EP4034695A1 - Textured anode for fluorine production and process for structuring a carbon substrate intended to be used in such an anode - Google Patents

Textured anode for fluorine production and process for structuring a carbon substrate intended to be used in such an anode

Info

Publication number
EP4034695A1
EP4034695A1 EP20790371.7A EP20790371A EP4034695A1 EP 4034695 A1 EP4034695 A1 EP 4034695A1 EP 20790371 A EP20790371 A EP 20790371A EP 4034695 A1 EP4034695 A1 EP 4034695A1
Authority
EP
European Patent Office
Prior art keywords
anode
textured
fluorine
bath
micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20790371.7A
Other languages
German (de)
French (fr)
Inventor
Tomy FALCON
Nicolas BATISSE
Marc Dubois
Katia GUÉRIN ARAUJO DA SILVA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Sorbonne Universite
Universite Clermont Auvergne
Sigma Clermont
Original Assignee
Centre National de la Recherche Scientifique CNRS
Sorbonne Universite
Universite Clermont Auvergne
Sigma Clermont
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Sorbonne Universite, Universite Clermont Auvergne, Sigma Clermont filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP4034695A1 publication Critical patent/EP4034695A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/245Fluorine; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/042Electrodes formed of a single material
    • C25B11/043Carbon, e.g. diamond or graphene
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/09Fused bath cells

Definitions

  • the present invention relates generally to the production of a microtextured anode and the use of this anode in an electrochemical cell for the electrolytic production of fluorine gas in a bath of molten fluorinated salts.
  • the production of molecular fluorine F2 by electrolysis is typically carried out in an electrochemical cell in a molten salt medium of hydrofluorinated potassium fluoride, KF-2HF at a temperature close to 100 ° C because it is known those skilled in the art that the KF-2FIF mixture is the most suitable for the electrolysis of fluorine in terms of temperature and ionic conductivity (1) . Few materials can be envisaged in the anode position in an electrochemical cell due to the high reactivity of nascent fluorine and of the HF medium.
  • the industrial production of fluorine is carried out using carbonaceous anodes on the surface of which a fluorocarbon film covering the anode is formed during the production of gaseous fluorine (2) (4) .
  • the cathodes they are most often made of steel and are protected against corrosion as long as they remain under cathodic polarization (4) (5) .
  • the fluorocarbon film formed on the surface of the anode causes an anode overvoltage, which should be reduced in order to avoid excessively high current intensities and therefore excessively large amounts of energy to be supplied to the device.
  • the objective of the present invention is to provide an anode which makes it possible to better control the characteristics of the gas emissions at the anode in an electrochemical cell for the electrolytic production of gaseous fluorine in a bath of molten fluorinated salts. This should make it possible in particular to reduce the anode overvoltage appearing during the production of fluorine, to increase the faradic yields linked to the production of fluorine, to optimize the recovery of the gases in the dedicated gas compartments, and to limit the phenomena of entrainment of particles at the electrolyte / gas interface which are particularly detrimental to the process for the electrolytic production of fluorine gas in a bath of molten fluorinated salts.
  • patent applications US 20104/0126875 and EP2145984 from MITSUI CHEMICALS teach the creation of through channels (of the order of a hundred mm in diameter) in the thickness of the anode so that the fluorine F2 gas produced at the anode (or hydrogen H2 gas at the cathode) can escape from the inter-electrode space where the electrolyte is present to a space behind the electrode where there is no electrolyte but only a gas phase.
  • This channel microstructuring changes the configuration of the electrode and forces an electrode thickness of 3 mm and the implementation of additional compartments to evacuate the gases produced.
  • anode where only the surface is modified for use in an electrochemical cell for the electrolytic production of fluorine gas in a bath of molten fluorinated salts, this anode comprising a carbon substrate , said substrate having a surface having at least one textured zone, this anode being characterized in that said textured zone is a micro-structured surface comprising a plurality of contiguous and identical micro-patterns, which are repeated periodically in at least one direction D1 of said textured zone, said direction being coplanar with said surface, said micropatterns comprising:
  • textured zone is meant, within the meaning of the present invention, a part of the surface comprising an organized arrangement of a plurality of elements (ridges, grooves, ribs, grooves, blades or bumps, bosses), consisting by repeating the same basic element or pattern.
  • micro-patterns are contiguous.
  • micro-patterns are meant, within the meaning of the present invention, micro-patterns adjacent to one another without a separation zone so as to define a continuous textured zone.
  • micropatterns substantially parallel to each other is meant, within the meaning of the present invention, micromotives repeated periodically in directions D1 and D'1 of the textured zone respectively according to translation vectors respectively. and d (as illustrated in FIG. 7) forming between them an angle of at most 5 °.
  • the micro-structured surface of the thus textured zone of the anode according to the invention makes it possible to increase the dynamics of formation and detachment of fluorine gas bubbles at the surface of the anode. This results in better convection of the electrolyte at the surface of the anode, which increases the release of fluorine.
  • the electrodes conventionally used for the production of fluorine are often found saturated at the surface, with a coating of gaseous fluorine which separates the electrode from the electrolyte.
  • the shape of the bubbles which are detached is modified by virtue of the textured zone: they are spherical and of small size, and therefore detach quickly.
  • the applied current density can be increased without the electrode being saturated with gas. We thus manage to produce more than 20% more fluorine at constant current density, and we can achieve current densities 3 to 4 times higher than those of a comparable anode, around 90 A / dm 2 with this electrode. .
  • the width l j of each pattern may be between 5 and 100 ⁇ m, and preferably of the order of 50 ⁇ m.
  • the micro-patterns can be repeated periodically in two non-parallel directions D1, D2 coplanar with said textured surface, so that these micro-patterns are shaped essentially parallelepipedic (cf. [Fig 6]).
  • non-parallel coplanar directions D1, D2 is understood to mean, within the meaning of the present invention, two directions forming between them an angle greater than 5 ° and less than 175 °.
  • the micro patterns are essentially rectangular in shape.
  • Lj and Li are respectively the lengths of a protruding element and of a hollow element of a pattern along the pattern repetition direction D1, and l j being both the width of an element in protrusion of the pattern along D1 and the length of this same element along D2.
  • the present invention also relates to the use of the anode according to the invention in an electrochemical cell for the electrolytic production of gaseous fluorine in a bath of molten fluorinated salts ionic conductor by fluoride ions (for example a bath of CsF-xFIF or of molten KF-2FIF
  • a bath of molten KF-2FIF will be used.
  • a further subject of the present invention is a method for structuring a carbon substrate intended to be used as an electrochemically active substrate of an electrochemical cell anode according to the invention, said method comprising the following steps:
  • ultrashort pulse is understood to mean, within the meaning of the present invention, pulses the duration of which is between 2 femtoseconds and 5 picoseconds.
  • the choice of laser ablation was motivated by its various advantages when ultra-short pulses, of the order of a femtosecond, are used.
  • the energy of the beam will heat the surface and liquefy the material around the impact. Resolidification and / or elevation of the surface temperature can adversely affect the future properties of the material (13) .
  • the ablation will also be diffuse with a “melted” appearance.
  • the femtosecond laser with its very short pulses, allows during the laser / material interaction, to limit the propagation and heating of the substrate.
  • the ablation is carried out by sublimation of the material irradiated by the laser beam; the term athermal ablation can be used.
  • the preferred configuration will be that in which the laser beam is spatially fixed and the sample is moved in the different dimensions of space (typically X-YZ orthogonal).
  • the procedure is as follows: a laser emits continuously and during replacement movements, the laser beam is blocked. Typically to make a "dotted" line, the sample is moved at constant speed and the laser beam is intermittently blocked.
  • the power (combination of the energy and the repetition rate of the pulsed laser) of the laser beam depends on the material to be ablated, on the focus of the beam, on the speed of movement: speed and power are therefore interdependent. For the same depth of ablation, we can move 2X faster with 2 times more power: the energy deposited by surface element remains the same.
  • the etching step can be carried out in a moderating medium such as an aqueous medium, vacuum or a gas such as argon, to drive away from the substrate during texturing the residues formed during of ablation.
  • a moderating medium such as an aqueous medium, vacuum or a gas such as argon
  • FIG 1 shows the evolution of the current density as a function of the size of the bubble spread on the surface [6l [7] :
  • FIG 2 schematically represents an electrochemical cell for the electrolytic production of fluorine gas in a bath of molten fluorinated salts, operating in galvanostatic mode by imposing a defined current density varying from 5 to 90 A / dm 2 between fixed voltage terminals at 3 and 7 V vs EN H;
  • FIG 3 shows the evolution of the anode voltages as a function of the current density applied for an industrial raw anode of the prior art
  • FIG 4 shows four SEM images of the surface of carbon pitch anodes textured by the laser ablation process according to the invention when it is carried out in aqueous medium, in air, in argon and in vacuum;
  • FIG 5 is a schematic representation of the textured anodes of Figure 4, in which the micropatterns are square in shape and repeated in two directions D1 and D2 perpendicular to each other;
  • FIG 6 is a schematic representation of an anode textured area, in which the micropatterns are rectangular in shape and repeated in two directions D1 and D2 not parallel, but not perpendicular to each other;
  • FIG 7 is a schematic representation of an anode textured area, in which the micropatterns are rectangular in shape and periodically repeated in substantially parallel directions D1 and D'1 of the textured area forming an angle between them. at most 5 °;
  • FIG. 8A shows photographs of anode in operation at a current density of 12 A / dm 2 in the case of an untextured and unpolished raw anode (a), of an unpolished raw anode. textured but polished (b), with a textured anode according to the invention by laser ablation in air (c), and FIG. 8B shows photographs of anode in operation at a current density of 12 A / dm 2 in the case of a textured anode according to the invention by laser ablation under argon (d), a textured anode according to the invention by vacuum laser ablation (e), a textured anode according to the invention by laser ablation under water (f);
  • FIG. 9A shows the evolution of the voltage as a function of the current density with a textured anode according to the invention
  • FIG. 9B also shows the change in voltage as a function of current density with a textured anode according to the invention.
  • FIG. 1 schematically shows an example of an electrochemical cell for the electrolytic production of fluorine gas in a bath of molten fluorinated salts, which comprises:
  • the anode being connected to a first brass current lead
  • a heating coil to maintain the temperature of a bath at 95 ° C, the coil being placed at the bottom of the cell.
  • a femtosecond pulsed laser is used for the laser ablation, coupled with an optical device comprising the use of a focusing objective making it possible to obtain beam sizes of the order of a few micrometers.
  • the laser and the optical device give the possibility of modifying the repetition frequency of the laser (time between two laser shots) and power, parameters which will greatly modify the ablation dynamics, bringing a significant degree of freedom to manipulations.
  • the raw pitch anodes are polished according to the following polishing protocol:
  • this first polishing being to obtain a flatness of the sample allowing to have a relatively smooth surface
  • Figure 3 also shows that in the case of an anode still producing F2, the anode voltage is very high, of the order of 6.5 V when the current density is becomes equal to 12A / dm 2. .
  • FIG. 4 shows four SEM images of the surface of carbon pitch anodes textured by the laser ablation process according to the invention when it is carried out in an aqueous medium, in air, under argon and under vacuum.
  • the most interesting and regular structure is the one proceeding under water because, on the one hand, of the absence of carbon particles resulting from the ablation which can obstruct the microstructure and, on the other hand, of the presence of nano- corrugations formed instead of the active surface.
  • EXAMPLE 3 (ACCORDING TO THE INVENTION) [51] We compare the evolution of the voltage of the device as a function of the current density applied, for three types of anodes: a polished raw anode, an unpolished raw anode and a textured anode under water according to the invention.
  • Figures 9A and 9B show that at low current density, the quantity of gas produced is already greater for the microstructured electrodes. It is only from 15 A / dm 2 that the production of fluorine will increase significantly for the electrodes which have undergone a laser treatment. This change in regime is specific to microstructured electrodes as illustrated by the comparison with polished ( Figure 8b) and raw ( Figure 3) electrodes.
  • the second effect is the modification of the dynamics of the bubbles at the surface leading to the formation of smaller bubbles of fluorine.
  • the latter by their ability to quickly unhook from the surface, will create convection loops close to the surface.
  • the stirring of the bath in place will allow the other bubbles to better unhook.
  • a virtuous circle is then formed which is all the more effective when the electrode is in a vertical position.
  • this results in a more moderate increase in the anode voltage with the current density.
  • the microstructuring significantly impacts the production of fluorine gas.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

The invention relates to the production of a microtextured anode and to the use of this anode in an electrochemical cell for the electrolytic production of gaseous fluorine in a bath of molten fluorinated salts.

Description

Description Description
Anode texturée pour production de fluor et procédé de structuration d’un substrat en carbone destine à être utilise dans une telle anode Textured anode for the production of fluorine and method of structuring a carbon substrate for use in such an anode
Domaine technique Technical area
[1] La présente invention concerne de manière générale la réalisation d’une anode microtexturée et l’utilisation de cette anode dans une cellule électrochimique pour la production électrolytique de fluor gazeux dans un bain de sels fluorés fondus. [1] The present invention relates generally to the production of a microtextured anode and the use of this anode in an electrochemical cell for the electrolytic production of fluorine gas in a bath of molten fluorinated salts.
État de la technique State of the art
[2] À l’heure actuelle, la production du fluor moléculaire F2 par électrolyse s’effectue typiquement dans une cellule électrochimique en milieu sel fondu de fluorure de potassium hydrofluoré, KF-2HF à une température proche de 100°C car il est connu de l’homme du métier que le mélange KF-2FIF est le plus adapté pour l’électrolyse du fluor en termes de température et de conductivité ionique(1). Peu de matériaux sont envisageables en position d’anode dans une cellule électrochimique du fait de la forte réactivité du fluor naissant et du milieu HF. A l’heure actuelle, la production industrielle de fluor se fait à partir d’anodes carbonées à la surface desquelles se forme un film fluorocarboné recouvrant l’anode lors de la production du fluor gazeux(2) (4). Les cathodes quant à elles sont le plus souvent en acier et sont protégées vis-à-vis de la corrosion tant qu’elles restent sous polarisation cathodique(4) (5). Le film fluorocarboné formé à la surface de l’anode provoque une surtension anodique, qu’il convient de diminuer afin d’éviter des intensités de courant trop élevées et donc des quantités d’énergie trop importantes à fournir au dispositif. [2] At present, the production of molecular fluorine F2 by electrolysis is typically carried out in an electrochemical cell in a molten salt medium of hydrofluorinated potassium fluoride, KF-2HF at a temperature close to 100 ° C because it is known those skilled in the art that the KF-2FIF mixture is the most suitable for the electrolysis of fluorine in terms of temperature and ionic conductivity (1) . Few materials can be envisaged in the anode position in an electrochemical cell due to the high reactivity of nascent fluorine and of the HF medium. At present, the industrial production of fluorine is carried out using carbonaceous anodes on the surface of which a fluorocarbon film covering the anode is formed during the production of gaseous fluorine (2) (4) . As for the cathodes, they are most often made of steel and are protected against corrosion as long as they remain under cathodic polarization (4) (5) . The fluorocarbon film formed on the surface of the anode causes an anode overvoltage, which should be reduced in order to avoid excessively high current intensities and therefore excessively large amounts of energy to be supplied to the device.
[3] Différents travaux(1) (3) montrent que la surtension anodique observée lors de la génération du F2 est non seulement causée par la fluoration de la surface de l’anode due au milieu agressif de l’électrolyse et aux conditions appliquées (tension appliquée élevée en présence de fluor), mais aussi par la dynamique de formation de bulles apparaissant lorsque la tension augmente. Il existe différentes publications qui traitent de la nucléation à la surface d’une anode et d’après les travaux de H. Groult(6), les bulles naissent au niveau des imperfections et des pores de la surface pour former une couche fluidisée (comme illustré par la figure 1 et en particulier la figure 1c). Cette dernière est le résultat de la coalescence de plusieurs petites bulles créées sur les imperfections. Le détachement d’une bulle (figure 1e) reforme la couche fluidisée (figure 1c). [4] Ainsi, encore à l’heure actuelle, l’électrolyse du fluor reste une technologie mal maîtrisée. En effet, du fait de la dangerosité du procédé, il est difficile de procéder à des observations des processi physico-chimiques se déroulant à l'intérieur des électrolyseurs, et donc de les quantifier précisément. Cependant les expérimentations en laboratoire qui ont été réalisées montrent que les dégagements gazeux aux électrodes sont particulièrement dépendants non seulement de la composition du bain, mais également de l’état de surface chimique et morphologique des électrodes(6) (8). Une amélioration de la mouillabilité des électrodes par le bain permettrait de contrôler le dégagement des bulles et donc l’efficacité des réactions électrochimiques conduisant à la production du fluor et du dihydrogène, comme cela a déjà était fait pour d’autres électrolyses industrielles : notamment celle de l’eau(9). [3] Various works (1) (3) show that the anode overvoltage observed during the generation of F2 is not only caused by the fluorination of the anode surface due to the aggressive environment of the electrolysis and to the conditions applied ( high applied voltage in the presence of fluorine), but also by the dynamics of bubble formation appearing when the voltage increases. There are various publications which deal with the nucleation on the surface of an anode and according to the work of H. Groult (6) , the bubbles are born at the level of the imperfections and the pores of the surface. to form a fluidized layer (as illustrated by FIG. 1 and in particular FIG. 1c). The latter is the result of the coalescence of several small bubbles created on the imperfections. The detachment of a bubble (figure 1e) reform the fluidized layer (figure 1c). [4] Thus, even today, the electrolysis of fluorine remains a poorly mastered technology. Indeed, because of the dangerousness of the process, it is difficult to make observations of the physico-chemical processes taking place inside the electrolysers, and therefore to quantify them precisely. However, the laboratory experiments which have been carried out show that the gas emissions at the electrodes are particularly dependent not only on the composition of the bath, but also on the chemical and morphological surface state of the electrodes (6) (8) . An improvement in the wettability of the electrodes by the bath would make it possible to control the release of bubbles and therefore the efficiency of the electrochemical reactions leading to the production of fluorine and dihydrogen, as has already been done for other industrial electrolyses: in particular that water (9) .
[5] De nombreuses avancées réalisées récemment montrent que la structuration de surface permet d’atteindre des domaines de mouillabilité jamais observés par simple modification des groupements chimiques de surface(10) (11). Ainsi, la mouillabilité de différents matériaux d’électrode par le sel fondu KF-2HF en présence de fluor ainsi que l’optimisation de la génération des bulles par une microstructuration de la surface des électrodes ont été particulièrement étudiées(6)(12). [5] Many recent advances show that surface structuring makes it possible to achieve wettability domains never seen before by simple modification of surface chemical groups (10) (11) . Thus, the wettability of different electrode materials by the KF-2HF molten salt in the presence of fluorine as well as the optimization of the generation of bubbles by a microstructuring of the surface of the electrodes have been particularly studied (6) ' (12) .
[6] L’objectif de la présente invention est de réaliser une anode qui permet de mieux contrôler les caractéristiques des dégagements gazeux à l’anode dans une cellule électrochimique pour la production électrolytique de fluor gazeux dans un bain de sels fluorés fondus. Ceci doit permettre notamment de diminuer la surtension anodique apparaissant lors de la production de fluor, d’augmenter les rendements faradiques liés à la production de fluor, d’optimiser la récupération des gaz dans les compartiments gazeux dédiés, et de limiter les phénomènes d’entraînement de particules à l’interface électrolyte / gaz qui sont particulièrement préjudiciables au procédé de production électrolytique de fluor gazeux dans un bain de sels fluorés fondus. [7] Pour remplir un tel objectif, différentes structurations et nanostructurations de surface ont déjà été envisagées. Ainsi, les demandes de brevet US 20104/0126875 et EP2145984 de MITSUI CHEMICALS enseignent la création de canaux traversants (de l’ordre de la centaine de mm de diamètre) dans l’épaisseur de l’anode afin que le fluor F2 gazeux produit à l’anode (ou l’hydrogène H2 gazeux à la cathode) puisse s’échapper de l’espace inter-électrodes où l’électrolyte est présent vers un espace situé à l’arrière de l’électrode où il n’y a pas d’électrolyte mais uniquement une phase gazeuse. Cette microstructuration en canaux change la configuration de l’électrode et contraint à une épaisseur d’électrode de 3 mm et l’implémentation de compartiments supplémentaires pour évacuer les gaz produits. [6] The objective of the present invention is to provide an anode which makes it possible to better control the characteristics of the gas emissions at the anode in an electrochemical cell for the electrolytic production of gaseous fluorine in a bath of molten fluorinated salts. This should make it possible in particular to reduce the anode overvoltage appearing during the production of fluorine, to increase the faradic yields linked to the production of fluorine, to optimize the recovery of the gases in the dedicated gas compartments, and to limit the phenomena of entrainment of particles at the electrolyte / gas interface which are particularly detrimental to the process for the electrolytic production of fluorine gas in a bath of molten fluorinated salts. [7] To fulfill such an objective, various surface structures and nanostructurations have already been considered. Thus, patent applications US 20104/0126875 and EP2145984 from MITSUI CHEMICALS teach the creation of through channels (of the order of a hundred mm in diameter) in the thickness of the anode so that the fluorine F2 gas produced at the anode (or hydrogen H2 gas at the cathode) can escape from the inter-electrode space where the electrolyte is present to a space behind the electrode where there is no electrolyte but only a gas phase. This channel microstructuring changes the configuration of the electrode and forces an electrode thickness of 3 mm and the implementation of additional compartments to evacuate the gases produced.
[8] En outre, la génération de bulles reste anarchique si la microstructuration n'est pas maîtrisée. Il faut que les bulles de fluor soient générées au sein même d'une structure géométrique bien définie en lien avec la taille de bulles et que la bulle soit accompagnée par des motifs géométriques précis tout au long de son acheminement vers l'extérieur de la cellule d'électrolyse. [8] In addition, the generation of bubbles remains anarchic if the microstructuring is not controlled. It is necessary that the fluorine bubbles are generated within a well-defined geometric structure in relation to the size of the bubbles and that the bubble is accompanied by precise geometric patterns throughout its routing to the outside of the cell. electrolysis.
Description de l’invention Description of the invention
[9] A cette fin, le demandeur a mis au point une anode où seule la surface est modifiée pour une utilisation dans une cellule électrochimique pour la production électrolytique de fluor gazeux dans un bain de sels fluorés fondus, cette anode comprenant un substrat en carbone, ledit substrat présentant une surface présentant au moins une zone texturée, cette anode étant caractérisée en ce que ladite zone texturée est une surface micro-structurée comprenant une pluralité de micro-motifs jointifs et identiques, qui sont répétés périodiquement dans au moins une direction D1 de ladite zone texturée, ladite direction étant coplanaire de ladite surface, lesdits micromotifs comprenant : [9] To this end, the applicant has developed an anode where only the surface is modified for use in an electrochemical cell for the electrolytic production of fluorine gas in a bath of molten fluorinated salts, this anode comprising a carbon substrate , said substrate having a surface having at least one textured zone, this anode being characterized in that said textured zone is a micro-structured surface comprising a plurality of contiguous and identical micro-patterns, which are repeated periodically in at least one direction D1 of said textured zone, said direction being coplanar with said surface, said micropatterns comprising:
- soit un élément en creux de longueur U et un élément en protubérance de longueur Lj, qui sont adjacents et sensiblement parallèles entre eux, - either a hollow element of length U and a protruding element of length L j , which are adjacent and substantially parallel to each other,
- soit une pluralité d’alternances d’éléments en creux de longueur U et d’élément en protubérances de longueur Lj adjacents et sensiblement parallèles entre eux, la largeur lj de chaque motif dans la direction perpendiculaire à la direction (D1) étant comprise entre 5 et 200 pm. [10] Par zone texturée, on entend, au sens de la présente invention, une partie de la surface comportant un agencement organisé d’une pluralité d’éléments (stries, sillons, nervures, rainures, lames ou bosses, bossages), consistant en la répétition d’un même élément de base ou motif. - or a plurality of alternations of hollow elements of length U and protruding element of length L j adjacent and substantially parallel to each other, the width l j of each pattern in the direction perpendicular to the direction (D1) being between 5 and 200 pm. [10] By textured zone is meant, within the meaning of the present invention, a part of the surface comprising an organized arrangement of a plurality of elements (ridges, grooves, ribs, grooves, blades or bumps, bosses), consisting by repeating the same basic element or pattern.
[11] Dans le cadre de la présente invention, les micro-motifs sont jointifs. [11] In the context of the present invention, the micro-patterns are contiguous.
[12] Par micro-motifs jointifs, on entend, au sens de la présente invention, des micro-motifs adjacents l’un à l’autre sans zone de séparation de manière à définir une zone texturée continue. [12] By contiguous micro-patterns is meant, within the meaning of the present invention, micro-patterns adjacent to one another without a separation zone so as to define a continuous textured zone.
[13] Par micromotifs sensiblement parallèles entre eux, on entend, au sens de la présente invention des micromotifs répétés respectivement périodiquement dans des directions D1 et D’1 de la zone texturée selon des vecteurs de translation respectivement et d (comme illustré sur la figure 7) formant entre elles un angle d’au plus 5°. [13] By micropatterns substantially parallel to each other is meant, within the meaning of the present invention, micromotives repeated periodically in directions D1 and D'1 of the textured zone respectively according to translation vectors respectively. and d (as illustrated in FIG. 7) forming between them an angle of at most 5 °.
[14] La surface micro-structurée de la zone ainsi texturée de l’anode selon l’invention permet d’augmenter la dynamique de formation et de détachement des bulles de gaz fluor à la surface de l’anode. Il en résulte une meilleure convection de l’électrolyte en surface de l’anode, ce qui augmente le dégagement de fluor. En effet, les électrodes classiquement utilisées pour la production de fluor se trouvent souvent saturées en surface, avec un nappage de fluor gazeux qui sépare l’électrode de l’électrolyte. De plus, en utilisant l’anode selon l’invention, la forme des bulles qui se détachent est modifiée grâce à la zone texturée: elles sont sphériques et de petite taille, et se détachent donc rapidement. On peut augmenter la densité de courant appliqué sans que l’électrode ne soit saturée en gaz. On parvient ainsi à produire plus de 20% de fluor en plus à densité de courant constante, et on peut atteindre des densités de courant 3 à 4 fois supérieures à celles d’une anode comparable, autour de 90 A/dm2 avec cette électrode . [14] The micro-structured surface of the thus textured zone of the anode according to the invention makes it possible to increase the dynamics of formation and detachment of fluorine gas bubbles at the surface of the anode. This results in better convection of the electrolyte at the surface of the anode, which increases the release of fluorine. In fact, the electrodes conventionally used for the production of fluorine are often found saturated at the surface, with a coating of gaseous fluorine which separates the electrode from the electrolyte. In addition, by using the anode according to the invention, the shape of the bubbles which are detached is modified by virtue of the textured zone: they are spherical and of small size, and therefore detach quickly. The applied current density can be increased without the electrode being saturated with gas. We thus manage to produce more than 20% more fluorine at constant current density, and we can achieve current densities 3 to 4 times higher than those of a comparable anode, around 90 A / dm 2 with this electrode. .
[15] Ce régime particulier dans lequel les bulles de fluor se détachent plus facilement, se traduit par un changement de pente de la courbe obtenue classiquement par le suivi de la tension en fonction de la densité de courant. Il intervient donc avec l’anode microstructurée, par comparaison avec l’électrode non modifiée avec laquelle la pente initiale se maintient. [16] De manière avantageuse, la largeur lj de chaque motif peut être comprise entre 5 et 100 miti, et de préférence de l’ordre de 50 pm. [15] This particular regime in which the fluorine bubbles are detached more easily, results in a change in slope of the curve conventionally obtained by monitoring the voltage as a function of the current density. It therefore occurs with the microstructured anode, by comparison with the unmodified electrode with which the initial slope is maintained. [16] Advantageously, the width l j of each pattern may be between 5 and 100 µm, and preferably of the order of 50 µm.
[17] Selon un mode de réalisation avantageux de l’anode selon l’invention, les micro-motifs peuvent être répétés périodiquement dans deux directions D1, D2 non parallèles coplanaires de ladite surface texturée, de sorte que ces micro-motifs sont de forme essentiellement parallélépipédiques (cf. [Fig 6]). [17] According to an advantageous embodiment of the anode according to the invention, the micro-patterns can be repeated periodically in two non-parallel directions D1, D2 coplanar with said textured surface, so that these micro-patterns are shaped essentially parallelepipedic (cf. [Fig 6]).
[18] Par directions D1 , D2 non parallèles coplanaires, on entend, au sens de la présente invention, deux directions formant entre elles un angle supérieur à 5° et inférieur à 175° . [18] By non-parallel coplanar directions D1, D2 is understood to mean, within the meaning of the present invention, two directions forming between them an angle greater than 5 ° and less than 175 °.
[19] Si les directions D1 et D2 sont perpendiculaires (cf. figures 4 et 5), les micro motifs sont de forme essentiellement rectangulaire. Dans ce cas, Lj et Li sont respectivement les longueurs d’un élément protubérance et d’un élément en creux d’un motif selon la direction D1 de répétition du motif, et lj étant à la fois la largeur d’un élément en protubérance du motif selon D1 et la longueur de ce même élément selon D2. On définit la longueur du motif en creux selon la direction D2 par Dans ce cas, si la somme (I, + lj) est égale à la somme des longueurs (U+ Lj), le micro motif aura globalement la forme d’un carré dans les deux directions D1 et D2 (comme montré par . [Fig 6]). [19] If the directions D1 and D2 are perpendicular (cf. figures 4 and 5), the micro patterns are essentially rectangular in shape. In this case, Lj and Li are respectively the lengths of a protruding element and of a hollow element of a pattern along the pattern repetition direction D1, and l j being both the width of an element in protrusion of the pattern along D1 and the length of this same element along D2. We define the length of the hollow pattern in direction D2 by In this case, if the sum (I, + l j ) is equal to the sum of the lengths (U + L j ), the micro pattern will have the overall shape of a square in both directions D1 and D2 (as shown by [Fig 6]).
[20] La présente invention a également pour objet l’utilisation de l’anode selon l’invention dans une cellule électrochimique pour la production électrolytique de fluor gazeux dans un bain de sels fluorés fondus conducteur ionique par les ions fluorures (par exemple un bain de CsF-xFIF ou de KF-2FIF fondu. On utilisera de préférence, dans le cadre de la présente invention un bain de KF-2FIF fondu . [20] The present invention also relates to the use of the anode according to the invention in an electrochemical cell for the electrolytic production of gaseous fluorine in a bath of molten fluorinated salts ionic conductor by fluoride ions (for example a bath of CsF-xFIF or of molten KF-2FIF Preferably, in the context of the present invention, a bath of molten KF-2FIF will be used.
[21] La présente invention a encore pour objet un procédé de structuration d’un substrat en carbone destiné à être utilisé en tant que substrat actif électrochimiquement d’une anode de cellule électrochimique selon l’invention, ledit procédé comprenant les étapes suivantes : [21] A further subject of the present invention is a method for structuring a carbon substrate intended to be used as an electrochemically active substrate of an electrochemical cell anode according to the invention, said method comprising the following steps:
- fourniture d’un substrat en carbone non graphitisé présentant au moins une surface (20) à texturer, ce substrat pouvant avantageusement être nettoyé puis séché avant l’étape de gravure lui succédant ; - providing a non-graphitized carbon substrate having at least one surface (20) to be textured, this substrate advantageously being able to be cleaned and then dried before the subsequent etching step;
- gravure de ladite surface à texturer par irradiation à l’aide d’un faisceau de lumière sensiblement perpendiculaire à ladite surface émis par un laser pulsé, de préférence apte à générer des impulsions ultrabrèves, ledit faisceau de lumière ayant un mouvement de déplacement relatif par rapport à ladite surface (20) à texturer selon au moins une direction (D1) de ladite surface texturée (21) coplanaire de ladite surface texturée (21). - Etching of said surface to be textured by irradiation using a light beam substantially perpendicular to said surface emitted by a pulsed laser, preferably capable of generating ultrashort pulses, said light beam having a relative displacement movement with respect to said surface (20) to be textured in at least one direction (D1) of said textured surface (21) coplanar with said textured surface (21) .
[22] Par impulsion ultrabrève, on entend, au sens de la présente invention, des impulsions dont la durée est comprise entre 2 femtosecondes et 5 picosecondes. Le choix de l’ablation laser a été motivé par ses différents avantages lorsque des impulsions ultra-courtes, de l’ordre de la femtoseconde, sont mises en œuvre. Lorsque l’impulsion laser arrive sur la surface du matériau et que le temps d’interaction est assez long (nano ou microseconde), l’énergie du faisceau va chauffer la surface et liquéfier la matière autour de l’impact. La resolidification et/ou l’élévation de la température de la surface peuvent nuire aux futures propriétés du matériau(13). L’ablation sera aussi diffuse avec un aspect « fondu » . [22] The term ultrashort pulse is understood to mean, within the meaning of the present invention, pulses the duration of which is between 2 femtoseconds and 5 picoseconds. The choice of laser ablation was motivated by its various advantages when ultra-short pulses, of the order of a femtosecond, are used. When the laser pulse arrives on the surface of the material and the interaction time is long enough (nano or microsecond), the energy of the beam will heat the surface and liquefy the material around the impact. Resolidification and / or elevation of the surface temperature can adversely affect the future properties of the material (13) . The ablation will also be diffuse with a “melted” appearance.
[23] Pour une application en l’électrolyse fluor, il est nécessaire d’obtenir des surfaces avec une propreté et une finition exceptionnelle afin de pouvoir contrôler et modéliser les géométries. Le laser femtoseconde, de par ses impulsions très brèves, permet lors de l’interaction laser/matière, de limiter la propagation et échauffement du substrat. L’ablation se réalise par sublimation de la matière irradiée par le faisceau laser ; le terme d’ablation athermique peut être employé. [23] For an application in fluorine electrolysis, it is necessary to obtain surfaces with exceptional cleanliness and finish in order to be able to control and model the geometries. The femtosecond laser, with its very short pulses, allows during the laser / material interaction, to limit the propagation and heating of the substrate. The ablation is carried out by sublimation of the material irradiated by the laser beam; the term athermal ablation can be used.
[24] En ce qui concerne l’étape de gravure proprement dite, deux configurations sont possibles : soit la surface à texturer de l’anode est fixe et le faisceau laser se déplace, soit c’est l’inverse, c’est-à-dire que le faisceau laser est fixe et la surface à texturer se déplace relativement au faisceau laser. De préférence, la configuration préférée sera celle dans laquelle le faisceau laser est spatialement fixe et l’échantillon est déplacé dans les différentes dimensions de l’espace (typiquement X- Y-Z orthogonales). Dans ce cas, on procède comme suite : un laser émet en permanence et lors des déplacements de replacement, le faisceau laser est obturé. Typiquement pour faire une ligne « en pointillés », l’échantillon est déplacé à vitesse constante et le faisceau laser est obturé par intermittence. La puissance (combinaison de l’énergie et du taux de répétition du laser pulsé) du faisceau laser dépend du matériau à ablater, de la focalisation du faisceau, de la vitesse de déplacement : vitesse et puissance sont donc interdépendants. Pour une même profondeur d’ablation, on peut se déplacer 2X plus vite avec 2 fois plus de puissance : l’énergie déposée par élément de surface reste la même. [24] Regarding the actual etching step, two configurations are possible: either the surface to be textured of the anode is fixed and the laser beam moves, or the reverse is the case. that is, the laser beam is stationary and the surface to be textured moves relative to the laser beam. Preferably, the preferred configuration will be that in which the laser beam is spatially fixed and the sample is moved in the different dimensions of space (typically X-YZ orthogonal). In this case, the procedure is as follows: a laser emits continuously and during replacement movements, the laser beam is blocked. Typically to make a "dotted" line, the sample is moved at constant speed and the laser beam is intermittently blocked. The power (combination of the energy and the repetition rate of the pulsed laser) of the laser beam depends on the material to be ablated, on the focus of the beam, on the speed of movement: speed and power are therefore interdependent. For the same depth of ablation, we can move 2X faster with 2 times more power: the energy deposited by surface element remains the same.
[25] De manière avantageuse, l’étape de gravure peut être réalisée dans un milieu modérateur tel qu’un milieu aqueux, le vide ou un gaz tel que l’argon, pour entraîner loin du substrat en cours de texturation les résidus formés lors de l’ablation . [25] Advantageously, the etching step can be carried out in a moderating medium such as an aqueous medium, vacuum or a gas such as argon, to drive away from the substrate during texturing the residues formed during of ablation.
Brève description des figures Brief description of the figures
[26] Les exemples suivants illustrent l’invention, en liaison avec les figures commentées ci-dessus, sans toutefois en limiter la portée : [26] The following examples illustrate the invention, in conjunction with the figures commented on above, without however limiting its scope:
[Fig 1] montre l’évolution de la densité de courant en fonction de la taille de la bulle étalée en surface[6l [7] : [Fig 1] shows the evolution of the current density as a function of the size of the bubble spread on the surface [6l [7] :
[Fig 2] représente schématiquement une cellule électrochimique pour la production électrolytique de fluor gazeux dans un bain de sels fluorés fondus, fonctionnant en mode galvanostatique en imposant une densité de courant définie variant de 5 à 90 A/dm 2 entre des bornes de tension fixées à 3 et 7 V vs EN H ; [Fig 2] schematically represents an electrochemical cell for the electrolytic production of fluorine gas in a bath of molten fluorinated salts, operating in galvanostatic mode by imposing a defined current density varying from 5 to 90 A / dm 2 between fixed voltage terminals at 3 and 7 V vs EN H;
[Fig 3] montre l’évolution des tensions anodiques en fonction de la densité de courant appliquées pour une anode brute industrielle de l’art antérieur ; [Fig 3] shows the evolution of the anode voltages as a function of the current density applied for an industrial raw anode of the prior art;
[Fig 4] montre quatre clichés MEB de la surface d’anodes en brai de carbone texturées par le procédé d’ablation laser selon l’invention lorsqu’il est réalisé en milieu aqueux, sous air, sous argon et sous vide ; [Fig 4] shows four SEM images of the surface of carbon pitch anodes textured by the laser ablation process according to the invention when it is carried out in aqueous medium, in air, in argon and in vacuum;
[Fig 5] est une représentation schématique des anodes texturées de la figure 4, dans laquelle les micromotifs sont de forme carrée et répétés dans deux directions D1 et D2 perpendiculaires l’une à l’autre ; [Fig 5] is a schematic representation of the textured anodes of Figure 4, in which the micropatterns are square in shape and repeated in two directions D1 and D2 perpendicular to each other;
[Fig 6] est une représentation schématique d’une zone texturée d’anode, dans laquelle les micromotifs sont de forme rectangulaire et répétés dans deux directions D1 et D2 non parallèles, mais non perpendiculaires l’une à l’autre ; [Fig 6] is a schematic representation of an anode textured area, in which the micropatterns are rectangular in shape and repeated in two directions D1 and D2 not parallel, but not perpendicular to each other;
[Fig 7] est une représentation schématique d’une zone texturée d’anode, dans laquelle les micromotifs sont de forme rectangulaire et répétés dans périodiquement dans des directions D1 et D’1 sensiblement parallèles de la zone texturée formant entre elles un angle d’au plus 5°; [Fig 7] is a schematic representation of an anode textured area, in which the micropatterns are rectangular in shape and periodically repeated in substantially parallel directions D1 and D'1 of the textured area forming an angle between them. at most 5 °;
[Fig 8] : la figure 8A montre des photographies d'anode en fonctionnement à une densité de courant de 12 A/dm2 dans le cas d’une anode brute non texturée et non polie (a), d’une anode brute non texturée mais polie (b), d’une anode texturée selon l’invention par ablation laser sous air (c), et la figure 8B montre des photographies d'anode en fonctionnement à une densité de courant de 12 A/dm2 dans le cas d’une anode texturée selon l’invention par ablation laser sous argon (d), d’une anode texturée selon l’invention par ablation laser sous vide (e), d’une anode texturée selon l’invention par ablation laser sous eau (f) ; [Fig 8]: Figure 8A shows photographs of anode in operation at a current density of 12 A / dm 2 in the case of an untextured and unpolished raw anode (a), of an unpolished raw anode. textured but polished (b), with a textured anode according to the invention by laser ablation in air (c), and FIG. 8B shows photographs of anode in operation at a current density of 12 A / dm 2 in the case of a textured anode according to the invention by laser ablation under argon (d), a textured anode according to the invention by vacuum laser ablation (e), a textured anode according to the invention by laser ablation under water (f);
[Fig 9] : la figure 9A montre l’évolution de la tension en fonction de la densité de courant avec une anode texturée selon l’invention ; et la figure 9B montre également l’évolution de la tension en fonction de la densité de courant avec une anode texturée selon l’invention. [Fig 9]: Figure 9A shows the evolution of the voltage as a function of the current density with a textured anode according to the invention; and FIG. 9B also shows the change in voltage as a function of current density with a textured anode according to the invention.
[27] Les figures 1 ,2, 5 à 7 sont décrites plus en détail dans l’art antérieur qui précède, tandis que les figures 3, 4, 8 et 9 sont décrites plus en détail au niveau des exemples qui suivent, qui illustrent l’invention sans en limiter la portée. [27] Figures 1, 2, 5 to 7 are described in more detail in the prior art above, while Figures 3, 4, 8 and 9 are described in more detail in the following examples, which illustrate the invention without limiting its scope.
[28] La figure 2 montre schématiquement un exemple de cellule électrochimique pour la production électrolytique de fluor gazeux dans un bain de sels fluorés fondus, qui comprend : [28] Figure 2 schematically shows an example of an electrochemical cell for the electrolytic production of fluorine gas in a bath of molten fluorinated salts, which comprises:
- une anode selon l’invention en brai de carbone, partiellement recouverte de téflon pour laisser une surface active texturée d’environ 1 cm2, où se passe la réaction - an anode according to the invention in carbon pitch, partially covered with Teflon to leave a textured active surface of about 1 cm 2 , where the reaction takes place
, l’anode étant reliée à une première amenée de courant en laiton, , the anode being connected to a first brass current lead,
- une cathode en cuivre réalisée à partir d’une feuille de 1 mm d’épaisseur et d’une surface active de 2 cm2, où se passe la réaction , la cathode étant reliée à une deuxième amenée de courant en laiton ; - a copper cathode made from a sheet 1 mm thick and a active surface of 2 cm 2 , where the reaction takes place, the cathode being connected to a second brass current lead;
- une électrode de référence en cuivre, - a copper reference electrode,
- un collecteur de difluor F2, - an F2 difluor collector,
.un collecteur de dihydrogène H2 vers l’atmosphère extérieure, .a collector of dihydrogen H2 to the outside atmosphere ,
.un bain électrolytique de fluorure de potassium hydrofluoré KF-2HF, dans lequel sont plongées les électrodes, .an electrolytic bath of hydrofluorinated potassium fluoride KF-2HF, in which the electrodes are immersed,
- un serpentin chauffant pour maintenir la température de un bain à 95°C, le serpentin étant disposé au fond de la cellule. - a heating coil to maintain the temperature of a bath at 95 ° C, the coil being placed at the bottom of the cell.
[29] Lors de l’électrolyse, une différence de potentiel est appliquée entre l’anode et la cathode, conduisant à la production de gaz. Le difluor se dégage à l’anode et le dihydrogène est produit à la cathode selon les équations suivantes : [29] During electrolysis, a potential difference is applied between the anode and the cathode, leading to the production of gas. The difluorium is released at the anode and the hydrogen is produced at the cathode according to the following equations:
- à l’anode : - at the anode:
- à la cathode : - at the cathode:
- soit la reaction globale - either the global reaction
[30] Dans ce milieu, la production de fluor s’effectue à un potentiel minimal de 2,9 V selon la réaction bilan présentée ci-dessus, correspondant à la tension de décomposition de la molécule HF. En réalité, en régime stabilisé, le fluor se dégage plutôt vers 5,5 V, principalement à cause, d’une part, de la surtension liée à la surface de l’anode qui se fluoré et, d’autre part, à la chute ohmique qui s’avère très importante dans l’électrolyte. Cette dernière est engendrée par la faible conductivité du bain (électrolyte) alors que la surtension anodique est causée par la présence de composés fluorocarbonés isolants formés à l’interface anode/électrolyte. Le rendement énergétique est alors abaissé à 30 % seulement. [30] In this medium, the production of fluorine takes place at a minimum potential of 2.9 V according to the balance reaction presented above, corresponding to the decomposition voltage of the HF molecule. In reality, in a stabilized state, fluorine is released more towards 5.5 V, mainly because, on the one hand, of the overvoltage linked to the surface of the anode which becomes fluorinated and, on the other hand, to the ohmic drop which is very important in the electrolyte. The latter is generated by the low conductivity of the bath (electrolyte) while the anode overvoltage is caused by the presence of insulating fluorocarbon compounds formed at the anode / electrolyte interface. The energy efficiency is then lowered to only 30%.
[31] La recombinaison de ces deux gaz, très exothermique, peut provoquer des explosions localisées ou plus étendues, d’autant plus si la quantité de gaz est importante. De plus, le gaz F2 consommé pour cette réaction est perdu pour la suite du procédé, amenant à une perte brute de rendement (la cellule est conçue pour résister aux recombinaisons). Pour pallier ces problèmes, des jupes sont installées au-dessus des électrodes (Figure 2). Le point bas de la jupe (partie immergée) est placé de façon à assurer un bon taux de récupération du gaz sans pour autant gêner les lignes de courant. Le deuxième point important réside dans le respect de la distance inter-électrode. [31] The very exothermic recombination of these two gases can cause localized or larger explosions, especially if the quantity of gas is large. In addition, the gas F2 consumed for this reaction is lost for the rest of the process, leading to a gross loss of yield (the cell is designed to resist recombinations). To overcome these problems, skirts are installed above the electrodes (Figure 2). The low point of the skirt (submerged part) is placed so as to ensure a good rate of gas recovery without hindering the current lines. The second important point lies in respecting the inter-electrode distance.
EXEMPLES EXAMPLES
[32] Equipement pour la réalisation de la gravure : [32] Equipment for carrying out the engraving:
On utilise pour l’ablation laser un laser pulsé femtoseconde, couplé avec un dispositif optique comprenant l’utilisation d’objectif focalisant permettant d’obtenir des tailles de faisceaux de l’ordre de quelques micromètres. Le laser et le dispositif optique donnent la possibilité de modifier la fréquence de répétition du laser (temps entre deux tirs laser) et la puissance, paramètres qui vont grandement modifier la dynamique d’ablation apportant un degré de liberté important aux manipulations. A femtosecond pulsed laser is used for the laser ablation, coupled with an optical device comprising the use of a focusing objective making it possible to obtain beam sizes of the order of a few micrometers. The laser and the optical device give the possibility of modifying the repetition frequency of the laser (time between two laser shots) and power, parameters which will greatly modify the ablation dynamics, bringing a significant degree of freedom to manipulations.
[33] Etant donné que l’oxygène présent en surface constitue un point limitant pour une production efficiente de fluor, une cellule a été réalisée permettant de contrôler l’atmosphère d’ablation sous gaz et sous eau. [33] Since the oxygen present at the surface constitutes a limiting point for an efficient production of fluorine, a cell was carried out to control the atmosphere of ablation under gas and under water.
[34] Echantillons : [34] Samples:
- anodes brutes en brai de carbone, - raw anodes in carbon pitch,
- anode brute en brai de carbone, non texturée et polie, - raw anode in carbon pitch, untextured and polished,
- anode en brai de carbone texturée par le procédé selon l’invention, dans lequel l’ablation laser est réalisée en milieu aqueux, à l’aide d’un laser pulsé femtoseconde selon les conditions de gravure de l’exemple 2, - carbon pitch anode textured by the process according to the invention, in which the laser ablation is carried out in an aqueous medium, using a pulsed femtosecond laser according to the etching conditions of Example 2,
- anode en brai de carbone texturée par le procédé selon l’invention, dans lequel l’ablation laser est réalisée en atmosphère contrôlée sous air, à l’aide d’un laser pulsé femtoseconde selon les conditions de gravure de l’exemple 2, - carbon pitch anode textured by the process according to the invention, in which the laser ablation is carried out in a controlled atmosphere in air, using a pulsed femtosecond laser according to the etching conditions of Example 2,
- anode en brai de carbone texturée par le procédé selon l’invention, dans lequel l’ablation laser est réalisée sous vide, à l’aide d’un laser pulsé femtoseconde selon les conditions de gravure de l’exemple 2, - carbon pitch anode textured by the method according to the invention, in which the laser ablation is carried out under vacuum, using a pulsed femtosecond laser according to the etching conditions of Example 2,
- anode en brai de carbone texturée par le procédé selon l’invention, dans lequel l’ablation laser est réalisée sous argon, à l’aide d’un laser pulsé femtoseconde selon les conditions de gravure de l’exemple 2. - carbon pitch anode textured by the process according to the invention, in which the laser ablation is carried out under argon, using a pulsed femtosecond laser according to the etching conditions of Example 2.
[35] Préalablement l’étape de gravure par ablation laser, les anodes brutes en brai sont polies suivant le protocole de polissage suivant : [35] Prior to the laser ablation etching step, the raw pitch anodes are polished according to the following polishing protocol:
- polissage au disque SiC 600 pendant quelques minutes de manière à éliminer toute les irrégularités de la surface. Le but de ce premier polissage étant d’obtenir une planéité de l’échantillon permettant d’avoir une surface relativement lisse,- polishing with a SiC 600 disc for a few minutes so as to eliminate any irregularities on the surface. The purpose of this first polishing being to obtain a flatness of the sample allowing to have a relatively smooth surface,
- polissage au disque SiC 1200 pendant 3 minutes, - polishing with a SiC 1200 disc for 3 minutes,
- polissage au disque SiC 2400 pendant 9 minutes. - polishing with a SiC 2400 disc for 9 minutes.
[36] Les trois phases de polissage se réalisent sous eau avec des disques neufs. [36] The three polishing phases are carried out under water with new discs.
[37] Différentes atmosphères d’ablation (énoncées ci-dessus) ont été mises en œuvre selon un procédé d’ablation laser pulsé permettant l’interaction d’impulsions ultrabrèves de l’ordre de la centaine de femtosecondes avec la surface de l’échantillon (ablation de matière par formation d’un plasma) et en déplaçant le spot laser (focalisé à un diamètre de l’ordre de 2pm) selon des trajectoires rectilignes et parallèles espacées de 50 micromètres. Selon le niveau d’énergie laser appliqué, différentes passes sur les mêmes trajectoires sont requises en profondeur afin de générer une microstructuration plus ou moins profonde. [37] Different ablation atmospheres (stated above) were implemented according to a pulsed laser ablation process allowing the interaction of ultrashort pulses of the order of a hundred femtoseconds with the surface of the sample (ablation of material by formation of a plasma) and moving the spot laser (focused to a diameter of the order of 2 μm) along rectilinear and parallel paths spaced 50 micrometers apart. Depending on the level of laser energy applied, different passes on the same paths are required at depth in order to generate a more or less deep microstructuring.
[38] EXEMPLE 1 (COMPARATIF) : anode non texturée [38] EXAMPLE 1 (COMPARATIVE): non-textured anode
[39] On utilise, pour la production électrolytique de fluor gazeux, une anode brute en brai de carbone dans la cellule électrochimique en milieu sel fondu de fluorure de potassium hydrofluoré schématiquement illustrée sur la figure 2. La génération de fluor a lieu à l’anode en brai de carbone selon l’équation électrochimique : [39] For the electrolytic production of fluorine gas, a crude carbon pitch anode is used in the electrochemical cell in a molten salt medium of hydrofluorinated potassium fluoride schematically illustrated in FIG. 2. The generation of fluorine takes place at the carbon pitch anode according to the electrochemical equation:
[40] Plus on augmente la densité de courant appliquée au dispositif électrochimique, plus la tension du dispositif s’écarte du potentiel théorique de 3,05 V, comme montré par la figure 3 : cet écart est appelé surtension anodique. C’est de l’énergie perdue pour le système électrochimique. Il faut noter la quasi-linéarité de la courbe tension/densité de courant. [40] The more the current density applied to the electrochemical device is increased, the more the voltage of the device deviates from the theoretical potential of 3.05 V, as shown in Figure 3: this deviation is called anode overvoltage. It’s wasted energy for the electrochemical system. Note the quasi-linearity of the voltage / current density curve.
[41] En milieu industriel, une densité de courant supérieure à 12A/dm2 n’est généralement pas utilisée car une anode sur deux ne produit plus de F2 au-delà de cette valeur. [41] In an industrial environment, a current density greater than 12A / dm 2 is generally not used because every other anode no longer produces F2 above this value.
[42] La figure 3 montre également que dans le cas d’une anode produisant encore du F2, la tension anodique est très élevée, de l’ordre de 6,5 V lorsque la densité de courant est devient égale à 12A/dm2. [42] Figure 3 also shows that in the case of an anode still producing F2, the anode voltage is very high, of the order of 6.5 V when the current density is becomes equal to 12A / dm 2. .
[43] EXEMPLE 2 (SELON L’INVENTION) : nanostructuration de l’anode et influence de l’atmosphère d’ablation [43] EXAMPLE 2 (ACCORDING TO THE INVENTION): nanostructuring of the anode and influence of the ablation atmosphere
[44] On utilise, pour la production électrolytique de fluor gazeux : [44] The following are used for the electrolytic production of fluorine gas:
- les quatre anodes texturées en brai de carbone selon l’invention, - the four carbon pitch textured anodes according to the invention,
- dans la cellule électrochimique en milieu sel fondu de fluorure de potassium hydrofluoré illustrée sur la figure 2, - in the electrochemical cell in a molten salt medium of hydrofluorinated potassium fluoride illustrated in FIG. 2,
- dans les mêmes conditions qu’à l’exemple 1. [45] La figure 4 montre quatre clichés MEB de la surface d’anodes en brai de carbone texturées par le procédé d’ablation laser selon l’invention lorsqu’il est réalisé en milieu aqueux, sous air, sous argon et sous vide. La structure la plus intéressante et régulière est celle procédant sous eau du fait, d’une part de l’absence de particules de carbone issues de l’ablation qui peuvent obstruer la microstructure et, d’autre part, de la présence de nano-ondulations formées en lieu et place de la surface active. - under the same conditions as in Example 1. [45] FIG. 4 shows four SEM images of the surface of carbon pitch anodes textured by the laser ablation process according to the invention when it is carried out in an aqueous medium, in air, under argon and under vacuum. The most interesting and regular structure is the one proceeding under water because, on the one hand, of the absence of carbon particles resulting from the ablation which can obstruct the microstructure and, on the other hand, of the presence of nano- corrugations formed instead of the active surface.
[46] En fonctionnement, lorsque l’ablation laser a été réalisée sous air, on observe que de nombreuses particules de carbone désorganisé sont produites et seront des sites privilégiés de la fluoration, nécessitant un traitement pour les enlever avant la fluoration (cf. figure 8c). [46] In operation, when the laser ablation has been performed in air, it is observed that many disorganized carbon particles are produced and will be privileged sites of fluorination, requiring treatment to remove them before fluorination (cf. figure 8c).
[47] Lorsque l’ablation laser est réalisée sous Argon (cf. figure 7d), en l’absence d’oxygène qui pourrait se greffer en surface, beaucoup de particules sont produites le long du passage du laser. Même si ce carbone n’est pas oxydé, la présence importante de particules désorganisées conduit à une fluoration importante de ces particules, et donc à un nappage de la surface par le fluor (cf. figure 8d) voire à la production de CF4 gazeux qui polluera le F2 produit. [47] When the laser ablation is carried out under Argon (cf. FIG. 7d), in the absence of oxygen which could be grafted on the surface, many particles are produced along the path of the laser. Even if this carbon is not oxidized, the significant presence of disorganized particles leads to a significant fluorination of these particles, and therefore to a coating of the surface by fluorine (cf. FIG. 8d) or even to the production of CF 4 gas. which will pollute the F 2 produced.
[48] Lorsque l’ablation laser est réalisée sous vide (cf. figure 8e en fonctionnement), les échantillons présentent un aspect de surface satisfaisant avec peu ou pas de particules et des formes de la microstructure très bien dessinées (cf. figure 4). Les performances électrochimiques sont semblables à l’échantillon d’anode brute polie servant de référence non rugueuse (contrairement à l’anode brute à rugosité irrégulière non-contrôlée : cf. figure 8b) bien que, visuellement (cf. figure 8e), la dynamique de dégagement de fluor en surface s’avère très différente. [48] When the laser ablation is performed under vacuum (see figure 8e in operation), the samples have a satisfactory surface appearance with few or no particles and very well-defined shapes of the microstructure (see figure 4). . The electrochemical performances are similar to the polished raw anode sample serving as a non-rough reference (unlike the raw anode with uncontrolled irregular roughness: see figure 8b) although, visually (see figure 8e), the dynamics of fluorine release at the surface is very different.
[49] Les bulles générées sur une anode gravée sous eau (cf. figure 8f) sont petites, sphériques et de taille homogène alors que sur une anode non texturée et simplement polie (cf. figure 8b), elles apparaissent plus grandes et non-sphériques. [49] The bubbles generated on an anode etched under water (cf. figure 8f) are small, spherical and of homogeneous size, whereas on a non-textured and simply polished anode (cf. figure 8b), they appear larger and not- spherical.
[50] EXEMPLE 3 (SELON L’INVENTION) [51] On compare l’évolution de la tension du dispositif en fonction de la densité de courant appliquée, pour trois types d’anodes : une anode brute polie, une anode brute non polie et une anode texturée sous eau selon l’invention. [50] EXAMPLE 3 (ACCORDING TO THE INVENTION) [51] We compare the evolution of the voltage of the device as a function of the current density applied, for three types of anodes: a polished raw anode, an unpolished raw anode and a textured anode under water according to the invention.
[52] Les figures 9A et 9B montrent qu’à basse densité de courant, la quantité de gaz produit est déjà supérieure pour les électrodes microstructurées. Ce n’est qu’à partir de 15 A/dm2 que la production de fluor va augmenter de façon importante pour les électrodes ayant subies un traitement laser. Ce changement de régime est spécifique aux électrodes microstructurées comme l’illustre la comparaison avec des électrodes polie (Figure 8b) et brute (Figure 3). [52] Figures 9A and 9B show that at low current density, the quantity of gas produced is already greater for the microstructured electrodes. It is only from 15 A / dm 2 that the production of fluorine will increase significantly for the electrodes which have undergone a laser treatment. This change in regime is specific to microstructured electrodes as illustrated by the comparison with polished (Figure 8b) and raw (Figure 3) electrodes.
[53] A 32 A/dm2, un classement clair s’établit : l’échantillon qui produit le moins est celui non texturé mais préalablement poli, ceci s’explique par la faible rugosité due au polissage de la surface, diminuant ainsi le nombre de points de germination. L’échantillon de brai brut est dans une position intermédiaire. Sa rugosité, non contrôlée, permet d’avoir plus de points de germination que l’échantillon poli, mais l’étalement des bulles sur la surface réduit la surface active et donc la production de fluor. Dans le cas d’une anode selon l’invention, la production de fluor est la meilleure. Globalement, les structures réalisées en surface ont deux effets. Le premier est l’augmentation et la répartition du nombre de points de germination. Le second effet est la modification de la dynamique des bulles en surface amenant à la formation de plus petites bulles de fluor. Ces dernières, par leur capacités à ce décrocher, rapidement de la surface vont créer des boucles de convection proche de la surface. Le brassage du bain mis en place va permettre aux autres bulles de mieux se décrocher. On a alors formation d’un cercle vertueux d’autant plus efficace que l’électrode est en position verticale. Ceci se traduit pour anodes microstructurées par une augmentation plus modérée de la tension anodique avec la densité de courant. Ainsi, la microstructuration impacte significativement la production de gaz fluor. LISTE DES REFERENCES [53] At 32 A / dm 2 , a clear classification is established: the sample which produces the least is the one not textured but previously polished, this is explained by the low roughness due to the polishing of the surface, thus reducing the number of germination points. The raw pitch sample is in an intermediate position. Its roughness, uncontrolled, makes it possible to have more germination points than the polished sample, but the spreading of bubbles on the surface reduces the active surface and therefore the production of fluorine. In the case of an anode according to the invention, the production of fluorine is the best. Overall, the structures made on the surface have two effects. The first is the increase and distribution of the number of germination points. The second effect is the modification of the dynamics of the bubbles at the surface leading to the formation of smaller bubbles of fluorine. The latter, by their ability to quickly unhook from the surface, will create convection loops close to the surface. The stirring of the bath in place will allow the other bubbles to better unhook. A virtuous circle is then formed which is all the more effective when the electrode is in a vertical position. For microstructured anodes, this results in a more moderate increase in the anode voltage with the current density. Thus, the microstructuring significantly impacts the production of fluorine gas. LIST OF REFERENCES
[54] 1. G. Cady, « Freezing Points and Vapor Pressures of the System Potassium[54] 1. G. Cady, “Freezing Points and Vapor Pressures of the System Potassium
Fluoride-Hydrogen Fluoridel », J. Am. Chem. Soc., vol. 56, no 7, p. 1431-1434, 1934. 2. H. Groult, « Electrochemistry of fluorine production », J. Fluor. Chem., vol. 119, noFluoride-Hydrogen Fluoridel ”, J. Am. Chem. Soc., Vol. 56, no 7, p. 1431-1434, 1934. 2. H. Groult, “Electrochemistry of fluorine production”, J. Fluor. Chem., Vol. 119, no
2, p. 173-189, 2003. 2, p. 173-189, 2003.
3. H. Groult, D. Devilliers, M. Vogler, C. Flinnen, P. Marcus, et F. Nicolas, 3. H. Groult, D. Devilliers, M. Vogler, C. Flinnen, P. Marcus, and F. Nicolas,
« Electrochemical behavior and surface analysis of crude and modified carbon électrodes for fluorine production. », Electrochimica Acta, vol. 38, p. 2413-21, 1993. 4. H. Groult et al., « Rôle of elemental fluorine in nuclearfield », J. Fluor. Chem., vol. 128, no 4, p. 285-295, 2007. “Electrochemical behavior and surface analysis of crude and modified carbon electrodes for fluorine production. », Electrochimica Acta, vol. 38, p. 2413-21, 1993. 4. H. Groult et al., “Role of elemental fluorine in nuclearfield”, J. Fluor. Chem., Vol. 128, no.4, p. 285-295, 2007.
5. B. E. Conway et S. Y. Qian, « Unusual kinetic behavior in cathodic H2 évolution from KF.2HF melts at mild-steel and alloy électrodes. », Hem. Ind., vol. 58, p. 259- 270, 2004. 6. H. Vogt, « Gas-evolving électrodes. », in Compr. Treatise Electrochem., 1983, vol. 5. B. E. Conway and S. Y. Qian, “Unusual kinetic behavior in cathodic H2 evolution from KF.2HF melts at mild-steel and alloy electrodes. », Hem. Ind., Vol. 58, p. 259-270, 2004. 6. H. Vogt, “Gas-evolving electrodes. », In Compr. Treatise Electrochem., 1983, vol.
6. p. 445-89. 6. p. 445-89.
7. J. Eigeldinger et H. Vogt, « The bubble coverage of gas-evolving électrodes in a flowing electrolyte. », Electrochimica Acta, vol. 45, p. 4449-4456, 2000. 7. J. Eigeldinger and H. Vogt, “The bubble coverage of gas-evolving electrodes in a flowing electrolyte. », Electrochimica Acta, vol. 45, p. 4449-4456, 2000.
8. A. T. Khun, Industrial electrochemical processes. Elsevier Publishing Company, 1971. 8. A. T. Khun, Industrial electrochemical processes. Elsevier Publishing Company, 1971.
9. T. Rauscher et al., « Femtosecond-laser structuring of Ni électrodes for highly active hydrogen évolution », Electrochimica Acta, vol. 247, p. 1130-1139, 2017.9. T. Rauscher et al., “Femtosecond-laser structuring of Ni electrodes for highly active hydrogen evolution”, Electrochimica Acta, vol. 247, p. 1130-1139, 2017.
10. R. N. Wenzel, « Surface roughness and contact angle. », J. Phys. Chem., vol.10. R. N. Wenzel, “Surface roughness and contact angle. », J. Phys. Chem., Vol.
53, no 9, p. 1466-1467, 1949. 11. A. Cassie et S. Baxter, « Wettability of porous surfaces », Trans. Faraday Soc., vol. 40, p. 546-551, 1944. 53, no 9, p. 1466-1467, 1949. 11. A. Cassie and S. Baxter, “Wettability of porous surfaces”, Trans. Faraday Soc., Vol. 40, p. 546-551, 1944.
12. S. G. Bankoff, « Entrapment of gas in the spreading of a liquid over a rough surface. », AIChE J., vol. 4, p. 24-6, 1958. 12. S. G. Bankoff, “Entrapment of gas in the spreading of a liquid over a rough surface. », AIChE J., vol. 4, p. 24-6, 1958.
13. E. BAUBEAU, « Les lasers femtosecondes : du laboratoire vers l’industrie ».! 13. E. BAUBEAU, "Femtosecond lasers: from the laboratory to industry".!

Claims

Revendications Claims
[Revendication 1] Anode (1) destinée à être utilisée dans une cellule électrochimique pour la production électrolytique de fluor gazeux dans un bain de sels fluorés fondus, ladite anode (1) comprenant un substrat (2) en carbone, ledit substrat (2) présentant une surface (21) présentant au moins une zone texturée (210), caractérisée en ce que ladite zone texturée (210) est une surface micro- structurée comprenant une pluralité de micro-motifs (22) jointifs et identiques, qui sont répétés périodiquement dans au moins une direction (D1) de ladite zone texturée (210), ladite direction (D1) étant coplanaire de ladite surface (21), lesdits micromotifs comprenant : soit un élément en creux (220) de longueur U et un élément en protubérance (221 ) de longueur Lj, qui sont adjacents et sensiblement parallèles entre eux, soit une pluralité d’alternances d’éléments en creux (220) de longueur U et d’élément en protubérances de longueur Lj adjacents et sensiblement parallèles entre eux, la largeur I, de chaque motif dans ladite direction (D1) étant comprise entre 5 et 200 pm. [Claim 1] Anode (1) for use in an electrochemical cell for the electrolytic production of fluorine gas in a bath of molten fluorinated salts, said anode (1) comprising a carbon substrate (2), said substrate (2) having a surface (21) having at least one textured zone (210), characterized in that said textured zone (210) is a microstructured surface comprising a plurality of contiguous and identical micro-patterns (22), which are repeated periodically in at least one direction (D1) of said textured zone (210), said direction (D1) being coplanar with said surface (21), said micropatterns comprising: either a hollow element (220) of length U and a protruding element (221) of length L j , which are adjacent and substantially parallel to each other, i.e. a plurality of alternations of hollow elements (220) of length U and protruding element of length L j adjacent and substantially parallel to each other , the width r I, of each unit in said direction (D1) being between 5 and 200 µm.
[Revendication 2] Anode selon la revendication 1, selon laquelle la largeur I, de chaque motif dans ladite direction (D1) est comprise entre 5 et 100 pm. [Claim 2] An anode according to claim 1, wherein the width, I, of each pattern in said direction (D1) is between 5 and 100 µm.
[Revendication 3] Anode selon la revendication 2, selon laquelle la largeur de chaque motif dans ladite direction (D1 ) est de l’ordre de 50 pm. [Claim 3] The anode of claim 2, wherein the width of each pattern in said direction (D1) is of the order of 50 µm.
[Revendication 4] Anode selon l’une quelconque des revendications 1 à 3, selon laquelle les micro-motifs (22) sont répétés périodiquement dans deux directions (D1 , D2) non parallèles coplanaires de ladite surface texturée (21), de sorte que lesdits micro-motifs (22) sont de forme parallélépipédiques. [Claim 4] An anode according to any one of claims 1 to 3, wherein the micro-patterns (22) are periodically repeated in two non-parallel directions (D1, D2) coplanar of said textured surface (21), so that said micro-patterns (22) are of parallelepipedal shape.
[Revendication 5] Anode selon l’une quelconque des revendications 1 à 3, selon laquelle les directions (D1) et (D2) sont perpendiculaires, de sorte que lesdits micro motifs (22) sont de forme rectangulaire. [Claim 5] An anode according to any one of claims 1 to 3, wherein the directions (D1) and (D2) are perpendicular, so that said micro patterns (22) are rectangular in shape.
[Revendication 6] Utilisation de l’anode (1 ) telle que définie selon l’une quelconque des revendications 1 à 5 dans une cellule électrochimique pour la production électrolytique de fluor gazeux dans un bain de sels fluorés fondus conducteur ionique par les ions fluorures, de préférence dans un bain de KF-2HF fondu. [Claim 6] Use of the anode (1) as defined according to any one of claims 1 to 5 in an electrochemical cell for the electrolytic production of gaseous fluorine in a bath of molten fluorinated salts ionic conductor by fluoride ions, preferably in a bath of molten KF-2HF.
[Revendication 7] Procédé de structuration d’un substrat (2) en carbone destiné à être utilisé en tant que substrat actif électrochimiquement (2) d’une anode (1) de cellule électrochimique telle que définie selon l’une quelconque des revendications 1 à 5, ledit procédé comprenant les étapes suivantes : fourniture d’un substrat en carbone non graphitisé présentant au moins une surface (20) à texturer ; gravure de ladite surface (20) à texturer par irradiation à l’aide d’un faisceau de lumière perpendiculaire à ladite surface (20) émis par un laser pulsé, de préférence apte à générer des impulsions ultrabrèves, ledit faisceau de lumière ayant un mouvement de déplacement relatif par rapport à ladite surface (20) à texturer selon au moins une direction (D1) de ladite surface texturée (21) coplanaire de ladite surface texturée (21). [Revendication 8] Procédé selon la revendication 7, dans lequel l’étape de gravure est réalisée dans un milieu modérateur choisi parmi le milieu aqueux, le vide ou un gaz tel que l’argon. [Claim 7] A method of structuring a carbon substrate (2) intended to be used as an electrochemically active substrate (2) of an anode (1) of an electrochemical cell as defined according to any one of claims 1 to 5, said method comprising the steps of: providing a non-graphitized carbon substrate having at least one surface (20) to be textured; etching of said surface (20) to be textured by irradiation using a beam of light perpendicular to said surface (20) emitted by a pulsed laser, preferably capable of generating ultrashort pulses, said beam of light having movement of relative displacement with respect to said surface (20) to be textured in at least one direction (D1) of said textured surface (21) coplanar with said textured surface (21). [Claim 8] The method of claim 7, wherein the etching step is carried out in a moderating medium selected from aqueous medium, vacuum or a gas such as argon.
EP20790371.7A 2019-09-24 2020-09-24 Textured anode for fluorine production and process for structuring a carbon substrate intended to be used in such an anode Pending EP4034695A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1910529A FR3101083B1 (en) 2019-09-24 2019-09-24 Textured anode for the production of fluorine and method of structuring a carbon substrate for use in such an anode
PCT/FR2020/051664 WO2021058912A1 (en) 2019-09-24 2020-09-24 Textured anode for fluorine production and process for structuring a carbon substrate intended to be used in such an anode

Publications (1)

Publication Number Publication Date
EP4034695A1 true EP4034695A1 (en) 2022-08-03

Family

ID=71784081

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20790371.7A Pending EP4034695A1 (en) 2019-09-24 2020-09-24 Textured anode for fluorine production and process for structuring a carbon substrate intended to be used in such an anode

Country Status (3)

Country Link
EP (1) EP4034695A1 (en)
FR (1) FR3101083B1 (en)
WO (1) WO2021058912A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4602985A (en) * 1985-05-06 1986-07-29 Eldorado Resources Limited Carbon cell electrodes
WO2008132818A1 (en) 2007-04-20 2008-11-06 Mitsui Chemicals, Inc. Electrolyzer, electrodes used therefor, and electrolysis method
US8329008B2 (en) 2007-04-23 2012-12-11 Mitsui Chemicals, Inc. Gas generating device and carbon electrode for gas generation
WO2010151886A2 (en) * 2009-06-26 2010-12-29 The Arizona Board Of Regents On Behalf Of The University Of Arizona Nano-architectured carbon structures and methods for fabricating same
US20140126875A1 (en) 2011-03-22 2014-05-08 Afl Telecommunications Llc Connector ferrule holder

Also Published As

Publication number Publication date
WO2021058912A1 (en) 2021-04-01
FR3101083B1 (en) 2021-09-24
FR3101083A1 (en) 2021-03-26

Similar Documents

Publication Publication Date Title
KR102282860B1 (en) Printing of three-dimensional metal structures with a sacrificial support
Kwon et al. Fabrication of a super-hydrophobic surface on metal using laser ablation and electrodeposition
Rauscher et al. Femtosecond-laser structuring of Ni electrodes for highly active hydrogen evolution
WO2013053858A1 (en) Method for generating hydrogen and oxygen by steam electrolysis
Li et al. Fast electroless fabrication of uniform mesoporous silicon layers
EP1999302B1 (en) Method for electrochemically structuring a conductuve or semiconductor material, and device for implementing it
FR3008429A1 (en) PROCESS FOR THE SYNTHESIS OF A METALLIC FOAM, METALLIC FOAM, USES THEREOF AND DEVICE COMPRISING SUCH A METAL FOAM
Lai et al. Photoelectrochemical behaviour of uniform growth TiO2 nanotubes via bubble blowing synthesised in ethylene glycol with hydrogen peroxide
CN105921887B (en) A kind of device and method based on ultrafast laser manufacture three-dimensional structure battery
EP3679597B1 (en) Ion beam generator with nanowires
WO2021058912A1 (en) Textured anode for fluorine production and process for structuring a carbon substrate intended to be used in such an anode
Schreiber et al. The effect of passivation to etching duration ratio on bipolar electrochemical etching of porous layer stacks in germanium
Zuhlke Control and understanding of the formation of micro/nanostructured metal surfaces using femtosecond laser pulses
Joshi et al. Black Silicon Photovoltaics: Fabrication methods and properties
EP3540762B1 (en) Method for the fabrication of a porous semiconductor with controlled pores distribution
van der Linde On electrolytic bubbles
Bao et al. Macropore density as a function of HF-concentration and bias
Falcon et al. Micro-texturing by femtosecond laser ablation of a carbonaceous anode for production of fluorine by electrolysis
Lasmi et al. Fabrication of Lithography-Free Silicon Sub-Micro-Pyramids
FR2514376A1 (en) Electrolysis of flowing electrolyte - in thin film through partly enclosed space
FR2879626A1 (en) METHOD FOR ELECTRODEPOSITION OF A METAL FOR OBTAINING SOLID POLYMERIC ELECTRODE ELECTROLYTE CELLS
WO1995033871A1 (en) Device for the production of ultrafine powders
Tang et al. Hydrophobic surface fabrication by laser micropatterning
WO2013104949A2 (en) Method for treating an object
권민호 Fabrication of a Super-hydrophobic Surface on Metal Using Electrodeposition

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220322

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230522