EP4041708A1 - Method for preparing mercaptans by sulfhydrolysis of sulfides - Google Patents
Method for preparing mercaptans by sulfhydrolysis of sulfidesInfo
- Publication number
- EP4041708A1 EP4041708A1 EP20797157.3A EP20797157A EP4041708A1 EP 4041708 A1 EP4041708 A1 EP 4041708A1 EP 20797157 A EP20797157 A EP 20797157A EP 4041708 A1 EP4041708 A1 EP 4041708A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- mercaptan
- stream
- sulfhydrolysis
- reactor
- flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 title claims abstract description 52
- 238000000034 method Methods 0.000 title claims abstract description 48
- 150000003568 thioethers Chemical class 0.000 title abstract description 24
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 claims abstract description 110
- 239000003054 catalyst Substances 0.000 claims abstract description 55
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 33
- 229910000037 hydrogen sulfide Inorganic materials 0.000 claims abstract description 7
- QMMFVYPAHWMCMS-UHFFFAOYSA-N Dimethyl sulfide Chemical compound CSC QMMFVYPAHWMCMS-UHFFFAOYSA-N 0.000 claims description 68
- 238000006243 chemical reaction Methods 0.000 claims description 56
- 238000004519 manufacturing process Methods 0.000 claims description 19
- 229910052739 hydrogen Inorganic materials 0.000 claims description 12
- 230000003197 catalytic effect Effects 0.000 claims description 8
- 238000002360 preparation method Methods 0.000 claims description 7
- LJSQFQKUNVCTIA-UHFFFAOYSA-N diethyl sulfide Chemical compound CCSCC LJSQFQKUNVCTIA-UHFFFAOYSA-N 0.000 claims description 6
- LOXRGHGHQYWXJK-UHFFFAOYSA-N 1-octylsulfanyloctane Chemical compound CCCCCCCCSCCCCCCCC LOXRGHGHQYWXJK-UHFFFAOYSA-N 0.000 claims description 3
- GEHIXSKXGCIKJJ-UHFFFAOYSA-N 2-(chloromethyl)-5-(4-methoxyphenyl)-1,3,4-oxadiazole Chemical compound C1=CC(OC)=CC=C1C1=NN=C(CCl)O1 GEHIXSKXGCIKJJ-UHFFFAOYSA-N 0.000 claims description 3
- 229910000272 alkali metal oxide Inorganic materials 0.000 claims description 2
- XYWDPYKBIRQXQS-UHFFFAOYSA-N di-isopropyl sulphide Natural products CC(C)SC(C)C XYWDPYKBIRQXQS-UHFFFAOYSA-N 0.000 claims description 2
- WXEHBUMAEPOYKP-UHFFFAOYSA-N methylsulfanylethane Chemical compound CCSC WXEHBUMAEPOYKP-UHFFFAOYSA-N 0.000 claims description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 abstract description 17
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 abstract description 13
- 239000004408 titanium dioxide Substances 0.000 abstract description 8
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 abstract description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 239000003153 chemical reaction reagent Substances 0.000 description 11
- 238000003786 synthesis reaction Methods 0.000 description 10
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 10
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 8
- 239000006227 byproduct Substances 0.000 description 8
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 8
- 239000000203 mixture Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- 150000001298 alcohols Chemical class 0.000 description 5
- 238000004821 distillation Methods 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 4
- 238000009776 industrial production Methods 0.000 description 3
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 description 2
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- WQOXQRCZOLPYPM-UHFFFAOYSA-N dimethyl disulfide Chemical compound CSSC WQOXQRCZOLPYPM-UHFFFAOYSA-N 0.000 description 2
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical compound CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 description 2
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- GNFTZDOKVXKIBK-UHFFFAOYSA-N 3-(2-methoxyethoxy)benzohydrazide Chemical compound COCCOC1=CC=CC(C(=O)NN)=C1 GNFTZDOKVXKIBK-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910003294 NiMo Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 235000020776 essential amino acid Nutrition 0.000 description 1
- 239000003797 essential amino acid Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 125000002948 undecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C319/00—Preparation of thiols, sulfides, hydropolysulfides or polysulfides
- C07C319/14—Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/063—Titanium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/066—Zirconium or hafnium; Oxides or hydroxides thereof
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C319/00—Preparation of thiols, sulfides, hydropolysulfides or polysulfides
- C07C319/02—Preparation of thiols, sulfides, hydropolysulfides or polysulfides of thiols
- C07C319/06—Preparation of thiols, sulfides, hydropolysulfides or polysulfides of thiols from sulfides, hydropolysulfides or polysulfides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C319/00—Preparation of thiols, sulfides, hydropolysulfides or polysulfides
- C07C319/02—Preparation of thiols, sulfides, hydropolysulfides or polysulfides of thiols
- C07C319/08—Preparation of thiols, sulfides, hydropolysulfides or polysulfides of thiols by replacement of hydroxy groups or etherified or esterified hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C319/00—Preparation of thiols, sulfides, hydropolysulfides or polysulfides
- C07C319/26—Separation; Purification; Stabilisation; Use of additives
- C07C319/28—Separation; Purification
Definitions
- the present invention relates to a process for preparing mercaptans, in particular methylmercaptan, from dialkylsulfides and hydrogen sulfide (also called sulfhydrolysis process or reaction), in the presence of a specific catalyst based on titanium dioxide and / or zirconium dioxide, as well as the corresponding use of such a catalyst.
- the present invention also relates to a process for preparing mercaptans and dialkylsulfides, from at least one alcohol and hydrogen sulfide, integrating the sulfhydrolysis process as defined above.
- Mercaptans are of great industrial interest and are now widely used by the chemical industries, in particular as raw materials for the synthesis of more complex organic molecules.
- methylmercaptan (CH 3 SH) is used as a raw material in the synthesis of methionine, an essential amino acid for animal feed.
- Methylmercaptan is also used in the synthesis of dialkyl disulphides, in particular in the synthesis of dimethyl disulphide (DMDS), a sulphurization additive of hydrotreatment catalysts of petroleum fractions, among other applications.
- DMDS dimethyl disulphide
- the sulphides by-products are obtained in large quantities at the industrial level and are mainly brought to be destroyed. This represents a loss of efficiency for the mercaptan production process and an additional cost associated with their destruction.
- the sulfhydrolysis reaction is generally catalyzed by catalysts of alumina type (Al 2 0 3 ) OR of NiMo type (Nickel / Molybdenum) or C0M0 (Cobalt / Molybdenum) on an alumina support as described in applications WO 2017/210070 and WO 2018/035316.
- alumina type Al 2 0 3
- NiMo type Nickel / Molybdenum
- C0M0 Cobalt / Molybdenum
- An objective of the present invention is to provide a catalyst for the sulfhydrolysis of sulfides to mercaptans which is easy to use, economical and which allows satisfactory conversion.
- Another objective of the present invention is to provide a process for the sulfhydrolysis of sulfides into mercaptans which can be easily integrated into an industrial production unit of mercaptans, in particular produced from alcohol (s) and H 2 S.
- An objective of the present invention is to provide a process for the preparation of mercaptans in which the sulphides by-products (for example during the reaction between an alcohol and the H 2 S) are recycled or upgraded economically, easy to put. implemented and industrially viable.
- the present inventors have surprisingly discovered that the use of a specific catalyst, based on titanium dioxide (of formula Ti0 2 ) and or zirconia (also called zirconium dioxide, of formula Zr0 2 ) during the sulfhydrolysis makes it possible to obtain a good conversion of the sulphides, in particular a conversion of at least 36%, preferably of at least 50%, or even of at least 70%.
- a specific catalyst based on titanium dioxide (of formula Ti0 2 ) and or zirconia (also called zirconium dioxide, of formula Zr0 2 ) during the sulfhydrolysis makes it possible to obtain a good conversion of the sulphides, in particular a conversion of at least 36%, preferably of at least 50%, or even of at least 70%.
- methane as a by-product of sulfhydrolysis is produced with very low selectivity, for example less than 2%.
- the catalysts according to the invention are known as inert catalyst supports (that is to say without catalytic activity). They are therefore of simple, economical and not very harmful compositions, which makes it possible to obtain a sulfhydrolysis process that is more efficient and more respectful of the environment.
- the sulfhydrolysis process as according to the invention can be integrated into an industrial production plant for mercaptans, produced in particular from at least one alcohol and H 2 S.
- the sulfhydrolysis process according to the invention then makes it possible to increase the productivity of mercaptans in a simple and economical manner by upgrading the sulphides by-products during the main reaction and by also transforming them into mercaptans.
- the present inventors have also discovered that the mercaptans resulting from the sulfhydrolysis and the unreacted H 2 S could be reintroduced directly (in particular without a separation and / or purification step), into the product. main reactor and this without consequence for the main reaction between the alcohol (s) and H 2 S.
- the mercaptans produced by the two reactions can then be separated and / or purified and / or recovered at a single location, for example at the outlet of the main reactor.
- This integration of the sulfhydrolysis process into the main mercaptan production chain can be reinforced by the presence of a single supply of H 2 S for the two main reactions and of sulfhydrolysis (for example at the inlet of the sulfhydrolysis reactor).
- H 2 S for the two main reactions
- sulfhydrolysis for example at the inlet of the sulfhydrolysis reactor.
- the present invention relates to a sulfhydrolysis process, in which a sulfide, preferably a dialkylsulfide, is reacted with hydrogen sulfide (H 2 S) in the presence of Zr0 2 and / or Ti0 2 as a catalyst. (s), to obtain at least one mercaptan, preferably a mercaptan.
- a sulfide preferably a dialkylsulfide
- H 2 S hydrogen sulfide
- the present invention also relates to a process for preparing mercaptan (s) comprising the steps of:
- catalyst is understood to mean in particular a substance or a composition of chemical substances accelerating a chemical reaction and which is (are) unchanged at the end of this reaction.
- the catalyst used during the sulfhydrolysis reaction comprises titanium dioxide (Ti0 2 ) and / or zirconia (Zr0 2 ), preferably titanium dioxide.
- Such catalysts can also be called catalysts based on titanium dioxide and / or zirconia.
- Titanium dioxide and / or zirconia are used as catalyst (s) in the sulfhydrolysis reaction. It is understood that Ti0 2 and / or Zr0 2 are the active components of the catalyst (ie compounds having catalytic activity). In particular, the catalysts according to the invention do not include other compounds having catalytic activity on the sulfhydrolysis reaction.
- the catalysts according to the invention consist essentially of, or even consist of titanium dioxide and / or zirconia, and optionally stabilizers and / or binders.
- the stabilizers and the binders are those conventionally used in the field of catalysts.
- promoter also called “dopant”
- dopant a chemical substance or a composition of chemical substances which can modify, in particular improve, the catalytic activity of a catalyst.
- promoter is meant a chemical substance or a composition of chemical substances which makes it possible to improve the conversion and / or the selectivity of the catalyzed reaction relative to the catalyst alone.
- the catalysts according to the invention do not include a promoter.
- the sulfhydrolysis catalysts according to the invention make it possible to obtain a conversion of the sulfides of between 30% and 90%, preferably between 50% and 80%, even more preferably between 50% and 75%.
- the selectivity of the sulfhydrolysis reaction for mercaptans is in particular greater than or equal to 98%.
- sulfide is understood to mean any organic compound comprising a -C-S-C- function.
- sulfide is understood to mean a dialkylsulfide.
- dialkylsulfide is understood to mean in particular a compound of the following general formula (I):
- R and R' are, independently of one another, a hydrocarbon radical, saturated, linear, branched or cyclic, optionally substituted.
- R and R ' which are identical or different, are, independently of one another, an alkyl radical, linear or branched; more preferably a linear or branched, preferably linear, alkyl radical containing between 1 and 18 carbon atom (s), preferably between 1 and 12 carbon atom (s).
- R and R ' can be chosen independently of one another from the group consisting of methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl , octyl, nonyl, decyl, undecyl and dodecyl, as well as their isomers.
- R and R ’ the same or different, can be independently selected from the group consisting of methyl, ethyl, octyl, and dodecyl.
- R and R ’ are the same (which corresponds to a symmetrical dialkylsulfide).
- symmetrical dialkylsulphides are in particular of the following general formula (II):
- dialkylsulfides according to the invention are chosen from the group consisting of dimethylsulfide, diethylsulfide, dioctylsulfide, didodecylsulfide and methylethylsulfide.
- the dialkylsulfides according to the invention can be chosen from the group consisting of dimethylsulfide, diethylsulfide, dioctylsulfide and didodecylsulfide.
- the dialkylsulphide is dimethylsulphide.
- the mercaptans according to the invention are those corresponding to the sulfhydrolysis of sulfides as defined above.
- the term “mercaptans” is understood to mean alkylmercaptans.
- alkylmercaptan is understood to mean a compound of the following general formulas (III) and / or (IV):
- the mercaptan obtained according to the invention is methylmercaptan.
- the present invention therefore relates to a process for preparing at least one mercaptan by sulfhydrolysis.
- the present invention relates to a process for preparing at least one mercaptan, in which a dialkylsulphide is reacted with hydrogen sulphide (H 2 S) in the presence of Zr0 2 and / or Ti0 2 as catalyst (s).
- H 2 S hydrogen sulphide
- said catalyst does not include an alkali metal oxide, in particular such as the oxides of lithium, sodium, potassium, rubidium and cesium.
- said catalyst does not include a promoter.
- said catalyst does not include alumina (Al 2 0 3 ).
- said catalyst does not include phosphorus.
- said catalyst is Ti0 2 .
- the catalyst comprises only TiO 2 as active component, and in particular in its crystalline anatase form.
- the catalyst when the catalyst comprises Ti0 2 and Zr0 2 , then it can comprise between 30% and 50%, preferably between 35% and 45%, for example approximately 40% by weight of Ti0 2 relative to the total weight of the catalyst and / or between 50% and 70%, preferably between 55% and 65%, for example approximately 60% by weight of Zr0 2 relative to the total weight of the catalyst.
- the catalysts according to the invention can have a specific area greater than 40 m 2 .g _ 1 .
- the specific area is at least 50 m 2 .g _1 for a catalyst based on Zr0 2.
- the specific area is at least 80 m 2 .g _1 for a catalyst based on Zr0 2. Ti0 2 .
- the shape of the catalysts can be of any type, for example of spherical, cylindrical, ring, star, aggregate or any other three-dimensional shape, or else in the form of a powder which can be pressed, extruded or granulated.
- the sulfhydrolysis reagents can be in the gaseous, liquid or solid state, preferably gaseous or liquid.
- the sulfhydrolysis reaction temperature can be between 100 ° C and 500 ° C, preferably between 200 ° C and 400 ° C, preferably between 200 ° C and 380 ° C, more preferably between 250 ° C and 380 ° C. ° C.
- the sulfhydrolysis reaction can be carried out under a pressure of between 50 mbar and 100 bar, preferably between atmospheric pressure (approximately 1 bar) and 50 bar, and advantageously between 5 and 20 bar.
- the H 2 S / sulphide molar ratio can be between 0.1 / 1 and 50/1, preferably between 2/1 and 20/1. Preferably, said ratio is between 2/1 and 15/1, more preferably between 2/1 and 10/1, for example 4/1.
- the reactants sulphide and H 2 S
- the reactants can respect a particular contact time with the catalyst within the reactor where the sulphhydrolysis takes place. This parameter is expressed with the equation of the hourly volume speed:
- the WH can be between 100 and 1200 h -1 .
- the sulfhydrolysis reaction can take place in any type of reactor, for example fixed bed tubular, multitubular, microchannel, catalytic wall or fluidized bed reactors, preferably a fixed bed tubular reactor.
- the sulfhydrolysis process according to the invention is carried out in a reactor comprising a single catalytic zone (said zone is in particular continuous).
- the amount of each reagent supplied to the reactor can vary depending on the reaction conditions (eg temperature, hourly volume rate, etc.) and is determined according to conventional knowledge. Hydrogen sulfide may be present in excess.
- the present invention relates to a process for the preparation of mercaptan (s) and dialkylsulfide (s) from at least one alcohol and H 2 S, in which the said dialkylsulfide (s) produced ( s) then reacts (reacts) with H 2 S according to the sulfhydrolysis process as defined above, to obtain the said mercaptan (s).
- the present invention relates to a process for preparing mercaptan (s) comprising the steps of:
- the reaction between an alcohol and H 2 S to form a mercaptan (and a sulfide as a by-product) is a known reaction, described for example in US Patents 2820062A, US 7645906B2 and US 2820831 A.
- the reaction can be carried out at a temperature between 200 ° C and 450 ° C and / or at a pressure ranging from a reduced pressure to 100 bar.
- a catalyst is present such as alumina promoted by alkali metals and or alkaline earth metals.
- the H 2 S can be present in excess.
- At least one alcohol can (can) be used.
- a single alcohol is used.
- the alcohol (s) can be chosen from alcohols (Ci-Ci 8 ), or even (CrCi 2 ), and mixtures thereof.
- the alcohols can be chosen from the group consisting of methanol, ethanol, octanol, dodecanol and their mixtures.
- the alcohol used is methanol.
- the method according to the invention comprises the following steps:
- stage F optionally, the flow of H 2 S resulting from stage C) is recycled to stage A).
- the mercaptan (s) can be recovered at the end of step C) and / or after separation of the flow leaving step E), preferably at the end of step C).
- the outgoing stream from step B) can comprise at least one mercaptan, at least one dialkylsulfide, optionally water, unconverted alcohol (s) and H 2 S
- the outgoing stream from step E) can comprise the said mercaptan (s), H 2 S and optionally methane and the unconverted dialkylsulphide (s). .
- the flow leaving the second reactor of step E) can be recycled, preferably entirely, into the first reactor of step A).
- the outgoing stream from the sulfhydrolysis process comprising the mercaptan (s) and optionally H 2 S can be introduced directly into the main reactor (or first reactor), in particular without a separation step and or prior purification.
- the flow leaving the second reactor of stage E) can correspond entirely or partially, preferably entirely, to the flow comprising H 2 S from stage A), optionally with the recycled H 2 S resulting from of step C).
- the outgoing flow from step E) comprises H 2 S.
- the introduction of mercaptans into the main reactor has no influence on the main reaction between at least one alcohol and the H 2 S.
- the H 2 S which can be obtained from the step E) is thus completely recycled to step A).
- Such recycling has in particular the advantage of having only one H 2 S inlet for the entire mercaptan production process, at the inlet of the sulfhydrolysis reactor for example.
- the sulfhydrolysis process according to the invention integrated into an industrial installation for the production of mercaptans makes it possible to completely reprocess the sulfides by-products into products of interest and to advantageously recycle the H 2 S.
- the mercaptans produced will be the result of the main reaction and the sulfhydrolysis reaction, which increases the productivity.
- the separation step C) can be carried out by distillation, for example under reduced pressure, according to conventional methods.
- the distillation can be carried out at a pressure of between 0.1 bar and 10 bar, in particular between 1 and 10 bar.
- Step C) can in particular make it possible to separate from the outgoing flow resulting from step B):
- said preparation process comprises the following steps: a) in a first reactor, a stream comprising a mercaptan and H 2 S is introduced and a stream comprising at least one alcohol, preferably an alcohol ; b) the two streams are reacted to obtain an outgoing stream comprising the mercaptan, a dialkylsulfide and optionally H 2 S; c) separating from the outgoing flow resulting from step b):
- the flow leaving step f) can correspond entirely or partially, preferably entirely, to the entering flow of mercaptan and H 2 S from stage a).
- said preparation process comprises the following steps: a ′) in a first reactor, a stream comprising H 2 S and a stream comprising at least one alcohol, preferably an alcohol, is introduced; b ') the two streams are reacted to obtain an outgoing stream comprising a mercaptan, a dialkylsulfide and optionally H 2 S; c ') we separate from the outgoing flow from step b'):
- step g' a flow comprising the dialkylsulphide; and optionally a stream comprising H 2 S; d ′) optionally, the stream comprising the mercaptan obtained from step c ′) is recovered; e ′) optionally, the stream of H 2 S resulting from step c ′) is recycled to step a ′); f) in a second reactor, the stream comprising the dialkylsulfide is introduced with a stream of H 2 S; g ′) the two streams are reacted according to the sulfhydrolysis process as defined above to obtain an outgoing stream comprising the mercaptan and H 2 S; h ') we separate from the outgoing flow from step g'):
- step f a flow comprising mercaptan; a stream comprising H 2 S; i ′) the flow comprising the mercaptan resulting from step h ′) is combined with that exiting from step b ′ before and / or during step c ′); j ′) optionally, the flow of H 2 S resulting from step h ′) is recycled to step f).
- This embodiment offers in particular an independence of the supply of H 2 S to the main reactor with respect to the sulfhydrolysis reactor.
- the present invention also relates to the use of Zr0 2 and / or Ti0 2 as catalyst (s), in the reaction by reacting a sulphide with hydrogen sulphide to obtain a mercaptan.
- catalyst and said reaction are as defined for the sulfhydrolysis process as described above.
- Sulfides and mercaptans are also as defined above.
- Figure 1 schematically shows a methylmercaptan production unit integrating the sulfhydrolysis process as according to the invention.
- the production unit may be pre-existing and may correspond to the items circled in dotted lines.
- the secondary reactor (1) (where the sulfhydrolysis takes place) comprises an H 2 S inlet and a dimethyl sulfide (DMS) inlet. At the outlet, stream A comprises H 2 S and methyl mercaptan.
- DMS dimethyl sulfide
- Stream A enters directly into the main reactor (2) also comprising a methanol inlet.
- the stream B leaving the reactor (2) comprises methylmercaptan, dimethylsulfide and H 2 S.
- Stream B is then separated by distillation (3) into three different streams:
- DMS dimethylsulfide
- FIG. 2 schematically represents another implementation of a methylmercaptan production unit integrating the sulfhydrolysis process as according to the invention.
- the production unit can be pre-existing and can correspond to the elements surrounded by dotted lines.
- the secondary reactor (1A) (where the sulfhydrolysis takes place) comprises an H 2 S inlet and a dimethyl sulfide (DMS) inlet. At the outlet, stream A comprises H 2 S and methyl mercaptan.
- Stream A undergoes a separation step by distillation in (1 B), which gives rise to a stream of H 2 S recycled into the reactor (1A) and a stream B which comprises methyl mercaptan which is combined in (3) with the flow C leaving the reactor (2), where the main reaction between methanol and H 2 S takes place.
- a separation step by distillation (3) gives two different streams:
- DMS dimethylsulfide
- the DMS stream is then recycled to the reactor (1 A).
- FIG. 3 represents the selectivity in percentage in terms of sulphides for three different reaction temperatures as a function of the percentage by weight of mercaptans in the feed entering the main mercaptan synthesis reactor.
- Example 1 Process for the sulfhydrolysis of dimethylsulfide (DMS) to methylmercaptan (MeSH)
- the catalysts were activated in situ with a procedure comprising a first step of drying with nitrogen at 250 ° C, followed by sulphurization with H 2 S at 350 ° C for 1 hour.
- the reagents are preheated to a temperature> 100 ° C and are flashed during their introduction from the bottom of the reactor.
- the products were analyzed online by gas chromatography.
- the catalysts according to the invention make it possible to significantly increase the conversion of dimethylsulfide, while retaining very good selectivity.
- the conversion can be greater than 70%, compared to a maximum of 35% for alumina, a conventional catalyst used in sulfhydrolysis. It is also observed that only a negligible amount of methane is formed.
- Example 2 Production of mercaptans
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
The present invention concerns a method for sulfhydrolysis from dialkyl sulfides and hydrogen sulfide, in the presence of a specific catalyst based on titanium dioxide and/or zirconium dioxide, as well as the corresponding use of such a catalyst. The present invention also concerns a method for preparing mercaptans, in particular methyl mercaptan, from at least one alcohol and hydrogen sulfide, comprising said sulfhydrolysis method.
Description
PROCEDE DE PREPARATION DE MERCAPTANS PAR SULFHYDROLYSE DE PROCESS FOR PREPARING MERCAPTANS BY SULPHYDROLYSIS OF
SULFURES SULPHIDES
La présente invention concerne un procédé de préparation de mercaptans, en particulier de méthylmercaptan, à partir de dialkylsulfures et d’hydrogène sulfuré (également appelé procédé ou réaction de sulfhydrolyse), en présence d’un catalyseur spécifique à base de dioxyde de titane et/ou de dioxyde de zirconium, ainsi que l’utilisation correspondante d’un tel catalyseur. La présente invention concerne également un procédé de préparation de mercaptans et de dialkylsulfures, à partir d’au moins un alcool et d’hydrogène sulfuré, intégrant le procédé de sulfhydrolyse tel que défini ci-dessus. The present invention relates to a process for preparing mercaptans, in particular methylmercaptan, from dialkylsulfides and hydrogen sulfide (also called sulfhydrolysis process or reaction), in the presence of a specific catalyst based on titanium dioxide and / or zirconium dioxide, as well as the corresponding use of such a catalyst. The present invention also relates to a process for preparing mercaptans and dialkylsulfides, from at least one alcohol and hydrogen sulfide, integrating the sulfhydrolysis process as defined above.
Les mercaptans présentent un grand intérêt industriel et sont aujourd’hui très largement utilisés par les industries chimiques, notamment comme matières premières pour la synthèse de molécules organiques plus complexes. Par exemple, le méthylmercaptan (CH3SH) est utilisé comme matière première dans la synthèse de la méthionine, acide aminé essentiel pour l’alimentation animale. Le méthylmercaptan est également utilisé dans la synthèse de disulfures de dialkyles, en particulier dans la synthèse du disulfure de diméthyle (DMDS), additif de sulfuration de catalyseurs d’hydrotraitement de coupes pétrolières, entre autres applications. Mercaptans are of great industrial interest and are now widely used by the chemical industries, in particular as raw materials for the synthesis of more complex organic molecules. For example, methylmercaptan (CH 3 SH) is used as a raw material in the synthesis of methionine, an essential amino acid for animal feed. Methylmercaptan is also used in the synthesis of dialkyl disulphides, in particular in the synthesis of dimethyl disulphide (DMDS), a sulphurization additive of hydrotreatment catalysts of petroleum fractions, among other applications.
La synthèse industrielle des mercaptans, et en particulier du méthylmercaptan, se fait généralement selon un procédé connu, à partir d’un alcool et de sulfure d’hydrogène à température élevée en présence d’un catalyseur selon l’équation (1) suivante : The industrial synthesis of mercaptans, and in particular of methyl mercaptan, is generally carried out according to a known process, from an alcohol and hydrogen sulfide at elevated temperature in the presence of a catalyst according to equation (1) below:
Réaction principale R0H + H2S - > RSH + H20 (1) Main reaction R0H + H 2 S -> RSH + H 2 0 (1)
Cependant, cette réaction donne lieu à la formation de sous-produits, tels que les sulfures (qui sont dans le cas ci-dessous symétriques), selon l’équation (2) suivante : However, this reaction gives rise to the formation of by-products, such as sulphides (which in the case below are symmetrical), according to the following equation (2):
ROH + RSH -> RSR + H20 (2) ROH + RSH -> RSR + H 2 0 (2)
De plus, lorsque la réaction principale est effectuée en présence de plusieurs alcools, on peut également obtenir des sulfures dissymétriques selon les équations (3) et (4) suivantes (exemple donné avec deux alcools) : In addition, when the main reaction is carried out in the presence of several alcohols, it is also possible to obtain unsymmetrical sulphides according to the following equations (3) and (4) (example given with two alcohols):
ROH + R’OH + 2H2S - > RSH + R’SH + 2H20 (3) ROH + R'OH + 2H 2 S -> RSH + R'SH + 2H 2 0 (3)
ROH + R’SH -> RSR’ + H20 (4) ROH + R'SH -> RSR '+ H 2 0 (4)
Les sulfures sous-produits, symétriques ou non, sont obtenus en grande quantité au niveau industriel et sont principalement amenés à être détruits. Ceci représente une perte d’efficacité pour le procédé de production des mercaptans et un coût supplémentaire lié à leur destruction. The sulphides by-products, symmetrical or not, are obtained in large quantities at the industrial level and are mainly brought to be destroyed. This represents a loss of efficiency for the mercaptan production process and an additional cost associated with their destruction.
Ainsi, les sulfures sont parfois valorisés pour obtenir les mercaptans correspondants, grâce à la réaction (5) suivante (également appelée sulfhydrolyse) :
Réaction de sulfhydrolyse RSR’ + H2S -> RSH + R’SH (5) Thus, the sulfides are sometimes upgraded to obtain the corresponding mercaptans, thanks to the following reaction (5) (also called sulfhydrolysis): RSR '+ H 2 S -> RSH + R'SH sulfhydrolysis reaction (5)
Dans le cas du méthylmercaptan, la réaction de sulfhydrolyse s’écrit selon l’équation (6) suivante : In the case of methylmercaptan, the sulfhydrolysis reaction is written according to equation (6):
CH3SCH3+ H2S -> 2 CH3SH (6) CH 3 SCH 3 + H 2 S -> 2 CH 3 SH (6)
La réaction de sulfhydrolyse est généralement catalysée par des catalyseurs de type alumine (Al203) OU de type NiMo (Nickel/Molybdène) ou C0M0 (Cobalt/Molybdène) sur un support alumine tels que décrits dans les demandes WO 2017/210070 et WO 2018/035316. Toutefois, un tel procédé nécessite d’être amélioré de façon à être plus économique et plus adapté à l’échelle industrielle. The sulfhydrolysis reaction is generally catalyzed by catalysts of alumina type (Al 2 0 3 ) OR of NiMo type (Nickel / Molybdenum) or C0M0 (Cobalt / Molybdenum) on an alumina support as described in applications WO 2017/210070 and WO 2018/035316. However, such a process needs to be improved so as to be more economical and more suitable for the industrial scale.
Il existe donc un besoin pour un procédé amélioré de sulfhydrolyse des sulfures en mercaptans, en particulier du diméthylsulfure en méthylmercaptan. There is therefore a need for an improved process for the sulfhydrolysis of sulfides to mercaptans, in particular dimethylsulfide to methylmercaptan.
Il existe également un besoin pour un procédé amélioré de valorisation des sulfures, en particulier du diméthylsulfure, sous-produits lors de la production des mercaptans réalisée à partir d’alcool(s) et d’hydrogène sulfuré. There is also a need for an improved process for upgrading sulphides, in particular dimethyl sulphide, by-products during the production of mercaptans made from alcohol (s) and hydrogen sulphide.
Un objectif de la présente invention est de proposer un catalyseur pour la sulfhydrolyse des sulfures en mercaptans qui soit facile à mettre en œuvre, économique et qui permette une conversion satisfaisante. An objective of the present invention is to provide a catalyst for the sulfhydrolysis of sulfides to mercaptans which is easy to use, economical and which allows satisfactory conversion.
Un autre objectif de la présente invention est de proposer un procédé de sulfhydrolyse des sulfures en mercaptans qui soit facilement intégrable dans une unité de production industrielle de mercaptans, notamment produits à partir d’alcool(s) et d’H2S. Another objective of the present invention is to provide a process for the sulfhydrolysis of sulfides into mercaptans which can be easily integrated into an industrial production unit of mercaptans, in particular produced from alcohol (s) and H 2 S.
Un objectif de la présente invention est de fournir un procédé de préparation de mercaptans dans lequel les sulfures sous-produits (par exemple lors de la réaction entre un alcool et l’H2S) sont recyclés ou valorisés de façon économique, facile à mettre en œuvre et industriellement viable. An objective of the present invention is to provide a process for the preparation of mercaptans in which the sulphides by-products (for example during the reaction between an alcohol and the H 2 S) are recycled or upgraded economically, easy to put. implemented and industrially viable.
Les présents inventeurs ont découvert de manière surprenante que l’utilisation d’un catalyseur spécifique, à base de dioxyde de titane (de formule Ti02) et ou de zircone (également appelée dioxyde de zirconium, de formule Zr02) lors de la sulfhydrolyse permet d’obtenir une bonne conversion des sulfures, notamment une conversion d’au moins 36%, de préférence d’au moins 50%, voire d’au moins 70%. De plus, le méthane en tant que sous-produit de sulfhydrolyse est produit avec une sélectivité très faible, par exemple inférieure à 2%. The present inventors have surprisingly discovered that the use of a specific catalyst, based on titanium dioxide (of formula Ti0 2 ) and or zirconia (also called zirconium dioxide, of formula Zr0 2 ) during the sulfhydrolysis makes it possible to obtain a good conversion of the sulphides, in particular a conversion of at least 36%, preferably of at least 50%, or even of at least 70%. In addition, methane as a by-product of sulfhydrolysis is produced with very low selectivity, for example less than 2%.
Les catalyseurs selon l’invention sont connus comme supports inertes de catalyseurs (c’est- à-dire sans activité catalytique). Ils sont donc de compositions simples, économiques et peu nocifs, ce qui permet d’obtenir un procédé de sulfhydrolyse plus efficient et plus respectueux de l’environnement.
En particulier, le procédé de sulfhydrolyse tel que selon l’invention peut être intégré dans une usine de production industrielle de mercaptans, produits notamment à partir d’au moins un alcool et d’H2S. Le procédé de sulfhydrolyse selon l’invention permet alors d’augmenter la productivité en mercaptans de façon simple et économique en valorisant les sulfures sous- produits lors de la réaction principale et en les transformant également en mercaptans. The catalysts according to the invention are known as inert catalyst supports (that is to say without catalytic activity). They are therefore of simple, economical and not very harmful compositions, which makes it possible to obtain a sulfhydrolysis process that is more efficient and more respectful of the environment. In particular, the sulfhydrolysis process as according to the invention can be integrated into an industrial production plant for mercaptans, produced in particular from at least one alcohol and H 2 S. The sulfhydrolysis process according to the invention then makes it possible to increase the productivity of mercaptans in a simple and economical manner by upgrading the sulphides by-products during the main reaction and by also transforming them into mercaptans.
De plus, de façon surprenante, les présents inventeurs ont également découvert que les mercaptans issus de la sulfhydrolyse et l’H2S n’ayant pas réagi pouvaient être réintroduits directement (notamment sans étape de séparation et/ou de purification), dans le réacteur principal et ceci sans conséquence pour la réaction principale entre l’(les) alcool(s) et l’H2S. Les mercaptans produits par les deux réactions (principale et de sulfhydrolyse) peuvent alors être séparés et ou purifiés et/ou récupérés à un seul endroit, par exemple en sortie du réacteur principal. In addition, surprisingly, the present inventors have also discovered that the mercaptans resulting from the sulfhydrolysis and the unreacted H 2 S could be reintroduced directly (in particular without a separation and / or purification step), into the product. main reactor and this without consequence for the main reaction between the alcohol (s) and H 2 S. The mercaptans produced by the two reactions (main and sulfhydrolysis) can then be separated and / or purified and / or recovered at a single location, for example at the outlet of the main reactor.
Cette intégration du procédé de sulfhydrolyse dans la chaîne de production principale de mercaptans peut être renforcée par la présence d’une seule alimentation en H2S pour les deux réactions principale et de sulfhydrolyse (par exemple à l’entrée du réacteur de sulfhydrolyse). Ainsi, selon l’invention, on peut obtenir un procédé de valorisation simple et efficace des sulfures qui soit totalement intégré dans une chaîne de production industrielle de mercaptans. Ce dispositif est notamment de mise en œuvre simple : il peut se raccorder facilement à l’unité principale et ne requiert que peu de modifications sur cette dernière. This integration of the sulfhydrolysis process into the main mercaptan production chain can be reinforced by the presence of a single supply of H 2 S for the two main reactions and of sulfhydrolysis (for example at the inlet of the sulfhydrolysis reactor). Thus, according to the invention, it is possible to obtain a simple and effective process for upgrading sulphides which is fully integrated into an industrial production line for mercaptans. This device is particularly simple to implement: it can be easily connected to the main unit and requires only few modifications to the latter.
Ainsi, la présente invention concerne un procédé de sulfhydrolyse, dans lequel on fait réagir un sulfure, de préférence un dialkylsulfure, avec de l’hydrogène sulfuré (H2S) en présence de Zr02 et/ou de Ti02 en tant que catalyseur(s), pour obtenir au moins un mercaptan, de préférence un mercaptan. Thus, the present invention relates to a sulfhydrolysis process, in which a sulfide, preferably a dialkylsulfide, is reacted with hydrogen sulfide (H 2 S) in the presence of Zr0 2 and / or Ti0 2 as a catalyst. (s), to obtain at least one mercaptan, preferably a mercaptan.
La présente invention concerne également un procédé de préparation de mercaptan(s) comprenant les étapes de : The present invention also relates to a process for preparing mercaptan (s) comprising the steps of:
- préparation de mercaptan(s) et de dialkylsulfure(s) à partir d’au moins un alcool et d’H2S, et- preparation of mercaptan (s) and dialkylsulphide (s) from at least one alcohol and H 2 S, and
- réaction de(s)dit(s) dialkylsulfure(s) produit(s) avec de l’H2S selon le procédé de sulfhydrolyse tel que selon l’invention, pour obtenir le(s)dit(s) mercaptan(s). - reaction of (s) said (s) dialkylsulfide (s) product (s) with H 2 S according to the sulfhydrolysis process as according to the invention, to obtain (s) said (s) mercaptan (s) ).
Définitions Definitions
On entend notamment par « catalyseur » une substance ou une composition de substances chimiques accélérant une réaction chimique et qui se retrouve(nt) inchangée(s) à la fin de cette réaction. The term “catalyst” is understood to mean in particular a substance or a composition of chemical substances accelerating a chemical reaction and which is (are) unchanged at the end of this reaction.
Selon la présente invention, le catalyseur utilisé lors de la réaction de sulfhydrolyse comprend le dioxyde de titane (Ti02) et/ou la zircone (Zr02), de préférence le dioxyde de titane. De tels
catalyseurs peuvent également être appelés catalyseurs à base de dioxyde de titane et/ou de zircone. According to the present invention, the catalyst used during the sulfhydrolysis reaction comprises titanium dioxide (Ti0 2 ) and / or zirconia (Zr0 2 ), preferably titanium dioxide. Such catalysts can also be called catalysts based on titanium dioxide and / or zirconia.
Le dioxyde de titane et/ou la zircone sont utilisés en tant que catalyseur(s) dans la réaction de sulfhydrolyse. Il est entendu que le Ti02 et/ou le Zr02 sont les composants actifs du catalyseur (soit les composés ayant une activité catalytique). En particulier, les catalyseurs selon l’invention ne comprennent pas d’autres composés ayant une activité catalytique sur la réaction de sulfhydrolyse. Titanium dioxide and / or zirconia are used as catalyst (s) in the sulfhydrolysis reaction. It is understood that Ti0 2 and / or Zr0 2 are the active components of the catalyst (ie compounds having catalytic activity). In particular, the catalysts according to the invention do not include other compounds having catalytic activity on the sulfhydrolysis reaction.
De préférence, les catalyseurs selon l’invention sont constitués essentiellement de, voire constitués de dioxyde de titane et/ou de zircone, et éventuellement de stabilisants et/ou de liants. Les stabilisants et les liants sont ceux classiquement utilisés dans le domaine des catalyseurs. Preferably, the catalysts according to the invention consist essentially of, or even consist of titanium dioxide and / or zirconia, and optionally stabilizers and / or binders. The stabilizers and the binders are those conventionally used in the field of catalysts.
On entend par « promoteur » (également appelé « dopant ») une substance chimique ou une composition de substances chimiques pouvant modifier, notamment améliorer, l'activité catalytique d’un catalyseur. Par exemple, on entend par « promoteur », une substance chimique ou une composition de substances chimiques permettant d’améliorer la conversion et/ou la sélectivité de la réaction catalysée par rapport au catalyseur seul. De préférence, les catalyseurs selon l’invention ne comprennent pas de promoteur. By "promoter" (also called "dopant") is meant a chemical substance or a composition of chemical substances which can modify, in particular improve, the catalytic activity of a catalyst. For example, by "promoter" is meant a chemical substance or a composition of chemical substances which makes it possible to improve the conversion and / or the selectivity of the catalyzed reaction relative to the catalyst alone. Preferably, the catalysts according to the invention do not include a promoter.
Les définitions usuelles de la conversion, de la sélectivité et du rendement sont les suivantes : Conversion = (nombre de moles de réactif à l’état initial - nombre de moles de réactif restant après la réaction) / (Nombre de moles de réactif à l’état initial) The usual definitions of conversion, selectivity and yield are as follows: Conversion = (number of moles of reagent in the initial state - number of moles of reagent remaining after the reaction) / (Number of moles of reagent in the initial state) / (Number of moles of reagent in the initial state) 'initial state)
Sélectivité = Nombre de moles de réactif converti en produit souhaité / (Nombre de moles de réactif à l’état initial - nombre de moles de réactif restant après la réaction) Selectivity = Number of moles of reagent converted to desired product / (Number of moles of reagent in the initial state - number of moles of reagent remaining after the reaction)
Rendement = Conversion X Sélectivité Yield = Conversion X Selectivity
En particulier, les catalyseurs de la sulfhydrolyse selon l’invention permettent d’obtenir une conversion des sulfures comprise entre 30% et 90%, de préférence entre 50% et 80%, encore plus préférentiellement entre 50% et 75%. In particular, the sulfhydrolysis catalysts according to the invention make it possible to obtain a conversion of the sulfides of between 30% and 90%, preferably between 50% and 80%, even more preferably between 50% and 75%.
La sélectivité de la réaction de sulfhydrolyse pour les mercaptans est notamment supérieure ou égale à 98%. The selectivity of the sulfhydrolysis reaction for mercaptans is in particular greater than or equal to 98%.
Sulfures et mercaptans Sulphides and mercaptans
On entend par sulfure, tout composé organique comprenant une fonction -C-S-C-. The term “sulfide” is understood to mean any organic compound comprising a -C-S-C- function.
De préférence, on entend par sulfure un dialkylsulfure. Preferably, the term “sulfide” is understood to mean a dialkylsulfide.
On entend notamment par dialkylsulfure, un composé de formule générale (I) suivante : The term “dialkylsulfide” is understood to mean in particular a compound of the following general formula (I):
R-S-R’ (I) dans laquelle, R et R’, identiques ou différents, sont indépendamment l’un de l’autre un radical hydrocarboné, saturé, linéaire, ramifié ou cyclique, éventuellement substitué.
De préférence, R et R’, identiques ou différents, sont indépendamment l’un de l’autre un radical alkyle, linéaire ou ramifié ; plus préférentiellement un radical alkyle linéaire ou ramifié, de préférence linéaire, contenant entre 1 et 18 atome(s) de carbone, de préférence entre 1 et 12 atome(s) de carbone. RS-R '(I) in which, R and R', identical or different, are, independently of one another, a hydrocarbon radical, saturated, linear, branched or cyclic, optionally substituted. Preferably, R and R ', which are identical or different, are, independently of one another, an alkyl radical, linear or branched; more preferably a linear or branched, preferably linear, alkyl radical containing between 1 and 18 carbon atom (s), preferably between 1 and 12 carbon atom (s).
R et R’, identiques ou différents, peuvent être choisis indépendamment l’un de l’autre parmi le groupe constitué du méthyle, de l’éthyle, du propyle, du butyle, du pentyle, de l’hexyle, de l’heptyle, de l’octyle, du nonyle, du décyle, de l’undécyle et du dodécyle, ainsi que leurs isomères. De préférence, R et R’, identiques ou différents, peuvent être choisis indépendamment l’un de l’autre parmi le groupe constitué du méthyle, de l’éthyle, de l’octyle, et du dodécyle. R and R ', identical or different, can be chosen independently of one another from the group consisting of methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl , octyl, nonyl, decyl, undecyl and dodecyl, as well as their isomers. Preferably, R and R ’, the same or different, can be independently selected from the group consisting of methyl, ethyl, octyl, and dodecyl.
De préférence, R et R’ sont identiques (ce qui correspond à un dialkylsulfure symétrique).Preferably, R and R ’are the same (which corresponds to a symmetrical dialkylsulfide).
Les dialkylsulfures symétriques sont en particulier de formule générale (II) suivante : The symmetrical dialkylsulphides are in particular of the following general formula (II):
R-S-R (II) dans laquelle R est défini tel que ci-dessus. R-S-R (II) in which R is defined as above.
En particulier, les dialkylsulfures selon l’invention sont choisis parmi le groupe constitué du diméthylsulfure, du diéthylsulfure, du dioctylsulfure, du didodécylsulfure et du méthyléthylsulfure. Les dialkylsulfures selon l’invention peuvent être choisis parmi le groupe constitué du diméthylsulfure, du diéthylsulfure, du dioctylsulfure et du didodécylsulfure. De façon tout particulièrement préférée, le dialkylsulfure est le diméthylsulfure. In particular, the dialkylsulfides according to the invention are chosen from the group consisting of dimethylsulfide, diethylsulfide, dioctylsulfide, didodecylsulfide and methylethylsulfide. The dialkylsulfides according to the invention can be chosen from the group consisting of dimethylsulfide, diethylsulfide, dioctylsulfide and didodecylsulfide. Very particularly preferably, the dialkylsulphide is dimethylsulphide.
Les mercaptans selon l’invention sont ceux correspondant à la sulfhydrolyse des sulfures tels que définis ci-dessus. De préférence, on entend par mercaptans, les alkylmercaptans. The mercaptans according to the invention are those corresponding to the sulfhydrolysis of sulfides as defined above. Preferably, the term “mercaptans” is understood to mean alkylmercaptans.
En particulier, on entend par alkylmercaptan, un composé de formules générales (III) et/ou (IV) suivantes : In particular, the term “alkylmercaptan” is understood to mean a compound of the following general formulas (III) and / or (IV):
R-SH (III) et ou R’SH (IV), dans lesquelles R et R’ sont tels que définis ci-dessus. R-SH (III) and or R’SH (IV), where R and R ’are as defined above.
De façon particulièrement préférée, le mercaptan obtenu selon l’invention est le méthylmercaptan. Particularly preferably, the mercaptan obtained according to the invention is methylmercaptan.
Procédé de sulfhydrolyse des sulfures en mercaptans Process for sulfhydrolysis of sulfides to mercaptans
La présente invention concerne donc un procédé de préparation d’au moins un mercaptan par sulfhydrolyse. En particulier, la présente invention concerne un procédé de préparation d’au moins un mercaptan, dans lequel on fait réagir un dialkylsulfure avec de l’hydrogène sulfuré (H2S) en présence de Zr02 et/ou de Ti02 en tant que catalyseur(s). The present invention therefore relates to a process for preparing at least one mercaptan by sulfhydrolysis. In particular, the present invention relates to a process for preparing at least one mercaptan, in which a dialkylsulphide is reacted with hydrogen sulphide (H 2 S) in the presence of Zr0 2 and / or Ti0 2 as catalyst (s).
De préférence, ledit catalyseur ne comprend pas d’oxyde de métal alcalin, notamment tels que les oxydes de lithium, sodium, potassium, rubidium et césium. Preferably, said catalyst does not include an alkali metal oxide, in particular such as the oxides of lithium, sodium, potassium, rubidium and cesium.
De préférence, ledit catalyseur ne comprend pas de promoteur.
En particulier, ledit catalyseur ne comprend pas d’alumine (Al203). Preferably, said catalyst does not include a promoter. In particular, said catalyst does not include alumina (Al 2 0 3 ).
En particulier, ledit catalyseur ne comprend pas de phosphore. In particular, said catalyst does not include phosphorus.
De préférence, ledit catalyseur est le Ti02. De façon particulièrement préférée, le catalyseur comprend uniquement le Ti02 en tant que composant actif, et en particulier sous sa forme cristalline anatase. Preferably, said catalyst is Ti0 2 . Particularly preferably, the catalyst comprises only TiO 2 as active component, and in particular in its crystalline anatase form.
Lorsque le catalyseur comprend du Ti02 et du Zr02, alors il peut comprendre entre 30% et 50%, de préférence entre 35% et 45%, par exemple environ 40% en poids de Ti02 par rapport au poids total du catalyseur et/ou entre 50% et 70%, de préférence entre 55% et 65%, par exemple environ 60% en poids de Zr02 par rapport au poids total du catalyseur. When the catalyst comprises Ti0 2 and Zr0 2 , then it can comprise between 30% and 50%, preferably between 35% and 45%, for example approximately 40% by weight of Ti0 2 relative to the total weight of the catalyst and / or between 50% and 70%, preferably between 55% and 65%, for example approximately 60% by weight of Zr0 2 relative to the total weight of the catalyst.
Les catalyseurs selon l’invention peuvent présenter une aire spécifique supérieure à 40 m2.g_ 1. De préférence, l’aire spécifique est d’au moins 50 m2.g_1 pour un catalyseur à base de Zr02 De préférence, l’aire spécifique est d’au moins 80 m2.g_1 pour un catalyseur à base de Ti02.The catalysts according to the invention can have a specific area greater than 40 m 2 .g _ 1 . Preferably, the specific area is at least 50 m 2 .g _1 for a catalyst based on Zr0 2. Preferably, the specific area is at least 80 m 2 .g _1 for a catalyst based on Zr0 2. Ti0 2 .
La forme des catalyseurs peut être de tout type, par exemple de forme sphérique, cylindrique, en forme d’anneau, d’étoile, de granulats ou de toute autre forme tridimensionnelle, ou bien sous forme d’une poudre qui peut être pressée, extrudée ou granulée. The shape of the catalysts can be of any type, for example of spherical, cylindrical, ring, star, aggregate or any other three-dimensional shape, or else in the form of a powder which can be pressed, extruded or granulated.
Les réactifs de la sulfhydrolyse peuvent être à l’état gazeux, liquide ou solide, de préférence gazeux ou liquide. The sulfhydrolysis reagents can be in the gaseous, liquid or solid state, preferably gaseous or liquid.
La température de réaction de la sulfhydrolyse peut être comprise entre 100°C et 500 °C, de préférence entre 200 °C et 400 °C, de préférence encœ entre 200 °C et 380 °C, plus préférentiellement entre 250 °C et 380 °C. The sulfhydrolysis reaction temperature can be between 100 ° C and 500 ° C, preferably between 200 ° C and 400 ° C, preferably between 200 ° C and 380 ° C, more preferably between 250 ° C and 380 ° C. ° C.
La réaction de sulfhydrolyse peut être réalisée sous une pression comprise entre 50 mbar et 100 bar, de préférence entre la pression atmosphérique (environ 1 bar) et 50 bars, et avantageusement entre 5 et 20 bars. The sulfhydrolysis reaction can be carried out under a pressure of between 50 mbar and 100 bar, preferably between atmospheric pressure (approximately 1 bar) and 50 bar, and advantageously between 5 and 20 bar.
Le ratio molaire H2S/sulfure peut être compris entre 0,1/1 et 50/1 , de préférence entre 2/1 et 20/1 . De préférence ledit ratio est compris entre 2/1 et 15/1 , de préférence encore entre 2/1 et 10/1 , par exemple 4/1 . The H 2 S / sulphide molar ratio can be between 0.1 / 1 and 50/1, preferably between 2/1 and 20/1. Preferably, said ratio is between 2/1 and 15/1, more preferably between 2/1 and 10/1, for example 4/1.
Avantageusement, les réactifs (sulfure et H2S) peuvent respecter un temps de contact particulier avec le catalyseur au sein du réacteur où a lieu la sulfhydrolyse. Ce paramètre est exprimé avec l’équation de la vitesse volumique horaire : Advantageously, the reactants (sulphide and H 2 S) can respect a particular contact time with the catalyst within the reactor where the sulphhydrolysis takes place. This parameter is expressed with the equation of the hourly volume speed:
(WH) = (débit total de sulfure + H2S entrant) / (Volume de catalyseur dans le réacteur).(WH) = (total flow of sulphide + H 2 S entering) / (Volume of catalyst in the reactor).
La WH peut être comprise entre 100 et 1200 h-1. The WH can be between 100 and 1200 h -1 .
La réaction de sulfhydrolyse peut se dérouler dans tout type de réacteur, par exemple des réacteurs tubulaires à lit fixe, multitubulaires, à micro-canaux, à paroi catalytique ou à lit fluidisé, de préférence un réacteur tubulaire à lit fixe. The sulfhydrolysis reaction can take place in any type of reactor, for example fixed bed tubular, multitubular, microchannel, catalytic wall or fluidized bed reactors, preferably a fixed bed tubular reactor.
En particulier, le procédé de sulfhydrolyse selon l’invention est effectué dans un réacteur comprenant une seule zone catalytique (ladite zone est notamment continue).
La quantité de chaque réactif fourni au réacteur peut varier en fonction des conditions de réaction (par exemple, la température, la vitesse volumique horaire, etc.) et se détermine selon les connaissances classiques. L’hydrogène sulfuré peut être présent en excès. In particular, the sulfhydrolysis process according to the invention is carried out in a reactor comprising a single catalytic zone (said zone is in particular continuous). The amount of each reagent supplied to the reactor can vary depending on the reaction conditions (eg temperature, hourly volume rate, etc.) and is determined according to conventional knowledge. Hydrogen sulfide may be present in excess.
Procédé de production de mercaptans Mercaptan production process
La présente invention concerne un procédé de préparation de mercaptan(s) et de dialkylsulfure(s) à partir d’au moins un alcool et d’H2S, dans lequel le(s)dit(s) dialkylsulfure(s) produit(s) réagit(réagissent) ensuite avec de l’H2S selon le procédé de sulfhydrolyse tel que défini ci-dessus, pour obtenir le(s)dit(s) mercaptan(s). The present invention relates to a process for the preparation of mercaptan (s) and dialkylsulfide (s) from at least one alcohol and H 2 S, in which the said dialkylsulfide (s) produced ( s) then reacts (reacts) with H 2 S according to the sulfhydrolysis process as defined above, to obtain the said mercaptan (s).
Ainsi, la présente invention concerne un procédé de préparation de mercaptan(s) comprenant les étapes de : Thus, the present invention relates to a process for preparing mercaptan (s) comprising the steps of:
- préparation de mercaptan(s) et de dialkylsulfure(s) à partir d’au moins un alcool et d’H2S, et - preparation of mercaptan (s) and dialkylsulphide (s) from at least one alcohol and H 2 S, and
- réaction de(s)dit(s) dialkylsulfure(s) produit(s) avec de l’H2S selon le procédé de sulfhydrolyse tel que défini ci-dessus, pour obtenir le(s)dit(s) mercaptan(s). - reaction of said dialkylsulfide (s) product (s) with H 2 S according to the sulfhydrolysis process as defined above, to obtain said mercaptan (s) ).
La réaction entre un alcool et l’H2S pour former un mercaptan (et un sulfure en tant que sous- produit) est une réaction connue, décrite par exemple dans les brevets US 2820062A, US 7645906B2 et US 2820831 A. Par exemple, la réaction peut s’effectuer à une température comprise entre 200 °C et 450 °C et/ou à une pressionallant d’une pression réduite à 100 bar. Généralement, un catalyseur est présent tel que l’alumine promue par des métaux alcalins et ou des métaux alcalino-terreux. L’H2S peut être présent en excès. The reaction between an alcohol and H 2 S to form a mercaptan (and a sulfide as a by-product) is a known reaction, described for example in US Patents 2820062A, US 7645906B2 and US 2820831 A. For example, the reaction can be carried out at a temperature between 200 ° C and 450 ° C and / or at a pressure ranging from a reduced pressure to 100 bar. Usually, a catalyst is present such as alumina promoted by alkali metals and or alkaline earth metals. The H 2 S can be present in excess.
Parmi les réactifs, au moins un alcool, de préférence un ou deux alcools, peut(peuvent) être utilisé(s). Préférentiellement, un seul alcool est utilisé. Le(s) alcool(s) peuvent être choisis parmi les alcools en (Ci-Ci8), voire en (CrCi2), et leurs mélanges. En particulier, les alcools peuvent être choisis parmi le groupe constitué du méthanol, de l’éthanol, de l’octanol, du dodécanol et leurs mélanges. De préférence, l’alcool utilisé est le méthanol. Among the reagents, at least one alcohol, preferably one or two alcohols, can (can) be used. Preferably, a single alcohol is used. The alcohol (s) can be chosen from alcohols (Ci-Ci 8 ), or even (CrCi 2 ), and mixtures thereof. In particular, the alcohols can be chosen from the group consisting of methanol, ethanol, octanol, dodecanol and their mixtures. Preferably, the alcohol used is methanol.
Ci-dessous, il est entendu que lorsque deux flux sont introduits dans un réacteur, ils peuvent être introduits chacun séparément dans le réacteur ou être combinés avant leur entrée dans le réacteur. Below, it is understood that when two streams are introduced into a reactor, they can each be introduced separately into the reactor or be combined before they enter the reactor.
En particulier, le procédé selon l’invention comprend les étapes suivantes : In particular, the method according to the invention comprises the following steps:
A) dans un premier réacteur, on introduit un flux comprenant de l’H2S et un flux comprenant au moins un alcool ; A) in a first reactor, a stream comprising H 2 S and a stream comprising at least one alcohol is introduced;
B) on fait réagir les deux flux pour obtenir un flux sortant comprenant au moins un mercaptan, au moins un dialkylsulfure et éventuellement de l’H2S ; B) the two streams are reacted to obtain an outgoing stream comprising at least one mercaptan, at least one dialkylsulfide and optionally H 2 S;
C) on sépare du flux sortant issu de l’étape B) : C) we separate from the outgoing flow from step B):
- un flux comprenant le(s) mercaptan(s),
- un flux comprenant le(s) dialkylsulfure(s), et - a flow comprising the mercaptan (s), - a flow comprising the dialkylsulphide (s), and
- éventuellement un flux comprenant de l’H2S ; - optionally a flow comprising H 2 S;
D) dans un second réacteur, on introduit ledit flux comprenant le(s) dialkylsulfure(s) avec un flux d’H2S ; D) in a second reactor, said stream comprising the dialkylsulphide (s) is introduced with a stream of H 2 S;
E) on fait réagir les deux flux selon le procédé de sulfhydrolyse tel que défini précédemment pour obtenir un flux sortant comprenant le(s)dit(s) mercaptan(s) et éventuellement de l’H2S ; E) the two streams are reacted according to the sulfhydrolysis process as defined above to obtain an outgoing stream comprising the said mercaptan (s) and optionally H 2 S;
F) éventuellement on recycle le flux d’H2S issu de l’étape C) à l’étape A). F) optionally, the flow of H 2 S resulting from stage C) is recycled to stage A).
On peut récupérer le(s) mercaptan(s) à l’issue de l’étape C) et/ou après séparation du flux sortant de l’étape E), de préférence à l’issue de l’étape C). The mercaptan (s) can be recovered at the end of step C) and / or after separation of the flow leaving step E), preferably at the end of step C).
Le flux sortant issu de l’étape B) peut comprendre au moins un mercaptan, au moins un dialkylsulfure, éventuellement de l’eau, de(s) l’alcool(s) non converti(s) et de l’H2S. Le flux sortant issu de l’étape E) peut comprendre le(s)dit(s) mercaptan(s), de l’H2S et éventuellement du méthane et le(s) dialkylsulfure(s) non converti(s). The outgoing stream from step B) can comprise at least one mercaptan, at least one dialkylsulfide, optionally water, unconverted alcohol (s) and H 2 S The outgoing stream from step E) can comprise the said mercaptan (s), H 2 S and optionally methane and the unconverted dialkylsulphide (s). .
On peut recycler, de préférence entièrement, dans le premier réacteur de l’étape A) le flux sortant du second réacteur de l’étape E). Ainsi, le flux sortant issu du procédé de sulfhydrolyse comprenant le(s) mercaptan(s) et éventuellement l’H2S peut être introduit directement dans le réacteur principal (ou premier réacteur), notamment sans étape de séparation et ou de purification préalable. En particulier, le flux sortant du second réacteur de l’étape E) peut correspondre entièrement ou partiellement, de préférence entièrement, au flux comprenant de l’H2S de l’étape A), avec éventuellement l’H2S recyclé issu de l’étape C). Dans ce cas, le flux sortant issu de l’étape E) comprend de l’H2S. The flow leaving the second reactor of step E) can be recycled, preferably entirely, into the first reactor of step A). Thus, the outgoing stream from the sulfhydrolysis process comprising the mercaptan (s) and optionally H 2 S can be introduced directly into the main reactor (or first reactor), in particular without a separation step and or prior purification. . In particular, the flow leaving the second reactor of stage E) can correspond entirely or partially, preferably entirely, to the flow comprising H 2 S from stage A), optionally with the recycled H 2 S resulting from of step C). In this case, the outgoing flow from step E) comprises H 2 S.
De façon surprenante, l’introduction de mercaptans dans le réacteur principal n’a pas d’influence sur la réaction principale entre au moins un alcool et l’H2S. De plus, l’H2S qui peut être issu de l’étape E) est ainsi totalement recyclé à l’étape A). Un tel recyclage présente notamment l’avantage de n’avoir qu’une seule entrée d’H2S pour tout le procédé de production de mercaptans, à l’entrée du réacteur de sulfhydrolyse par exemple. Surprisingly, the introduction of mercaptans into the main reactor has no influence on the main reaction between at least one alcohol and the H 2 S. In addition, the H 2 S which can be obtained from the step E) is thus completely recycled to step A). Such recycling has in particular the advantage of having only one H 2 S inlet for the entire mercaptan production process, at the inlet of the sulfhydrolysis reactor for example.
Ainsi, le procédé de sulfhydrolyse selon l’invention intégré à une installation industrielle de production de mercaptans permet de retraiter entièrement les sulfures sous-produits en produits d’intérêt et de recycler avantageusement l’H2S. Les mercaptans produits seront le résultat de la réaction principale et de la réaction de sulfhydrolyse, ce qui augmente la productivité. Thus, the sulfhydrolysis process according to the invention integrated into an industrial installation for the production of mercaptans makes it possible to completely reprocess the sulfides by-products into products of interest and to advantageously recycle the H 2 S. The mercaptans produced will be the result of the main reaction and the sulfhydrolysis reaction, which increases the productivity.
L’étape de séparation C) peut se faire par distillation, par exemple sous pression réduite, selon des méthodes classiques. Par exemple, la distillation peut se faire à une pression comprise entre 0,1 bar et 10 bars, notamment entre 1 et 10 bars. L’étape C) peut notamment permettre de séparer du flux sortant issu de l’étape B) : The separation step C) can be carried out by distillation, for example under reduced pressure, according to conventional methods. For example, the distillation can be carried out at a pressure of between 0.1 bar and 10 bar, in particular between 1 and 10 bar. Step C) can in particular make it possible to separate from the outgoing flow resulting from step B):
- un flux comprenant le(s) mercaptan(s),
- un flux comprenant le(s) dialkylsulfure(s), éventuellement un flux comprenant de l’H2S, éventuellement un flux comprenant du méthane, - a flow comprising the mercaptan (s), - a stream comprising the dialkylsulphide (s), optionally a stream comprising H 2 S, optionally a stream comprising methane,
- éventuellement de l’eau, éventuellement de l’alcool non converti. - possibly water, possibly unconverted alcohol.
Selon un mode de réalisation particulier, ledit procédé de préparation comprend les étapes suivantes : a) dans un premier réacteur, on introduit un flux comprenant un mercaptan et de l’H2S et un flux comprenant au moins un alcool, de préférence un alcool ; b) on fait réagir les deux flux pour obtenir un flux sortant comprenant le mercaptan, un dialkylsulfure et éventuellement de l’H2S ; c) on sépare du flux sortant issu de l’étape b) : According to a particular embodiment, said preparation process comprises the following steps: a) in a first reactor, a stream comprising a mercaptan and H 2 S is introduced and a stream comprising at least one alcohol, preferably an alcohol ; b) the two streams are reacted to obtain an outgoing stream comprising the mercaptan, a dialkylsulfide and optionally H 2 S; c) separating from the outgoing flow resulting from step b):
- un flux comprenant le mercaptan ; - a flow comprising mercaptan;
- un flux comprenant le dialkylsulfure ; et - a flow comprising the dialkylsulphide; and
- éventuellement un flux comprenant de l’H2S ; d) dans un second réacteur, on introduit le flux comprenant le dialkylsulfure avec un flux d’H2S ; e) on fait réagir les deux flux selon le procédé de sulfhydrolyse tel que défini ci-dessus pour obtenir un flux sortant comprenant le mercaptan et de l’H2S ; f) on introduit le flux sortant issu de l’étape e), de préférence directement, dans le réacteur de l’étape a) ; g) éventuellement, on récupère le flux comprenant le mercaptan issu de l’étape c) ; et h) éventuellement, on recycle le flux d’H2S issu de l’étape c) à l’étape a). - optionally a flow comprising H 2 S; d) in a second reactor, the stream comprising the dialkylsulfide is introduced with a stream of H 2 S; e) the two streams are reacted according to the sulfhydrolysis process as defined above to obtain an outgoing stream comprising the mercaptan and H 2 S; f) the outgoing stream from step e) is introduced, preferably directly, into the reactor from step a); g) optionally, the stream comprising the mercaptan obtained from step c) is recovered; and h) optionally, the flow of H 2 S resulting from step c) is recycled to step a).
Le flux sortant de l’étape f) peut correspondre entièrement ou partiellement, de préférence entièrement, au flux entrant de mercaptan et d’H2S de l’étape a). The flow leaving step f) can correspond entirely or partially, preferably entirely, to the entering flow of mercaptan and H 2 S from stage a).
Selon un autre mode de réalisation particulier, ledit procédé de préparation comprend les étapes suivantes : a’) dans un premier réacteur, on introduit un flux comprenant de l’H2S et un flux comprenant au moins un alcool, de préférence un alcool ; b’) on fait réagir les deux flux pour obtenir un flux sortant comprenant un mercaptan, un dialkylsulfure et éventuellement de l’H2S ; c’) on sépare du flux sortant issu de l’étape b’) : According to another particular embodiment, said preparation process comprises the following steps: a ′) in a first reactor, a stream comprising H 2 S and a stream comprising at least one alcohol, preferably an alcohol, is introduced; b ') the two streams are reacted to obtain an outgoing stream comprising a mercaptan, a dialkylsulfide and optionally H 2 S; c ') we separate from the outgoing flow from step b'):
- un flux comprenant le mercaptan ; - a flow comprising mercaptan;
- un flux comprenant le dialkylsulfure ; et éventuellement un flux comprenant de l’H2S ; d’) éventuellement, on récupère le flux comprenant le mercaptan issu de l’étape c’) ; e’) éventuellement, on recycle le flux d’H2S issu de l’étape c’) à l’étape a’) ;
f) dans un second réacteur, on introduit le flux comprenant le dialkylsulfure avec un flux d’H2S ; g’) on fait réagir les deux flux selon le procédé de sulfhydrolyse tel que défini ci-dessus pour obtenir un flux sortant comprenant le mercaptan et de l’H2S ; h’) on sépare du flux sortant issu de l’étape g’) : - a flow comprising the dialkylsulphide; and optionally a stream comprising H 2 S; d ′) optionally, the stream comprising the mercaptan obtained from step c ′) is recovered; e ′) optionally, the stream of H 2 S resulting from step c ′) is recycled to step a ′); f) in a second reactor, the stream comprising the dialkylsulfide is introduced with a stream of H 2 S; g ′) the two streams are reacted according to the sulfhydrolysis process as defined above to obtain an outgoing stream comprising the mercaptan and H 2 S; h ') we separate from the outgoing flow from step g'):
- un flux comprenant le mercaptan ; un flux comprenant de l’H2S ; i’) on combine le flux comprenant le mercaptan issu de l’étape h’) à celui sortant de l’étape b’ avant et/ou lors de l’étape c’) ; j’) éventuellement, on recycle le flux d’H2S issu de l’étape h’) à l’étape f). - a flow comprising mercaptan; a stream comprising H 2 S; i ′) the flow comprising the mercaptan resulting from step h ′) is combined with that exiting from step b ′ before and / or during step c ′); j ′) optionally, the flow of H 2 S resulting from step h ′) is recycled to step f).
Ce mode de réalisation offre notamment une indépendance de l’alimentation en H2S du réacteur principal par rapport au réacteur de sulfhydrolyse. This embodiment offers in particular an independence of the supply of H 2 S to the main reactor with respect to the sulfhydrolysis reactor.
La présente invention concerne également l’utilisation de Zr02 et/ou de Ti02 en tant que catalyseur(s), dans la réaction faisant réagir un sulfure avec de l’hydrogène sulfuré pour obtenir un mercaptan. En particulier, ledit catalyseur et ladite réaction sont tels que définis pour le procédé de sulfhydrolyse tel que décrit ci-dessus. Les sulfures et les mercaptans sont également tels que définis ci-dessus. The present invention also relates to the use of Zr0 2 and / or Ti0 2 as catalyst (s), in the reaction by reacting a sulphide with hydrogen sulphide to obtain a mercaptan. In particular, said catalyst and said reaction are as defined for the sulfhydrolysis process as described above. Sulfides and mercaptans are also as defined above.
Description des figures Description of figures
La Figure 1 représente schématiquement une unité de production de méthylmercaptan intégrant le procédé de sulfhydrolyse tel que selon l’invention. L’unité de production peut être préexistante et peut correspondre aux éléments entourés en pointillés. Figure 1 schematically shows a methylmercaptan production unit integrating the sulfhydrolysis process as according to the invention. The production unit may be pre-existing and may correspond to the items circled in dotted lines.
Le réacteur (1) secondaire (où a lieu la sulfhydrolyse) comprend une entrée d’H2S et une entrée de diméthylsulfure (DMS). En sortie, le flux A comprend de l’H2S et du méthylmercaptan. The secondary reactor (1) (where the sulfhydrolysis takes place) comprises an H 2 S inlet and a dimethyl sulfide (DMS) inlet. At the outlet, stream A comprises H 2 S and methyl mercaptan.
Le flux A entre directement dans le réacteur (2) principal comprenant également une entrée de méthanol. Le flux B sortant du réacteur (2) comprend du méthylmercaptan, du diméthylsulfure et de l’H2S. Stream A enters directly into the main reactor (2) also comprising a methanol inlet. The stream B leaving the reactor (2) comprises methylmercaptan, dimethylsulfide and H 2 S.
Le flux B est ensuite séparé par distillation (3) en trois flux différents : Stream B is then separated by distillation (3) into three different streams:
- un flux comprenant le méthylmercaptan (MeSH) ; - a flow comprising methylmercaptan (MeSH);
- un flux comprenant le diméthylsulfure (DMS) ; et - a stream comprising dimethylsulfide (DMS); and
- un flux comprenant de l’H2S, ensuite recyclé dans le réacteur (2) (non schématisé). Le flux de DMS est ensuite recyclé au réacteur (1 ).
La Figure 2 représente schématiquement une autre mise en œuvre d’une unité de production de méthylmercaptan intégrant le procédé de sulfhydrolyse tel que selon l’invention. L’unité de production peut être préexistante et peut correspondre aux éléments entourés en pointillés. Le réacteur (1A) secondaire (où a lieu la sulfhydrolyse) comprend une entrée d’H2S et une entrée de diméthylsulfure (DMS). En sortie, le flux A comprend de l’H2S et du méthylmercaptan. - a stream comprising H 2 S, then recycled to the reactor (2) (not shown diagrammatically). The DMS stream is then recycled to the reactor (1). FIG. 2 schematically represents another implementation of a methylmercaptan production unit integrating the sulfhydrolysis process as according to the invention. The production unit can be pre-existing and can correspond to the elements surrounded by dotted lines. The secondary reactor (1A) (where the sulfhydrolysis takes place) comprises an H 2 S inlet and a dimethyl sulfide (DMS) inlet. At the outlet, stream A comprises H 2 S and methyl mercaptan.
Le flux A subit une étape de séparation par distillation en (1 B), ce qui donne lieu à un flux d’H2S recyclé dans le réacteur (1A) et un flux B qui comprend du méthylmercaptan qui est combiné en (3) avec le flux sortant C du réacteur (2), où a lieu la réaction principale entre le méthanol et l’H2S. Stream A undergoes a separation step by distillation in (1 B), which gives rise to a stream of H 2 S recycled into the reactor (1A) and a stream B which comprises methyl mercaptan which is combined in (3) with the flow C leaving the reactor (2), where the main reaction between methanol and H 2 S takes place.
Une étape de séparation par distillation (3) donne deux flux différents : A separation step by distillation (3) gives two different streams:
- un flux comprenant le méthylmercaptan (MeSH) ; - a flow comprising methylmercaptan (MeSH);
- un flux comprenant le diméthylsulfure (DMS) ; - a stream comprising dimethylsulfide (DMS);
Le flux de DMS est ensuite recyclé au réacteur (1 A). The DMS stream is then recycled to the reactor (1 A).
La Figure 3 représente la sélectivité en pourcentage en sulfures pour trois températures réactionnelles différentes en fonction du pourcentage massique de mercaptans dans la charge entrant dans le réacteur de synthèse principale du mercaptan.
FIG. 3 represents the selectivity in percentage in terms of sulphides for three different reaction temperatures as a function of the percentage by weight of mercaptans in the feed entering the main mercaptan synthesis reactor.
EXEMPLES EXAMPLES
Exemple 1 : Procédé de sulfhydrolyse du diméthylsulfure (DMS) en méthylmercaptan (MeSH) Example 1: Process for the sulfhydrolysis of dimethylsulfide (DMS) to methylmercaptan (MeSH)
Avant test, les catalyseurs ont été activés in situ avec une procédure comprenant une première étape de séchage à l'azote à 250 °C, suivie par unesulfuration avec de l’H2S à 350 °C pendant 1 heure. Before testing, the catalysts were activated in situ with a procedure comprising a first step of drying with nitrogen at 250 ° C, followed by sulphurization with H 2 S at 350 ° C for 1 hour.
La performance des catalyseurs a été évaluée pour la réaction de production de MeSH à partir de DMS dans un réacteur à lit fixe comprenant une seule zone catalytique avec un volume de catalyseur de 30 mL, une température allant de 300 °C à 350 °C, sous une pression de 9 bar absolu, avec une composition de gaz d'alimentation DMS/H2S = 1/4 (v/v) et une vitesse volumique horaire de 800 h-1. Les réactifs sont préchauffés à une température >100 °C et sont flashés lors de leur introduction par le bas du réacteur. The performance of the catalysts was evaluated for the reaction of producing MeSH from DMS in a fixed bed reactor comprising a single catalytic zone with a volume of catalyst of 30 mL, a temperature ranging from 300 ° C to 350 ° C, under a pressure of 9 bar absolute, with a feed gas composition DMS / H 2 S = 1/4 (v / v) and an hourly volume speed of 800 h -1 . The reagents are preheated to a temperature> 100 ° C and are flashed during their introduction from the bottom of the reactor.
Les produits ont été analysés en ligne par chromatographie en phase gazeuse. The products were analyzed online by gas chromatography.
Les résultats de conversion du DMS et de sélectivité en MeSH et CH4 obtenus pour 3 catalyseurs différents sont décrits dans le Tableau 1 ci-contre :
The results of conversion of DMS and of selectivity for MeSH and CH 4 obtained for 3 different catalysts are described in Table 1 opposite:
On constate que les catalyseurs selon l’invention permettent d’augmenter de façon significative la conversion du diméthylsulfure, tout en conservant une très bonne sélectivité. Notamment, avec les catalyseurs selon l’invention, la conversion peut être supérieure à 70%, par rapport à un maximum de 35% pour l’alumine, catalyseur classique utilisé en sulfhydrolyse. On constate également que seule une quantité négligeable de méthane se forme.
Exemple 2 : Production de mercaptans It is noted that the catalysts according to the invention make it possible to significantly increase the conversion of dimethylsulfide, while retaining very good selectivity. In particular, with the catalysts according to the invention, the conversion can be greater than 70%, compared to a maximum of 35% for alumina, a conventional catalyst used in sulfhydrolysis. It is also observed that only a negligible amount of methane is formed. Example 2: Production of mercaptans
L’influence de la réaction de sulfhydrolyse sur la réaction principale de synthèse de mercaptans a été évaluée. The influence of the sulfhydrolysis reaction on the main mercaptan synthesis reaction was evaluated.
Pour ce faire, la teneur en sulfures coproduits par la réaction principale de synthèse de mercaptans a été suivie en fonction de la variation de la teneur en mercaptans entrante au sein du réacteur 1 (où les mercaptans sont produits à partir d’alcool et d’H2S). To do this, the content of sulphides coproduced by the main reaction of synthesis of mercaptans was monitored as a function of the variation of the content of mercaptans entering within reactor 1 (where the mercaptans are produced from alcohol and H 2 S).
Les conditions de la réaction principale sont les suivantes : The conditions of the main reaction are as follows:
Pression = 3,5 bar Pressure = 3.5 bar
Ratio H2S/Ethanol (molaire) = 2,4 H 2 S / Ethanol ratio (molar) = 2.4
GHSV = 580 h 1 GHSV = 580 h 1
Les résultats de sélectivité en sulfures obtenus pour trois teneurs en mercaptans entrantes à trois températures différentes avec un catalyseur à base d’alumine sont décrits en Figure 3. The sulphide selectivity results obtained for three incoming mercaptan contents at three different temperatures with an alumina-based catalyst are described in Figure 3.
Comme le montre la Figure 3, la sélectivité en sulfures coproduits lors de la réaction de synthèse principale du mercaptan (Réacteur 1) reste indépendante de la teneur en mercaptans entrante, issue de la réaction de sulfhydrolyse. La non influence de la présence de mercaptans sur la réaction principale de synthèse est donc démontrée.
As shown in FIG. 3, the selectivity for sulphides coproduced during the main synthesis reaction of mercaptan (Reactor 1) remains independent of the content of incoming mercaptans, resulting from the sulphhydrolysis reaction. The non influence of the presence of mercaptans on the main synthesis reaction is therefore demonstrated.
Claims
1. Procédé de sulfhydrolyse, dans lequel on fait réagir un dialkylsulfure avec de l’hydrogène sulfuré (H2S) en présence de Zr02 et/ou de Ti02 en tant que catalyseur(s), pour obtenir au moins un mercaptan. 1. Sulfhydrolysis process, in which a dialkylsulfide is reacted with hydrogen sulfide (H 2 S) in the presence of Zr0 2 and / or Ti0 2 as catalyst (s), to obtain at least one mercaptan.
2. Procédé selon la revendication 1 , dans lequel le(s)dit(s) catalyseur(s) ne comprend(comprennent) pas d’oxyde de métal alcalin. 2. The method of claim 1, wherein said (s) (s) catalyst (s) does (include) no alkali metal oxide.
3. Procédé selon la revendication 1 ou 2, ledit procédé étant effectué dans un réacteur comprenant une seule zone catalytique. 3. Process according to claim 1 or 2, said process being carried out in a reactor comprising a single catalytic zone.
4. Procédé selon l’une quelconque des revendications 1 à 3, dans lequel la température de réaction est comprise entre 100°C et 500 °C, de péférence entre 200 °C et 400 °C, de préférence encore entre 200 °C et 380 °C, plus préérentiellement entre 250 °C et 380°C. 4. Method according to any one of claims 1 to 3, wherein the reaction temperature is between 100 ° C and 500 ° C, preferably between 200 ° C and 400 ° C, more preferably between 200 ° C and 380 ° C, more preferably between 250 ° C and 380 ° C.
5. Procédé selon l’une quelconque des revendications précédentes, dans lequel le ratio molaire H2S/dialkylsulfure est compris entre 0,1/1 et 50/1 , de préférence entre 2/1 et 20/1. 5. Method according to any one of the preceding claims, in which the H 2 S / dialkylsulfide molar ratio is between 0.1 / 1 and 50/1, preferably between 2/1 and 20/1.
6. Procédé selon l’une quelconque des revendications précédentes, dans lequel le dialkylsulfure est choisi parmi le groupe constitué de : diméthylsulfure, diéthylsulfure, dioctylsulfure, didodécylsulfure et méthyléthylsulfure, de préférence le diméthylsulfure. 6. A method according to any preceding claim, wherein the dialkylsulfide is selected from the group consisting of: dimethylsulfide, diethylsulfide, dioctylsulfide, didodecylsulfide and methylethylsulfide, preferably dimethylsulfide.
7. Procédé de préparation de mercaptan(s) comprenant les étapes de : 7. Process for preparing mercaptan (s) comprising the steps of:
- préparation de mercaptan(s) et de dialkylsulfure(s) à partir d’au moins un alcool et d’H2S, et - preparation of mercaptan (s) and dialkylsulphide (s) from at least one alcohol and H 2 S, and
- réaction de(s)dit(s) dialkylsulfure(s) produit(s) avec de l’H2S selon le procédé de sulfhydrolyse tel que défini à l’une quelconque des revendications 1 à 6, pour obtenir le(s)dit(s) mercaptan(s). - reaction of (s) said (s) dialkylsulfide (s) product (s) with H 2 S according to the sulfhydrolysis process as defined in any one of claims 1 to 6, to obtain the (s) said mercaptan (s).
8. Procédé selon la revendication 7, comprenant les étapes suivantes : 8. The method of claim 7, comprising the following steps:
A) dans un premier réacteur, on introduit un flux comprenant de l’H2S et un flux comprenant au moins un alcool ; A) in a first reactor, a stream comprising H 2 S and a stream comprising at least one alcohol is introduced;
B) on fait réagir les deux flux pour obtenir un flux sortant comprenant au moins un mercaptan et au moins un dialkylsulfure et éventuellement de l’H2S ;
C) on sépare du flux sortant issu de l’étape B) : B) the two streams are reacted to obtain an outgoing stream comprising at least one mercaptan and at least one dialkylsulfide and optionally H 2 S; C) we separate from the outgoing flow from step B):
- un flux comprenant le(s) mercaptan(s), - a flow comprising the mercaptan (s),
- un flux comprenant le(s) dialkylsulfure(s), et - a flow comprising the dialkylsulphide (s), and
- éventuellement un flux comprenant de l’H2S ; - optionally a flow comprising H 2 S;
D) dans un second réacteur, on introduit le flux comprenant le(s) dialkylsulfure(s) avec un flux d’H2S ; D) in a second reactor, the stream comprising the dialkylsulfide (s) is introduced with a stream of H 2 S;
E) on fait réagir les deux flux selon le procédé de sulfhydrolyse tel que défini à l’une quelconque des revendications 1 à 6 pour obtenir un flux sortant comprenant le(s)dit(s) mercaptan(s) et éventuellement de l’H2S ; E) the two streams are reacted according to the sulfhydrolysis process as defined in any one of claims 1 to 6 to obtain an outgoing stream comprising the said mercaptan (s) and optionally H 2 S;
F) éventuellement on recycle le flux d’H2S issu de l’étape C) à l’étape A) F) optionally, the flow of H 2 S from step C) is recycled to step A)
9. Procédé selon la revendication 8, dans lequel on recycle dans le premier réacteur de l’étape A) le flux sortant du second réacteur de l’étape E). 9. The method of claim 8, wherein the flow leaving the second reactor of step E) is recycled to the first reactor of step A).
10. Procédé selon la revendication 7, comprenant les étapes suivantes : a) dans un premier réacteur, on introduit un flux comprenant un mercaptan et de l’H2S et un flux comprenant un alcool ; b) on fait réagir les deux flux pour obtenir un flux sortant comprenant le mercaptan, un dialkylsulfure et éventuellement de l’H2S ; c) on sépare du flux sortant issu de l’étape b) : 10. The method of claim 7, comprising the following steps: a) in a first reactor, introducing a stream comprising a mercaptan and H 2 S and a stream comprising an alcohol; b) the two streams are reacted to obtain an outgoing stream comprising the mercaptan, a dialkylsulfide and optionally H 2 S; c) separating from the outgoing flow resulting from step b):
- un flux comprenant le mercaptan, - a flow comprising mercaptan,
- un flux comprenant le dialkylsulfure ; et - a flow comprising the dialkylsulphide; and
- éventuellement un flux comprenant de l’H2S ; d) dans un second réacteur, on introduit le flux comprenant le dialkylsulfure avec un flux ; d’H2S ; e) on fait réagir les deux flux selon le procédé de sulfhydrolyse tel que défini à l’une quelconque des revendications 1 à 6 pour obtenir un flux sortant comprenant le mercaptan et de l’H2S ; f) on introduit le flux sortant issu de l’étape e), de préférence directement, dans le réacteur de l’étape a) ; g) éventuellement, on récupère le flux comprenant le mercaptan issu de l’étape c) ; et h) éventuellement, on recycle le flux d’H2S issu de l’étape c) à l’étape a). - optionally a flow comprising H 2 S; d) in a second reactor, the stream comprising the dialkylsulfide is introduced with a stream; H 2 S; e) the two streams are reacted according to the sulfhydrolysis process as defined in any one of claims 1 to 6 to obtain an outgoing stream comprising the mercaptan and H 2 S; f) the outgoing stream from step e) is introduced, preferably directly, into the reactor from step a); g) optionally, the stream comprising the mercaptan obtained from step c) is recovered; and h) optionally, the flow of H 2 S resulting from step c) is recycled to step a).
11. Utilisation de Zr02 et/ou de Ti02 en tant que catalyseur(s) dans la réaction faisant réagir un dialkylsulfure avec de l’hydrogène sulfuré pour obtenir un mercaptan.
11. Use of Zr0 2 and / or Ti0 2 as catalyst (s) in the reaction by reacting a dialkylsulfide with hydrogen sulfide to obtain a mercaptan.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1911005A FR3101631B1 (en) | 2019-10-04 | 2019-10-04 | PROCESS FOR THE PREPARATION OF MERCAPTANS BY SULFHYDROLYSIS OF SULPHIDES |
PCT/FR2020/051682 WO2021064312A1 (en) | 2019-10-04 | 2020-09-28 | Method for preparing mercaptans by sulfhydrolysis of sulfides |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4041708A1 true EP4041708A1 (en) | 2022-08-17 |
Family
ID=69158062
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20797157.3A Pending EP4041708A1 (en) | 2019-10-04 | 2020-09-28 | Method for preparing mercaptans by sulfhydrolysis of sulfides |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240025847A1 (en) |
EP (1) | EP4041708A1 (en) |
CN (1) | CN114728896A (en) |
FR (1) | FR3101631B1 (en) |
WO (1) | WO2021064312A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3124184B1 (en) | 2021-06-21 | 2024-08-02 | Arkema France | PROCESS FOR THE PREPARATION OF MERCAPTANS BY SULFHYDROLYSIS OF DIALKYLSULFIDES WITH CATALYST PRE-TREATMENT |
FR3124183B1 (en) | 2021-06-21 | 2024-05-17 | Arkema France | PROCESS FOR PREPARING MERCAPTANS WITH SULFHYDROLYSIS OF PURIFIED DIALKYLSULFIDES |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2820831A (en) | 1953-04-06 | 1958-01-21 | Union Oil Co | Preparation of mercaptans |
US2831031A (en) * | 1954-02-16 | 1958-04-15 | American Oil Co | Conversion of organic sulfur compounds |
US2820062A (en) | 1954-08-11 | 1958-01-14 | Pure Oil Co | Preparation of organic thiols |
GB810017A (en) * | 1957-02-19 | 1959-03-04 | Arthur Abbey | Improvements in and relating to the manufacture of methyl sulphide and methyl mercaptan |
US5453543A (en) * | 1994-10-11 | 1995-09-26 | Elf Atochem North America, Inc. | Process for the manufacture of high purity linear C4 + alkyl mercaptans |
FR2844726B1 (en) * | 2002-09-25 | 2004-12-03 | Atofina | CATALYTIC PROCESS FOR THE MANUFACTURE OF MERCAPTANS FROM THIOETHERS |
DE102007007458A1 (en) * | 2007-02-15 | 2008-08-21 | Evonik Degussa Gmbh | Process for the preparation of methyl mercaptan from dialkyl sulfides and dialkyl polysulfides |
US7645906B2 (en) | 2007-03-27 | 2010-01-12 | Chevron Phillips Chemical Company Lp | Graded catalyst bed for methyl mercaptan synthesis |
CN109195948B (en) * | 2016-05-31 | 2021-05-11 | 诺华丝国际股份有限公司 | Method for producing methyl mercaptan from dimethyl sulfide |
US10273204B2 (en) | 2016-08-19 | 2019-04-30 | Chevron Phillips Chemical Company Lp | Process for conversion of dimethyl sulfide to methyl mercaptan |
-
2019
- 2019-10-04 FR FR1911005A patent/FR3101631B1/en active Active
-
2020
- 2020-09-28 US US17/766,456 patent/US20240025847A1/en active Pending
- 2020-09-28 WO PCT/FR2020/051682 patent/WO2021064312A1/en active Application Filing
- 2020-09-28 EP EP20797157.3A patent/EP4041708A1/en active Pending
- 2020-09-28 CN CN202080083506.7A patent/CN114728896A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
US20240025847A1 (en) | 2024-01-25 |
WO2021064312A1 (en) | 2021-04-08 |
FR3101631A1 (en) | 2021-04-09 |
CN114728896A (en) | 2022-07-08 |
FR3101631B1 (en) | 2023-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3164381B1 (en) | Method for preparing methyl mercaptan | |
EP4041708A1 (en) | Method for preparing mercaptans by sulfhydrolysis of sulfides | |
EP3164382B1 (en) | Method for preparing dimethyl disulphide | |
FR3075791A1 (en) | PROCESS FOR THE PREPARATION OF METHYL MERCAPTAN | |
EP2315871A1 (en) | Dimethyl disulphide derived at least partially from renewable materials | |
EP3356325B1 (en) | Method for producing mercaptans by disulfide enzyme hydrogenolysis | |
EP2621896B1 (en) | Process for preparing dimethyl disulfide | |
WO2022238650A1 (en) | Process for the co-production of alkyl mercaptan and dialkyl disulfide from alcohol | |
JP4886520B2 (en) | Method for separating methyl mercaptan from a reaction gas mixture | |
EP3356326B1 (en) | Method for producing mercaptans by hydrogen-assisted disulfide enzyme hydrogenolysis | |
WO2022269183A1 (en) | Method for preparing mercaptans with sulfhydrolysis of purified dialkyl sulfides | |
FR3124184A1 (en) | PROCESS FOR THE PREPARATION OF MERCAPTANS BY SULFHYDROLYSIS OF DIALKYLSULPHIDES WITH CATALYST PRE-TREATMENT | |
WO2022238651A1 (en) | Method for the co-production of methyl mercaptan and dimethyl disulfide from carbon oxides | |
EP4263498A1 (en) | Method for drying methyl mercaptan by means of azeotropic distillation | |
CA3205014A1 (en) | Method for preparing methyl mercaptan with treatment of gaseous waste |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20220502 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) |