EP4025845B1 - Regenerative cryogenic machine - Google Patents

Regenerative cryogenic machine Download PDF

Info

Publication number
EP4025845B1
EP4025845B1 EP20764432.9A EP20764432A EP4025845B1 EP 4025845 B1 EP4025845 B1 EP 4025845B1 EP 20764432 A EP20764432 A EP 20764432A EP 4025845 B1 EP4025845 B1 EP 4025845B1
Authority
EP
European Patent Office
Prior art keywords
machine
pressure
cold finger
working fluid
cryogenic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20764432.9A
Other languages
German (de)
French (fr)
Other versions
EP4025845C0 (en
EP4025845A1 (en
Inventor
Julien Tanchon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Absolut System SAS
Original Assignee
Absolut System SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Absolut System SAS filed Critical Absolut System SAS
Publication of EP4025845A1 publication Critical patent/EP4025845A1/en
Application granted granted Critical
Publication of EP4025845C0 publication Critical patent/EP4025845C0/en
Publication of EP4025845B1 publication Critical patent/EP4025845B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • F25D19/006Thermal coupling structure or interface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1407Pulse-tube cycles with pulse tube having in-line geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1418Pulse-tube cycles with valves in gas supply and return lines
    • F25B2309/14181Pulse-tube cycles with valves in gas supply and return lines the valves being of the rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1419Pulse-tube cycles with pulse tube having a basic pulse tube refrigerator [PTR], i.e. comprising a tube with basic schematic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1423Pulse tubes with basic schematic including an inertance tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1424Pulse tubes with basic schematic including an orifice and a reservoir

Definitions

  • the invention relates to a cryogenic machine of the regenerative type (eg pulsed gas tube, Stirling, Gifford-McMahon, etc.).
  • a cryogenic machine of the regenerative type eg pulsed gas tube, Stirling, Gifford-McMahon, etc.
  • cryogenic machines There are different types of cryogenic machines. These cryogenic machines are classified into two types: regenerative chillers and regenerative chillers.
  • Recuperative coolers are based on a continuous flow of the working fluid, usually a gas, which is compressed and expanded, the expansion taking place continuously in an orifice for the Joule-Thomson cycle or in a turbine for the Brayton cycle.
  • the term “recovery” comes from the fact that an exchanger, generally against the current, is used to recover the enthalpy of the cold gas coming from the expansion to pre-cool the hot gas coming from the compressor.
  • the flow of the working fluid is reciprocating. Gas compression and expansion take place cyclically at a frequency of a few Hertz for so-called “low frequency” coolers and at several tens of Hertz for so-called “high frequency” coolers.
  • FIGs of figures 1 to 3 represent the general topology of these coolers, that is to say in a schematic configuration called “in line” of the cold fingers.
  • the topology of these cold fingers can also be “U” shaped or coaxial, while keeping the same operating principle and the same components.
  • the machine comprises an oscillator 1' and a cold finger 20 in fluidic connection with the oscillator.
  • the machine contains a working fluid, usually helium.
  • Oscillator 1' is in the form of a piston moving back and forth schematized by the bidirectional arrow, thus generating a pressure wave in the working fluid.
  • a pressure oscillator because the to-and-fro movement of the piston makes it possible to generate a pressure oscillation and not a pressure difference as in recuperative machines.
  • the cold finger 20 (which may in particular be of the pulsed gas tube, Stirling or Gifford-McMahon type) allows the production of the cooling effect.
  • the cold finger comprises a first heat exchanger 2, a regenerator 3, a second heat exchanger 4, a pulse tube 5, a third heat exchanger 6, and a phase shift system 7, 8 or 9.
  • the working fluid When the piston moves to the right of the picture 1 or 2 , the working fluid is compressed and passes through the first heat exchanger 2 and the regenerator 3.
  • the regenerator having a high specific heat and being thermally insulated from the outside of the machine, the temperature of the working fluid passes from a first temperature T1, which is generally the ambient temperature to which the machine is exposed, to a second temperature T2 lower than T1.
  • the second temperature is a cryogenic temperature, that is to say typically below 120K.
  • the working fluid yields energy to the regenerator 3 which stores it due to its high specific heat.
  • the working fluid enters the pulse tube 5 through the second heat exchanger 4.
  • the working fluid undergoes compression and successive adiabatic expansion at the operating frequency of the oscillator 1'.
  • the compression work is evacuated at the end of the pulse tube 5, in a third heat exchanger 6 operating at ambient temperature while at the other end of the pulse tube 5, the expansion makes it possible to lower the temperature of the gas in the second exchanger 4, reaching a cryogenic temperature.
  • phase shift system 7, 8 or "phase shifter” in English.
  • This system provides the necessary phase shift between the pressure wave and the flow in the cold finger so that the expansion takes place at the level of the cold exchanger 4.
  • the phase shift system generally consists of an inertance 7 and a buffer tank 8.
  • the inertance has a small passage section compared to that of the pulse tube 5, and the buffer tank 8 has a high volume compared to that of the tube and the inertance; consequently, the pressure within the buffer tank 8 is substantially constant.
  • this phase shift system is in the form of an expander piston 9, similar to the pressure oscillator 1' but of different volume and power.
  • the working fluid passes through the regenerator 3 in the opposite direction and this time it is the regenerator which transfers the energy stored during the compression to the working fluid cooled during the expansion.
  • the general configuration is similar to that of the pulsed gas tube, except that the cold finger 20 uses an expansion valve mechanical 9 to ensure the expansion of the working fluid.
  • the pulse tube 5, the exchanger 6 and the phase shift system 7, 8 are eliminated in the case of a Stirling cold finger.
  • the pressure oscillator is a critical element for the aspects: cost, performance, size, mass, reliability...
  • An object of the invention is to remedy the aforementioned drawbacks and in particular to design a cryogenic machine in which the generation of the pressure oscillation is carried out by means that are less costly, more reliable and generate less vibration than the existing oscillators. Furthermore, said machine must be able to be used in a high or low power cooler.
  • the centrifugal compressor does not generate vibrations, which is particularly advantageous in the space field and in all applications where vibrations would risk disturbing the operation of devices.
  • the transmission of the pressure wave does not depend on the volume between the compressor and the cold finger, the compressor can be offset from the cold finger, which allows greater freedom in the design of the machine and in particular greater compactness, which is particularly sought after for on-board applications.
  • Another object of the invention relates to a spacecraft comprising a cryogenic machine as described above.
  • FIG 4 is a block diagram of a cryogenic machine of the pulsed air tube type according to one embodiment of the invention.
  • the reference signs identical to those of the figure 1 designate elements that are identical or perform the same function. These elements will therefore not be described again in detail.
  • the cold finger 20 is similar to that of existing machines, for example to that of the figure 1 or to that of picture 2 .
  • Oscillator 1 comprises a centrifugal compressor fluidly coupled on the one hand to a so-called low-pressure buffer tank 10 and a so-called high-pressure buffer tank 11.
  • low pressure and “high pressure” are relative terms, a low pressure being lower than a high pressure.
  • the oscillator further comprises a fluidic circuit connecting the cold finger to each of the buffer volumes 10, 11.
  • the oscillator finally comprises a fluidic distribution member 12 arranged in the fluidic circuit, making it possible to selectively and alternately put the cold finger in fluidic connection with the buffer reservoir 10 or the buffer reservoir 11.
  • This dispensing member 12 can advantageously be a rotary valve or a linear actuator, but any other type of actuator could be used as long as it allows the high pressure and low pressure gas to be alternately distributed in the cold finger.
  • each buffer tank could be provided with a respective valve, said valves being configured to open or close depending on the phase of the operating cycle of the machine.
  • buffer tank it is meant that the volume of the tanks 10 and 11 is large enough with respect to the volume of the fluidic circuit which connects the tanks and the cold finger so that the pressure generated by the centrifugal compressor in the said tanks 10, 11 remains substantially constant.
  • These reservoirs may optionally be eliminated if the volume of the fluidic circuit makes it possible to perform this function or if the performance of the cold finger is not impacted by this pressure fluctuation.
  • a compression ratio between 1.1 and 1.5 will be sought to replace the pressure oscillator with a centrifugal compressor and a fluidic distribution device.
  • This compression ratio is completely compatible with the compression ratio generated by a centrifugal compressor. It is therefore possible to directly replace the pressure oscillator by a centrifugal compressor coupled to a fluid distribution member.
  • the operating frequency of the pressure oscillator is advantageously greater than or equal to 10Hz.
  • the operation of the proposed cryogenic machine is as follows.
  • the cold finger 20 is in fluidic connection with the buffer tank 11 at high pressure via the valve 12.
  • the working fluid passes through the first exchanger 2, the regenerator 3 and the second exchanger 4 to the tube 5.
  • the working fluid passes from the ambient temperature T1 to the cryogenic temperature T2; the heat of the working fluid transferred to the regenerator 3 is accumulated therein.
  • valve 12 is actuated so as to interrupt the fluidic connection between the cold finger and the buffer tank 11 at high pressure and to establish a fluidic connection between the cold finger and the tank 10 at low pressure.
  • the working fluid undergoes adiabatic expansion in the tube 5. Part of the fluid is sucked from the buffer tank 8 towards the tube 5 through the inertia 7. The working fluid passes through the second heat exchanger 4 and the regenerator 3, which restores the heat stored to it via the first heat exchanger 2.
  • the centrifugal compressor makes it possible to decouple the compression zone from the cold finger. Indeed, the pressure wave can be transmitted over a sufficiently long distance and does not depend on the volume of fluid between the compressor and the cold finger.
  • the oscillator is not necessarily aligned with the cold finger as represented on the figure 4 , but can be arranged at another location in the machine, depending on the size constraints encountered.
  • centrifugal compressor 1 and the fluid distribution member are similar to those already described with reference to the figure 4 .
  • regenerator 3 and the expander 9, which form the cold finger 20 of the machine are similar to those of the picture 3 .
  • the centrifugal compressor makes it possible to decouple the compression zone from the cold finger. Indeed, the pressure wave can be transmitted over a sufficiently long distance and does not depend on the volume of fluid between the compressor and the cold finger.
  • the compressor is not necessarily aligned with the cold finger as shown in the picture 3 , but can be arranged at another location in the machine, depending on the size constraints encountered.
  • the fluid distribution member with the drive of the expander piston 9 as shown in the figure 6 .
  • the cold finger is of the coaxial type, the expander piston 9 being arranged in the regenerator 3.
  • the fluid distribution member can be actuated fluidically by the working fluid or mechanically by an external actuator.
  • the oscillator(s) can be offset from the cold finger(s).
  • the oscillator according to the invention therefore makes it possible to form a wide variety of regenerative cryogenic machines, with great freedom of choice in the arrangement of the various components.
  • This thermal link function is performed by using the pressure difference between the buffer tanks 10 and 11 to ensure circulation of working fluid from the high pressure buffer tank to the low pressure buffer tank.
  • the working fluid is cooled to a cold temperature close to T2 by a counter-current exchanger 40, then to temperature T2 on an exchanger integrated into the cold exchanger 4.
  • the cold working liquid is then deported at a distance ranging from a few centimeters to several meters to cool the part to be cooled via the exchanger 50.
  • the working fluid is heated in the exchanger 50 and then returns to the counter-current exchanger 40 to be re-injected into the buffer tank 10 at low pressure.
  • the secondary fluidic circuit 51 and 52 constituting the thermal link can be made with small-sized tubes making it possible to limit the mass of the system, to lower the stiffness of the tubes (to ensure mechanical decoupling between the components) or to limit losses by conductions along these tubes.
  • This thermal link is therefore passive in the sense that, when the cooler is operating, the circulation of working fluid is effective and so is the thermal coupling. Conversely, if the cryogenic cooler is stopped, there is no thermal coupling.
  • thermal switch having a thermal coupling/decoupling function. This function is particularly useful for systems integrating several cold fingers (case of a spacecraft in particular integrating a nominal cooler and a redundant one). The non-functioning cold fingers are then thermally decoupled from the part to be cooled and thus do not cause heat losses.
  • cold finger 20 represented on the figure 7 either of the pulsed gas tube type, it goes without saying that any other type of cold finger could be used in connection with this thermal switch.

Description

Domaine techniqueTechnical area

L'invention concerne une machine cryogénique de type régénérative (par exemple tube à gaz pulsé, Stirling, Gifford-McMahon, etc.).The invention relates to a cryogenic machine of the regenerative type (eg pulsed gas tube, Stirling, Gifford-McMahon, etc.).

Etat de la techniqueState of the art

Il existe différents types de machines cryogéniques. Ces machines cryogéniques sont classées selon deux types : les refroidisseurs récupératifs et les refroidisseurs régénératifs.There are different types of cryogenic machines. These cryogenic machines are classified into two types: regenerative chillers and regenerative chillers.

Les refroidisseurs récupératifs (cycles de Joule-Thomson ou Brayton inverse) sont basés sur un écoulement continu du fluide de travail, généralement un gaz, qui est comprimé et détendu, la détente se faisant en continu dans un orifice pour le cycle de Joule-Thomson ou dans une turbine pour le cycle de Brayton. Le terme « récupératif » vient du fait qu'un échangeur, généralement contre-courant, est utilisé pour récupérer l'enthalpie du gaz froid issu de la détente pour pré-refroidir le gaz chaud provenant du compresseur.Recuperative coolers (Joule-Thomson or inverse Brayton cycles) are based on a continuous flow of the working fluid, usually a gas, which is compressed and expanded, the expansion taking place continuously in an orifice for the Joule-Thomson cycle or in a turbine for the Brayton cycle. The term “recovery” comes from the fact that an exchanger, generally against the current, is used to recover the enthalpy of the cold gas coming from the expansion to pre-cool the hot gas coming from the compressor.

Pour les refroidisseurs régénératifs, l'écoulement du fluide de travail est alternatif. La compression et la détente de gaz se font de façon cyclique à une fréquence de quelques Hertz pour les refroidisseurs dits « basse fréquence » et à plusieurs dizaines de Hertz pour les refroidisseurs dits « haute fréquence ».For regenerative chillers, the flow of the working fluid is reciprocating. Gas compression and expansion take place cyclically at a frequency of a few Hertz for so-called “low frequency” coolers and at several tens of Hertz for so-called “high frequency” coolers.

De même que pour les refroidisseurs récupératifs, l'enthalpie du gaz froid issu de la détente doit être récupérée. Cependant, il n'est pas possible d'utiliser un échangeur dans le cas d'un fonctionnement cyclique. On utilise alors un régénérateur pour réaliser cette fonction. Le régénérateur permet de transférer l'enthalpie du gaz froid au gaz chaud entre deux cycles. Le régénérateur met également en oeuvre un stockage thermique pour assurer ce transfert de chaleur à deux instants différents. EP 1 158 256 A divulgue une machine cryogénique de type régénérative comprenant un compresseur à piston pour générer une pression et un débit massique alternés dans tout le réfrigérateur à tube à impulsions.

  • Les figures 1 et 2 sont des schémas de principe d'une machine cryogénique régénérative de type tube à gaz pulsé fonctionnant à haute fréquence (c'est-à-dire au-delà de 20Hz).
  • La figure 3 est un schéma de principe d'une machine cryogénique régénérative de type Stirling fonctionnant à haute fréquence.
As with recuperative coolers, the enthalpy of the cold gas from the expansion must be recovered. However, it is not possible to use an exchanger in the case of cyclic operation. A regenerator is then used to perform this function. The regenerator makes it possible to transfer the enthalpy from the cold gas to the hot gas between two cycles. The regenerator also implements thermal storage to ensure this heat transfer at two different instants. EP 1 158 256 A discloses a regenerative-type cryogenic machine comprising a piston compressor for generating alternating pressure and mass flow throughout the pulse tube refrigerator.
  • THE figures 1 and 2 are block diagrams of a pulsed gas tube type regenerative cryogenic machine operating at high frequency (i.e. above 20Hz).
  • There picture 3 is a block diagram of a Stirling-type regenerative cryogenic machine operating at high frequency.

Les schémas des figures 1 à 3 représentent la topologie générale de ces refroidisseurs, c'est-à-dire dans une configuration schématique dite « en ligne » des doigts froids. Dans d'autres modes de réalisation, la topologie de ces doigts froids peut être également en « U » ou coaxiale, tout en gardant le même principe de fonctionnement et les mêmes composants.The diagrams of figures 1 to 3 represent the general topology of these coolers, that is to say in a schematic configuration called “in line” of the cold fingers. In other embodiments, the topology of these cold fingers can also be “U” shaped or coaxial, while keeping the same operating principle and the same components.

La machine comprend un oscillateur 1' et un doigt froid 20 en liaison fluidique avec l'oscillateur. La machine contient un fluide de travail, généralement de l'hélium.The machine comprises an oscillator 1' and a cold finger 20 in fluidic connection with the oscillator. The machine contains a working fluid, usually helium.

L'oscillateur 1' se présente sous la forme d'un piston animé d'un mouvement de va-et-vient schématisé par la flèche bidirectionnelle, générant ainsi une onde de pression dans le fluide de travail. On parle d'un « oscillateur de pression » car le mouvement de va-et-vient du piston permet de générer une oscillation de pression et non une différence de pression comme dans les machines récupératives.Oscillator 1' is in the form of a piston moving back and forth schematized by the bidirectional arrow, thus generating a pressure wave in the working fluid. We speak of a "pressure oscillator" because the to-and-fro movement of the piston makes it possible to generate a pressure oscillation and not a pressure difference as in recuperative machines.

Le doigt froid 20 (qui peut être notamment de type tube à gaz pulsé, Stirling ou Gifford-McMahon) permet la production de l'effet frigorifique.The cold finger 20 (which may in particular be of the pulsed gas tube, Stirling or Gifford-McMahon type) allows the production of the cooling effect.

Dans le cas d'un tube à gaz pulsé (cf. figures 1 et 2), le doigt froid comprend un premier échangeur de chaleur 2, un régénérateur 3, un second échangeur de chaleur 4, un tube à pulsation 5, un troisième échangeur de chaleur 6, et un système de déphasage 7, 8 ou 9.In the case of a pulsed gas tube (cf. figures 1 and 2 ), the cold finger comprises a first heat exchanger 2, a regenerator 3, a second heat exchanger 4, a pulse tube 5, a third heat exchanger 6, and a phase shift system 7, 8 or 9.

Lorsque le piston se déplace vers la droite de la figure 1 ou 2, le fluide de travail est comprimé et passe au travers du premier échangeur de chaleur 2 et du régénérateur 3. Le régénérateur possédant une forte chaleur spécifique et étant isolé thermiquement de l'extérieur de la machine, la température du fluide de travail passe d'une première température T1, qui est généralement la température ambiante à laquelle est exposée la machine, à une seconde température T2 inférieure à T1. La seconde température est une température cryogénique, c'est-à-dire typiquement inférieure à 120K. Durant cette phase, le fluide de travail cède de l'énergie au régénérateur 3 qui la stocke due à sa forte chaleur spécifique.When the piston moves to the right of the picture 1 or 2 , the working fluid is compressed and passes through the first heat exchanger 2 and the regenerator 3. The regenerator having a high specific heat and being thermally insulated from the outside of the machine, the temperature of the working fluid passes from a first temperature T1, which is generally the ambient temperature to which the machine is exposed, to a second temperature T2 lower than T1. The second temperature is a cryogenic temperature, that is to say typically below 120K. During this phase, the working fluid yields energy to the regenerator 3 which stores it due to its high specific heat.

Le fluide de travail entre dans le tube à pulsation 5 au travers du second échangeur de chaleur 4. Dans le tube 5, qui est isolé thermiquement de l'extérieur de la machine, le fluide de travail subit une compression et une détente adiabatique successive à la fréquence de fonctionnement de l'oscillateur 1'.The working fluid enters the pulse tube 5 through the second heat exchanger 4. In the tube 5, which is thermally insulated from the outside of the machine, the working fluid undergoes compression and successive adiabatic expansion at the operating frequency of the oscillator 1'.

Le travail de compression est évacué à l'extrémité du tube à pulsation 5, dans un troisième échangeur de chaleur 6 fonctionnant à température ambiante alors qu'à l'autre extrémité du tube à pulsation 5, la détente permet de baisser la température du gaz dans le deuxième échangeur 4, atteignant une température cryogénique.The compression work is evacuated at the end of the pulse tube 5, in a third heat exchanger 6 operating at ambient temperature while at the other end of the pulse tube 5, the expansion makes it possible to lower the temperature of the gas in the second exchanger 4, reaching a cryogenic temperature.

Cet effet de découplage thermique de part et d'autre du doigt froid est assuré par un système de déphasage 7, 8 ou « phase shifter » en anglais. Ce système assure le déphasage nécessaire entre l'onde de pression et le débit dans le doigt froid pour que la détente ait lieu au niveau de l'échangeur froid 4. Le système de déphasage est généralement constitué d'une inertance 7 et d'un réservoir tampon 8. L'inertance présente une section de passage faible par rapport à celle du tube à pulsation 5, et le réservoir tampon 8 présente un volume élevé par rapport à celui du tube et de l'inertance ; par conséquent, la pression au sein du réservoir tampon 8 est sensiblement constante.This thermal decoupling effect on either side of the cold finger is ensured by a phase shift system 7, 8 or "phase shifter" in English. This system provides the necessary phase shift between the pressure wave and the flow in the cold finger so that the expansion takes place at the level of the cold exchanger 4. The phase shift system generally consists of an inertance 7 and a buffer tank 8. The inertance has a small passage section compared to that of the pulse tube 5, and the buffer tank 8 has a high volume compared to that of the tube and the inertance; consequently, the pressure within the buffer tank 8 is substantially constant.

Dans certains cas, tel qu'illustré sur la figure 2, ce système de déphasage se présente sous la forme d'un piston détendeur 9, similaire à l'oscillateur de pression 1' mais de volumétrie et de puissance différentes.In some cases, as shown in the figure 2 , this phase shift system is in the form of an expander piston 9, similar to the pressure oscillator 1' but of different volume and power.

Après la phase de détente produisant l'effet frigorifique, le fluide de travail passe au travers du régénérateur 3 en sens inverse et c'est cette fois le régénérateur qui cède l'énergie emmagasinée lors de la compression au fluide de travail refroidi lors de la détente.After the expansion phase producing the cooling effect, the working fluid passes through the regenerator 3 in the opposite direction and this time it is the regenerator which transfers the energy stored during the compression to the working fluid cooled during the expansion.

Dans le cas d'un refroidisseur Stirling (cf. figure 3), la configuration générale est similaire à celle du tube à gaz pulsé, à la différence que le doigt froid 20 utilise un détendeur mécanique 9 pour assurer la détente du fluide de travail. En d'autres termes, le tube à pulsation 5, l'échangeur 6 et le système de déphasage 7, 8 sont supprimés dans le cas d'un doigt froid Stirling.In the case of a Stirling cooler (cf. picture 3 ), the general configuration is similar to that of the pulsed gas tube, except that the cold finger 20 uses an expansion valve mechanical 9 to ensure the expansion of the working fluid. In other words, the pulse tube 5, the exchanger 6 and the phase shift system 7, 8 are eliminated in the case of a Stirling cold finger.

Dans les deux cas, et de façon générale pour toutes les machines régénératives, l'oscillateur de pression est un élément critique pour les aspects : coût, performance, taille, masse, fiabilité...In both cases, and in general for all regenerative machines, the pressure oscillator is a critical element for the aspects: cost, performance, size, mass, reliability...

Par ailleurs, il est difficile de déporter l'oscillateur du doigt froid car l'ajout de volume dans le système fait chuter l'amplitude de l'onde de pression et le débit et baisse ainsi la puissance frigorifique.Furthermore, it is difficult to deport the oscillator from the cold finger because the addition of volume in the system causes the amplitude of the pressure wave and the flow rate to drop and thus lowers the cooling capacity.

Enfin, ces oscillateurs de pression utilisent des moteurs linéaires pour créer le mouvement de va-et-vient du piston. Ce type de moteur présente plusieurs inconvénients majeurs.Finally, these pressure oscillators use linear motors to create the reciprocating motion of the piston. This type of engine has several major drawbacks.

D'une part, même s'ils sont équilibrés mécaniquement, ces moteurs génèrent des vibrations extrêmement problématiques pour les applications spatiales. Ils nécessitent alors des systèmes annexes contraignants et des électroniques de pilotage complexes, défiabilisantes et coûteuses.On the one hand, even if they are mechanically balanced, these motors generate extremely problematic vibrations for space applications. They then require binding ancillary systems and complex, disabling and costly control electronics.

D'autre part, ces oscillateurs sont difficilement extrapolables à de fortes puissances. En effet, au-delà de quelques centaines de Watt, la taille, la masse et le coût de ces oscillateurs deviennent problématiques et infaisables dans certains cas.On the other hand, these oscillators are difficult to extrapolate to high powers. Indeed, beyond a few hundred Watts, the size, mass and cost of these oscillators become problematic and infeasible in some cases.

Brève description de l'inventionBrief description of the invention

Un but de l'invention est de remédier aux inconvénients précités et en particulier de concevoir une machine cryogénique dans laquelle la génération de l'oscillation de pression est réalisée par un moyen moins coûteux, plus fiable et engendrant moins de vibrations que les oscillateurs existants. Par ailleurs, ladite machine doit pouvoir être utilisée dans un refroidisseur de forte ou de faible puissance.An object of the invention is to remedy the aforementioned drawbacks and in particular to design a cryogenic machine in which the generation of the pressure oscillation is carried out by means that are less costly, more reliable and generate less vibration than the existing oscillators. Furthermore, said machine must be able to be used in a high or low power cooler.

A cet effet, l'invention propose une machine cryogénique de type régénérative, comprenant:

  • un oscillateur de pression,
  • au moins un doigt froid en liaison fluidique avec l'oscillateur de pression, ladite machine étant caractérisée en ce que l'oscillateur de pression comprend un compresseur centrifuge et un organe de distribution fluidique configuré pour distribuer alternativement du fluide de travail à haute pression et à basse pression du compresseur centrifuge dans ledit doigt froid.
To this end, the invention proposes a cryogenic machine of the regenerative type, comprising:
  • a pressure oscillator,
  • at least one cold finger in fluidic connection with the pressure oscillator, said machine being characterized in that the pressure oscillator comprises a centrifugal compressor and a fluid distribution member configured to alternately distribute high pressure and low pressure working fluid from the centrifugal compressor into said cold finger.

L'utilisation d'un compresseur centrifuge couplé à un organe de distribution fluidique au lieu d'un oscillateur de pression à moteur linéaire présente plusieurs avantages.The use of a centrifugal compressor coupled to a fluid distribution member instead of a linear motor pressure oscillator has several advantages.

D'une part, le compresseur centrifuge ne génère pas de vibrations, ce qui est particulièrement avantageux dans le domaine spatial et dans toutes les applications où des vibrations risqueraient de perturber le fonctionnement de dispositifs.On the one hand, the centrifugal compressor does not generate vibrations, which is particularly advantageous in the space field and in all applications where vibrations would risk disturbing the operation of devices.

D'autre part, la transmission de l'onde de pression ne dépendant pas du volume entre le compresseur et le doigt froid, le compresseur peut être déporté du doigt froid, ce qui autorise une plus grande liberté dans la conception de la machine et notamment une plus grande compacité, qui est particulièrement recherchée pour les applications embarquées.On the other hand, the transmission of the pressure wave does not depend on the volume between the compressor and the cold finger, the compressor can be offset from the cold finger, which allows greater freedom in the design of the machine and in particular greater compactness, which is particularly sought after for on-board applications.

Enfin, un tel compresseur est fiable et est évolutif en fonction de la puissance requise.Finally, such a compressor is reliable and can be upgraded according to the power required.

Il est par ailleurs possible de coupler plusieurs doigts froids (par exemple Stirling et/ou tube à gaz pulsé) sur un même compresseur.It is also possible to couple several cold fingers (for example Stirling and/or pulsed gas tube) on the same compressor.

Selon des caractéristiques optionnelles mais avantageuses de l'invention, éventuellement combinées lorsque cela est techniquement possible :

  • le taux de compression du compresseur centrifuge est compris entre 1,1 et 1,5 ;
  • la fréquence de fonctionnement de l'oscillateur de pression est supérieure à 1 0Hz ;
  • le compresseur centrifuge est agencé entre un réservoir tampon dit à basse pression et un réservoir tampon dit à haute pression, l'organe de distribution fluidique étant configuré pour sélectivement mettre en liaison fluidique le doigt froid et l'un des réservoirs tampons à basse et haute pression :
  • l'organe de distribution fluidique comprend une vanne rotative ou une vanne de distribution linéaire ;
  • la machine comprend un doigt froid de type tube à gaz pulsé incluant un tube à pulsation, un échangeur et un système de déphasage ;
  • la machine comprend un doigt froid de type Stirling incluant un piston détendeur ;
  • l'organe de distribution fluidique est configuré pour être actionné fluidiquement par le fluide de travail ou mécaniquement par un actionneur externe ;
  • l'organe de distribution fluidique est configuré pour être actionné par la tige de commande du piston détendeur du doigt froid ;
  • la machine contient de l'hélium en tant que fluide de travail ;
  • la machine comprend plusieurs doigts froids, chaque doigt froid étant connecté fluidiquement à un ou plusieurs compresseurs centrifuges ;
  • la machine comprend en outre un circuit de circulation de fluide de travail du réservoir tampon à haute pression vers le réservoir tampon à basse pression, de sorte à refroidir une pièce déportée vis-à-vis du doigt froid et découplée mécaniquement dudit doigt froid.
According to optional but advantageous characteristics of the invention, possibly combined when technically possible:
  • the compression ratio of the centrifugal compressor is between 1.1 and 1.5;
  • the operating frequency of the pressure oscillator is greater than 10Hz;
  • the centrifugal compressor is arranged between a so-called low-pressure buffer tank and a so-called high-pressure buffer tank, the fluidic distribution member being configured to selectively put the cold finger in fluidic connection and one of the low- and high-pressure buffer tanks:
  • the fluid distribution member comprises a rotary valve or a linear distribution valve;
  • the machine comprises a cold finger of the pulse gas tube type including a pulse tube, an exchanger and a phase shift system;
  • the machine comprises a Stirling-type cold finger including an expansion piston;
  • the fluid distribution member is configured to be actuated fluidically by the working fluid or mechanically by an external actuator;
  • the fluid distribution member is configured to be actuated by the control rod of the cold finger expansion piston;
  • the machine contains helium as the working fluid;
  • the machine comprises several cold fingers, each cold finger being fluidically connected to one or more centrifugal compressors;
  • the machine further comprises a working fluid circulation circuit from the high-pressure buffer tank to the low-pressure buffer tank, so as to cool a part remote from the cold finger and mechanically decoupled from said cold finger.

Un autre objet de l'invention concerne un engin spatial comprenant une machine cryogénique telle que décrite ci-dessus.Another object of the invention relates to a spacecraft comprising a cryogenic machine as described above.

Brève description des figuresBrief description of figures

D'autres caractéristiques et avantages de l'invention ressortiront de la description détaillée qui va suivre, en référence aux dessins annexés, sur lesquels :

  • La figure 1 est un schéma de principe d'une machine cryogénique de type tube à air pulsé selon l'état de la technique ;
  • La figure 2 est un schéma de principe d'une autre machine cryogénique de type tube à air pulsé selon l'état de la technique ;
  • La figure 3 est un schéma de principe d'une machine cryogénique de type Stirling selon l'état de la technique ;
  • La figure 4 est un schéma de principe d'une machine cryogénique de type tube à gaz pulsé selon un mode de réalisation de l'invention ;
  • La figure 5 est un schéma de principe d'une machine cryogénique de type Stirling selon un mode de réalisation de l'invention ;
  • La figure 6 est un schéma de principe d'une machine cryogénique de type Stirling selon un autre mode de réalisation de l'invention ;
  • La figure 7 est un schéma de principe d'une machine cryogénique de type tube à gaz pulsé intégrant une fonction d'interrupteur thermique selon un mode de réalisation de l'invention.
Other characteristics and advantages of the invention will emerge from the detailed description which follows, with reference to the appended drawings, in which:
  • There figure 1 is a block diagram of a cryogenic machine of the pulsed air tube type according to the state of the art;
  • There picture 2 is a block diagram of another cryogenic machine of the pulsed air tube type according to the state of the art;
  • There picture 3 is a block diagram of a Stirling-type cryogenic machine according to the state of the art;
  • There figure 4 is a block diagram of a cryogenic machine of the pulse gas tube type according to one embodiment of the invention;
  • There figure 5 is a block diagram of a Stirling-type cryogenic machine according to one embodiment of the invention;
  • There figure 6 is a block diagram of a Stirling-type cryogenic machine according to another embodiment of the invention;
  • There figure 7 is a block diagram of a cryogenic machine of the pulsed gas tube type integrating a thermal switch function according to one embodiment of the invention.

Naturellement, ces figures sont données à titre illustratif uniquement.Naturally, these figures are given for illustrative purposes only.

Les signes de référence identiques d'une figure à l'autre désignent des éléments identiques ou remplissant la même fonction.The identical reference signs from one figure to another designate identical elements or fulfilling the same function.

Description détaillée de modes de réalisationDetailed description of embodiments

La figure 4 est un schéma de principe d'une machine cryogénique de type tube à air pulsé selon un mode de réalisation de l'invention. Les signes de référence identiques à ceux de la figure 1 désignent des éléments identiques ou remplissant la même fonction. Ces éléments ne seront donc pas décrits à nouveau en détail.There figure 4 is a block diagram of a cryogenic machine of the pulsed air tube type according to one embodiment of the invention. The reference signs identical to those of the figure 1 designate elements that are identical or perform the same function. These elements will therefore not be described again in detail.

En particulier, le doigt froid 20 est similaire à celui des machines existantes, par exemple à celui de la figure 1 ou à celui de la figure 2.In particular, the cold finger 20 is similar to that of existing machines, for example to that of the figure 1 or to that of picture 2 .

L'oscillateur 1 comprend un compresseur centrifuge couplé fluidiquement d'une part à un réservoir tampon 10 dit à basse pression et un réservoir tampon 11 dit à haute pression. Dans le présent texte, les termes « basse pression » et « haute pression » sont des termes relatifs, une basse pression étant inférieure à une haute pression.Oscillator 1 comprises a centrifugal compressor fluidly coupled on the one hand to a so-called low-pressure buffer tank 10 and a so-called high-pressure buffer tank 11. In the present text, the terms “low pressure” and “high pressure” are relative terms, a low pressure being lower than a high pressure.

L'oscillateur comprend en outre un circuit fluidique reliant le doigt froid à chacun des volumes tampons 10, 11.The oscillator further comprises a fluidic circuit connecting the cold finger to each of the buffer volumes 10, 11.

L'oscillateur comprend enfin un organe de distribution fluidique 12 agencé dans le circuit fluidique, permettant de sélectivement et alternativement mettre en liaison fluidique le doigt froid avec le réservoir tampon 10 ou le réservoir tampon 11.The oscillator finally comprises a fluidic distribution member 12 arranged in the fluidic circuit, making it possible to selectively and alternately put the cold finger in fluidic connection with the buffer reservoir 10 or the buffer reservoir 11.

Cet organe de distribution 12 peut être avantageusement une vanne rotative ou un actionneur linéaire, mais tout autre type d'actionneur pourrait être utilisé dès lors qu'il permet de distribuer alternativement le gaz à haute pression et à basse pression dans le doigt froid. Par exemple, chaque réservoir tampon pourrait être muni d'une vanne respective, lesdites vannes étant configurées pour s'ouvrir ou se fermer selon la phase du cycle de fonctionnement de la machine.This dispensing member 12 can advantageously be a rotary valve or a linear actuator, but any other type of actuator could be used as long as it allows the high pressure and low pressure gas to be alternately distributed in the cold finger. For example, each buffer tank could be provided with a respective valve, said valves being configured to open or close depending on the phase of the operating cycle of the machine.

Par réservoir tampon, on entend que le volume des réservoirs 10 et 11 est suffisamment grand par rapport au volume du circuit fluidique qui relie les réservoirs et le doigt froid pour que la pression générée par le compresseur centrifuge dans lesdits réservoirs 10, 11 reste sensiblement constante. Ces réservoirs peuvent éventuellement être supprimés si le volume du circuit fluidique permet d'assurer cette fonction ou si la performance du doigt froid n'est pas impactée par cette fluctuation de pression.By buffer tank, it is meant that the volume of the tanks 10 and 11 is large enough with respect to the volume of the fluidic circuit which connects the tanks and the cold finger so that the pressure generated by the centrifugal compressor in the said tanks 10, 11 remains substantially constant. These reservoirs may optionally be eliminated if the volume of the fluidic circuit makes it possible to perform this function or if the performance of the cold finger is not impacted by this pressure fluctuation.

Pour de l'hélium, à titre d'exemple, un taux de compression entre 1,1 et 1,5 sera recherché pour remplacer l'oscillateur de pression par un compresseur centrifuge et un organe de distribution fluidique. Ce taux de compression est tout à fait compatible avec le taux de compression généré par un compresseur centrifuge. On peut donc directement remplacer l'oscillateur de pression par un compresseur centrifuge couplé à un organe de distribution fluidique.For helium, for example, a compression ratio between 1.1 and 1.5 will be sought to replace the pressure oscillator with a centrifugal compressor and a fluidic distribution device. This compression ratio is completely compatible with the compression ratio generated by a centrifugal compressor. It is therefore possible to directly replace the pressure oscillator by a centrifugal compressor coupled to a fluid distribution member.

En pratique, les refroidisseurs conventionnels sont remplis à une pression moyenne de 20 à 40 bar. Ensuite, la pression oscille du fait de l'oscillateur de pression autour de cette pression moyenne avec une amplitude de +/- 2 à 5 bar. La pression moyenne et l'amplitude de l'onde de pression sont des paramètres propres à chaque refroidisseur.In practice, conventional coolers are filled to an average pressure of 20 to 40 bar. Then the pressure oscillates due to the pressure oscillator around this average pressure with an amplitude of +/- 2 to 5 bar. The average pressure and the amplitude of the pressure wave are parameters specific to each chiller.

La fréquence de fonctionnement de l'oscillateur de pression est avantageusement supérieure ou égale à 10Hz.The operating frequency of the pressure oscillator is advantageously greater than or equal to 10Hz.

Le fonctionnement de la machine cryogénique proposée est le suivant.The operation of the proposed cryogenic machine is as follows.

Dans une première phase du cycle, le doigt froid 20 est en liaison fluidique avec le réservoir tampon 11 à haute pression par l'intermédiaire de la vanne 12. Le fluide de travail passe au travers du premier échangeur 2, du régénérateur 3 et du deuxième échangeur 4 vers le tube 5. Le fluide de travail passe de la température ambiante T1 à la température cryogénique T2 ; la chaleur du fluide de travail transférée au régénérateur 3 est accumulée dans celui-ci.In a first phase of the cycle, the cold finger 20 is in fluidic connection with the buffer tank 11 at high pressure via the valve 12. The working fluid passes through the first exchanger 2, the regenerator 3 and the second exchanger 4 to the tube 5. The working fluid passes from the ambient temperature T1 to the cryogenic temperature T2; the heat of the working fluid transferred to the regenerator 3 is accumulated therein.

Dans le tube 5, le fluide de travail subit une compression adiabatique.In tube 5, the working fluid undergoes adiabatic compression.

Sous l'effet de la compression du fluide dans le tube 5, une partie du fluide est poussée vers le réservoir tampon 8 au travers de l'inertance 7.Under the effect of the compression of the fluid in the tube 5, part of the fluid is pushed towards the buffer tank 8 through the inertia 7.

Dans une seconde phase du cycle, la vanne 12 est actionnée de sorte à interrompre la liaison fluidique entre le doigt froid et le réservoir tampon 11 à haute pression et pour établir une liaison fluidique entre le doigt froid et le réservoir 10 à basse pression.In a second phase of the cycle, the valve 12 is actuated so as to interrupt the fluidic connection between the cold finger and the buffer tank 11 at high pressure and to establish a fluidic connection between the cold finger and the tank 10 at low pressure.

Le fluide de travail subit une détente adiabatique dans le tube 5. Une partie du fluide est aspirée du réservoir tampon 8 vers le tube 5 au travers de l'inertance 7. Le fluide de travail passe au travers du second échangeur de chaleur 4 et du régénérateur 3, qui lui restitue la chaleur emmagasinée par l'intermédiaire du premier échangeur de chaleur 2.The working fluid undergoes adiabatic expansion in the tube 5. Part of the fluid is sucked from the buffer tank 8 towards the tube 5 through the inertia 7. The working fluid passes through the second heat exchanger 4 and the regenerator 3, which restores the heat stored to it via the first heat exchanger 2.

Contrairement au cas où le compresseur est un compresseur volumétrique tel que le piston illustré sur les figures 1 et 2, le compresseur centrifuge permet de découpler la zone de compression du doigt froid. En effet, l'onde de pression peut être transmise sur une distance suffisamment longue et ne dépend pas du volume de fluide entre le compresseur et le doigt froid.Unlike the case where the compressor is a volumetric compressor such as the piston illustrated on the figures 1 and 2 , the centrifugal compressor makes it possible to decouple the compression zone from the cold finger. Indeed, the pressure wave can be transmitted over a sufficiently long distance and does not depend on the volume of fluid between the compressor and the cold finger.

Par conséquent, l'oscillateur n'est pas forcément aligné avec le doigt froid tel que représenté sur la figure 4, mais peut être agencé à un autre endroit de la machine, selon les contraintes d'encombrement rencontrées.Consequently, the oscillator is not necessarily aligned with the cold finger as represented on the figure 4 , but can be arranged at another location in the machine, depending on the size constraints encountered.

Le même principe de fonctionnement est applicable à une machine comprenant un doigt froid Stirling, telle qu'illustrée sur la figure 5.The same principle of operation is applicable to a machine comprising a cold Stirling finger, as illustrated in the figure 5 .

Dans cette machine, le compresseur centrifuge 1 et l'organe de distribution fluidique sont similaires à ceux déjà décrits en référence à la figure 4.In this machine, the centrifugal compressor 1 and the fluid distribution member are similar to those already described with reference to the figure 4 .

Par ailleurs, le régénérateur 3 et le détendeur 9, qui forment le doigt froid 20 de la machine, sont similaires à ceux de la figure 3.Furthermore, the regenerator 3 and the expander 9, which form the cold finger 20 of the machine, are similar to those of the picture 3 .

Comme exposé plus haut, le compresseur centrifuge permet de découpler la zone de compression du doigt froid. En effet, l'onde de pression peut être transmise sur une distance suffisamment longue et ne dépend pas du volume de fluide entre le compresseur et le doigt froid.As explained above, the centrifugal compressor makes it possible to decouple the compression zone from the cold finger. Indeed, the pressure wave can be transmitted over a sufficiently long distance and does not depend on the volume of fluid between the compressor and the cold finger.

Par conséquent, le compresseur n'est pas forcément aligné avec le doigt froid tel que représenté sur la figure 3, mais peut être agencé à un autre endroit de la machine, selon les contraintes d'encombrement rencontrées.Therefore, the compressor is not necessarily aligned with the cold finger as shown in the picture 3 , but can be arranged at another location in the machine, depending on the size constraints encountered.

Il est également possible de coupler l'organe de distribution fluidique avec l'entrainement du piston détendeur 9 comme présenté sur la figure 6. Dans ce mode de réalisation, le doigt froid est de type coaxial, le piston détendeur 9 étant agencé dans le régénérateur 3.It is also possible to couple the fluid distribution member with the drive of the expander piston 9 as shown in the figure 6 . In this embodiment, the cold finger is of the coaxial type, the expander piston 9 being arranged in the regenerator 3.

Dans d'autres modes de réalisation, quel que soit le type de doigt froid, l'organe de distribution fluidique peut être actionné fluidiquement par le fluide de travail ou mécaniquement par un actionneur externe.In other embodiments, regardless of the type of cold finger, the fluid distribution member can be actuated fluidically by the working fluid or mechanically by an external actuator.

Dans certains modes de réalisation, il est possible de coupler plusieurs doigts froids, du même type ou de types différents (tube à air pulsé, Stirling, Gifford-McMahon, etc.) à un oscillateur ou plusieurs oscillateurs comprenant chacun un compresseur centrifuge et un ou plusieurs organes de distribution fluidique.In certain embodiments, it is possible to couple several cold fingers, of the same type or of different types (pulsed air tube, Stirling, Gifford-McMahon, etc.) to an oscillator or several oscillators each comprising a centrifugal compressor and one or more fluid distribution members.

Ce couplage est par ailleurs indépendant de la configuration des doigts froids, qui peut être par exemple en ligne, coaxial, à détendeur actif, à inertance, alpha, beta, à piston libre, etc. Par conséquent, les figures ne doivent pas être interprétées comme limitant l'invention à une configuration de doigt froid particulière.This coupling is moreover independent of the configuration of the cold fingers, which can be for example in line, coaxial, with active expander, with inertance, alpha, beta, with free piston, etc. Accordingly, the figures should not be construed as limiting the invention to any particular cold finger configuration.

En outre, le ou les oscillateurs peuvent être déportés du ou des doigts froids.In addition, the oscillator(s) can be offset from the cold finger(s).

L'oscillateur selon l'invention permet donc de former une grande diversité de machines cryogéniques régénératives, avec une grande liberté de choix dans l'agencement des différents composants.The oscillator according to the invention therefore makes it possible to form a wide variety of regenerative cryogenic machines, with great freedom of choice in the arrangement of the various components.

En référence à la figure 7, il est également possible d'intégrer dans le refroidisseur cryogénique, une fonction de « lien thermique » intégré permettant :

  • de déporter le doigt froid 20 à une position éloignée de la pièce à refroidir qui est représentée par l'échangeur 50 ;
  • de découpler mécaniquement le doigt froid 20 de la pièce à refroidir, permettant de simplifier le doigt froid et son intégration dans l'application utilisant la machine cryogénique ;
  • d'offrir une fonction d'interrupteur thermique liée au fonctionnement inhérent du refroidisseur cryogénique.
With reference to the figure 7 , it is also possible to integrate in the cryogenic cooler, an integrated "thermal link" function allowing:
  • to move the cold finger 20 to a position remote from the part to be cooled which is represented by the exchanger 50;
  • to mechanically decouple the cold finger 20 from the part to be cooled, making it possible to simplify the cold finger and its integration into the application using the cryogenic machine;
  • to provide a thermal switch function related to the inherent operation of the cryocooler.

Cette fonction de lien thermique est réalisée en utilisant la différence de pression entre les réservoirs tampons 10 et 11 pour assurer une circulation de fluide de travail du réservoir tampon à haute pression vers le réservoir tampon à basse pression.This thermal link function is performed by using the pressure difference between the buffer tanks 10 and 11 to ensure circulation of working fluid from the high pressure buffer tank to the low pressure buffer tank.

Le fluide de travail est refroidi jusqu'à une température froide proche de T2 par un échangeur contre-courant 40, puis à la température T2 sur un échangeur intégré à l'échangeur froid 4. Le liquide de travail froid est ensuite déporté à une distance allant de quelques centimètres à plusieurs mètres pour refroidir la pièce à refroidir par l'intermédiaire de l'échangeur 50. Le fluide de travail se réchauffe dans l'échangeur 50 et revient ensuite dans l'échangeur contre-courant 40 pour être ré-injecté dans le réservoir tampon 10 à basse pression.The working fluid is cooled to a cold temperature close to T2 by a counter-current exchanger 40, then to temperature T2 on an exchanger integrated into the cold exchanger 4. The cold working liquid is then deported at a distance ranging from a few centimeters to several meters to cool the part to be cooled via the exchanger 50. The working fluid is heated in the exchanger 50 and then returns to the counter-current exchanger 40 to be re-injected into the buffer tank 10 at low pressure.

Le circuit fluidique secondaire 51 et 52 constituant le lien thermique peut être réalisé avec des tubes de faibles dimensions permettant de limiter la masse du système, de baisser la raideur des tubes (pour assurer un découplage mécanique entre les composants) ou pour limiter les pertes par conductions le long de ces tubes.The secondary fluidic circuit 51 and 52 constituting the thermal link can be made with small-sized tubes making it possible to limit the mass of the system, to lower the stiffness of the tubes (to ensure mechanical decoupling between the components) or to limit losses by conductions along these tubes.

Ce lien thermique est donc passif dans le sens où, lorsque le refroidisseur fonctionne, la circulation de fluide de travail est effective et le couplage thermique également. A l'inverse, si le refroidisseur cryogénique est arrêté, il n'y a pas de couplage thermique.This thermal link is therefore passive in the sense that, when the cooler is operating, the circulation of working fluid is effective and so is the thermal coupling. Conversely, if the cryogenic cooler is stopped, there is no thermal coupling.

On parle alors d'un interrupteur thermique, ayant une fonction de couplage/découplage thermique. Cette fonction est particulièrement utile pour des systèmes intégrant plusieurs doigts froids (cas d'un engin spatial notamment intégrant un refroidisseur nominal et un redondant). Les doigts froids ne fonctionnant pas sont alors découplés thermiquement de la pièce à refroidir et n'amènent ainsi pas de pertes thermiques.We then speak of a thermal switch, having a thermal coupling/decoupling function. This function is particularly useful for systems integrating several cold fingers (case of a spacecraft in particular integrating a nominal cooler and a redundant one). The non-functioning cold fingers are then thermally decoupled from the part to be cooled and thus do not cause heat losses.

Bien que le doigt froid 20 représenté sur la figure 7 soit de type tube à gaz pulsé, il va de soi que tout autre type de doigt froid pourrait être utilisé en lien avec cet interrupteur thermique.Although the cold finger 20 represented on the figure 7 either of the pulsed gas tube type, it goes without saying that any other type of cold finger could be used in connection with this thermal switch.

Claims (13)

  1. A cryogenic machine of the regenerative type, comprising : -
    a pressure oscillator,
    - at least one cold finger (20) in fluid connection with the pressure oscillator, said machine being characterized in that the pressure oscillator comprises a centrifugal compressor (1) and a fluid distribution member (12) configured to alternately distribute high pressure and low pressure working fluid from the centrifugal compressor into said cold finger.
  2. The machine of claim 1, wherein the compression ratio of the centrifugal compressor (1) is between 1.1 and 1.5.
  3. The machine of claim 1, wherein the operating frequency of the pressure oscillator is greater than 10Hz.
  4. The machine according to any of claims 1, 2 or 3, wherein the centrifugal compressor (1) is arranged between a so-called low-pressure buffer tank (10) and a so-called high-pressure buffer tank (11), the fluidic distribution member (12) being configured to selectively put the cold finger and one of the low-pressure and high-pressure buffer tanks (10, 11) in fluidic connection.
  5. The machine of any of claims 1 to 4, wherein the fluidic distribution member (12) comprises a rotary valve or a linear distribution valve.
  6. The machine according to one of the claims 1 to 5, comprising a cold finger of the pulsed gas tube type including a pulsation tube (5), an exchanger (6) and a phase shifting system (7, 8).
  7. The machine according to one of the claims 1 to 6, comprising a Stirling-type cold finger including an expansion piston (9).
  8. The machine of any of claims 1 to 7, wherein the fluidic distribution member (12) is configured to be actuated fluidically by the working fluid or mechanically by an external actuator.
  9. The machine of claim 7, wherein the fluidic distribution member is configured to be actuated by the control rod of the cold finger expansion piston (9).
  10. The machine according to any of claims 1 to 9, containing helium as a working fluid.
  11. The cryogenic machine of any of claims 1 to 10, comprising a plurality of cold fingers, each cold finger being fluidly connected to one or more centrifugal compressors.
  12. The cryogenic machine according to one of claims 1 to 11 in combination with claim 4, further comprising a circuit (40, 50, 51, 52) for circulating working fluid from the buffer tank (11) at high pressure to the buffer tank (10) at low pressure, so as to cool a part offset from the cold finger (20) and mechanically decoupled from said cold finger (20).
  13. A spacecraft comprising a cryogenic machine according to any of claims 1 to 12.
EP20764432.9A 2019-09-04 2020-09-04 Regenerative cryogenic machine Active EP4025845B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1909710A FR3100319B1 (en) 2019-09-04 2019-09-04 Regenerative cryogenic machine
PCT/EP2020/074869 WO2021044034A1 (en) 2019-09-04 2020-09-04 Regenerative cryogenic machine

Publications (3)

Publication Number Publication Date
EP4025845A1 EP4025845A1 (en) 2022-07-13
EP4025845C0 EP4025845C0 (en) 2023-07-26
EP4025845B1 true EP4025845B1 (en) 2023-07-26

Family

ID=69157992

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20764432.9A Active EP4025845B1 (en) 2019-09-04 2020-09-04 Regenerative cryogenic machine

Country Status (4)

Country Link
US (1) US20220325922A1 (en)
EP (1) EP4025845B1 (en)
FR (1) FR3100319B1 (en)
WO (1) WO2021044034A1 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6378312B1 (en) * 2000-05-25 2002-04-30 Cryomech Inc. Pulse-tube cryorefrigeration apparatus using an integrated buffer volume
US7434408B2 (en) * 2003-07-31 2008-10-14 High Energy Accelerator Research Organization Method for cooling an article using a cryocooler and cryocooler
US7249465B2 (en) * 2004-03-29 2007-07-31 Praxair Technology, Inc. Method for operating a cryocooler using temperature trending monitoring
US10006669B2 (en) * 2010-06-14 2018-06-26 Sumitomo Heavy Industries, Ltd. Cryogenic refrigerator and cooling method
DE102012213293B4 (en) * 2012-07-27 2018-03-29 Pressure Wave Systems Gmbh Compressor device and a cooling device equipped therewith and a refrigerating machine equipped therewith
FR3047551B1 (en) * 2016-02-08 2018-01-26 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude CRYOGENIC REFRIGERATION DEVICE
EP3285032B1 (en) * 2016-08-18 2019-07-24 Bruker BioSpin AG Cryostat arrangement and method of operation thereof
JP7075816B2 (en) * 2018-05-23 2022-05-26 住友重機械工業株式会社 Rotary valve of ultra-low temperature refrigerator and ultra-low temperature refrigerator

Also Published As

Publication number Publication date
US20220325922A1 (en) 2022-10-13
EP4025845C0 (en) 2023-07-26
EP4025845A1 (en) 2022-07-13
WO2021044034A1 (en) 2021-03-11
FR3100319B1 (en) 2021-08-20
FR3100319A1 (en) 2021-03-05

Similar Documents

Publication Publication Date Title
US7347053B1 (en) Densifier for simultaneous conditioning of two cryogenic liquids
EP1040274B1 (en) Pump with positive displacement
JP6403807B2 (en) Frequency-matched cryocooler scaling for low-cost, minimum-disturbance space cooling
EP2802834B1 (en) Cooling device suitable for regulating the temperature of a heat source of a satellite, and method for producing the associated cooling device and satellite
EP0614059B1 (en) Cooler with a cold finger of pulse tube type
EP2143988A1 (en) Cryogenic liquid storage system for space vehicle
NO312316B1 (en) Cryogenic cools
CA2639217A1 (en) Electricity generation in a turbine engine
EP2534357A2 (en) Thermoacoustic machine having an electric feedback loop
US20150068641A1 (en) Tank filling device and method
FR2971562A1 (en) GAS FLUID COMPRESSION DEVICE
CH664799A5 (en) STIRLING FREE PISTON HEAT PUMP ASSEMBLY.
EP4025845B1 (en) Regenerative cryogenic machine
EP1557621B1 (en) Cryocooler with ambient temperature surge volume
Ross Jr Refrigeration systems for achieving cryogenic temperatures
CA3122306A1 (en) Gas expansion and fluid compression station
US5542254A (en) Cryogenic cooler
Wu et al. STUDY ON A SINGLE‐STAGE 120 HZ PULSE TUBE CRYOCOOLER
US6813892B1 (en) Cryocooler with multiple charge pressure and multiple pressure oscillation amplitude capabilities
EP3990839B1 (en) Cryogenic cooler for a radiation detector, particularly in a spacecraft
Korf et al. Pulse tube cryocooler for IR applications
FR2725779A1 (en) CRYOGENIC DEVICE FOR OPTRONIC AND / OR ELECTRONIC EQUIPMENT AND EQUIPMENT COMPRISING SUCH A DEVICE
Watson Design and development of a high power stirling cooler
FR3036175A1 (en) CRYOGENIC REFRIGERATION DEVICE
EP3163221B1 (en) Method for adjusting a cryogenic cooling system

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220322

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230221

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602020014556

Country of ref document: DE

U01 Request for unitary effect filed

Effective date: 20230825

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20230831

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

U20 Renewal fee paid [unitary effect]

Year of fee payment: 4

Effective date: 20231031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231026

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231126

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231027

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20231229

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726