 5 in the first material semiconductor 2 and release the main surface of the first active zone 1 in first semiconductor material 2.
- the main surface of the first active zone 1 having to be released, it is necessary to eliminate above the first semiconductor material conductor 2, the insulation layer 6, the second semiconductor material 4 and the etching mask 8 in the area indicated.
- the structuring of the first semiconductor material 2 simultaneously delimits the first active zone 1 and the insulation zone 5.
- the main surface of the first active zone corresponds to the surface of the support substrate which formed the interface with the layer of insulation. In this way, the main surface of the first active zone is below the level of the insulation layer 6.
- the main surface of the first active zone is here in the same plane as the interface between the first semiconductor material and insulation layer 6.
- the first active zone 1, the isolation zone 5 and the second active zone 3 are delimited.
- this structuring of the etching mask 8 can occur at different times depending on the embodiments used.
- the layer of second semiconductor material 4 and the insulation layer 6 are structured.
- This structuring can be carried out conventionally by means of plasma etching and it can sink after the first semiconductor material 2, for example right down to the support layer 7.
- the free area of the etching mask 8 delimits the insulation area 5.
- the second semiconductor material 4, the insulation layer 6 then the first semiconductor material 2 are successively structured from the drawing represented by the area free of the etching mask 8.
- the design of the insulation zone 5 is therefore etched in the different layers located between the etching mask 8 and the layer of first semiconductor material 2. This structuring forms an empty zone in the second semiconductor material 4, the insulation layer 6 and the first semiconductor material 2. This structuring also delimits the second active zone 3 in second semiconductor material 4 at the time of the etching of this second semiconductor material 4.
- the etching mask 8 is then structured to be eliminated at the level of the first active zone 1.
- the elimination of the portion of the etching mask 8 which delimits the first active zone 1 can be carried out by any suitable technique, for example at means of a step of photolithography and etching.
- the main surface of the first active area is then freed by removing the second semiconductor material 4 and the insulation layer 6 located just above the first active area.
- the etching mask 8 can advantageously be used to protect the rest of the substrate during etching.
- the drawing delimiting the first active zone 1 in the etching mask 8 is produced by means of a plurality of patterns spaced from each other.
- the delimitation of the first active zone 1 is carried out by alternating patterns and empty areas.
- the distance between two side edges facing two adjacent patterns is less than the smallest distance that exists between a side edge of a design delimiting the first active area 1 and a side edge of a design delimiting the second active area 3.
- the greatest distance between two adjacent patterns is less than the smallest distance which separates the side wall of the design delimiting the first active area from the side wall of the design of the second active area 3.
- the lateral and/or longitudinal dimension of the patterns is less than the thickness of the etching mask.
- the patterns are spaced apart by approximately one third of the distance that normally separates two transistors. In an integration for the 45nm technological node, the minimum distance which separates two transistors is of the order of 100nm and therefore the distance which separates two patterns is of the order of 30nm. For integration in lower technological nodes, it suffices to reduce the distances specified above.
- the patterns can be of any shape, for example, they can be square or rectangular or both.
- the side wall of the design delimiting the first active area is obtained by connecting all the patterns located on the edges.
- Their size can be any as long as the distance between the patterns is respected.
- a first plug 11 is formed in the spaces between the patterns of the drawing delimiting the first active zone in order to form a solid drawing, that is to say without any empty zone.
- the first plug 11 is formed by means of a covering material deposited in a conformal manner, that is to say which matches the shape of the material which it covers.
- the space between the patterns being smaller than the space between the first active zone 1 and the second active zone 3, the covering material fills in the empty zones of the design of the first active zone 1 without completely filling in the drawing delimiting the zone insulation, also an empty area.
- the thickness of the covering material is chosen accordingly and the covering material is then removed isotropically. In this way, the covering material is present only in the drawing delimiting the first active zone 1.
- the empty zone of the etching mask 8 now only delimits the isolation zone 5.
- the structuring of the second semiconductor material 4, of the insulation layer 6 and of the first semiconductor material 2 can then be carried out.
- the covering material is selectively eliminated by any suitable method and the patterns delimiting the first active zone 1 are eliminated.
- This elimination is advantageously carried out by means of an isotropic etching of the material or materials constituting the etching mask 8. There is then a slight shrinkage of the etching mask 8 at the level of the side walls of the drawings of the first 1 and second 3 active zones .
- the etching mask 8 above the first active zone 1 comprises an additional protective material 10
- the elimination of the patterns of the drawing delimiting the first active zone 1 is carried out by means of the selective etching of the protective material.
- additional protection 10 This selective etching causes the patterns to detach. It is conceivable that the covering material and the additional protective material 10 are the same or that they exhibit a reactivity to the same etching process.
- the first protective material 9 is replaced by a second protective material 12 only in the drawing delimiting the first active zone 1.
- This second protective material 12 has an etching selectivity with respect to the first protective material 9.
- the second material protection 12 can be formed by any suitable technique, for example, by implanting a dopant or another material in the first protection material 9 at the level of the zone to be transformed.
- a second plug 13 is formed in the etching mask 8 at the level of the drawing delimiting the isolation zone 5.
- the second plug 13 then delimits the isolation zone in the etching mask 8.
- the second protective material 12 is formed in the empty zone of the etching mask 8.
- the etching mask comprises the first protective material 9 formed on the additional protective material 10.
- the second protective material 12 is then formed by the additional protective material 10 after removal of the first material from protection 9.
- the second cap is used in order to avoid the lateral engraving of the drawings delimiting the first 1 and second 3 active zones.
- the etching mask 8 then delimits the first active zone 1, the second active zone 3 and the isolation zone 5 at the means of three different materials which may have differences in thickness between them.
- the design of the etching mask 8 delimiting the first active zone 1 can be constituted by a plurality of patterns spaced from each other and which have the same dimensional constraints as before.
- the first plug 11 is then formed before the formation of the second protective material 12.
- the etching mask 8 comprises a first protective material 9 deposited above an additional protective material 10.
- the first plug 11 is formed before the second plug 13.
- the additional protective layer 10 is structured once the first plug is formed.
- the first cap 11 is eliminated and the first protective material is eliminated at the level of the design of the first active zone by means of an anisotropic etching.
- the thickness of the first protective material 9 is slightly reduced in the etching mask 8 and the design of the first active zone in first protective material 9 is eliminated ( figure 15 ).
- the second plug 13 is then removed and the substrate is substantially identical to that of the figure 12 , the thickness of the etching mask 8 above the active area being lower.
- the second cap 13 is eliminated and the insulation zone 5 is structured in the first semiconductor material.
- the layers located above the first active zone in first semiconductor material are removed.
- the second protective material 12 is in the same material as the insulating layer 6 or in a material which is etched with the same etching process.
- the etching mask 8 in first 9 and second 12 materials protection is used to structure the second semiconductor material 4 and delimit the isolation zone 5 and the second active zone 3 in the second semiconductor material 4.
- the insulation layer 6 is then structured to delimit the zone of insulation 5.
- the insulation layer 6 and the second protective material 12 being reactive to the same etching process, the second protective material 12 is eliminated at the level of the first active zone 1.
- the first semiconductor material 2 is then structured to delimit the insulation zone 5 and therefore the first active zone 1 by means of the pattern in the insulation layer 6 delimiting the first active zone 1.
- the pattern in the insulation layer 6 is then eliminated.
- the structurings are produced by means of anisotropic etchings which reproduce in the lower layer the design of the first active zone 1 originating from the etching mask 8.
- the structuring of the insulation layer 6 and of the layers of first semiconductor material 2, of second semiconductor material 4 and the release of the main surface of the first active zone 1 form zones voids in the stem substrate. These empty areas are located in the second semiconductor material 4, in the insulation layer 6 and in the first semiconductor material 2. The empty areas are also present in the etching mask 8.
- the empty areas correspond to the surface of the first active area 1 and of the insulation area 5.
- the empty zone corresponds only to the insulation zone 5.
- a first insulation material 14 is deposited to fill the void areas of the substrate strain and the etching mask 8.
- This first insulating material 14 is an electrically insulating material, for example silicon oxide or silicon nitride.
- the first insulation material 14 may be different from the second insulation material constituting the insulation layer 6.
- the first and second insulation materials may also be identical.
- the first insulation material 14 fills in the insulation zone formed in the first semiconductor material 2, but also the empty zone representative of the insulation zone 5 and of the first active zone 1 in the insulation layer 6 and in the second semiconductor material 4.
- the first insulation material 14 is also deposited on the etching mask 8.
- the first insulation material 14 preferably undergoes a flattening step, this step can stop above or at the level of the etching mask 8. During this operation, the etching mask can also be etched, but it must avoid damaging the main surface of the second semiconductor material 4.
- the first insulation material 14 has been flattened, it undergoes an isotropic or anisotropic etching step in order to locate it at the level of the insulation zone 5 in the first semiconductor material 2. In this etching step, the flatness of the first insulation material is maintained throughout the etching. If the insulation layer 6 or another of the layers present and accessible is reactive to the etching process of the first insulation material 14, the etching is carried out by means of an anisotropic process.
- the first insulation material 14 having a flat surface, this flat surface is passed on while throughout the etching, even above the main surface of the first active zone 1, that is to say after the release of the main surface of the first active zone 1.
- Additional insulating material is conformally deposited on the substrate.
- the additional insulating material covers the etching mask 8, the first active area 1, the first insulation material 14 and the side walls of the etching mask 8, of the second semiconductor material 4 and of the insulation layer 6.
- the additional insulating material is then etched by plasma in an anisotropic manner so as to locate only on the side walls and thus form the side spacer 15.
- the deposited thickness of the additional insulating material as well as the etched thickness depend on the thickness chosen for the lateral spacer.
- the lateral spacer 15 is formed before the release of the main surface of the first active zone 1 and if the thickness of the lateral spacer 15 is greater than the distance separating the first 1 and the second 3 active zones (the width of the isolation zone 5), the lateral spacer 15 is arranged above the first active zone 1. It is then possible to use the lateral spacer 15 as an etching mask and to release only part of the first active zone 1. This embodiment is particularly advantageous if it is desired to achieve an elevation of the height of the main face of the first active zone 1, for example, by selective epitaxy.
- Etching mask 8 is then eliminated, by any suitable technique, for example by means of anisotropic etching such as wet etching, and the main surface of the second active zone is freed.
- a hybrid substrate which comprises a first active zone 1 of first semiconductor material 2, a second active zone 3 of second semiconductor material 4, the first 1 and second 2 active zones being arranged, laterally , on either side of an insulation zone 5 of first insulation material 14.
- the first 2 and second 4 semiconductor materials are separated by an insulation layer 6 of second insulation material in a direction perpendicular to a main surface of a support layer 7.
- the isolation zone 5 comprises a main surface which forms a single plane with the main surface of the first active zone 1.
- the isolation zone 5 and the first active area 1 have complementary shapes along the interface between the insulation area 5 and the first active area 1.
- the second active areas 3 are electrically separated from the first active areas 1 by the insulation layer 6, from a point t of vertical view.
- This hybrid substrate is particularly advantageous because it allows the formation of specific devices on active areas having predefined electronic and/or crystallographic characteristics. Active areas have excellent surface quality as they have always been protected from aggressive steps. The main surfaces of the active areas are, in general, released by means of wet etching. The substrate does not have surface topographies in the immediate vicinity of the active zones, especially at the level of the first active zone. This has the effect of limiting the risks of contamination linked to a cleaning problem and of limiting parasitic transistors. The existing topographies are offset above the isolation zones, which limits the effect of parasitic materials on the operation of the device.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Element Separation (AREA)
Abstract
Un substrat hybride comporte des première (1) et seconde (3) zones actives en matériaux semi-conducteur décalées latéralement et séparées par une zone d'isolation (5). Les surfaces principales de la zone d'isolation (5) et de la première zone active (1) forment un plan. Le substrat hybride est obtenu à partir d'un substrat souche comportant successivement des couches en premier (2) et second (4) matériaux semi-conducteurs séparées par une couche d'isolation (6). Un unique masque de gravure est utilisé pour structurer la zone d'isolation (5), la première zone active (1) et la seconde zone active (3). La surface principale de la première zone active (1) est libérée formant ainsi des zones vides dans le substrat souche. Le masque de gravure est éliminé au-dessus de la première zone active (1). Un premier matériau d'isolation est déposé, aplani et gravé jusqu'à libérer la surface principale de la première zone active (1).A hybrid substrate comprises first (1) and second (3) active areas made of semiconductor materials offset laterally and separated by an insulation area (5). The main surfaces of the isolation zone (5) and the first active zone (1) form a plane. The hybrid substrate is obtained from a stem substrate comprising successively layers of first (2) and second (4) semiconductor materials separated by an insulation layer (6). A single etching mask is used to structure the isolation zone (5), the first active zone (1) and the second active zone (3). The main surface of the first active zone (1) is released thus forming empty zones in the stem substrate. The etching mask is eliminated above the first active area (1). A first insulation material is deposited, flattened and etched until the main surface of the first active area (1) is freed.
Description
L'invention est relative à un substrat hybride comportant :
- une première zone active en premier matériau semi-conducteur,
- une seconde zone active en second matériau semi-conducteur,
- les première et seconde zones actives étant disposées, latéralement, de part et d'autre d'une zone d'isolation en premier matériau d'isolation,
- les premier et second matériaux semi-conducteurs étant séparés par une couche d'isolation en second matériau d'isolation dans une direction perpendiculaire à une surface principale d'une couche de support.
- a first active area made of first semiconductor material,
- a second active area made of second semiconductor material,
- the first and second active zones being arranged, laterally, on either side of an insulation zone made of first insulation material,
- the first and second semiconductor materials being separated by an insulation layer of second insulation material in a direction perpendicular to a major surface of a support layer.
L'utilisation de transistors à effet de champ formés sur des substrats de type silicium sur isolant présente de nombreux avantages, notamment, une simplification du dessin des circuits intégrés et une amélioration des performances des dispositifs. De plus, afin de satisfaire à des contraintes toujours plus importantes, les substrats utilisés présentent des épaisseurs de silicium et d'oxyde enterré de plus en plus fines.The use of field-effect transistors formed on substrates of the silicon-on-insulator type has numerous advantages, in particular, a simplification of the design of the integrated circuits and an improvement in the performance of the devices. In addition, in order to satisfy ever greater constraints, the substrates used have increasingly thin silicon and buried oxide thicknesses.
Cependant, l'utilisation d'un transistor intégré sur un film mince présente également de nombreux inconvénients. Les dispositifs à effet de champ sont, par exemple, inadaptés à l'utilisation de courants importants que l'on retrouve typiquement dans les modules d'entrée/sortie. Il est également difficile d'intégrer un transistor bipolaire sur un substrat de type semi-conducteur sur isolant mince ce qui limite les possibilités offertes quant aux dispositifs utilisables dans les circuits intégrés.However, the use of an integrated transistor on a thin film also has many disadvantages. Field effect devices are, for example, unsuitable for the use of high currents that are typically found in input/output modules. It is also difficult to integrate a bipolar transistor on a semiconductor type substrate on thin insulator which limits the possibilities offered as to the devices that can be used in integrated circuits.
Afin de s'autoriser une plus grande largesse dans la conception des circuits intégrés, des substrats hybrides sont utilisés. Comme illustré à la
Comme illustré à la
Afin de ne libérer que les zones actives choisies, le procédé de réalisation d'un substrat hybride est compliqué à mettre en oeuvre. Il nécessite l'alignement d'une étape de photolithographie et de gravure par rapport aux différentes zones actives présente. Un désalignement de l'étape de protection des secondes actives 3 entraîne l'obtention de motifs parasites dans la première 1 et/ou la seconde 3 zones actives et une élimination au moins partielle d'un des motifs d'isolation 5 bordant les première 1 et/ou seconde 3 zones actives. Il apparaît donc que le procédé de réalisation limite fortement les possibilités d'intégration de la structure d'un point de vue industriel.In order to release only the chosen active areas, the process for producing a hybrid substrate is complicated to implement. It requires the alignment of a photolithography and etching step with respect to the various active zones present. A misalignment of the second active 3 protection step results in the obtaining of spurious patterns in the first 1 and/or the second 3 active zones and an at least partial elimination of a
Le substrat obtenu n'est pas non plus optimal car il est moins pratique à utiliser que les substrats conventionnels et les circuits obtenus n'ont pas une durée de vie et un rendement de fabrication aussi bon que les circuits réalisés sur les substrats conventionnels.The substrate obtained is also not optimal because it is less practical to use than conventional substrates and the circuits obtained do not have a lifetime and a manufacturing yield as good as the circuits produced on conventional substrates.
L'invention a pour objet un substrat qui est particulièrement intéressant pour la réalisation de circuits intégrés à fort rendement de fabrication.The subject of the invention is a substrate which is particularly advantageous for the production of integrated circuits with a high manufacturing yield.
On tend à obtenir un tel résultat au moyen d'un substrat selon la revendication 1 et plus particulièrement un substrat dans lequel la zone d'isolation comporte une première portion bordant au moins un bord latéral de la première zone active, la première portion et la première zone active ayant une face principale libre formant un même plan avec l'interface entre la couche en premier matériau semi-conducteur et la couche d'isolation, la zone d'isolation et la première zone active ayant des formes complémentaires le long d'une interface entre la zone d'isolation et la première zone active.One tends to obtain such a result by means of a substrate according to
D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre de modes particuliers de réalisation de l'invention donnés à titre d'exemples non limitatifs et représentés aux dessins annexés, dans lesquels :
- la
figure 1 représente, de manière schématique, en coupe, un substrat hybride selon l'art antérieur, - la
figure 2 représente, de manière schématique, en coupe, un substrat selon l'art antérieur, - les
figures 3 ,4 ,5 ,19 et 20 représentent, de manière schématique, en coupe et en vue de dessus, les étapes d'un procédé de réalisation d'un substrat hybride, selon l'invention, - les
figures 6 à 10 représentent de manière schématique, en coupe, différentes variantes d'un premier mode de réalisation du procédé selon l'invention, - les
figures 11 à 18 représentent de manière schématique, en coupe, différentes variantes d'un second mode de réalisation du procédé selon l'invention.
- the
figure 1 schematically represents, in section, a hybrid substrate according to the prior art, - the
figure 2 schematically represents, in section, a substrate according to the prior art, - them
figure 3 ,4 ,5 ,19 and 20 represent, schematically, in section and in top view, the steps of a method for producing a hybrid substrate, according to the invention, - them
figures 6 to 10 schematically represent, in section, different variants of a first embodiment of the method according to the invention, - them
figures 11 to 18 schematically represent, in section, different variants of a second embodiment of the method according to the invention.
Comme illustré à la
La couche en premier matériau semi-conducteur 2 peut être formée à la surface de la couche de support 7 ou être formée par une zone surfacique de la couche de support 7, c'est-à-dire dans la couche de support 7 (
La couche en second matériau semi-conducteur 4 est séparée de la couche en premier matériau semi-conducteur 2 par au moins une couche d'isolation 6. Le second matériau semi-conducteur 4 est donc de type semi-conducteur sur isolant. Le second matériau semi-conducteur 4 est séparé de la couche de support 7 au moins par la couche d'isolation 6 si le premier matériau semi-conducteur 2 est réalisé directement à la surface de la couche de support 7. Les premier 2 et second 4 matériaux semi-conducteurs peuvent être dans des matériaux identiques ou différents et présenter des orientations identiques ou différentes.The second
Ainsi, dans une vue en coupe et quel que soit l'empilement utilisé, le substrat souche comporte au moins successivement la couche de support 7, la couche en premier matériau semi-conducteur 2, la couche d'isolation 6 et la couche en second matériau semi-conducteur 4. Le substrat souche peut également comporter des couches additionnelles en matériaux semi-conducteurs et des couches d'isolation additionnelles. Cependant, quel que soit le mode de réalisation, la couche en premier matériau semi-conducteur 2 est disposée entre la couche de support 7 et la couche d'isolation 6. De même, la couche d'isolation 6 est disposée entre les premier 2 et second 4 matériaux semi-conducteurs. Le substrat source peut donc être de type semi-conducteur sur isolant.Thus, in a sectional view and regardless of the stack used, the stem substrate comprises at least successively the
Le substrat hybride devant être utilisé pour réaliser des circuits intégrés, il est avantageux de limiter au maximum la différence de hauteur entre la surface principale de la première zone active 1 en premier matériau semi-conducteur 2 et la surface principale de la seconde zone active 3 en second matériau semi-conducteur 4. La surface principale des zones actives est la surface sur laquelle est formée un transistor ou un dispositif électronique en général. Plus cette différence de hauteur est importante et plus il est difficile de réaliser des étapes de photolithographies de bonne qualité à cause des limitations de profondeur de champ des équipements utilisés.The hybrid substrate having to be used to produce integrated circuits, it is advantageous to limit as much as possible the difference in height between the main surface of the first
Comme illustré à la
Le masque dur est structuré afin de former le masque de gravure 8. Le masque de gravure 8 délimite au moins une première zone active 1 du substrat, une seconde zone active 3 du substrat et une zone d'isolation 5 du substrat. Le masque de gravure peut délimiter une pluralité de premières zones actives 1, de secondes zones actives 3 et de zones d'isolation 5. Les première 1 et seconde 3 zones actives et la zone d'isolation 5 étant formées dans le masque de gravure, elles sont obligatoirement décalées latéralement les unes par rapport aux autres. Une zone d'isolation 5 sépare les première 1 et seconde 3 zones actives. En d'autres termes, dans un circuit intégré, la première zone active 1 et la seconde zone active 3 sont entourées par une zone d'isolation 5 comme illustré en vue de dessus à la
Le masque de gravure 8 comporte donc des dessins distincts délimitant les premières zones actives 1, des dessins délimitant les secondes zones actives 3 et des dessins délimitant les zones d'isolation 5. Ces trois types de dessins représentent l'intégralité de la surface du masque de gravure 5 (
Comme illustré à la
Lors de cette structuration, la première zone active 1, la zone d'isolation 5 et la seconde zone active 3 sont délimitées. Il y a également structuration du masque de gravure 8 pour éliminer la portion du masque de gravure 8 qui délimite la première zone active 1. Cependant, cette structuration du masque de gravure 8 peut intervenir à différents moments selon les modes de réalisation utilisés.During this structuring, the first
De manière classique, pour atteindre le premier matériau semi-conducteur 2, la couche en second matériau semi-conducteur 4 et la couche d'isolation 6 sont structurées. Cette structuration peut être réalisée classiquement au moyen d'une gravure par plasma et elle peut s'enfoncer après le premier matériau semi-conducteur 2, par exemple jusque dans la couche de support 7.Conventionally, to reach the
Dans un premier mode de réalisation, illustré à la
Comme illustré à la
Dans une variante de réalisation avantageuse, illustrée à la
De ce fait, les motifs peuvent être de forme quelconque, par exemple, ils peuvent être carrés ou rectangulaires ou les deux. La paroi latérale du dessin délimitant la première zone active est obtenue en reliant tous les motifs se situant sur les bords. Leur taille peut être quelconque tant que la distance entre les motifs est respectée.Therefore, the patterns can be of any shape, for example, they can be square or rectangular or both. The side wall of the design delimiting the first active area is obtained by connecting all the patterns located on the edges. Their size can be any as long as the distance between the patterns is respected.
Comme illustré à la
La structuration du second matériau semi-conducteur 4, de la couche d'isolation 6 et du premier matériau semi-conducteur 2 peut ensuite être réalisée. Une fois la structuration effectuée, le matériau de recouvrement est éliminé sélectivement par tout procédé adapté et les motifs délimitant la première zone active 1 sont éliminés. Cette élimination est avantageusement réalisée au moyen d'une gravure isotrope du ou des matériaux constituant le masque de gravure 8. Il y a alors un léger retrait du masque de gravure 8 au niveau des parois latérales des dessins des première 1 et seconde 3 zones actives.The structuring of the
Dans le cas où le masque de gravure 8 au-dessus de la première zone active 1 comporte un matériau de protection additionnel 10, l'élimination des motifs du dessin délimitant la première zone active 1 est réalisée au moyen de la gravure sélective du matériau de protection additionnel 10. Cette gravure sélective entraîne un décollement des motifs. Il est envisageable que le matériau de recouvrement et le matériau de protection additionnel 10 soit les mêmes ou qu'ils présentent une réactivité au même procédé de gravure.In the case where the
Comme illustré à la
Dans une variante de réalisation illustrée aux
Dans une autre variante de réalisation illustrée à la
Dans encore une autre variante de réalisation, le masque de gravure comporte le premier matériau de protection 9 formé sur le matériau de protection additionnel 10. Le second matériau de protection 12 est alors formé par le matériau de protection additionnel 10 après élimination du premier matériau de protection 9. Avantageusement, le second bouchon est utilisé afin d'éviter la gravure latérale des dessins délimitant les première 1 et seconde 3 zones actives.In yet another alternative embodiment, the etching mask comprises the first
Dans tous ces modes de réalisation, le masque de gravure 8 délimite alors la première zone active 1, la seconde zone active 3 et la zone d'isolation 5 au moyen de trois matériaux différents qui peuvent présenter entre eux des différences d'épaisseur.In all these embodiments, the
Comme dans un mode de réalisation précédent, le dessin du masque de gravure 8 délimitant la première zone active 1 peut être constitué par une pluralité de motifs espacés les uns des autres et qui présentent les mêmes contraintes dimensionnelles que précédemment. Le premier bouchon 11 est alors formé avant la formation du second matériau de protection 12. Dans une variante de réalisation avantageuse illustrée aux
Comme illustré à la
Dans un mode de réalisation avantageux illustré aux
Dans ce mode de réalisation, les structurations sont réalisées au moyen de gravures anisotropes qui reproduisent dans la couche inférieure le dessin de la première zone active 1 provenant du masque de gravure 8.In this embodiment, the structurings are produced by means of anisotropic etchings which reproduce in the lower layer the design of the first
Dans tous ces modes de réalisation, la structuration de la couche d'isolation 6 et des couches en premier matériau semi-conducteur 2, en second matériau semi-conducteur 4 et la libération de la surface principale de la première zone active 1 forme des zones vides dans le substrat souche. Ces zones vides sont localisées dans le second matériau semi-conducteur 4, dans la couche d'isolation 6 et dans le premier matériau semi-conducteur 2. Les zones vides sont également présentes dans le masque de gravure 8.In all these embodiments, the structuring of the
Dans le masque de gravure 8, dans le second matériau semi-conducteur 4 et dans la couche d'isolation 6, les zones vides correspondent à la surface de la première zone active 1 et de la zone d'isolation 5. Dans le premier matériau semi-conducteur 1, la zone vide correspond uniquement à la zone d'isolation 5.In the
Comme illustré à la
Le premier matériau d'isolation 14 rebouche la zone d'isolation formée dans le premier matériau semi-conducteur 2, mais également la zone vide représentative de la zone d'isolation 5 et de la première zone active 1 dans la couche d'isolation 6 et dans le second matériau semi-conducteur 4. Le premier matériau d'isolation 14 se dépose également sur le masque de gravure 8.The
Le premier matériau d'isolation 14 subit de préférence une étape d'aplanissement, cette étape peut s'arrêter au-dessus ou au niveau du masque de gravure 8. Lors de cette opération, le masque de gravure peut être également gravé, mais il faut éviter de détériorer la surface principale du second matériau semi-conducteur 4. Une fois le premier matériau d'isolation 14 aplani, il subit une étape de gravure isotrope ou anisotrope afin de le localiser au niveau de la zone d'isolation 5 dans le premier matériau semi-conducteur 2. Dans cette étape de gravure, la planéité du premier matériau d'isolation est conservée tout au long de la gravure. Si la couche d'isolation 6 ou une autre des couches présentes et accessibles est réactive au procédé de gravure du premier matériau d'isolation 14, la gravure est réalisée au moyen d'un procédé anisotrope.The
De cette manière, il est possible de positionner la surface supérieure du premier matériau d'isolation 14 où l'on veut par rapport à la surface principale de la première zone active 1 et/ou de la seconde zone active 2.In this way, it is possible to position the upper surface of the first insulating
Dans un mode de réalisation avantageux illustré à la
Il est également possible, de volontairement rabaisser la surface principale de la zone d'isolation par rapport à celle de la première zone active 1. Dans ce cas, le premier matériau d'isolation 14 présentant une surface plane, cette surface plane est répercutée tout au long de la gravure, même en dessus de la surface principale de la première zone active 1, c'est-à-dire après la libération de la surface principale de la première zone active 1.It is also possible to voluntarily lower the main surface of the insulation zone relative to that of the first
Dans une variante de réalisation illustrée à la
Un matériau isolant additionnel est déposé de manière conforme sur le substrat. Le matériau isolant additionnel recouvre le masque de gravure 8, la première zone active 1, le premier matériau d'isolation 14 et les parois latérales du masque de gravure 8, du second matériau semi-conducteur 4 et de la couche d'isolation 6. Le matériau isolant additionnel est ensuite gravé par plasma de manière anisotrope afin de ne localiser uniquement sur les parois latérales et ainsi former l'espaceur latéral 15.Additional insulating material is conformally deposited on the substrate. The additional insulating material covers the
L'espaceur latéral peut également être formé au cours de la gravure du premier matériau d'isolation 14. Le matériau isolant additionnel est déposé de manière conforme sur le substrat. Le matériau isolant additionnel recouvre le masque de gravure 8, le premier matériau d'isolation 14 et les parois latérales découvertes. Le matériau isolant additionnel est ensuite gravé par plasma de manière anisotrope afin de ne le localiser uniquement que sur les parois latérales. La gravure du premier matériau d'isolation 14 est alors reprise avec un procédé de gravure anisotrope et l'espaceur latéral est formé par le matériau isolant additionnel dans une partie supérieure et par le premier matériau d'isolation dans une partie inférieure.The lateral spacer can also be formed during the etching of the first insulating
L'épaisseur déposée du matériau isolant additionnel ainsi que l'épaisseur gravée dépendent de l'épaisseur choisie pour l'espaceur latéral.The deposited thickness of the additional insulating material as well as the etched thickness depend on the thickness chosen for the lateral spacer.
Dans encore une autre variante de réalisation (non représentée), il est envisageable de ne libérer qu'une portion de la première zone active 1. Si l'espaceur latéral 15 est formé avant la libération de la surface principale de la première zone active 1 et si l'épaisseur de l'espaceur latéral 15 est supérieure à la distance séparant la première 1 et la seconde 3 zones actives (la largeur de la zone d'isolation 5), l'espaceur latéral 15 est disposé au-dessus de la première zone active 1. Il est alors possible d'utiliser l'espaceur latéral 15 comme masque de gravure et de ne libérer qu'une partie de la première zone active 1. Ce mode de réalisation est particulièrement avantageux si on souhaite réaliser une élévation de la hauteur de la face principale de la première zone active 1, par exemple, par épitaxie sélective. Il est à noter que ce mode de réalisation est difficile à mettre en oeuvre car il nécessite un certain nombre de contraintes géométriques pour obtenir un espaceur latéral 15 qui empiète sur la première zone active 1 (typiquement un masque de gravure très épais). L'ouverture dans le premier matériau d'isolation peut également être réalisée au moyen d'une étape de photolithographie additionnelle mais il y a alors perte de l'autoalignement de la première zone active 1 par rapport à la seconde zone active 3 et à la zone d'isolation 5.In yet another alternative embodiment (not shown), it is possible to release only a portion of the first
Le masque de gravure 8 est ensuite éliminé, par toute technique adaptée, par exemple au moyen d'une gravure anisotrope telle qu'une gravure par voie humide et la surface principale de la seconde zone active est libérée.
Ce procédé de réalisation est particulièrement intéressant car il permet de manière autoalignée de former des première 1 et seconde 3 zones actives et une zone d'isolation 5. La position, la forme et les dimensions des différentes zones sont définies dès le masque de gravure 8.This production method is particularly interesting because it allows self-aligned manner to form first 1 and second 3 active zones and an
Il est ainsi possible d'obtenir un substrat hybride qui comporte une première zone active 1 en premier matériau semi-conducteur 2, une seconde zone active 3 en second matériau semi-conducteur 4, les première 1 et seconde 2 zones actives étant disposées, latéralement, de part et d'autre d'une zone d'isolation 5 en premier matériau d'isolation 14. Les premier 2 et second 4 matériaux semi-conducteurs sont séparés par une couche d'isolation 6 en second matériau d'isolation dans une direction perpendiculaire à une surface principale d'une couche de support 7. Par ailleurs, la zone d'isolation 5 comporte une surface principale qui forme un plan unique avec la surface principale de la première zone active 1. La zone d'isolation 5 et la première zone active 1 ont des formes complémentaires le long de l'interface entre la zone d'isolation 5 et la première zone active 1. Les secondes zones actives 3 sont séparées électriquement des premières zones actives 1 par la couche d'isolation 6, d'un point de vue vertical.It is thus possible to obtain a hybrid substrate which comprises a first
Ce substrat hybride est particulièrement avantageux car il autorise la formation de dispositifs spécifiques sur des zones actives présentant des caractéristiques électroniques et/ou cristallograhiques prédéfinies. Les zones actives présentent une excellente qualité de surface car elles ont toujours été protégées des étapes agressives. Les surfaces principales des zones actives sont, en générale, libérées au moyen d'une gravure humide. Le substrat ne présente pas des topographies de surface à proximité immédiate des zones actives surtout au niveau de la première zone active. Ceci a pour effet de limiter les risques de contamination lié à un problème de nettoyage et de limiter les transistors parasites. Les topographies existantes sont déportées au-dessus des zones d'isolation ce qui limite l'effet de matériaux parasites sur le fonctionnement du dispositif.This hybrid substrate is particularly advantageous because it allows the formation of specific devices on active areas having predefined electronic and/or crystallographic characteristics. Active areas have excellent surface quality as they have always been protected from aggressive steps. The main surfaces of the active areas are, in general, released by means of wet etching. The substrate does not have surface topographies in the immediate vicinity of the active zones, especially at the level of the first active zone. This has the effect of limiting the risks of contamination linked to a cleaning problem and of limiting parasitic transistors. The existing topographies are offset above the isolation zones, which limits the effect of parasitic materials on the operation of the device.
Claims (8)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0906233A FR2954584B1 (en) | 2009-12-22 | 2009-12-22 | HYBRID SUBSTRATE WITH IMPROVED INSULATION AND METHOD FOR SIMPLIFIED REALIZATION OF A HYBRID SUBSTRATE |
EP10354093.6A EP2339616B1 (en) | 2009-12-22 | 2010-12-20 | Method for simplified production of a hybrid substrate |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10354093.6A Division EP2339616B1 (en) | 2009-12-22 | 2010-12-20 | Method for simplified production of a hybrid substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4047642A1 true EP4047642A1 (en) | 2022-08-24 |
Family
ID=42543084
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP22167250.4A Pending EP4047642A1 (en) | 2009-12-22 | 2010-12-20 | Hybrid substrate with improved insulation |
EP10354093.6A Active EP2339616B1 (en) | 2009-12-22 | 2010-12-20 | Method for simplified production of a hybrid substrate |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10354093.6A Active EP2339616B1 (en) | 2009-12-22 | 2010-12-20 | Method for simplified production of a hybrid substrate |
Country Status (4)
Country | Link |
---|---|
US (1) | US8936993B2 (en) |
EP (2) | EP4047642A1 (en) |
JP (1) | JP5931334B2 (en) |
FR (1) | FR2954584B1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8648438B2 (en) * | 2011-10-03 | 2014-02-11 | International Business Machines Corporation | Structure and method to form passive devices in ETSOI process flow |
CN103094217B (en) * | 2011-10-31 | 2015-02-04 | 中国科学院微电子研究所 | Transistor Manufacturing Method |
FR2990794B1 (en) * | 2012-05-16 | 2016-11-18 | Commissariat Energie Atomique | METHOD FOR PRODUCING A SUBSTRATE WITH VARIED ACTIVE ZONES AND PLANAR AND THREE DIMENSIONAL TRANSISTORS |
CN103824837B (en) * | 2014-03-10 | 2016-08-17 | 上海华虹宏力半导体制造有限公司 | Semiconductor device structure and preparation method thereof |
US10361219B2 (en) | 2015-06-30 | 2019-07-23 | International Business Machines Corporation | Implementing a hybrid finFET device and nanowire device utilizing selective SGOI |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040256700A1 (en) * | 2003-06-17 | 2004-12-23 | International Business Machines Corporation | High-performance CMOS devices on hybrid crystal oriented substrates |
US20050116290A1 (en) * | 2003-12-02 | 2005-06-02 | De Souza Joel P. | Planar substrate with selected semiconductor crystal orientations formed by localized amorphization and recrystallization of stacked template layers |
US20050236687A1 (en) * | 2004-04-22 | 2005-10-27 | International Business Machines Corporation | Strained silicon CMOS on hybrid crystal orientations |
US20060024931A1 (en) * | 2004-07-29 | 2006-02-02 | International Business Machines Corporation | Dual SIMOX hybrid orientation technology (HOT) substrates |
JP2006229047A (en) * | 2005-02-18 | 2006-08-31 | Renesas Technology Corp | Semiconductor device and manufacturing method thereof |
JP2007042915A (en) * | 2005-08-04 | 2007-02-15 | Seiko Epson Corp | Method of manufacturing semiconductor device |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6830962B1 (en) * | 2003-08-05 | 2004-12-14 | International Business Machines Corporation | Self-aligned SOI with different crystal orientation using wafer bonding and SIMOX processes |
JP2006253182A (en) * | 2005-03-08 | 2006-09-21 | Seiko Epson Corp | Semiconductor device and its manufacturing method |
KR100763538B1 (en) * | 2006-08-29 | 2007-10-05 | 삼성전자주식회사 | Method of forming mask pattern and method of forming fine pattern using the same in a semiconductor device fabricating |
JP4787709B2 (en) * | 2006-09-28 | 2011-10-05 | Okiセミコンダクタ株式会社 | Semiconductor device and manufacturing method of semiconductor device |
US7749829B2 (en) * | 2007-05-01 | 2010-07-06 | Freescale Semiconductor, Inc. | Step height reduction between SOI and EPI for DSO and BOS integration |
US7790528B2 (en) * | 2007-05-01 | 2010-09-07 | Freescale Semiconductor, Inc. | Dual substrate orientation or bulk on SOI integrations using oxidation for silicon epitaxy spacer formation |
-
2009
- 2009-12-22 FR FR0906233A patent/FR2954584B1/en not_active Expired - Fee Related
-
2010
- 2010-12-20 EP EP22167250.4A patent/EP4047642A1/en active Pending
- 2010-12-20 EP EP10354093.6A patent/EP2339616B1/en active Active
- 2010-12-21 JP JP2010284914A patent/JP5931334B2/en active Active
- 2010-12-22 US US12/976,250 patent/US8936993B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040256700A1 (en) * | 2003-06-17 | 2004-12-23 | International Business Machines Corporation | High-performance CMOS devices on hybrid crystal oriented substrates |
US20050116290A1 (en) * | 2003-12-02 | 2005-06-02 | De Souza Joel P. | Planar substrate with selected semiconductor crystal orientations formed by localized amorphization and recrystallization of stacked template layers |
US20050236687A1 (en) * | 2004-04-22 | 2005-10-27 | International Business Machines Corporation | Strained silicon CMOS on hybrid crystal orientations |
US20060024931A1 (en) * | 2004-07-29 | 2006-02-02 | International Business Machines Corporation | Dual SIMOX hybrid orientation technology (HOT) substrates |
JP2006229047A (en) * | 2005-02-18 | 2006-08-31 | Renesas Technology Corp | Semiconductor device and manufacturing method thereof |
JP2007042915A (en) * | 2005-08-04 | 2007-02-15 | Seiko Epson Corp | Method of manufacturing semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
US20110147881A1 (en) | 2011-06-23 |
EP2339616B1 (en) | 2022-04-13 |
FR2954584A1 (en) | 2011-06-24 |
JP2011135080A (en) | 2011-07-07 |
JP5931334B2 (en) | 2016-06-08 |
US8936993B2 (en) | 2015-01-20 |
EP2339616A1 (en) | 2011-06-29 |
FR2954584B1 (en) | 2013-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1589572B1 (en) | Process of making an integrated circuit comprising hollow trench isolation | |
EP2779223B1 (en) | Method for producing a substrate provided with edge protection | |
EP2339616B1 (en) | Method for simplified production of a hybrid substrate | |
FR3047838A1 (en) | BIPOLAR TRANSISTOR AND METHOD FOR MANUFACTURING THE SAME | |
US8105899B2 (en) | Method and structure for performing a chemical mechanical polishing process | |
EP2999001A2 (en) | Production of spacers at the edges of a transistor gate | |
EP3136428B1 (en) | Surface-mounted chip | |
CN104952896A (en) | Manufacturing method of image sensor using deep trench isolation | |
EP3680936B1 (en) | Back-illuminated image sensor | |
EP3783644B1 (en) | Method for manufacturing microelectronic components | |
EP2772941A1 (en) | Method for manufacturing a finfet MOS transistor | |
FR2718287A1 (en) | Method for manufacturing an insulated gate field effect transistor, in particular of reduced channel length, and corresponding transistor. | |
US9997396B2 (en) | Deep trench isolation structure and method for improved product yield | |
FR2976401A1 (en) | ELECTRONIC COMPONENT COMPRISING A MOSFET TRANSISTOR ASSEMBLY AND METHOD FOR MANUFACTURING | |
EP2479793A1 (en) | Method for manufacturing a field-effect device with low junction capacitance | |
EP3035386B1 (en) | Method for producing an improved field effect device | |
EP3086374B1 (en) | Method for producing an improved field effect transistor | |
EP3944322B1 (en) | Method for manufacturing a microelectronic device | |
FR2958076A1 (en) | METHOD FOR FORMING ELECTRIC VIAS | |
EP2400548A1 (en) | Substrate equipped with a semiconductor area associated with two counter-electrodes and device comprising such a substrate | |
FR2979477A1 (en) | INSULATION WALL BETWEEN TRANSISTORS ON SELF | |
EP1818973A1 (en) | Formation of a monocrystalline semiconductor layer portion separated from a substrate | |
EP2296174B1 (en) | Method for manufacturing a device with field effect, with electrical connections self-aligned in relation to the gate electrode | |
EP2509110A1 (en) | Field-effect transistor with offset counter-electrode socket | |
EP4145491A1 (en) | Method for manufacturing an integrated circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20220407 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 2339616 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |