EP4041786A1 - Procédé de recouvrement de la surface interne d'un réservoir - Google Patents

Procédé de recouvrement de la surface interne d'un réservoir

Info

Publication number
EP4041786A1
EP4041786A1 EP20797821.4A EP20797821A EP4041786A1 EP 4041786 A1 EP4041786 A1 EP 4041786A1 EP 20797821 A EP20797821 A EP 20797821A EP 4041786 A1 EP4041786 A1 EP 4041786A1
Authority
EP
European Patent Office
Prior art keywords
reservoir
internal surface
covering
tank
spraying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20797821.4A
Other languages
German (de)
English (en)
Inventor
Antoine Lavaud
Yann Guelou
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cmp Composites
Centre National dEtudes Spatiales CNES
Original Assignee
Cmp Composites
Centre National dEtudes Spatiales CNES
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cmp Composites, Centre National dEtudes Spatiales CNES filed Critical Cmp Composites
Publication of EP4041786A1 publication Critical patent/EP4041786A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/22Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to internal surfaces, e.g. of tubes
    • B05D7/227Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to internal surfaces, e.g. of tubes of containers, cans or the like
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2201/00Polymeric substrate or laminate
    • B05D2201/02Polymeric substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2506/00Halogenated polymers
    • B05D2506/10Fluorinated polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2506/00Halogenated polymers
    • B05D2506/10Fluorinated polymers
    • B05D2506/15Polytetrafluoroethylene [PTFE]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • B05D3/0263After-treatment with IR heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/065After-treatment
    • B05D3/067Curing or cross-linking the coating

Definitions

  • TITLE PROCESS FOR COVERING THE INTERNAL SURFACE OF A
  • the present invention relates to a method for covering the internal surface of a tank, intended to receive cryogenic propellants or other flammable fuels (fuel / oxidizer), for applications in particular in the space field, aeronautics or for land vehicles. .
  • the present invention relates to a reservoir comprising a fluorinated coating generated according to said coating method.
  • the tanks receiving fluids under pressure in the space field must be light, resistant, tight and their price must be attractive.
  • these tanks were designed in metal and more generally in aluminum.
  • the cost of forming the metal is high and the designed tank is heavy.
  • An alternative solution recommended consists in inserting, during the manufacture of the reservoir, a sealed envelope of a polymeric material.
  • the nature of the polymer is chosen for its compatibility with the storage of liquid oxygen (LOX according to English terminology).
  • This envelope is formed by rotational molding on a steel mold to shape a skin of polymeric material, which is then placed in the shell with a view to being bonded there to the internal surface.
  • the skin thus positioned in the shell must have a sufficiently large thickness to be able to be handled without deterioration. Therefore, the cycle time is long, the amount of material for forming thick skin is large and expensive.
  • the use of materials with heterogeneous thermomechanical characteristics induces a risk of decohesion between the various constituent elements of the tank. The handling of the skin after manufacture remains delicate even when it is thick.
  • the present invention provides a method of covering the internal surface of a tank, the method comprising the following steps:
  • a reservoir made of a composite material such as a thermoplastic material or a thermosetting material, configured to receive a pressurized fluid
  • the present invention provides a method of covering a reservoir with an envelope of fluorinated material formed in situ, directly in the reservoir. This avoids a two-step process consisting in forming a tight skin and then applying it against the internal surface of the reservoir. According to the present invention, the fact of spraying the composition directly on the internal surface of the reservoir avoids having to use any other additional material and fades the risks of microcracks appearing with repeated thermal shocks and the pressure applied.
  • the method according to the invention allows quality adhesion of the fluorinated coating on a surface made of thermoplastic material, which remains delicate with conventional application methods.
  • the reservoir can be prepared in series and the fluorinated coating is rapidly obtained by simple spraying in situ on the internal surface of a liquid composition comprising a fluoropolymer, a prepolymer with its crosslinking agent, followed by its polymerization.
  • the method avoids the constraints of handling a rotomolded skin such as provided in the prior art since the fluorinated coating is formed by depositing the precursor materials. in situ.
  • the method according to the present The invention is also exempt from a step consisting in positioning and making said skin adhere to the reservoir in a leaktight manner.
  • a skin in the form of a self-supporting layer necessarily thick in order to be able to be handled and having to at least reach a thickness of the order of 10-15 mm.
  • the coating of the present invention having the aim of limiting the permeability of the tank to the gaseous sky of the liquid which it contains when used in a tank for liquid propellant, or the permeability to the gas itself for use in a tank gas only, which is critical for the small molecules of H2, He and a little less critical for the molecules of Ü2, CH 4 , it is not necessary to achieve such large thicknesses.
  • the method according to the invention makes it possible to limit the thickness necessarily obtained in the prior art.
  • the fluorinated coating of the invention being formed in situ on the walls of the reservoir, it is not necessary to move it after formation, and it is thus limited to a fluorinated coating of approximately 1 mm at most.
  • the cycle time to reach this thickness is shorter and also less expensive in terms of the quantity of raw materials required, but also makes it possible to reduce the overall mass of a tank.
  • the fluoropolymer family of materials retains non-zero ductility even around cryogenic temperatures.
  • the risks of microcracks observed in other polymers are very limited in the case of using these fluoropolymers at low temperature.
  • These fluoropolymers thus retain very good sealing at the operating temperatures considered.
  • polymerization of the covering layer it is understood in the present document, the crosslinking of the prepolymer using the associated crosslinking agent by encapsulating the fluoropolymer present in the liquid composition.
  • the spraying step b) is carried out so as to cover the entire internal surface of the reservoir so as to obtain a fluorinated coating covering the entire internal surface.
  • the spraying step b) is carried out so as to obtain a covering layer having a substantially constant thickness of between 10 micrometers and 50 micrometers.
  • step b) is carried out with a rotational movement of the reservoir or a rotation of a spray rod for the liquid composition around an axis of extension E along which the reservoir extends and a displacement in translation of the spray rod along the axis of extension E of the reservoir concomitantly with the rotation.
  • the speeds of these movements are optimized according to the viscosity of the liquid composition, the area of the internal surface to be covered and the diameter of the reservoir, the spray rate of the liquid composition and the adhesion properties of said composition.
  • This method facilitates the spraying of the liquid composition on the internal surface so that its coverage by the liquid composition can be complete.
  • the covering layer obtained is thus deposited uniformly over the entire internal surface of the reservoir, in a circumferential as well as a longitudinal direction (along the extension axis E).
  • the spray rod is advantageously an endoscopic rod.
  • the covering layer is thus deposited and is smooth, that is to say that it exhibits little or no irregularities so as to obtain a very low roughness and a very limited risk of the appearance of bubbles.
  • the liquid composition is then polymerized homogeneously (uniform layer) over the entire internal surface of the tank.
  • This precision spraying enables optimum and regular polymerization to be carried out for also optimum cycle time.
  • the fluorinated coating thus formed has substantially identical properties regardless of the location considered on the internal surface of the reservoir.
  • the spraying is carried out from at least one nozzle adapted to the fluidity of the sprayed liquid composition.
  • the reservoir and the device allowing the implementation of the method are configured to ensure the mobility of the reservoir, including a displacement capacity along the extension axis E to a determined speed.
  • step b) and step c) are repeated n times, so as to obtain a fluorinated coating formed of a stack of n covering layers, n being an integer between 1 and 20.
  • the thickness of the fluorinated coating obtained can be parameterized by repeating the operations of steps b) and c) according to a chosen value of n.
  • the value of the thickness of the fluorinated coating is not dictated by manufacturing constraints. It is freely chosen, to meet the needs and according to the targeted applications.
  • the thickness of the final fluorinated coating is in particular between approximately 10 micrometers to 1 mm for conventional use of the reservoir at around 80 K (ie approximately -193 ° C.).
  • This very thin final thickness promotes the resistance of the fluorinated coating to the internal surface. Also, the excess weight associated with the presence of the fluorinated coating is minimal compared to the weight of the tank alone.
  • the method further comprises, between step b) and step c): a step d) of partial polymerization of the prepolymer, and a step e) of additional spraying of the liquid composition.
  • This exemplary embodiment is particularly relevant in the case where a single spraying of step b) does not lead to a sufficiently thick fluorinated coating. Taking into account the constraint linked to the fact that the spraying must make it possible to obtain a homogeneous layer of uniform thickness, it is not possible to increase the amount of the sprayed liquid composition, it is necessary to carry out the spraying / polymerization steps several times. However, we encounter a new problem if the sprayed material contains Teflon ® (brand of PTFE, acronym of the term PolyTetraFluoroEthylène).
  • a sample of composite material covered with a fluorinated coating does not degrade after soaking for 30 seconds in liquid nitrogen. This quenching is repeated ten times and after each quenching, the coating is brought back to room temperature. Also, after each quenching, observation with a binocular magnifying glass and then with a scanning electron microscope of the interface of the fluorinated coating and of the composite material made it possible to observe that no detachment had taken place.
  • steps d) and e) are repeated between 1 and 3 times.
  • the fluorinated coating obtained at the end of the process has a thickness equivalent to that of two to five times the thickness of a sprayed layer.
  • step c) is carried out in a heating device configured to heat the covering layer deposited in step b) until the fluoropolymer is obtained.
  • the heating of the deposited covering layer is carried out according to instructions determined according to the nature of the liquid composition (humidity, temperature and controlled duration, etc.).
  • the heating device is an oven for example.
  • step b) and step c) are carried out in the same heating device.
  • step a) comprises providing a tank comprising a shell delimiting said internal surface of the tank, the shell and the internal surface being made of a composite material, and in particular a composite material chosen from a thermoplastic material or a material. thermosetting, the shell being configured to receive a pressurized fluid, in particular a cryogenic propellant.
  • the pressure undergone by the hull can vary according to the targeted applications between 3 and 60 bars.
  • the tank must remain impermeable to pressures of the order of 3-4 bars. When using a small-sized space engine without a turbopump, the required fluid pressure will be all the higher, up to 40-60 bars.
  • the fluorinated coating obtained mainly comprises a fluorinated polymer such as a type of PTFE Teflon ®, Viton ®, a FEP (Fluorinated Ethylene Propylene), PVF (Poly Vinyl Fluoride), and a polymeric binder such as an epoxide, a polyamide, a polyethersulfone, a polyimide, a polyaryletherketone, a polyurethane, a bio-based polymer.
  • the fluoropolymer can also comprise at least one additive such as a pigment, an adhesion agent, an antistatic agent, an electrically conductive agent, etc.
  • the fluoropolymer is present in a proportion ranging from 70 to 80% by weight
  • the polymer binder is present in a proportion ranging from 10 to 16% by weight
  • the additive is present in a proportion ranging from 4 to 15% by weight, all of these components of the fluorinated coating forming 100% by weight.
  • the liquid composition making it possible to obtain the coating can also comprise a solvent such as acetone, an alcohol, a methyl ethyl ketone, xylene, water, in a proportion making it possible to obtain a viscosity suitable for spraying. desired.
  • a solvent such as acetone, an alcohol, a methyl ethyl ketone, xylene, water, in a proportion making it possible to obtain a viscosity suitable for spraying. desired.
  • the polymer binder makes it possible to hold the sprayed covering layer on the internal surface of the tank, while the fluoropolymer will be at the origin of the characteristics including the mechanical properties of the fluorinated coating.
  • the polymer binder is not a fluorinated material.
  • the additives are mainly adhesion agents and / or agents improving the electrical conductivity.
  • the presence of a solvent makes it possible to facilitate the dissolution of the polymer binder and to adapt the viscosity of the liquid composition to optimize the spraying.
  • polymerization step c) is carried out in an oven in which the reservoir supplied in step a) is placed. During this step, the precursor of the polymer binder is heated to a polymerization temperature Tp.
  • reservoir in particular when the reservoir provided in step a) comprises a shell made of composite material, composed of thermosetting or thermoplastic materials.
  • the precursor of the polymer binder of the liquid composition is a polymer which polymerizes under the action of UV radiation.
  • Step c) then consists in applying a treatment by UV radiation in the direction of the covering layer of the liquid composition. It is then possible to polymerize the deposited layer as its deposition progresses in situ in the spraying device. The cycle time for the manufacture of the fluorinated coating is thus very short.
  • Step b) and step c) are carried out with a slight time lag.
  • the UV radiation is produced in parallel with the rotation of the reservoir and the movement of the spray rod spraying the liquid composition of step b).
  • This variant also makes it possible not to heat the surrounding materials because when using a UV diode, the illuminated surface does not heat up.
  • the sprayed layer is hardened rapidly as it is deposited, so that its thickness is very regular and homogeneous. This also saves time on the manufacturing cycle.
  • the reservoir provided in step a) extends along an axis of extension E arranged substantially vertically
  • step b) the spraying of step b) is carried out by a spray rod configured to move in translation along the extension axis E and to move in rotation around said extension axis E concomitantly, and
  • step c) comprises the application of UV radiation in the direction of the cover layer.
  • the application of UV radiation is advantageously carried out by a source of UV radiation provided on said spray rod. It is not necessary for the reservoir to be rotated in steps b and c).
  • the precursor of the polymer binder is capable of crosslinking by application of a heat treatment.
  • the recovery process is then carried out so that
  • the reservoir supplied in step a) extends along an axis of extension E arranged substantially vertically
  • step b) is carried out by a spray rod configured to move in translation along the extension axis E and to move in rotation around said extension axis E concomitantly, and - step c) comprises the application of IR irradiation in the direction of the cover layer.
  • the application of IR irradiation is carried out by an IR source provided on said spray rod.
  • Steps b) and c) are thus carried out with a slight time lag in order to obtain the fluorinated coating very quickly.
  • step c) does not include UV or IR radiation, but for example when step c) is carried out by a heat treatment in an oven, the process is carried out so that during step b): the reservoir is driven in rotation around the extension axis E placed substantially horizontally, the spraying is carried out using a spray rod configured to move in translation along of the axis of extension E concomitantly with the rotation of the reservoir, and that during step c) the reservoir is driven in rotation around the axis of extension E until the end of the polymerization.
  • the method comprises between step a) of supplying the reservoir and step b) of spraying the liquid composition, a step k) of activating the internal surface condition of the reservoir so as to optimize the resistance of the fluoride coating and coating. Consequently, the adhesion of the fluorinated coating is optimal.
  • Step k) comprises a step i) of surface preparation consisting of cleaning the internal surface of the tank with a chemical solvent and / or steam degreasing, which makes it possible to remove contaminating residues from the surface which may alter the surface. holding of the deposit of the liquid composition.
  • Step k) also comprises or as an alternative to step i), a step ii) of micro-sandblasting or micro-blasting of the internal surface of the reservoir making it possible to increase its specific surface.
  • This mechanical surface treatment increasing the roughness makes it possible to artificially increase the adhesion surface of the reservoir and allows better adhesion of the fluorinated coating.
  • the internal surface of the reservoir has a roughness Ra of 1 to 2 nm rms after step k).
  • step k) comprises as an alternative or in addition to steps i) and ii) a plasma or corona treatment applied to the internal surface of the reservoir.
  • the invention provides a reservoir intended to receive and store a fluid under pressure, in particular at cryogenic temperatures, the reservoir is made of a composite material and comprises an internal surface covered at least partially by a fluorinated coating comprising a fluoropolymer. and a polymeric binder.
  • This coating is obtained by spraying a liquid composition comprising a fluoropolymer, a prepolymer and a crosslinking agent of said prepolymer, on the internal surface of the reservoir, and polymerization so as to generate a polymer binder encapsulating the fluoropolymer for forming a fluorinated coating covering at least part of the internal surface.
  • Said reservoir is thus prepared to receive a fluid under a pressure of 3 bars to 60 bars.
  • the internal surface is completely covered by the fluorinated coating.
  • the coverage offered by the fluorinated coating is such that it covers the entire internal surface of the reservoir intended to be in contact, even indirectly, with the fluid received in the reservoir.
  • the fluorinated coating is in direct contact with the internal surface of the reservoir.
  • direct contact is meant in the present document that the association between the reservoir and the fluorinated coating is devoid of any element other than the material constituting the internal surface of the reservoir and the fluorinated coating.
  • the present invention thus avoids the use of any adhesive or element having an adhesion or bonding role between the reservoir and the fluorinated coating.
  • the reservoir comprises a shell delimiting said internal surface of the reservoir covered by the fluorinated coating, the shell and the internal surface being made of composite material, and in particular a composite material chosen from a thermoplastic material such as polyvinyl chloride or a polyaryl ether ketone, or a thermosetting material, such as a polyester or an epoxy, configured to receive a pressurized fluid, in particular cryogenic propellants.
  • a composite material chosen from a thermoplastic material such as polyvinyl chloride or a polyaryl ether ketone, or a thermosetting material, such as a polyester or an epoxy, configured to receive a pressurized fluid, in particular cryogenic propellants.
  • the fluorinated coating has a thickness of between 10 micrometers and 1 mm.
  • This thin covering layer is resistant to large-amplitude thermal variations (293K -70K), remains attached to the tank in use even under drastic conditions and makes it possible to increase the permeability limits of the tank to gas, even in the case of molecules of small sizes (H2, He, etc ).
  • the present invention relates to a method of covering the internal surface of a shell of a tank intended to receive a cryogenic propellant, the method comprising the following steps:
  • a shell of a tank the shell being made of a composite material, such as a thermoplastic material or a thermosetting material, and configured to receive a pressurized fluid,
  • the method of the invention comprises one or more of the following optional characteristics considered alone or in combination.
  • said covering layer formed in step b) has a substantially constant thickness and preferably between 10 micrometers and 50 micrometers.
  • Step b) and step c) are repeated n times so as to obtain a fluorinated coating formed by a stack of n covering layers, n being an integer between 1 and 20.
  • step b) and step c) there is provided a step d) of partial polymerization of said prepolymer, and a step e) of additional spraying of the liquid composition.
  • Step c) is carried out in a heating device configured to heat the covering layer deposited in step b) until the fluorinated coating according to step c) is obtained.
  • Step a) comprises the provision of the shell delimiting said internal surface of the tank, the shell and the internal surface being made of composite material, and in particular a composite material, composed of materials thermoplastics, such as polyvinyl chloride or a polyaryl ether ketone, or thermosetting materials, such as a polyester or an epoxy, the shell being configured to receive a pressurized fluid, in particular a cryogenic propellant.
  • the fluorinated coating comprises predominantly a fluorine-containing polymer such as a type of PTFE Teflon ®, Viton ®, a FEP (Fluorinated Ethylene Propylene), PVF (Poly Vinyl Fluoride) and a polymeric binder, such as epoxy, polyamide, polyethersulfone, a polyimide, a polyaryletherketone, a polyurethane, a bio-based polymer.
  • a fluorine-containing polymer such as a type of PTFE Teflon ®, Viton ®, a FEP (Fluorinated Ethylene Propylene), PVF (Poly Vinyl Fluoride) and a polymeric binder, such as epoxy, polyamide, polyethersulfone, a polyimide, a polyaryletherketone, a polyurethane, a bio-based polymer.
  • the prepolymer of the liquid composition is capable of polymerizing under the action of UV radiation.
  • step (a) extends along an extension axis E disposed substantially vertically
  • the spraying of step b) is carried out by a spray rod configured to move in translation on the along the extension axis E and to move in rotation around said extension axis E concomitantly
  • step c) comprises applying UV radiation towards the cover layer.
  • step (a) extends along an extension axis E arranged substantially vertically
  • the spraying of step b) is carried out by a spray rod configured to move in translation on the along the extension axis E and to move in rotation around said extension axis E concomitantly
  • step c) comprises applying IR irradiation towards the cover layer.
  • the method comprises a step k) of activating the internal surface condition of the shell of the reservoir so to optimize the resistance of the covering layer and of the fluorinated coating.
  • the present invention relates to a tank intended to receive a cryogenic propellant, the tank comprising a shell which is made of composite material and which delimits an internal surface of the tank, said internal surface being covered at least partially by a fluorinated coating comprising a fluoropolymer and a polymeric binder.
  • the reservoir of the invention comprises one or more of the following optional characteristics considered alone or in combination.
  • the composite material is composed of thermoplastic materials or thermosetting materials, the shell being configured to receive a pressurized fluid, in particular a cryogenic propellant.
  • the fluorinated coating has a substantially constant thickness of between 10 micrometers and 1 mm.
  • the composite material includes fibers selected from T300, T700, T800, and IM7.
  • the composite material comprises resins selected from hexcel 8552, Hexcel M18, Hexcel 914, Hexcel 3501, and Arkema Elium.
  • the composite material is made up of fiber / resin pairs chosen from Toray T300 / Hexcel 5208, Toray T300 / Hexcel 914, Hexcel IM6 / 914, Hexcel M55J / M18, Hexcel AS4 / 3501-6, Hexcel IM7 / 8552, and the Toray T700 / Arkema Elium couple.
  • FIG. 1 illustrates a sectional view of a reservoir during a spraying step according to a first embodiment of the method of the invention
  • FIG. 2 illustrates a sectional view of a reservoir during a polymerization step according to a second embodiment of the process of the invention
  • FIG. 3 illustrates a sectional view of a reservoir during a polymerization step according to a third embodiment of the process of the invention.
  • FIG. 1 illustrates steps a) and b) of the method according to the invention. It shows a reservoir 100 configured to receive a pressurized fluid supplied according to step a) of the process and a step b) of spraying a liquid composition 6 comprising a fluoropolymer, using a rod 4 provided a spray head including standard nozzles.
  • the reservoir 100 is mounted on a device (not illustrated) allowing its rotation around its axis of extension E arranged horizontally.
  • the reservoir 100 is also provided with a base 5 through which the spray rod 4 is introduced. The latter is mounted to move in translation in the direction of the axis.
  • step b) is facilitated by the rotation of the reservoir 100 around its axis of extension E at the same time as the rod 4 is moved in translation along said axis of extension E.
  • the rotational speed of the reservoir which is adapted as a function of the viscosity of the liquid composition 6, the flow rate of the spraying, the wettability and the surface tension of the polymer, is of the order of 10 revolutions per minute for a reservoir with a diameter of between 250 mm and 600 mm. For a smaller diameter, such as 10 to 15 cm, the rotational speed can reach 90 rpm while for a larger diameter, for example 1 m, the rotational speed will be between 2 and 5 rpm.
  • the liquid composition 6 used comprises at least one fluoropolymer, a prepolymer and its crosslinking agent which will be polymerized by heat treatment to form a fluorinated coating 8 waterproofing the internal surface 2 of the tank 100.
  • the liquid composition 6 comprises a polymer based on Teflon ® or Viton ®, in a proportion of 70% by weight, a precursor of the polymeric binder of epoxy in an amount of 10% by weight, an additive in a proportion of 4% by weight and a toluene-based solvent in a proportion of 7% by weight, the whole of the composition forming 100% by weight.
  • the polymerization according to step c) is carried out by heat treatment in a heating device at a temperature Tp of 200 ° C. for 3 h.
  • the heating device used is configured so as to allow prior spraying in situ.
  • a step of moving the reservoir 100 between step a), b) and c) is thus avoided.
  • a fluorinated coating 8 with a thickness of 10-20 micrometers is then obtained, which ensures good impermeability to methane or to oxygen 02.
  • Teflon ® being LOX and GOX, it cannot be 'oxidize with oxygen, it leads to a fluorinated coating 8 of choice in terms of safety for the storage of 02 (fluorine being a more powerful oxidant than oxygen)
  • steps b) and c) are repeated 4 times so that the final thickness of the coating reaches approximately 60 micrometers.
  • the process according to which steps b) and c) are repeated is slightly adapted (not illustrated) .
  • the modified method according to the invention provides for carrying out, between step b) and step c), a step d) of partial polymerization of the pre-polymer binder and of its crosslinking agent (non-fluorinated) of the covering layer 7 deposited. in step b), and a step e) of additional spraying of the liquid composition 6 on the partially polymerized covering layer 7.
  • steps d) and e) are repeated until the coating reaches the desired thickness, here four times to reach a thickness of about 60 micrometers. Total polymerization of the stack of cover layers 7 is obtained during the performance of step c) at the end of the process.
  • the method further comprises a step k) carried out before step b) consisting in preparing the surface condition of the reservoir 100 in order to optimize the grip of the covering layer 7 formed by spraying as well as that of the fluorinated coating 8 after polymerization.
  • this step k) consists of a succession of steps comprising a step i) of cleaning the internal surface 2 of the reservoir 100, and a step ii) of sandblasting at grain 600 to increase the internal specific surface of the reservoir 2 until a roughness Ra of 1 to 2 nm rms is reached.
  • the preparation of step k) comprises only one of these steps or else an alternative step such as a microbeading of the internal surface 2 of the reservoir 100 or a plasma or corona treatment step applied. on the inner surface 2.
  • FIG. 2 illustrates a process different from that described above, in particular in that the liquid composition 6 comprises a polymeric binder which can be polymerized under ultraviolet (UV) illumination.
  • a liquid composition 6 comprising a binder of photopolymerizable polyacrylic type (Urethane type Acrylate) is sprayed using an endoscopic cane 4 so as to cover the entire internal surface 2 of the reservoir 100.
  • a UV illumination source 11 of the diode type such as a LED emitting UV radiation (between 200 and 470 nm) is used to apply UV in the direction of the internal surface 2 covered by the liquid composition 6.
  • the frequency of the UV LED is judiciously chosen according to the maximum absorption frequency for the crosslinking of the photopolymer.
  • this embodiment makes it possible to harden the covering layer 7 as it is deposited, in situ, which optimizes the regularity of the thickness of the final fluorinated coating 8 and reduces the cycle time of the process.
  • the UV illumination source 11 is placed directly on the spray rod 4 so that the device allowing the implementation of the method is very simple to manufacture and inexpensive and does not heat the surface of the tank.
  • Step b) of the method of this embodiment is similar to that illustrated in FIG. 1.
  • An endoscopic rod 4 introduced through a base 5 of the reservoir 100 allows the spraying of the liquid composition 6, preferably over the entire internal surface. 2 of tank 100.
  • the polymerization is carried out by local heating according to step c) obtained this time by infrared radiation (IR) thanks to an IR source placed on the endoscopic rod 4, the source being configured to emit in the direction of the surface. internal 2 covered by the covering layer 7. Since there is only a slight time lag between the spraying of the liquid composition 6 and the application of the IR radiation to the covering layer 7, it is not necessary to 'drive the reservoir 100 in rotation to obtain a smooth covering layer 7 of constant thickness. It suffices to place the axis of extension E of the reservoir 100 vertically and to animate the endoscopic rod 4 with a rotational movement around the axis of extension E and with a translational movement along the extension axis E to spray the liquid composition 6 uniformly on the internal surface 2.
  • IR infrared radiation
  • the covering layer 7 remains smooth and of constant thickness until the end of the spraying process. polymerization.
  • the process of the invention and the fluorinated coating 8 are then reproducible. In this variant embodiment of the method, the time saving over a recovery cycle is considerable.
  • This variant embodiment can also be produced when the precursor of the polymer binder is photopolymerizable.
  • the reservoir 100 is advantageously placed vertically and the endoscopic rod 4 for spraying and UV treatment is driven in rotation around the vertical axis of extension E of the reservoir 100.
  • the rod 4 is also driven in translation along the axis of extension E so as to spray the liquid composition homogeneously over the entire internal surface 2. Since the spraying and the UV treatment are carried out in a very rapid succession of steps, the rotation of the reservoir 100 is not necessary. Due to the fact that it is not necessary to carry out a rotational drive of the reservoir 100, the risks of damage are reduced.
  • the device for implementing the method according to this variant embodiment is less complex and also less expensive.
  • another advantage of the present invention is that the material of the fluorinated coating 8 does not oxidize in the presence of oxygen. The risks of ignition are reduced and it is conceivable to use such tanks 100 for the storage of combustible fluids under high pressure also in the automotive field.
  • this tank 100 is simple to implement since it involves forming a shell 1 in a light composite material (thermosetting or thermoplastic) of the desired shape and volume, then spraying a mixture. of fluorinated polymers of the PTFE ® type and a thermosetting resin before applying a heat treatment finalizing the fluorinated coating 8.
  • a light composite material thermosetting or thermoplastic
  • the method according to the present invention thus does away with the preparation of a thick skin and its bonding to the internal surface 2 as described in the prior art.
  • the fluorinated coating 8 is generated in situ, in direct contact with the internal surface 2 of the tank 100.
  • the manufacturing cycle time is improved, the process is inexpensive and the fluorinated coating 8 is resistant to damage. thermal shocks and at low temperatures while remaining very efficient.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

Procédé de recouvrement de la surface interne (2) d'un réservoir (100), le procédé comprenant les étapes suivantes : -a) fourniture d'un réservoir (100) en un matériau composite, tel qu'un matériau thermoplastique ou un matériau thermodurcissable, configuré pour recevoir un fluide sous pression, -b) pulvérisation d'une composition liquide (6) comprenant un polymère fluoré, un pré-polymère et un réticulant dudit pré-polymère, sur la surface interne (2) du réservoir (100), de sorte à former une couche de recouvrement (7) couvrant la surface interne (2), et -c) polymérisation de la couche de recouvrement (7) de sorte à générer un liant polymère encapsulant le polymère fluoré et former un revêtement fluoré (8) couvrant au moins en partie la surface interne (2).

Description

DESCRIPTION
TITRE : PROCEDE DE RECOUVREMENT DE LA SURFACE INTERNE D'UN
RESERVOIR
La présente invention concerne un procédé de recouvrement de la surface interne d'un réservoir, destiné à recevoir des ergols cryogéniques ou autres combustibles inflammables (carburant/comburant), pour des applications notamment dans le domaine spatial, l'aéronautique ou pour les véhicules terrestres. Selon un autre aspect, la présente invention concerne un réservoir comprenant un revêtement fluoré généré selon ledit procédé de recouvrement.
Les réservoirs recevant des fluides sous pression dans le domaine spatial doivent être légers, résistants, étanches et leur prix doivent être attractifs. Jusqu'à présent, afin de résister aux très basses températures toute en conservant des propriétés d'étanchéité satisfaisantes, ces réservoirs étaient conçus en métal et plus généralement en aluminium. Toutefois, le coût de revient de la mise en forme du métal est élevé et le réservoir conçu est lourd. Les ingénieurs se sont alors tournés vers l'utilisation de matériaux plus légers, tels que les matériaux composites, formés de polymères thermoplastiques ou thermodurcissables qui présentent une bonne résistance mécanique.
Cependant une nouvelle problématique est apparue avec l'utilisation de ces matériaux composites. En effet, leur étanchéité est mise à rude épreuve du fait de la pression du fluide reçu, des températures d'utilisation cryogéniques et des chocs thermiques. La majorité de ces matériaux composites se fatiguent et des microfissurations apparaissent pouvant entraîner des fuites. Les réservoirs formés à partir de ces matériaux donnent lieu à des fuites incompatibles avec une utilisation dans des lanceurs.
Une solution préconisée nécessite l'emploi d'une enveloppe métallique interne très fine placée dans le réservoir de matériau composite. Toutefois, le coût de fabrication d'une telle enveloppe reste prohibitif.
Une solution alternative préconisée consiste à insérer au cours de la fabrication du réservoir, une enveloppe étanche d'un matériau polymérique. La nature du polymère est choisie pour sa compatibilité avec le stockage de l'oxygène liquide (LOX selon la terminologie anglo-saxonne). Cette enveloppe est formée par rotomoulage sur un moule en acier pour façonner une peau en matériau polymérique, qui est ensuite placée dans la coque en vue d'y être collée à la surface interne. La peau ainsi positionnée dans la coque doit présenter une épaisseur suffisamment importante pour pouvoir être manipulée sans détérioration. De ce fait, le temps de cycle est long, la quantité de matériau pourformer une peau épaisse est importante et coûteuse. De plus l'emploi de matériaux aux caractéristiques thermomécaniques hétérogène induit un risque de décohésion entre les différents éléments constitutifs du réservoir. La manipulation de la peau après fabrication reste délicate même lorsqu'elle est épaisse.
Un des buts de la présente invention consiste à pallier ces inconvénients. A cet effet, la présente invention propose un procédé de recouvrement de la surface interne d'un réservoir, le procédé comprenant les étapes suivantes :
-a) fourniture d'un réservoir en un matériau composite tel qu'un matériau thermoplastique ou un matériau thermodurcissable, configuré pour recevoir un fluide sous pression,
-b) pulvérisation d'une composition liquide comprenant un polymère fluoré, un pré-polymère et un réticulant dudit pré-polymère, sur la surface interne du réservoir, de sorte à former une couche de recouvrement couvrant la surface interne, et
-c) polymérisation de la couche de recouvrement de sorte à générer un liant polymère encapsulant le polymère fluoré et former un revêtement fluoré couvrant au moins en partie la surface interne.
Ainsi, la présente invention propose un procédé de recouvrement d'un réservoir par une enveloppe en matériau fluoré formée in situ, directement dans le réservoir. Ceci évite un procédé en deux temps consistant à former d'une peau étanche puis l'appliquer contre la surface interne du réservoir. Selon la présente invention, le fait de pulvériser la composition directement sur la surface interne du réservoir évite de devoir utiliser toute autre matière supplémentaire et pâlie aux risques d'apparition de microfissures avec des chocs thermiques répétés et la pression appliquée. De plus, le procédé selon l'invention permet une accroche de qualité du revêtement fluoré sur une surface en matériau thermoplastique, qui reste délicate avec des méthodes d'application conventionnelles.
Aussi, le temps de cycle du procédé de recouvrement est réduit. Le réservoir peut être préparé en série et le revêtement fluoré est rapidement obtenu par simple pulvérisation in situ sur la surface interne d'une composition liquide comprenant un polymère fluoré, un pré-polymère avec son réticulant, suivie de sa polymérisation.
De plus, dans ce mode de réalisation consistant à former le revêtement fluoré par dépôt direct, le procédé se soustrait des contraintes de manipulation d'une peau rotomoulée telle que fournie dans l'art antérieur puisque le revêtement fluoré est formé par dépôt des matériaux précurseurs in situ. Le procédé selon la présente invention se soustrait également d'une étape consistant à positionner et faire adhérer ladite peau au réservoir de façon étanche.
Selon l'invention, il n'est plus nécessaire de fabriquer une peau sous la forme d'une couche autoportée, nécessairement épaisse pour pouvoir être manipulée et devant au moins atteindre une épaisseur de l'ordre de 10 - 15 mm.
Le revêtement de la présente invention ayant pour but de limiter la perméabilité du réservoir au ciel gazeux du liquide qu'il contient en cas d'utilisation dans un réservoir pour ergol liquide, ou la perméabilité au gaz lui-même pour une utilisation dans un réservoir uniquement de gaz, qui est critique en ce qui concerne les petites molécules de H2, He et un peu moins critique pour les molécules d'Ü2, CH4, il n'est pas nécessaire d'atteindre des épaisseurs aussi importantes. Ainsi, le procédé selon l'invention permet de limiter l'épaisseur nécessairement obtenue dans l'art antérieur.
Le revêtement fluoré de l'invention étant formé in situ sur les parois du réservoir, il n'est pas nécessaire de le déplacer après formation, et il est ainsi limité à un revêtement fluoré d'environ 1 mm au maximum. Bien entendu, le temps de cycle pour atteindre cette épaisseur est plus court et également moins coûteux en terme de quantité de matières premières nécessaires mais aussi permet de réduire la masse globale d'un réservoir.
De plus, le fait d'utiliser un polymère fluoré et donc non oxydable par de l'oxygène permet d'obtenir un revêtement compatible LOX et GOX (de la terminologie anglo-saxonne « Gaseous Oxygen » signifiant oxygène gazeux), ce qui est important pour des réservoirs recevant et stockant des comburants gazeux ou liquides.
En outre, la famille des matériaux de polymères fluorés conserve une ductilité non nulle même aux alentours des températures cryogéniques. Ainsi les risques de microfissures observées chez d'autres polymères sont très limités dans le cas d'utilisation de ces polymères fluorés à basse température. Ces polymères fluorés conservent ainsi une très bonne étanchéité aux températures d'utilisation considérées.
Par « polymérisation de la couche de recouvrement », il est entendu dans le présent document, la réticulation du pré-polymère à l'aide de l'agent réticulant associé en encapsulant le polymère fluoré présent dans la composition liquide.
Par le terme 'matériau composite' on entend dans le présent document, conformément aux connaissances de l'homme du métier, un assemblage d'au moins deux composants non miscibles, mais ayant une forte capacité de pénétration, et dont les propriétés se complètent, pour former un matériau aux performances globales améliorées. De préférence, l'étape b) de pulvérisation est réalisée de sorte à couvrir la totalité de la surface interne du réservoir de sorte à obtenir un revêtement fluoré couvrant la totalité de la surface interne.
Avantageusement, l'étape b) de pulvérisation est réalisée de sorte à obtenir une couche de recouvrement présentant une épaisseur sensiblement constante comprise entre 10 micromètres et 50 micromètres.
Pour ce faire, l'étape b) est réalisée avec un mouvement de rotation du réservoir ou une rotation d'une canne de pulvérisation de la composition liquide autour d'un axe d'extension E suivant lequel le réservoir s'étend et un déplacement en translation de la canne de pulvérisation selon l'axe d'extension E du réservoir concomitamment à la rotation. Les vitesses de ces déplacements sont optimisées selon la viscosité de la composition liquide, de l'aire de la surface à interne à couvrir et du diamètre du réservoir, du débit de pulvérisation de la composition liquide et des propriétés d'adhérence de ladite composition.
Cette méthode facilite la pulvérisation de la composition liquide sur la surface interne de sorte que sa couverture par la composition liquide peut être totale. La couche de recouvrement obtenue est ainsi déposée uniformément sur toute la surface interne du réservoir, dans une direction circonférentielle comme longitudinale (selon l'axe d'extension E).
La canne de pulvérisation est avantageusement une canne endoscopique.
La tension interfaciale entre la surface du réservoir et la composition liquide couplée avec la rotation du réservoir ou de la canne de pulvérisation permettent d'éviter les coulures.
La couche de recouvrement est ainsi déposée est lisse c'est à dire qu'elle présente peu ou pas d'irrégularités de sorte à obtenir une très faible rugosité et un risque d'apparition de bulles très limité.
Cette méthode permet ainsi d'optimiser la quantité de composition liquide pulvérisée. Il s'ensuit des risques de coulures très limités et la formation d'une couche qualitative. Les éventuelles coulures obtenues selon un procédé conventionnel sont susceptibles de générer des différences d'homogénéité dans l'épaisseur de la couche et peuvent rendre la polymérisation ultérieure plus complexe à paramétrer. En évitant les coulures et une forte rugosité, le procédé est plus facilement reproductible, avec la même quantité de composition liquide, la couche de recouvrement formée couvre toujours la même aire de surface interne de réservoir.
Grâce à ce procédé, la composition liquide est alors polymérisée de façon homogène (couche uniforme) sur toute la surface interne du réservoir. Cette précision de la pulvérisation permet la réalisation d'une polymérisation optimale, et régulière pour un temps de cycle également optimal.
De plus, le revêtement fluoré ainsi formé dispose de propriétés sensiblement identiques quelle que soit la localisation considérée sur la surface interne du réservoir.
Selon une possibilité, la pulvérisation est réalisée à partir d'au moins une buse adaptée à la fluidité de la composition liquide pulvérisée. Dans le cas de l'utilisation d'une tête d'injection fixe, le réservoir et le dispositif permettant la mise en œuvre du procédé sont configurés pour assurer la mobilité du réservoir dont une capacité de déplacement selon l'axe d'extension E à une vitesse déterminée.
Selon une disposition, l'étape b) et l'étape c) sont répétées n fois, de sorte à obtenir un revêtement fluoré formé d'un empilement de n couches de recouvrement, n étant un entier compris entre 1 et 20. Ainsi, l'épaisseur du revêtement fluoré obtenu est paramétrable en répétant les opérations des étapes b) et c) selon une valeur de n choisie. La valeur de l'épaisseur du revêtement fluoré n'est pas dictée par des contraintes de fabrication. Elle est choisie librement, pour répondre aux besoins et selon les applications visées.
La finesse du réglage de l'épaisseur de chacune des couches déposées permet d'obtenir une épaisseur de revêtement fluoré précise et optimale. Les surcoûts sont ainsi évités.
L'épaisseur du revêtement fluoré final est notamment comprise entre environ 10 micromètres à 1 mm pour une utilisation conventionnelle du réservoir vers 80 K (soit environ -193 °C).
Cette épaisseur finale très mince favorise la tenue du revêtement fluoré à la surface interne. Aussi, le surpoids associé à la présence du revêtement fluoré est minime par comparaison au poids du réservoir seul.
Selon une variante de réalisation, le procédé comprend en outre, entre l'étape b) et l'étape c) : une étape d) de polymérisation partielle du pré-polymère, et une étape e) de pulvérisation additionnelle de la composition liquide.
Cet exemple de réalisation est particulièrement pertinent dans le cas où une seule pulvérisation de l'étape b) ne conduit pas à un revêtement fluoré assez épais. Compte de tenue de la contrainte liée au fait que la pulvérisation doit permettre l'obtention d'une couche homogène et d'épaisseur uniforme, il n'est pas possible de d'augmenter la quantité de la composition liquide pulvérisée, il est nécessaire de procéder aux étapes de pulvérisation / polymérisation plusieurs fois. Or on rencontre une nouvelle problématique si le matériau pulvérisé contient du téflon® (marque commerciale du PTFE acronyme du terme PolyTétraFluoroEthylène). En effet, l'adhérence d'une couche de téflon® additionnelle qui est déposée sur une première couche de téflon® pourrait ne pas être bonne si la polymérisation de la composition était totale. Par contre, une polymérisation partielle de la première couche de téflon® permet l'obtention d'une bonne adhérence de la couche de téflon® additionnelle. Les expérimentations et les analyses d'une coupe du revêtement fluoré obtenues en fin de procédé n'ont montrées aucun signe de la présence d'un empilement de différentes couches de recouvrement qui laisserait présager une probable délamination à terme. Le revêtement fluoré final présente au contraire l'apparence et le comportement d'une monocouche. Ceci assure une grande cohésion au revêtement fluoré, qui participe à sa longévité, sa résistance mécanique et à sa tenue à la surface interne du réservoir. Il est d'ailleurs résistant à d'importants chocs thermiques (entre 70 K et 273 K) et aux températures cryogéniques au même titre qu'un revêtement fluoré obtenu à partir de la pulvérisation d'une seule couche.
Par exemple, un échantillon de matériau composite couvert par un revêtement fluoré ne se dégrade pas après une trempe d'une durée de 30 secondes dans l'azote liquide. Cette trempe est reproduite dix fois et après chaque trempe, le revêtement est ramené à température ambiante. Egalement, après chaque trempe, une observation à la loupe binoculaire puis au microscope électronique à balayage de l'interface du revêtement fluoré et du matériau composite a permis de constater qu'aucun décollement n'avait eu lieu.
Selon une possibilité, les étapes d) et e) sont répétées entre 1 et 3 fois. Ainsi, le revêtement fluoré obtenu en fin de procédé présente une épaisseur équivalente à celle de deux à cinq fois l'épaisseur d'une couche pulvérisée.
Selon une possibilité, l'étape c) est réalisée dans un dispositif de chauffe configuré pour chauffer la couche de recouvrement déposée à l'étape b) jusqu'à l'obtention du polymère fluoré.
Bien entendu, la chauffe de la couche de recouvrement déposée est réalisée selon des consignes déterminées selon la nature de la composition liquide (hygrométrie, température et durée contrôlée, etc...) Le dispositif de chauffe est une étuve par exemple.
Avantageusement, l'étape b) et l'étape c) sont réalisées dans un même dispositif de chauffe. Dans ce cas, il n'est pas nécessaire de manipuler et de déplacer le réservoir, comme dans l'art antérieur. Ceci limite les risques d'endommagement du réservoir lors du déplacement depuis l'emplacement où la projection est effectuée jusqu'au dispositif de chauffe. Ceci participe à un gain de temps lors de la mise en œuvre du procédé. Selon une disposition, l'étape a) comprend la fourniture d'un réservoir comprenant une coque délimitant ladite surface interne du réservoir, la coque et la surface interne étant en matériau composite, et notamment un matériau composite choisi parmi un matériau thermoplastique ou un matériau thermodurcissable, la coque étant configurée pour recevoir un fluide sous pression, notamment un ergol cryogénique. La pression subie par la coque peut varier selon les applications visées entre 3 et 60 bars. Dans le cadre du transport d'hydrogène liquide le réservoir devra rester imperméable à des pressions de l'ordre de 3-4 bars. Dans le cadre d'utilisation d'un moteur spatial de petite taille sans turbopompe, la pression de fluide nécessaire sera d'autant plus élevée, jusqu'à atteindre 40-60 bars.
De préférence, le revêtement fluoré obtenu comprend majoritairement un polymère fluoré tel qu'un PFTE de type Teflon®, Viton ®, un FEP (Ethylène Propylène Fluoré), PVF (Poly Vinyle Fluoré), et un liant polymère tel qu'un époxyde, un polyamide, une polyéthersulfone, un polyimide, une polyarylethercétone, un polyuréthanne, un polymère biosourcé. Le polymère fluoré peut également comprendre au moins un additif tel qu'un pigment, un agent d'adhésion, un agent antistatique, un agent conducteur électrique, etc.... Par exemple, le polymère fluoré est présent dans une proportion allant 70 à 80% poids, le liant polymère est présent dans une proportion allant de 10 à 16% poids et l'additif est présent dans une proportion allant de 4 à 15% poids, l'ensemble de ces composants du revêtement fluoré formant 100 % poids.
La composition liquide permettant l'obtention du revêtement peut comprendre en plus un solvant tel que l'acétone, un alcool, une méthyle éthyle cétone, du xylène, de l'eau, dans une proportion permettant d'obtenir une viscosité adaptée à la pulvérisation souhaitée.
Le liant polymère permet la tenue de la couche de recouvrement pulvérisée sur la surface interne du réservoir, tandis que le polymère fluoré sera à l'origine des caractéristiques dont les propriétés mécaniques du revêtement fluoré. Bien entendu, le liant polymère n'est pas un matériau fluoré. Les additifs sont principalement des agents d'adhésion et/ou des agents améliorant la conductivité électrique. La présence d'un solvant permet de faciliter la dissolution du liant polymère et d'adapter la viscosité de la composition liquide pour optimiser la pulvérisation.
Selon une disposition, l'étape c) de polymérisation est réalisée dans une étuve dans laquelle est placée le réservoir fourni à l'étape a). Au cours de cette étape, le précurseur du liant polymère est chauffé à une température de polymérisation Tp.
Bien entendu, la nature du liant polymère est choisi de sorte que sa température Tp soit inférieure à la température de dégradation des matériaux constituants ledit réservoir, notamment lorsque le réservoir fourni à l'étape a) comprend une coque en matériau composite, composé de matériaux thermodurcissables ou thermoplastiques.
Selon une variante de réalisation, le précurseur du liant polymère de la composition liquide est un polymère qui polymérise sous l'action d'un rayonnement UV.
L'étape c) consiste alors à appliquer un traitement par rayonnement UV en direction de la couche de recouvrement de la composition liquide. Il est alors possible de polymériser la couche déposée au fur et à mesure de l'avancement de son dépôt in situ dans le dispositif de pulvérisation. Le temps de cycle de la fabrication du revêtement fluoré est ainsi très court. L'étape b) et l'étape c) sont réalisés avec un léger décalage temporel. Par exemple le rayonnement UV est réalisé parallèlement à la rotation du réservoir et du déplacement de la canne de pulvérisation pulvérisant la composition liquide de l'étape b). Cette variante permet également de ne pas chauffer les matériaux environnants car lors de l'utilisation d'une diode UV, la surface illuminée ne chauffe pas. De plus, la couche pulvérisée est durcie rapidement, au fur et à mesure de son dépôt, de sorte que son épaisseur est très régulière et homogène. Ce qui permet aussi un gain de temps sur le cycle de fabrication.
Avantageusement, le réservoir fourni à l'étape a) s'étend selon un axe d'extension E disposé de façon sensiblement verticale,
- la pulvérisation de l'étape b) est réalisée par une canne de pulvérisation configurée pour se déplacer en translation le long de l'axe d'extension E et pour se déplacer en rotation autour dudit axe d'extension E de façon concomitante, et
- l'étape c) comprend l'application d'un rayonnement UV en direction de la couche de recouvrement.
Dans cette variante de réalisation, l'application d'un rayonnement UV est avantageusement réalisée par une source de rayonnement UV prévue sur ladite canne de pulvérisation. Il n'est pas nécessaire que le réservoir soit entraîné en rotation aux étapes b et c).
Selon encore une variante de réalisation, le précurseur du liant polymère est capable de réticuler par application d'un traitement thermique. Le procédé de recouvrement est alors réalisé de sorte que
- le réservoir fourni à l'étape a) s'étend selon un axe d'extension E disposé de façon sensiblement verticale,
- la pulvérisation de l'étape b) est réalisée par une canne de pulvérisation configurée pour se déplacer en translation le long de l'axe d'extension E et pour se déplacer en rotation autour dudit axe d'extension E de façon concomitante, et - l'étape c) comprend l'application d'une irradiation IR en direction de la couche de recouvrement.
Avantageusement, l'application d'une irradiation IR est réalisée par une source IR prévue sur ladite canne de pulvérisation. Les étapes b) et c) sont ainsi réalisées avec un léger décalage temporel pour obtenir le revêtement fluoré très rapidement. De plus, Il n'est pas nécessaire que le réservoir soit entraîné en rotation aux étapes b et c).
Dans le cas où l'étape c) ne comprend pas de rayonnement UV ni d'IR, mais par exemple lorsque l'étape c) est réalisée par un traitement thermique dans une étuve, le procédé est réalisé de sorte qu'au cours de l'étape b) : le réservoir est entraîné en rotation autour de l'axe d'extension E placé sensiblement à l'horizontale, la pulvérisation est effectuée à l'aide d'une canne de pulvérisation configurée pour se déplacer en translation le long de l'axe d'extension E concomitamment à la rotation du réservoir, et qu'au cours de l'étape c) le réservoir est entraîné en rotation autour de l'axe d'extension E jusqu'à la fin de la polymérisation.
De préférence, le procédé comprend entre l'étape a) de fourniture du réservoir et l'étape b) de pulvérisation de la composition liquide, une étape k) d'activation de l'état de surface interne du réservoir de sorte à optimiser la tenue de la couche et du revêtement fluoré. En conséquence, l'accroche du revêtement fluoré est optimale.
L'étape k) comprend une étape i) de préparation de surface constituée par le nettoyage de la surface interne du réservoir par un solvant chimique et /ou un dégraissage à la vapeur, ce qui permet de retirer des résidus contaminants la surface pouvant altérer la tenue du dépôt de la composition liquide.
L'étape k) comprend en outre ou en alternative de l'étape i), une étape ii) de microsablage ou de microbillage de la surface interne du réservoir permettant d'en augmenter la surface spécifique. Ce traitement de surface mécanique augmentant la rugosité permet d'augmenter artificiellement la surface d'adhésion du réservoir et permet une meilleure accroche du revêtement fluoré. Par exemple, la surface interne du réservoir présente une rugosité Ra de 1 à 2 nm rms après l'étape k).
L'augmentation de la rugosité de la surface interne génère une meilleure accroche de la composition liquide pulvérisée. Le dépôt et l'obtention d'une couche de recouvrement uniforme, d'une épaisseur sensiblement constante sont facilités, notamment sur des matériaux composites constitués de matériaux thermoplastiques ou thermodurcissables. Selon une possibilité, l'étape k) comprend en alternative ou en outre aux étapes i) et ii) un traitement plasma ou corona appliqué à la surface interne du réservoir.
Selon un autre aspect, l'invention propose un réservoir destiné à recevoir et stocker un fluide sous pression, notamment à des températures cryogéniques, le réservoir est en matériau composite et comprend une surface interne couverte au moins partiellement par un revêtement fluoré comprenant un polymère fluoré et un liant polymère. Ce revêtement est obtenu par pulvérisation d'une composition liquide comprenant un polymère fluoré, un pré-polymère et un réticulant dudit pré-polymère, sur la surface interne du réservoir, et une polymérisation de sorte à générer un liant polymère encapsulant le polymère fluoré pour former un revêtement fluoré couvrant au moins en partie la surface interne.
Ledit réservoir est ainsi préparé pour recevoir un fluide sous une pression de 3 bars à 60 bars.
De préférence, la surface interne est totalement couverte par le revêtement fluoré. Autrement dit la couverture offerte par le revêtement fluoré est telle qu'elle couvre toute la surface interne du réservoir destinée à être en contact, même indirect, avec le fluide reçu dans le réservoir.
Il est entendu dans la présente demande que le revêtement fluoré est au contact direct de la surface interne du réservoir. Par l'expression 'contact direct' on entend dans le présent document que l'association entre le réservoir et le revêtement fluoré est dépourvu de tout autre élément que le matériau constituant la surface interne du réservoir et le revêtement fluoré. La présente invention évite ainsi la mise en œuvre de tout adhésif ou d'élément ayant un rôle d'adhésion ou de collage entre le réservoir et le revêtement fluoré.
Selon une disposition, le réservoir comprend une coque délimitant ladite surface interne du réservoir couverte par le revêtement fluoré, la coque et la surface interne étant en matériau composite, et notamment un matériau composite choisi parmi un matériau thermoplastique tel que du polychlorure de vinyle ou un polyaryl éther cétone, ou un matériau thermodurcissable, tel qu'un polyester ou un époxyde, configuré pour recevoir un fluide sous pression, notamment des ergols cryogéniques.
Avantageusement, le revêtement fluoré présente une épaisseur comprise entre 10 micromètres et 1 mm. Cette fine couche de recouvrement résiste aux variations thermiques de grande amplitude (293K -70K), reste solidaire du réservoir en utilisation même dans des conditions drastiques et permet d'augmenter les limites de perméabilité du réservoir au gaz, même dans le cas de molécules de petites tailles (H2, He, etc...). Autrement dit, la présente invention concerne un procédé de recouvrement de la surface interne d'une coque d'un réservoir destiné à recevoir un ergol cryogénique, le procédé comprenant les étapes suivantes :
-a) fourniture d'une coque d'un réservoir, la coque étant en un matériau composite, tel qu'un matériau thermoplastique ou un matériau thermodurcissable, et configurée pour recevoir un fluide sous pression,
-b) pulvérisation d'une composition liquide comprenant un polymère fluoré, un pré-polymère et un réticulant dudit pré-polymère, sur la surface interne de la coque du réservoir, de sorte à former une couche de recouvrement couvrant la surface interne, et
-c) polymérisation de la couche de recouvrement de sorte à générer un liant polymère encapsulant le polymère fluoré et former un revêtement fluoré couvrant au moins en partie la surface interne de la coque et obtenir le réservoir pour ergol cryogénique.
Selon d'autres caractéristiques, le procédé de l'invention comporte une ou plusieurs des caractéristiques optionnelles suivantes considérées seules ou en combinaison. ladite couche de recouvrement formée à l'étape b) présente une épaisseur sensiblement constante et de préférence comprise entre 10 micromètres et 50 micromètres.
L'étape b) et l'étape c) sont répétées n fois de sorte à obtenir un revêtement fluoré formé d'un empilement de n couches de recouvrement , n étant un entier compris entre 1 et 20.
Entre l'étape b) et l'étape c) est prévue une étape d) de polymérisation partielle dudit du pré-polymère, et une étape e) de pulvérisation additionnelle de la composition liquide.
L'étape c) est réalisée dans un dispositif de chauffe configuré pour chauffer la couche de recouvrement déposée à l'étape b) jusqu'à l'obtention du revêtement fluoré selon l'étape c).
La coque du réservoir s'étend le long d'un axe d'extension E et au cours de l'étape b), la coque du réservoir est entraînée en rotation autour de l'axe d'extension E, et la pulvérisation est effectuée à l'aide d'une canne de pulvérisation configurée pour se déplacer en translation le long de l'axe d'extension E concomitamment à la rotation de la coque du réservoir. L'étape a) comprend la fourniture de de la coque délimitant ladite surface interne du réservoir, la coque et la surface interne étant en matériau composite, et notamment un matériau composite, composé de matériaux thermoplastiques, tel que du polychlorure de vinyle ou un polyaryl éther cétone, ou de matériaux thermodurcissables, tel qu'un polyester ou un époxyde, la coque étant configurée pour recevoir un fluide sous pression, notamment un ergol cryogénique.
Le revêtement fluoré comprend majoritairement un polymère fluoré tel qu'un PFTE de type Teflon ®, Viton®, un FEP (Ethylène Propylène Fluoré), PVF (Poly Vinyle Fluoré) et un liant polymère, tel qu'un époxyde, un polyamide, une polyéthersulfone, un polyimide, une polyarylethercétone, un polyuréthanne, un polymère biosourcé.
Le pré-polymère de la composition liquide est capable de polymériser sous l'action d'un rayonnement UV.
La coque du réservoir fourni à l'étape (a) s'étend selon un axe d'extension E disposé de façon sensiblement verticale, la pulvérisation de l'étape b) est réalisée par une canne de pulvérisation configurée pour se déplacer en translation le long de l'axe d'extension E et pour se déplacer en rotation autour dudit axe d'extension E de façon concomitante, et l'étape c) comprend l'application d'un rayonnement UV en direction de la couche de recouvrement.
La coque du réservoir fournie à l'étape (a) s'étend selon un axe d'extension E disposé de façon sensiblement verticale, la pulvérisation de l'étape b) est réalisée par une canne de pulvérisation configurée pour se déplacer en translation le long de l'axe d'extension E et pour se déplacer en rotation autour dudit axe d'extension E de façon concomitante, et l'étape c) comprend l'application d'une irradiation IR en direction de la couche de recouvrement.
Entre l'étape a) de fourniture de la coque du réservoir et l'étape b) de pulvérisation de la composition liquide, le procédé comprend une étape k) d'activation de l'état de surface interne de la coque du réservoir de sorte à optimiser la tenue de la couche de recouvrement et du revêtement fluoré. Selon un autre aspect, la présente invention concerne un réservoir destiné à recevoir un ergol cryogénique, le réservoir comprenant une coque qui est en matériau composite et qui délimite une surface interne du réservoir, ladite surface interne étant couverte au moins partiellement par un revêtement fluoré comprenant un polymère fluoré et un liant polymère. Selon d'autres caractéristiques, le réservoir de l'invention comporte une ou plusieurs des caractéristiques optionnelles suivantes considérées seules ou en combinaison.
Le matériau composite est composé de matériaux thermoplastiques ou de matériaux thermodurcissables, la coque étant configurée pour recevoir un fluide sous pression, notamment un ergol cryogénique.
Le revêtement fluoré présente une épaisseur sensiblement constante comprise entre 10 micromètres et 1 mm.
Le matériau composite comprend des fibres choisies parmi le T300, T700, T800, et le IM7.
Le matériau composite comprend des résines choisies parmi le hexcel 8552, Hexcel M18, Hexcel 914, Hexcel 3501, et le Arkema Elium.
Le matériau composite est constitué par des couples fibres/résines choisis parmi le couple Toray T300/Hexcel 5208, Toray T300/ Hexcel 914, Hexcel IM6/914, Hexcel M55J/M18, Hexcel AS4/ 3501-6, Hexcel IM7/8552, et le couple Toray T700/ Arkema Elium.
D'autres caractéristiques et avantages de la présente invention ressortiront clairement de la description détaillée ci-après d'un mode de réalisation, donné à titre d'exemple non limitatif, en référence aux dessins annexés.
Dans la suite de la description, par souci de simplification, les éléments communs aux différentes formes de réalisation portent les mêmes références numériques dans lesquelles :
[fig. 1] illustre une vue en coupe d'un réservoir au cours d'une étape de pulvérisation selon un premier mode de réalisation du procédé de l'invention,
[fig. 2] illustre une vue en coupe d'un réservoir au cours d'une étape de polymérisation selon un deuxième mode de réalisation du procédé de l'invention,
[fig. 3] illustre une vue en coupe d'un réservoir au cours d'une étape de polymérisation selon un troisième mode de réalisation du procédé de l'invention.
La figure 1 illustre les étapes a) et b) du procédé selon l'invention. On y voit un réservoir 100 configuré pour recevoir un fluide sous pression fourni selon l'étape a) du procédé et une étape b) de pulvérisation d'une composition liquide 6 comprenant un polymère fluoré, à l'aide d'une canne 4 dotée d'une tête de pulvérisation comprenant des buses standard. Pour ce faire, le réservoir 100 est monté sur un dispositif (non illustré) permettant sa rotation autour de son axe d'extension E disposé à l'horizontal. Le réservoir 100 est également doté d'une embase 5 par laquelle est introduite la canne de pulvérisation 4. Celle-ci est montée mobile en translation dans la direction de l'axe d'extension E de sorte que la rotation du réservoir 100 et le déplacement de la canne de pulvérisation 4 permettent de pulvériser la composition liquide 6 en tout point de la surface interne 2 du réservoir 100 sous la forme d'une couche de recouvrement 7. Ainsi, l'étape b) est facilitée par la rotation du réservoir 100 autour de son axe d'extension E dans le même temps que la canne 4 est déplacée en translation selon ledit axe d'extension E. La vitesse de rotation du réservoir, qui est adaptée en fonction de la viscosité de la composition liquide 6 du débit de la pulvérisation, de la mouillabilité et de la tension de surface du polymère, est de l'ordre de 10 tours pas minutes pour un réservoir de diamètre entre 250 mm et 600 mm. Pour un plus petit diamètre, tel que 10 à 15 cm, la vitesse de rotation peut atteindre 90 tours/min tandis que pour un diamètre plus important, par exemple 1 m, la vitesse de rotation sera comprise entre 2 et 5 tours/min.
La composition liquide 6 utilisée comprend au moins un polymère fluoré, un pré polymère et son réticulant qui sera polymérisé par traitement thermique pour former un revêtement fluoré 8 imperméabilisant la surface interne 2 du réservoir 100. Selon ce mode de réalisation non visible sur la figure 1, la composition liquide 6 comprend un polymère à base de téflon® ou Viton®, dans une proportion de 70% poids, un précurseur du liant polymérique en époxy dans une proportion de 10 % poids, un additif dans une proportion de 4% poids et un solvant à base de toluène dans une proportion de 7 % poids, l'ensemble de la composition formant 100% poids. Ceci permet d'atteindre les propriétés adéquates, notamment en terme de viscosité qui doit être adaptée pour une pulvérisation homogène, et une propension à la coulure réduite une fois la composition 6 pulvérisée sur un réservoir 100 comprenant une coque 1 formée d'un matériau thermoplastique. La couche de recouvrement 7 ainsi formée sur la surface interne 2 présente une épaisseur uniforme présentant une faible variation d'épaisseur, ce qui optimise la polymérisation ultérieure. Le revêtement fluoré 8 attendu limitera à terme la perméabilité du réservoir 100 au fluide reçu et les risques d'inflammation en présence de LOX ou de GOX. Certaines compositions liquides 6 prêtes à l'emploi et adaptées à la pulvérisation en vue de former un revêtement fluoré 8 sont disponibles dans le commerce.
La polymérisation selon l'étape c) est réalisée par traitement thermique dans un dispositif de chauffe à une température Tp de 200°C pendant 3h. Avantageusement, le dispositif de chauffe utilisé est configuré de sorte à permette in situ la pulvérisation préalable. Une étape de déplacement du réservoir 100 entre l'étape a), b) et c) est ainsi évitée. En fin de traitement thermique, un revêtement fluoré 8 d'une épaisseur de 10- 20 micromètres est alors obtenu, ce qui assure une bonne imperméabilité au méthane ou à l'oxygène 02. Le téflon® étant LOX et GOX, il ne peut s'oxyder avec l'oxygène, il conduit à un revêtement fluoré 8 de choix en terme de sécurité pour le stockage d'02 (le fluor étant un oxydant plus puissant que l'oxygène)
Toutefois, pour des petites molécules telles que H2 ou He il est nécessaire que le revêtement fluoré 8 présente une épaisseur plus importante. Selon une variante de réalisation non visible sur la figure 1, les étapes b) et c) sont répétées 4 fois de sorte que l'épaisseur finale du revêtement atteint environ 60 micromètres.
Afin de permettre une bonne accroche d'une couche de recouvrement 7 de téflon® additionnelle sur une couche de recouvrement 7 de téflon® formée au préalable, le procédé selon lequel les étapes b) et c) sont répétées est légèrement adapté (non illustré). Le procédé modifié selon l'invention prévoit de réaliser entre l'étape b) et l'étape c), une étape d) de polymérisation partielle du liant pré-polymère et de son réticulant (non fluoré) de la couche de recouvrement 7 déposée à l'étape b), et une étape e) de pulvérisation additionnelle de la composition liquide 6 sur la couche de recouvrement 7 partiellement polymérisée. Ces étapes d) et e) sont répétées jusqu'à ce que le revêtement atteigne l'épaisseur désirée, ici quatre fois pour atteindre une épaisseur d'environ 60 micromètres. La polymérisation totale de l'empilement des couches de recouvrement 7 est obtenue lors de la réalisation de l'étape c) en fin de procédé.
Selon une disposition non visible sur la figure 1, le procédé comprend en outre une étape k) réalisée avant l'étape b) consistant à préparer l'état de surface du réservoir 100 afin optimiser l'accroche de la couche de recouvrement 7 formée par la pulvérisation ainsi que celle du revêtement fluoré 8 après polymérisation. Selon une possibilité, cette étape k) consiste en une succession d'étapes comprenant une étape i) de nettoyage de la surface interne 2 du réservoir 100, et une étape ii) de microsablage au grain 600 pour augmenter la surface spécifique interne du réservoir 2 jusqu'à atteindre une rugosité Ra de 1 à 2 nm rms. Selon une variante non illustrée, la préparation de l'étape k) ne comprend qu'une seule de ces étapes ou bien une étape alternative telle qu'un microbillage de la surface interne 2 du réservoir 100 ou une étape de traitement plasma ou corona appliqué à la surface interne 2.
La figure 2 illustre un procédé différent de celui précédemment décrit notamment en ce que la composition liquide 6 comprend un liant polymérique polymérisable sous illumination aux ultra-violets (UV). Ainsi une composition liquide 6 comprenant un liant de type polyacrylique photopolymérisable (type Uréthanne Acrylate) est pulvérisée à l'aide d'une canne endoscopique 4 de sorte à couvrir la totalité de la surface interne 2 du réservoir 100. Comme illustré sur la figure 2, une source d'illumination UV 11 de type diode tel qu'une LED émettant un rayonnement UV (entre 200 et 470 nm) est utilisée pour appliquer les UV en direction de la surface interne 2 couverte par la composition liquide 6. La fréquence de la LED UV est judicieusement choisie selon la fréquence d'absorption maximum pour la réticulation du photopolymère. Ainsi, ce mode de réalisation permet de durcir la couche de recouvrement 7 au fur et à mesure de son dépôt, in situ, ce qui optimise la régularité de l'épaisseur du revêtement fluoré 8 final et diminue le temps de cycle du procédé.
La source d'illumination UV 11 est directement disposée sur la canne de pulvérisation 4 de sorte que le dispositif permettant la mise en œuvre du procédé est très simple à fabriquer et peu coûteux et ne chauffe pas la surface du réservoir.
Selon un troisième mode de réalisation de l'invention illustré à la figure 3, le précurseur du liant polymérise sous l'effet de la température. L'étape b) du procédé de ce mode de réalisation est similaire à celui illustré figure 1. Une canne endoscopique 4 introduite par une embase 5 du réservoir 100 permet la pulvérisation de la composition liquide 6, de préférence sur la totalité de la surface interne 2 du réservoir 100.
La polymérisation est réalisée par un chauffage local selon l'étape c) obtenu cette fois-ci par un rayonnement Infra Rouge (IR) grâce à une source IR placée sur la canne endoscopique 4, la source étant configurée pour émettre en direction de la surface interne 2 couverte par la couche de recouvrement 7. Dans la mesure où il existe seulement un léger décalage temporel entre la pulvérisation de la composition liquide 6 et l'application du rayonnement IR vers la couche de recouvrement 7, il n'est pas nécessaire d'entraîner le réservoir 100 en rotation pour l'obtention d'une couche de recouvrement 7 lisse et d'épaisseur constante. Il suffit de placer l'axe d'extension E du réservoir 100 à la verticale et d'animer la canne endoscopique 4 d'un mouvement de rotation autour de l'axe d'extension E et d'un mouvement de translation le long de l'axe d'extension E pour pulvériser la composition liquide 6 uniformément sur la surface interne 2. La polymérisation intervenant de façon très rapide après la pulvérisation, la couche de recouvrement 7 reste lisse et d'épaisseur constante jusqu'à la fin de la polymérisation. Le procédé de l'invention et le revêtement fluorés 8 sont alors reproductibles. Dans cette variante de réalisation du procédé, le gain de temps sur un cycle de recouvrement est considérable.
Cette variante de réalisation est également réalisable lorsque le précurseur du liant polymère est photopolymérisable. Le réservoir 100 est avantageusement placé à la verticale et la canne endoscopique 4 pour la pulvérisation et le traitement UV est entraînée en rotation autour de l'axe d'extension E vertical du réservoir 100. La canne 4 est également entraînée en translation le long de l'axe d'extension E de sorte à pulvériser la composition liquide de façon homogène sur toute la surface interne 2. La pulvérisation et le traitement UV étant réalisées dans une succession très rapide d'étapes, la rotation du réservoir 100 n'est pas nécessaire. Du fait qu'il n'est pas nécessaire de procéder à un entrainement en rotation du réservoir 100, les risques d'endommagement sont réduits. Le dispositif de mise en œuvre du procédé selon cette variante de réalisation est moins complexe et également moins coûteux.
Ainsi, outre le fait que les matériaux utilisés dans la conception du réservoir 100 sont peu coûteux, un autre avantage de la présente invention réside en ce que le matériau du revêtement fluoré 8 ne s'oxyde pas présence d'oxygène. Les risques d'inflammation sont réduits et il est envisageable d'utiliser de tels réservoirs 100 pour le stockage de fluides combustibles sous haute pression également dans le domaine automobile.
De plus, le procédé de fabrication de ce réservoir 100 est simple à mettre en œuvre puisqu'il s'agit de former une coque 1 en un matériau composite léger (thermodurcissable ou thermoplastique) de la forme et du volume souhaité puis de projeter un mélange de polymères fluoré de type PTFE® et une résine thermodurcissable avant d'appliquer un traitement thermique finalisant le revêtement fluoré 8.
Le procédé selon la présente invention s'affranchit ainsi de la préparation d'une peau épaisse et de son collage sur la surface interne 2 comme décrits dans l'art antérieur. Grâce au procédé selon l'invention, le revêtement fluoré 8 est généré in situ, au contact direct avec la surface interne 2 du réservoir 100. Le temps de cycle de fabrication est amélioré, le procédé est peu coûteux et le revêtement fluoré 8 résiste aux chocs thermiques et aux basses températures tout en restant très performant.
Il va de soi que l'invention n'est pas limitée au mode de réalisation décrit ci- dessus à titre d'exemple mais qu'elle comprend tous les équivalents techniques et les variantes des moyens décrits ainsi que leurs combinaisons.

Claims

REVENDICATIONS
1. Procédé de recouvrement de la surface interne (2) d'un réservoir (100), le procédé comprenant les étapes suivantes :
-a) fourniture d'un réservoir (100) en un matériau composite, tel qu'un matériau thermoplastique ou un matériau thermodurcissable, configuré pour recevoir un fluide sous pression,
-b) pulvérisation d'une composition liquide (6) comprenant un polymère fluoré, un pré-polymère et un réticulant dudit pré-polymère, sur la surface interne (2) du réservoir (100), de sorte à former une couche de recouvrement (7) couvrant la surface interne (2), et
-c) polymérisation de la couche de recouvrement (7) de sorte à générer un liant polymère encapsulant le polymère fluoré et former un revêtement fluoré (8) couvrant au moins en partie la surface interne (2).
2. Procédé de recouvrement de la surface interne (2) d'un réservoir (100) selon la revendication 1, dans lequel ladite couche de recouvrement (7) formée à l'étape b) présente une épaisseur sensiblement constante et de préférence comprise entre 10 micromètres et 50 micromètres.
3. Procédé de recouvrement de la surface interne (2) d'un réservoir (100) selon l'une des revendications 1 à 2, dans lequel l'étape b) et l'étape c) sont répétées n fois de sorte à obtenir un revêtement fluoré (8) formé d'un empilement de n couches de recouvrement (7), n étant un entier compris entre 1 et 20.
4. Procédé de recouvrement de la surface interne (2) d'un réservoir (100) selon l'une des revendications 1 à 3, dans lequel entre l'étape b) et l'étape c) le procédé comprend en outre :
- une étape d) de polymérisation partielle dudit du pré-polymère, et
- une étape e) de pulvérisation additionnelle de la composition liquide (6).
5. Procédé de recouvrement de la surface interne (2) d'un réservoir (100) selon l'une des revendications 1 à 4, dans lequel l'étape c) est réalisée dans un dispositif de chauffe configuré pour chauffer la couche de recouvrement (7) déposée à l'étape b) jusqu'à l'obtention du revêtement fluoré (8) selon l'étape c).
6. Procédé de recouvrement de la surface interne (2) d'un réservoir (100) selon l'une des revendications 1 à 5, dans lequel le réservoir (100) s'étend le long d'un axe d'extension (E) et au cours de l'étape b) : le réservoir (100) est entraîné en rotation autour de l'axe d'extension (E), et la pulvérisation est effectuée à l'aide d'une canne de pulvérisation (4) configurée pour se déplacer en translation le long de l'axe d'extension (E) concomitamment à la rotation du réservoir (100).
7. Procédé de recouvrement de la surface interne (2) d'un réservoir (100) selon l'une des revendications 1 à 6, dans lequel l'étape a) comprend la fourniture d'un réservoir (100) comprenant une coque délimitant ladite surface interne (2) du réservoir (100), la coque et la surface interne (2) étant en matériau composite, et notamment un matériau composite choisi parmi un matériau thermoplastique tel que du polychlorure de vinyle ou un polyaryl éther cétone, ou un matériau thermodurcissable, tel qu'un polyester ou un époxyde, la coque étant configurée pour recevoir un fluide sous pression, notamment un ergol cryogénique.
8. Procédé de recouvrement de la surface interne (2) d'un réservoir (100) selon l'une des revendications 1 à 7, dans lequel le revêtement fluoré (8) comprend majoritairement un polymère fluoré tel qu'un PFTE de type Teflon ®, Viton®, un FEP (Ethylène Propylène Fluoré), PVF (Poly Vinyle Fluoré) et un liant polymère, tel qu'un époxyde, un polyamide, une polyéthersulfone, un polyimide, une polyarylethercétone, un polyuréthanne, un polymère biosourcé.
9. Procédé de recouvrement de la surface interne (2) d'un réservoir (100) selon l'une des revendications 1 à 8, dans lequel le pré-polymère de la composition liquide (6) est capable de polymériser sous l'action d'un rayonnement UV.
10. Procédé de recouvrement de la surface interne (2) d'un réservoir (100) selon la revendication 9, dans lequel :
- le réservoir (100) fourni à l'étape (a) s'étend selon un axe d'extension (E) disposé de façon sensiblement verticale,
- la pulvérisation de l'étape b) est réalisée par une canne de pulvérisation (4) configurée pour se déplacer en translation le long de l'axe d'extension (E) et pour se déplacer en rotation autour dudit axe d'extension (E) de façon concomitante, et - l'étape c) comprend l'application d'un rayonnement UV en direction de la couche de recouvrement (7).
11. Procédé de recouvrement de la surface interne (2) d'un réservoir (100) selon la revendication 1 à 5 et 7 à 9, dans lequel
- le réservoir (100) fourni à l'étape (a) s'étend selon un axe d'extension (E) disposé de façon sensiblement verticale,
- la pulvérisation de l'étape b) est réalisée par une canne de pulvérisation (4) configurée pour se déplacer en translation le long de l'axe d'extension (E) et pour se déplacer en rotation autour dudit axe d'extension (E) de façon concomitante, et
- l'étape c) comprend l'application d'une irradiation IR en direction de la couche de recouvrement (7).
12. Procédé de recouvrement de la surface interne (2) d'un réservoir (100) selon l'une des revendications 1 à 11, dans lequel entre l'étape a) de fourniture du réservoir (100) et l'étape b) de pulvérisation de la composition liquide (6), le procédé comprend une étape k) d'activation de l'état de surface interne (2) du réservoir (100) de sorte à optimiser la tenue de la couche de recouvrement (7) et du revêtement fluoré (8).
13. Réservoir (100) destiné à recevoir un fluide sous pression, le réservoir (100) est en matériau composite et comprend une surface interne (2) couverte au moins partiellement par un revêtement fluoré (8) comprenant un polymère fluoré et un liant polymère.
14. Réservoir (100) selon la revendication 13, dans lequel le réservoir (100) comprend une coque délimitant ladite surface interne (2) du réservoir (100) couverte par le revêtement fluoré (8), la coque et la surface interne (2) étant en matériau composite, notamment choisi parmi un matériau thermoplastique ou un matériau thermodurcissable, la coque étant configurée pour recevoir un fluide sous pression, notamment un ergol cryogénique.
15. Réservoir (100) selon l'une des revendications 13 à 14, dans lequel le revêtement fluoré (8) présente une épaisseur sensiblement constante comprise entre 10 micromètres et 1 mm.
EP20797821.4A 2019-10-11 2020-10-09 Procédé de recouvrement de la surface interne d'un réservoir Pending EP4041786A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1911354A FR3101807B1 (fr) 2019-10-11 2019-10-11 PROCEDE DE RECOUVREMENT DE la surface interne d’un réservoir
PCT/FR2020/051786 WO2021069848A1 (fr) 2019-10-11 2020-10-09 Procédé de recouvrement de la surface interne d'un réservoir

Publications (1)

Publication Number Publication Date
EP4041786A1 true EP4041786A1 (fr) 2022-08-17

Family

ID=69190958

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20797821.4A Pending EP4041786A1 (fr) 2019-10-11 2020-10-09 Procédé de recouvrement de la surface interne d'un réservoir

Country Status (3)

Country Link
EP (1) EP4041786A1 (fr)
FR (1) FR3101807B1 (fr)
WO (1) WO2021069848A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113874127B (zh) * 2019-04-19 2024-06-07 福泰克斯有限公司 用于罐内固化的系统及方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2856404B1 (fr) * 2003-06-06 2008-08-08 Atofina Procede de greffage de polymere fluore et structures multicouches comprenant ce polymere greffe
WO2006129029A2 (fr) * 2005-06-02 2006-12-07 Arkema France Tube multicouche pour le transport d'eau ou de gaz

Also Published As

Publication number Publication date
FR3101807A1 (fr) 2021-04-16
FR3101807B1 (fr) 2023-08-25
WO2021069848A1 (fr) 2021-04-15

Similar Documents

Publication Publication Date Title
CA2655639C (fr) Procede de fabrication d'une vessie d'etancheite en polymere thermodurcissable pour un reservoir contenant un fluide sous pression, tel qu'un reservoir composite, et reservoir
FR2689956A1 (fr) Tuyau de transport de carburant comportant un tube formé de couches de résine dont une contient du fluor, tube en résine pour ce tuyau et procédé pour sa fabrication.
EP4041786A1 (fr) Procédé de recouvrement de la surface interne d'un réservoir
EP3283812B1 (fr) Procede de preparation de la coque interne d'un reservoir composite de type iv pour le stockage de fluide sous pression
WO1985004121A1 (fr) Traitement de surface d'une piece et utilisation de ce traitement pour ameliorer l'adherence d'un revetement depose ensuite sur la piece, notamment par projection a chaud
EP3853910A1 (fr) Laminât flexible de cellules photovoltaïques et procédé de fabrication associé
EP4107420A1 (fr) Réservoir pour ergols cryogéniques
FR2565677A1 (fr) Lithium enrobe, procede d'enrobage de lithium metallique et source d'energie utilisant du lithium enrobe.
WO2004065106A1 (fr) Procede de realisation d'un revetement de protection thermique d'une structure de propulseur
WO2014161753A1 (fr) Liaison entre un liner métallique mince et une paroi en composite par enduction chargée de particules thermoplastiques
EP0401107B1 (fr) Chambre de statoréacteur à combustion supersonique
EP0001954B1 (fr) Procédé pour la fabrication du verre feuilleté et produit obtenu selon ledit procédé
FR3066572B1 (fr) Volant d'inertie precontraint par liquide sous pression
EP1299228B1 (fr) Objet impermeabilise et renforce en matiere plastique et procede pour sa fabrication
WO2015158631A2 (fr) Procédé de production de pièces d'horlogerie
EP1743952A1 (fr) Procédé de traitement d'une pièce en titane ou alliage de titane et pièce obtenue.
FR2583923A1 (fr) Procede de fabrication d'un panneau photovoltaique et panneau ainsi realise
EP1993923A2 (fr) Cuve en materiau composite resistant a la corrosion
FR2663753A1 (fr) Corps optiquement absorbant dans le domaine du visible et des infrarouges, et un procede de fabrication.
EP2809581B1 (fr) Procede de realisation de la couche externe d'un reservoir de lanceur spatial
FR3106695A1 (fr) Procédé pour l’étanchéité d’un dispositif microélectronique
FR2626342A1 (fr) Tubes comportant un revetement interne protecteur stratifie a base d'ecailles et procede pour la preparation desdits tubes
FR2982237A1 (fr) Piece en materiau composite avec couche de protection
EP2188061A2 (fr) Cuve a paroi composite comprenant une couche organique
WO1998051962A1 (fr) Reservoir pour carburant gazeux a pression elevee, et procede de fabrication de reservoir

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220428

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230508

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CMP COMPOSITES

Owner name: CENTRE NATIONAL D'ETUDES SPATIALES