EP4019840B1 - Brennkammereinheit für eine gasturbinenanordnung - Google Patents

Brennkammereinheit für eine gasturbinenanordnung Download PDF

Info

Publication number
EP4019840B1
EP4019840B1 EP20217211.0A EP20217211A EP4019840B1 EP 4019840 B1 EP4019840 B1 EP 4019840B1 EP 20217211 A EP20217211 A EP 20217211A EP 4019840 B1 EP4019840 B1 EP 4019840B1
Authority
EP
European Patent Office
Prior art keywords
combustor
injection
air
fuel
injection units
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20217211.0A
Other languages
English (en)
French (fr)
Other versions
EP4019840A1 (de
Inventor
Mirko Ruben Bothien
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ansaldo Energia Switzerland AG
Original Assignee
Ansaldo Energia Switzerland AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ansaldo Energia Switzerland AG filed Critical Ansaldo Energia Switzerland AG
Priority to EP20217211.0A priority Critical patent/EP4019840B1/de
Priority to CN202111561357.3A priority patent/CN114754377A/zh
Publication of EP4019840A1 publication Critical patent/EP4019840A1/de
Application granted granted Critical
Publication of EP4019840B1 publication Critical patent/EP4019840B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • F23R3/346Feeding into different combustion zones for staged combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/283Attaching or cooling of fuel injecting means including supports for fuel injectors, stems, or lances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00013Reducing thermo-acoustic vibrations by active means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00014Reducing thermo-acoustic vibrations by passive means, e.g. by Helmholtz resonators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03341Sequential combustion chambers or burners

Definitions

  • the present invention relates to a combustor unit for a gas turbine assembly and to a gas turbine assembly, in particular of a power plant.
  • a gas turbine assembly for power plants comprises a compressor, a combustor unit and a turbine.
  • the compressor comprises an inlet, supplied with air, and a plurality of blades compressing the passing air.
  • the compressed air leaving the compressor flows into a plenum, i.e. a closed volume, and from there into the combustor unit, where the compressed air is mixed with at least one fuel and combusted.
  • the resulting hot gas leaves the combustor unit and is expanded in the turbine, producing mechanical work.
  • gas turbine assemblies which comprise a combustor unit performing a sequential combustion cycle.
  • a sequential combustor unit comprises two combustors in series, wherein each combustor is provided with a respective burner and combustion chamber. Following the main gas flow direction, the upstream combustor is called “premix” combustor and is fed by the compressed air. The downstream combustor is called “sequential” or “reheat” combustor and is fed by the hot gas leaving the first combustion chamber.
  • this first configuration includes the compressor, the premix combustor, the high-pressure turbine, the reheat combustor and a low-pressure turbine.
  • the premix and the reheat combustor are arranged directly one downstream the other inside a common casing, in particular a can-shaped casing, and no high-pressure turbine is used.
  • a plurality of can combustors are provided, which are distributed around the turbine axis.
  • Each reheat combustor is preferably provided with a reheat burner and a reheat combustion chamber into which the hot flow coming from the premix is discharged.
  • a transition duct is arranged downstream the reheat combustion chamber and guides the hot gas leaving the reheat combustor toward the turbine.
  • the reheat burner may include a plurality of identical injection units, which are circumferentially arranged about the reheat combustion chamber and are designed to uniformly inject fuel into the reheat combustion chamber. Solutions of this type are disclosed, for example, in documents EP2835516 , EP3486568 , US2020/378604 .
  • thermoacoustic pulsations which may exceed acceptable pulsation limits and undesirably restrict the gas turbine operational range.
  • damping devices are not always effective and require space, not always available in all combustor assemblies.
  • thermoacoustic pulsations By designing the injection units according to a non-uniform distribution pattern, when operational conditions occur that are prone to undesired thermoacoustic pulsations, the flame behavior is controlled and instability prevented or reduced.
  • the non-uniformity of the injection units in fact, creates an uneven distribution of the characterizing features of the flames (local delay time, flame front etc.). In this way thermoacoustic pulsations not only do not increase, but are reduced by disruptive interference.
  • all the injection units of the plurality of injection units are configured to inject fuel and air differently from each other.
  • the geometry of the at least one first injection unit of the plurality of injection units is different from the geometry of the other injection units of the plurality of injection units.
  • the amount of air and/or fuel fed to the at least one first injection unit of the plurality of injection units is different from the amount of air and/or fuel fed to the other injection units of the plurality of injection units.
  • the at least one first injection unit has a conveying tube having a first tube length different from the tube lengths of the conveying tubes of the other injection units.
  • the at least one first fuel nozzles of the at least one first injection unit has a first diameter different from the diameters of the fuel nozzles of the other injection units.
  • the at least one first injection unit has a first conveying tube having a first tube width different from the tube widths of the conveying tubes of the other injection units.
  • the at least one first injection unit has a first air nozzle having a passage section different from the passage sections of the air nozzles of the other injection units.
  • the first injection unit comprises a metering plate provided with a hole and coupled to the first air nozzle to adjust the passage section of the first air nozzle.
  • the at least first injection unit has a first conveying tube extending along an extension axis which is inclined differently from the extension axes of the conveying tubes of the other injection units.
  • the present invention relates to a gas turbine assembly as claimed in claim 11.
  • Figure 1 is a schematic view of a gas turbine assembly 1 for power plants according to the present invention.
  • Gas turbine assembly 1 comprises a compressor 2, a combustor assembly 3 and a turbine 4.
  • Compressor 2 and turbine 4 have a common axis A and form respective sections of a rotor 5 rotatable about axis A.
  • ambient air 6 enters compressor 2 and is compressed.
  • Compressed air 7 leaves compressor 2 and enters a plenum 8, i.e. a volume defined by an outer casing 9.
  • a plenum 8 i.e. a volume defined by an outer casing 9.
  • compressed air 7 enters combustor assembly 3 that comprises a plurality of combustor units 10 annularly arranged around axis A.
  • Combustor units 10 are often defined "can combustors". In combustor units 10 at least a fuel is injected, and the air/fuel mixture is ignited, producing hot gas 11 that is conveyed to turbine 4.
  • each combustor unit 10 is housed in a respective portal hole of the outer casing 9 and has an axis B.
  • Combustor unit 10 comprises, in series along gas flow M, a first or premix combustor 15, a second or reheat combustor 16 and a transition duct 19, which guides the hot gas leaving the reheat combustor 16 toward the turbine 4.
  • premix combustor 15 comprises a premix burner 17 and a first combustion chamber 18.
  • Reheat combustor 16 comprises a housing 20 defining a combustion chamber 23 and a reheat burner 22.
  • the housing 20 is a double wall housing wherein a cooling interspace 24 (better visible in figures 3a-3c , 4a-4c , 5a-5c , 6a-6c ) is formed.
  • the cooling interspace 24 is fed with air coming from the plenum 8.
  • the housing 20 is arranged inside a casing 25, which substantially surrounds the housing 20 in order to create an air chamber 26, which is fed with the air coming from the plenum 8.
  • reheat burner 22 comprises a plurality of injection units collectively referenced 27, and individually referenced 27a, 27b, 27c, 27d, etc.
  • the plurality of injection units 27 is arranged around the reheat combustion chamber 23 and is fed with air and fuel. Preferably,- the plurality of injection units 27 is arranged circumferentially around the reheat combustion chamber 23.
  • Each injection unit 27a, 27b, 27c, 27d, etc. engages a respective through hole 28 made in the housing 20.
  • each injection unit 27a, 27b, 27c, 27d comprises a fuel supply line 30 and at least one fuel nozzle 31 in fluidic communication with the fuel supply line 30, an air supply line 29 and at least one air nozzle 32 in fluidic communication with the air supply line 29 and a conveying tube 33, wherein air and fuel coming from the at least one fuel nozzle 31 and air nozzle 32 are mixed.
  • the conveying tube 33 extends along an axis C. In the non-limitative example here disclosed and illustrated, the conveying tube 33 extends from an inlet coinciding with the air nozzle 32 to an outlet 35 flowing into the reheat combustion chamber 23.
  • the conveying tube 33 is cylindrical and is at least partially housed in the hole 28 of the housing 20
  • the air supply line 29 comprises the air chamber 26, which surrounds the housing 20 and supplies all the air nozzles 32.
  • the fuel supply line 30 comprises a fuel conduit 37 (schematically represented) and a fuel collector 38, preferably surrounding the inlet portion of the conveying tube 33.
  • the fuel supplied to the fuel supply line 30 can be the same fuel supplied to the first combustor 15 or a different fuel.
  • each injection unit 27a, 27b, 27c, 27d, 27e comprises a plurality of fuel nozzles 31, which are arranged along a substantially circumferential path extending on a plane orthogonal to axis C.
  • At least one injection unit 27a of the plurality of injection units 27 is configured to inject fuel and air differently from the other injection units of the plurality of injection units 27.
  • the injection unit 27a is configured to inject fuel and air according to a different equivalence ratio and/or to a different mixing between air and fuel and/or to a different penetration into the reheat combustion chamber 23 with respect to the others injection units 27b, 27c, 27d, 27e of the plurality of injection units 27.
  • QF / QA QF / QA STOICH as the ratio of the fuel-to-air ratio to the stoichiometric fuel-to-air ratio.
  • mixing between air and fuel is intended the way of mixing the fuel and the air supplied to the injection unit (e.g. presence of vortex generators/deflectors and other means for controlling the mixing between fuel and air).
  • the jet characteristic of the mixed air/fuel flow is intended the jet characteristic of the mixed air/fuel flow, which is injected into the reheat combustion chamber 23.
  • the jet characteristic of the mixed air/fuel flow can depend on the jet momentum, the jet diameter, the jet angle, and the position at which the mixed air/fuel flow coming from the injection unit is injected in the reheat combustion chamber 23.
  • FIGS 3a-3c it is represented a first embodiment of the present invention wherein at least the injection unit 27a has a conveying tube 33a having a tube length La different from the tube lengths Lb, Lc, Ld, Le of the conveying tubes 33b, 33c, 33d, 33e of the other injection units 27b, 27c, 27d, 27e.
  • the tube length is measured along the axis C.
  • the tube length La is greater than the tube lengths Lb, Lc, Ld, Le of the conveying tubes 33b, 33c, 33d, 33e of the other injection units 27b, 27c, 27d, 27e.
  • the tube length La is greater than the depth of the housing 20.
  • the tube lengths La, Lb, Lc, Ld, Le are different from each other in order to change the penetration depth of each injection unit 27.
  • FIGS 4a-4c it is represented a second embodiment of the present invention, wherein at least the injection unit 27a has fuel nozzles 31a having a diameter Da different from the diameter Db, Dc, Dd, De of the fuel nozzles 31b, 31c, 31d, 31e of the other injection units 27b, 27c, 27d, 27e.
  • fuel nozzles 31a have a diameter Da greater than the diameters Db, Dc, Dd, De of the fuel nozzles 31b, 31c, 31d of the other injection units 27b, 27c, 27d, 27e.
  • the diameters Da, Db, Dc, Dd, De of the fuel nozzles 31a, 31b, 31c, 31d, 31e are different from each other in order to change the equivalence ratio and the mixing between air and fuel of each injection unit 27
  • FIG. 5a-5c it is represented a third embodiment of the present invention, wherein at least the injection unit 27a has a conveying tube 33a having a tube width Wa different from the tube widths Wb, Wc, Wd, We of the conveying tubes 33b, 33c, 33d, 33e of the other injection units 27b, 27c, 27d, 27e.
  • the tube width is measured along a direction orthogonal to axis C.
  • the tube width Wa is smaller than the tube widths Wb, Wc, Wd, We of the conveying tubes 33b, 33c, 33d, 33e of the other injection units 27b, 27c, 27d, 27e.
  • the tube widths Wa, Wb, Wc, Wd, We are different from each other in order to change the equivalence ratio and the mixing between air and fuel of each injection unit 27 and the penetration into the reheat combustion chamber 23.
  • FIG. 6a-6c it is represented a fourth embodiment of the present invention, wherein at least the injection unit 27a has an air nozzle 32a having a passage section Aa different from the passage sections Ab, Ac, Ad, Ae of the air nozzles 32b, 32c, 32d, 32e of the other injection units 27b, 27c, 27d, 27e.
  • air nozzle 32a has a passage section Aa smaller from the passage sections Ab, Ac, Ad, Ae of the air nozzles 32b, 32c, 32d, 32e of the other injection units 27b, 27c, 27d, 27e.
  • air nozzle 32a is coupled to a metering plate 39 having a hole 40 whose passage section is the desired one Aa.
  • the passage sections Aa, Ab, Ac, Ad, Ae of the air nozzles 32a, 32b, 32c, 32d, 32e of the injection units 27a, 27b, 27c, 27d, 27e are different from each other in order to change the equivalence ratio and the mixing between air and fuel of each injection unit 27
  • conveying tubes 33a, 33b, 33c, 33d, 33e extend along an axis B which is substantially arranged radially with respect to the axis B of the combustor unit 10.
  • At least one of the injection units 27a, 27b, 27c, 27d, 27e is provided with a conveying tube 33a, 33b, 33c, 33d, 33e extending along an axis which is not radially arranged.
  • all the conveying tubes 33a, 33b, 33c, 33d, 33e extend along respective axis which are not radially arranged and are inclined differently from each other.
  • At least one of the injection units 27a is provided with fuel nozzles 31a having a shape and/or a position different from the shapes and/or the positions of the other fuel nozzles 31b, 31c, 31d, 31e.
  • the shapes and/or the positions of fuel nozzles 31a, 31b, 31c, 31d, 31e are different from each other in order to change the equivalence ratio and the mixing between air and fuel of each injection unit 27.
  • the supply line 30 can be adjusted in order to supply a different fuel flow rate to at least one injection unit of the plurality of injection units 27.
  • the passage section of the fuel conduit 37 of at least one injection unit 27a can be different from the passage section of the fuel conduits 37 of at least one injection units 37b, 37c, 37d, 37e.
  • At least one injection unit of the plurality of injection units 27 is provided with a combination of the different features above described for each embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Claims (11)

  1. Brennkammereinheit (10) für eine Gasturbinenanordnung (1), umfassend einen Vormischbrenner (15) und einen Nachbrenner (16), die entlang der Gasströmungsrichtung (M) in Reihe angeordnet sind; wobei der Nachbrenner (16) umfasst:
    ein Gehäuse (20), das sich im Wesentlichen entlang einer Längsachse (B) erstreckt und eine Nachbrennkammer (23) definiert,
    eine Mehrzahl von Einspritzeinheiten (27), die um die Nachbrennkammer (23) herum verteilt sind und denen Luft und Brennstoff zugeführt wird; wobei jede Einspritzeinheit (27a, 27b, 27c, 27d) der Mehrzahl von Einspritzeinheiten (27) in einem entsprechenden Loch (28) des Gehäuses (20) sitzt und eine Brennstoffzufuhrleitung (30) und mindestens eine Brennstoffdüse (31) in Fluidkommunikation mit der Brennstoffzufuhrleitung (30); eine Luftzufuhrleitung (29) und mindestens eine Luftdüse (32) in Fluidkommunikation mit der Luftzufuhrleitung (31); und ein Strömungsrohr (33) umfasst, das sich entlang einer Erstreckungsachse (C) erstreckt und mit einem Auslass (35), der in die Nachbrennkammer (23) mündet, und einem Einlass, der mit der Luftdüse (32) zusammenfällt, ausgestattet ist; wobei der Brenner dadurch
    gekennzeichnet ist, dass in dem Strömungsrohr (33) Luft und Brennstoff, die von der mindestens einen Brennstoffdüse (31) und der Luftdüse (32) kommen, gemischt werden; und
    dass die mindestens eine erste Einspritzeinheit (27a) der Mehrzahl von Einspritzeinheiten (27) dazu konfiguriert ist, Brennstoff und Luft anders als die anderen Einspritzeinheiten (27b, 27c, 27d, 27e) einzuspritzen; wobei die mindestens eine erste Einspritzeinheit (27a) der Mehrzahl von Einspritzeinheiten (27) dazu konfiguriert ist, Brennstoff und Luft gemäß einem anderen Äquivalenzverhältnis und/oder einer anderen Mischung zwischen Luft und Brennstoff und/oder einer anderen Penetration in die Nachbrennkammer (23) als bei den anderen Einspritzeinheiten (27b, 27c, 27d, 27e) einzuspritzen.
  2. Brennkammereinheit gemäß Anspruch 1, wobei alle Einspritzeinheiten (27a, 27b, 27c, 27d, 27e) der Mehrzahl von Einspritzeinheiten (27) dazu konfiguriert sind, Brennstoff und Luft voneinander unterschiedlich einzuspritzen.
  3. Brennkammereinheit gemäß einem der vorhergehenden Ansprüche, wobei die Geometrie der mindestens einen ersten Einspritzeinheit (27a) der Mehrzahl von Einspritzeinheiten (27) sich von der Geometrie der anderen Einspritzeinheiten (27b, 27c, 27d, 27e) der Mehrzahl von Einspritzeinheiten (27) unterscheidet.
  4. Brennkammereinheit gemäß einem der vorhergehenden Ansprüche, wobei die Menge an Luft und/oder Brennstoff, die der mindestens einen ersten Einspritzeinheit (27a) der Mehrzahl von Einspritzeinheiten (27) zugeführt wird, sich von der Menge an Luft und/oder Brennstoff unterscheidet, die den anderen Einspritzeinheiten (27b, 27c, 27d, 27e) der Mehrzahl von Einspritzeinheiten (27) zugeführt wird.
  5. Brennkammereinheit gemäß einem der vorhergehenden Ansprüche, wobei die mindestens eine erste Einspritzeinheit (27a) ein Strömungsrohr (33a) hat, das eine erste Rohrlänge (La) hat, die sich von den Rohrlängen (Lb, Lc, Ld, Le) der Strömungsrohre (33b, 33c, 33d, 33e) der anderen Einspritzeinheiten (27b, 27c, 27d, 27e) unterscheidet.
  6. Brennkammereinheit gemäß einem der vorhergehenden Ansprüche, wobei die mindestens eine erste Brennstoffdüse (31a) der mindestens einen ersten Einspritzeinheit (27a) einen ersten Durchmesser (Da) hat, der sich von den Durchmessern (Db, Dc, Dd, De) der Brennstoffdüsen (31b, 31c, 31d, 31e) der anderen Einspritzeinheiten (27b, 27c, 27d, 27e) unterscheidet.
  7. Brennkammereinheit gemäß einem der vorhergehenden Ansprüche, wobei die mindestens eine erste Einspritzeinheit (27a) ein erstes Strömungsrohr (33a) hat, das eine erste Rohrbreite (Wa) hat, die sich von den Rohrbreiten (Wb, Wc, Wd, We) der Strömungsrohre (33b, 33c, 33d, 33e) der anderen Einspritzeinheiten (27b, 27c, 27d, 27e) unterscheidet.
  8. Brennkammereinheit gemäß einem der vorhergehenden Ansprüche, wobei die mindestens eine erste Einspritzeinheit (27a) eine erste Luftdüse (32a) hat, die einen Durchtrittsquerschnitt (Aa) hat, der sich von den Durchtrittsquerschnitten (Ab, Ac, Ad, Ae) der Luftdüsen (32b, 32c, 32d, 32e) der anderen Einspritzeinheiten (27b, 27c, 27d, 27e) unterscheidet.
  9. Brennkammereinheit gemäß Anspruch 8, wobei die erste Einspritzeinheit (27a) eine Dosierplatte (39) umfasst, die mit einem Loch (40) ausgestattet und mit der ersten Luftdüse (32a) gekoppelt ist, um den Durchtrittsquerschnitt (Aa) der ersten Luftdüse (32a) einzustellen.
  10. Brennkammereinheit gemäß einem der vorhergehenden Ansprüche, wobei die mindestens eine erste Einspritzeinheit (27a) ein erstes Strömungsrohr (33a) hat, das sich entlang einer Erstreckungsachse (C) erstreckt, die anders als die Erstreckungsachsen (C) der Strömungsrohre (33a, 33b, 33c, 33d, 33e) der anderen Einspritzeinheiten (27b, 27c, 27d, 27e) geneigt ist.
  11. Gasturbinenanordnung, umfassend:
    einen Verdichter (2), eine Turbine (4) und eine Brennkammeranordnung (3); wobei die Brennkammeranordnung (3) mindestens eine Brennkammereinheit (10) gemäß einem der vorhergehenden Ansprüche umfasst.
EP20217211.0A 2020-12-24 2020-12-24 Brennkammereinheit für eine gasturbinenanordnung Active EP4019840B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20217211.0A EP4019840B1 (de) 2020-12-24 2020-12-24 Brennkammereinheit für eine gasturbinenanordnung
CN202111561357.3A CN114754377A (zh) 2020-12-24 2021-12-20 燃烧器单元、燃气涡轮组件和用于控制燃料喷射的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20217211.0A EP4019840B1 (de) 2020-12-24 2020-12-24 Brennkammereinheit für eine gasturbinenanordnung

Publications (2)

Publication Number Publication Date
EP4019840A1 EP4019840A1 (de) 2022-06-29
EP4019840B1 true EP4019840B1 (de) 2024-04-03

Family

ID=73943162

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20217211.0A Active EP4019840B1 (de) 2020-12-24 2020-12-24 Brennkammereinheit für eine gasturbinenanordnung

Country Status (2)

Country Link
EP (1) EP4019840B1 (de)
CN (1) CN114754377A (de)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101206891B1 (ko) * 2007-09-14 2012-11-30 지멘스 에너지, 인코포레이티드 2차 연료 전달 시스템
US9228499B2 (en) * 2011-08-11 2016-01-05 General Electric Company System for secondary fuel injection in a gas turbine engine
EP2835516A1 (de) * 2013-08-08 2015-02-11 Alstom Technology Ltd Gasturbine mit verbessertem Teillast-Emissionsverhalten
US10113747B2 (en) * 2015-04-15 2018-10-30 General Electric Company Systems and methods for control of combustion dynamics in combustion system
EP3369995B1 (de) * 2017-03-02 2020-08-05 Ansaldo Energia Switzerland AG Verfahren der schwingungstilgung in einem mixer
US11242806B2 (en) * 2017-11-20 2022-02-08 Power Systems Mfg., Llc Method of controlling fuel injection in a reheat combustor for a combustor unit of a gas turbine
KR102138013B1 (ko) * 2019-05-30 2020-07-27 두산중공업 주식회사 축방향 연료 스테이징 시스템을 갖는 연소기 및 이를 포함하는 가스터빈

Also Published As

Publication number Publication date
CN114754377A (zh) 2022-07-15
EP4019840A1 (de) 2022-06-29

Similar Documents

Publication Publication Date Title
US10094568B2 (en) Combustor dynamics mitigation
US7320222B2 (en) Burner, method for operating a burner and gas turbine
US10054313B2 (en) Air biasing system in a gas turbine combustor
EP2559946B1 (de) System und Verfahren zur Verringerung der Verbrennungsdynamik in einem Brennkammer
US8966909B2 (en) System for reducing combustion dynamics
EP1672282B1 (de) Verfahren und Vorrichtung zum Verringern von Verbrennungsschwingungen
EP3076085B1 (de) Mikromixersystem für ein turbinensystem und zugehöriges verfahren davon
CN105716116B (zh) 喷射稀释空气的轴向分级混合器
US7654090B2 (en) Burner and method for operating a gas turbine
US20100071377A1 (en) Combustor Apparatus for Use in a Gas Turbine Engine
US20150219336A1 (en) Systems and methods for reducing modal coupling of combustion dynamics
CN101586812A (zh) 用于降低燃烧动态特性的方法和系统
CN105715378B (zh) 冷却和稀释空气的分开供给
EP3845812B1 (de) Gasturbinenverbrennungskammer mit doppeldruckvormischdüsen
EP3320268A1 (de) Brenner für eine gasturbine und verfahren zum betrieb des brenners
EP2873922A1 (de) Gasturbinenbrennkammer
EP2213941A2 (de) System und Verfahren zur Verringerung der Verbrennungsdynamik in einer Turbomaschine
US20160195271A1 (en) Burner for a gas turbine and method for reducing thermoacoustic oscillations in a gas turbine
EP3486568B1 (de) Verfahren zur steuerung der kraftstoffeinspritzung in einem nachbrenner für eine brennkammereinheit einer gasturbine
EP3054213A1 (de) Gasturbinenbrennkammer und gasturbine mit dampfeinspritzung
US9534789B2 (en) Two-branch mixing passage and method to control combustor pulsations
EP4019840B1 (de) Brennkammereinheit für eine gasturbinenanordnung
US20120324900A1 (en) Phase and amplitude matched fuel injector
US11592178B2 (en) System and method of improving combustion stability in a gas turbine
CN110030581B (zh) 用于燃气涡轮发电站燃烧器的烧嘴

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221229

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230718

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602020028259

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D