EP4011176A1 - Smart dimming & sensor failure detection as part of built in ambient light harvesting inside the luminaire - Google Patents

Smart dimming & sensor failure detection as part of built in ambient light harvesting inside the luminaire

Info

Publication number
EP4011176A1
EP4011176A1 EP20767905.1A EP20767905A EP4011176A1 EP 4011176 A1 EP4011176 A1 EP 4011176A1 EP 20767905 A EP20767905 A EP 20767905A EP 4011176 A1 EP4011176 A1 EP 4011176A1
Authority
EP
European Patent Office
Prior art keywords
light
luminaire
amount
self
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20767905.1A
Other languages
German (de)
French (fr)
Inventor
Ravindra Viraj GURJAR
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Appleton Grp LLC
Original Assignee
Appleton Grp LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Appleton Grp LLC filed Critical Appleton Grp LLC
Publication of EP4011176A1 publication Critical patent/EP4011176A1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters
    • H05B47/11Controlling the light source in response to determined parameters by determining the brightness or colour temperature of ambient light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/0219Electrical interface; User interface
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/10Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void
    • G01J1/20Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void intensity of the measured or reference value being varied to equalise their effects at the detectors, e.g. by varying incidence angle
    • G01J1/28Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void intensity of the measured or reference value being varied to equalise their effects at the detectors, e.g. by varying incidence angle using variation of intensity or distance of source
    • G01J1/30Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void intensity of the measured or reference value being varied to equalise their effects at the detectors, e.g. by varying incidence angle using variation of intensity or distance of source using electric radiation detectors
    • G01J1/32Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void intensity of the measured or reference value being varied to equalise their effects at the detectors, e.g. by varying incidence angle using variation of intensity or distance of source using electric radiation detectors adapted for automatic variation of the measured or reference value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4204Photometry, e.g. photographic exposure meter using electric radiation detectors with determination of ambient light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B39/00Circuit arrangements or apparatus for operating incandescent light sources
    • H05B39/04Controlling
    • H05B39/041Controlling the light-intensity of the source
    • H05B39/042Controlling the light-intensity of the source by measuring the incident light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/31Phase-control circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/165Controlling the light source following a pre-assigned programmed sequence; Logic control [LC]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/17Operational modes, e.g. switching from manual to automatic mode or prohibiting specific operations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/175Controlling the light source by remote control
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/175Controlling the light source by remote control
    • H05B47/19Controlling the light source by remote control via wireless transmission
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/20Responsive to malfunctions or to light source life; for protection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Definitions

  • This disclosure relates to self-adjusting luminaires, lighting units, and light fixtures that are disposed in hazardous environments, such as intrinsically safe and/or explosion proof luminaires, lighting units, and light fixtures that provide ambient, task, and/or focused light within hazardous environments.
  • Intrinsically safe and/or explosion proof luminaires, lighting units, and light fixtures provide general, ambient light and/or task or focused light within hazardous environments such as industrial process plants, manufacturing facilities, oil refineries, power-generating systems, mines, and the like.
  • intrinsically safe and/or explosion proof luminaires, lighting units, and light fixtures must comply with all standards and/or regulatory rules that are applicable to the particular hazardous environment in which they are disposed, e.g., to prevent ignition and/or explosion of hazardous atmospheric mixtures such as flammable gases and/or dust, to protect electronics within the luminaire from being compromised or damaged, to contain any explosion that may occur, etc.
  • Such luminaires may be rated by Class, Division, and Group.
  • a Class 1 , Division 1 , Group D, E, and F is a commonly required rating for products that are located in hazardous environments within the petrochemical industry, in which flammable vapors may be present.
  • intrinsically safe and/or explosion proof luminaires, lighting units, and light fixtures are designed to limit undesirable and/or dangerous effects of thermal and/or electrical energy generated during both their normal use and maintenance, as well as during fault conditions.
  • intrinsically safe and/or explosion proof luminaires, lighting units, and/or light fixtures that are located in hazardous environments are generically referred to herein as “hazardous environment (FIE) luminaires, lighting units, and/or light fixtures”, and/or simply as “luminaires, lighting units, and/or light fixtures.”
  • Some known luminaires, lighting units, and light fixtures are configured to save energy using ambient light harvesting techniques.
  • ambient light harvesting techniques involve dimming or powering off a luminaire when there is more ambient light generated by other sources in the environment of the luminaire, and powering on or increasing the light produced by the luminaire when there is less ambient light generated by other sources in the environment of the luminaire.
  • some known luminaires are configured to dim or brighten based on the time of day, to account for expected daylight at each time of day, etc.
  • some known luminaires are controlled based on external light sensors which detect ambient light, and such luminaires are powered on when the detected ambient light falls below a certain threshold or powered off when the detected ambient light rises above a different threshold.
  • light sensors disposed in an environment of the luminaire may detect ambient light and transmit an indication of the detected ambient light to a controller, which generates control signals for turning on and off the luminaire in an ambient light harvesting mode based on the ambient light detected by the sensors.
  • some known luminaires use the amount of ambient light that is measured when the luminaire powers up for the first time as a setpoint amount of ambient light.
  • known luminaires that use ambient light harvesting techniques rely on a same set of multiple light sensors positioned in different locations in the same environment to determine whether any of the light sensors are malfunctioning. For instance, known luminaires may determine that one of several light sensors in an environment is malfunctioning if the light sensor measures a different amount of ambient light than the other light sensors in the environment.
  • known luminaires, lighting units, and light fixtures that use ambient light harvesting techniques typically are not capable of determining, by a given luminaire, that a light sensor associated with that luminaire is malfunctioning without receiving information from or about other light sensors in the environment.
  • known luminaires have no way of detecting a light sensor error if a wired or wireless connection between the luminaire and the other light sensors in the environment is not operational or suffers from significant interference and/or degraded performance.
  • Light sensor errors in ambient light harvesting luminaires are particularly dangerous in hazardous environments because lighting may affect the ability of users or operators within the hazardous environment to do their jobs. For instance, if a light sensor erroneously detects high levels of ambient light and accordingly causes the illumination sources of the luminaire to energize at low intensity levels, users or operators within the hazardous environment may be unable to fully see critical issues occurring in the hazardous environment, such as warning signs of imminent spills or explosions.
  • the systems, methods, and techniques disclosed herein relate to a self-adjusting hazardous environment (HE) luminaire, lighting unit, or light fixture disposed in a hazardous environment.
  • HE hazardous environment
  • embodiments of the disclosed HE luminaire, lighting unit, or light fixture radiates general or ambient light and/or task or focused light into the hazardous environment.
  • the disclosed self-adjusting HE luminaire, lighting unit, or light fixture is configured to continuously modify the intensity at which its illumination sources are energized based on a difference between a measured amount of light in the environment of the luminaire (i.e., which includes both ambient light and light produced by the luminaire) and a setpoint (e.g., target) amount of light for the hazardous environment.
  • the self-adjusting luminaire automatically makes larger changes to the intensity at which the illumination sources of the self-adjusting luminaire are energized when there are larger differences between the measured amount of light and the setpoint amount of light, and makes smaller changes to the intensity at which the illumination sources of the self-adjusting luminaire are energized when there are smaller differences between the measured amount of light and the setpoint amount of light.
  • the self-adjusting luminaire modifies the intensity of its illumination sources until the setpoint amount of light is achieved, in a way that appears to be gradual to a user or operator in the hazardous environment, reducing the chances that a user or operator in the hazardous environment is startled or distracted by the adjustment.
  • the self-adjusting luminaire modifies the intensity of its illumination sources until the measured amount of light is within a certain small range of the setpoint amount of light (e.g., within 10% of the setpoint amount of light). In this way, the self-adjusting luminaire avoids annoying or distracting users with frequent modifying (which may be seen as flickering or flashing) as the measured amount of light in the environment of the luminaire approaches or exceeds the setpoint amount of light from above or below.
  • the self-adjusting luminaire can determine whether its on-board light sensor (used interchangeably with “illumination sensor” herein) is malfunctioning based on the light sensor’s own measurements.
  • the self-adjusting luminaire may determine that the light sensor is malfunctioning. Accordingly, in some examples, the self-adjusting luminaire may generate an alarm indicating that the light sensor is malfunctioning, e.g., and may transmit the alarm to a lighting control system.
  • the self-adjusting luminaire may additionally or alternatively modify the intensity of one or more of its illumination sources to full power so that light sensor errors do not affect users or operators in the hazardous environment.
  • the self-adjusting luminaire may accommodate light sensor errors even if a wired or wireless network in the hazardous environment is not operational or suffers from interference or other performance-affecting conditions.
  • a luminaire comprises: one or more processors; one or more illumination sources; one or more drivers; one or more illumination sensors configured to measure amounts of light in an environment associated with the luminaire, the light in the environment associated with the luminaire including both ambient light and light provided by the one or more illumination sources; and one or more memories storing a set of computer-executable instructions that, when executed by the one or more processors, cause the luminaire to: cause the one or more drivers to energize the one or more illumination sources to generate light at a first intensity level; determine a modification to the first intensity level based on a magnitude of a difference between a setpoint amount of light and a first amount of light, the first amount of light measured by the one or more illumination sensors while the one or more illumination sources are energized to generate light at the first intensity level; and cause the one or more drivers to modify the first intensity level based on the determined modification.
  • a method performed by a self-adjusting luminaire comprises: continuously measuring, by one or more sensors included in the self-adjusting luminaire over an interval of time, an amount of light within an environment associated with the self-adjusting luminaire, the light within the environment associated with the self-adjusting luminaire including both ambient light and light provided by one or more illumination sources of the luminaire; and modifying, over the interval of time in accordance with the continuous measuring, an energization of the one or more illumination sources of the self-adjusting luminaire based on a magnitude of a difference between a measured amount of light in the environment and a setpoint amount of light.
  • FIG. 1 is a block diagram of an example self-adjusting hazardous environment lighting unit, light fixture, or luminaire.
  • FIG. 2 is a graph illustrating an example measurement of amount of light over time for a hazardous environment and example times at which a self-adjusting luminaire’s illumination intensity is increased and decreased to maintain a setpoint deadband.
  • FIG. 3 is a graph illustrating example step modifications of illumination intensity made by a self-adjusting luminaire based on a difference between a measured amount of light in a hazardous environment and a setpoint amount of light for the hazardous environment.
  • FIG. 4 depicts an example hazardous environment in which the self-adjusting hazardous environment lighting unit, light fixture, or luminaire of FIG. 1 may be located or disposed.
  • FIG. 5 is a flow diagram of an example method performed by a self-adjusting hazardous environment luminaire.
  • FIG. 1 is a block diagram of an example self-adjusting hazardous environment lighting unit, light lighting unit, light fixture, or luminaire 100 that modifies the energization intensity levels of its on-board illumination sources based on the difference between the amount of light in the environment of the self-adjusting luminaire as measured by on-board sensors and a setpoint amount of light associated with the luminaire, and detects malfunctions associated with the on-board sensors
  • the terms “lighting unit”, “light fixture”, and “luminaire” are utilized interchangeably herein to refer to an electrically powered group of components that operates to supply general or ambient light and/or task or focused light in the portion of the electromagnetic spectrum that is visible to the human eye, e.g., from about 380 to 740 nanometers.
  • the luminaire 100 is disposed within a hazardous environment, such as an industrial process plant, a manufacturing facility, an oil refinery, a power generating system, a mine, etc.
  • a hazardous environment such as an industrial process plant, a manufacturing facility, an oil refinery, a power generating system, a mine, etc.
  • the luminaire 100 is a hazardous environment (FIE) luminaire that is compliant with any (and in some cases, all) standards and/or regulations governing its configuration, installation, and usage within the hazardous environment. That is, the luminaire 100 complies with standard and/or regulated thermal and electrical limits so as to limit the energy generated by the luminaire 100 that is available for potential ignition and/or explosion within the hazardous environment.
  • the HE luminaire 100 includes at least one hazardous location enclosure or housing 102 in which its components are typically disposed or enclosed.
  • the hazardous location enclosure or housing 102 may be explosion- proof, flame-proof, water-proof, sealed, hermetically sealed, dust ignition protected, etc.
  • a single luminaire 100 may include multiple hazardous location enclosures or housings 102, each of which surrounds a different subset of components of the luminaire 100; however, for ease of reading herein (and not for limitation purposes) the hazardous location enclosure or housing 102 is referred to using the singular tense.
  • at least one portion 105 of the hazardous location enclosure or housing 102 is at least partly transparent or visible light-permeable, so that illumination or light generated by one or more illumination sources IL-1 to IL-n (corresponding to references 108a-108n in FIG.
  • the illumination sources 108a-108n may be any suitable type of illumination source that generates visible light, e.g., incandescent, halogen, fluorescent, metal halide, xenon, LEDs (light emitting diodes), etc.
  • the luminaire 100 includes one or more processors 110, one or more drivers 112 (e.g., drivers for illuminations sources), one or more illumination sources 108a- 108n, and one or more illumination sensors 130 that are enclosed in, surrounded by, and/or otherwise protected by the hazardous location enclosure 102.
  • the luminaire 100 is communicatively connected to one or more networks via one or more communication interfaces 128a-128m.
  • the luminaire 100 may be communicatively connected to a wireless network via a first communication interface (COM1 ) 128a and/or may be communicatively connected to a wired network via a second communication interface (COMm) 128m.
  • the luminaire 100 may be a node of a wireless network and/or may be a node of a wired network.
  • Each of the wireless and/or wired networks may include one or more other nodes such as, for example, a back-end computer, controller, or server that is disposed in a non-hazardous environment or otherwise is shielded from the harsh conditions of the hazardous environment.
  • nodes which may be included in the wireless and/or wired network may include, in some configurations, one or more other luminaires, sensors, and other devices disposed within the hazardous environment.
  • the one or more processors 110 instruct the one or more drivers 112 to energize or activate the one or more illumination sources 108a-108n, e.g., individually or independently, and/or as a set or group in a coordinated manner.
  • the one or more processors 110 may instruct the one or more drivers 112 to energize or activate the one or more illumination sources 108a-108n based on or in accordance with instructions and/or information provided by an ambient light harvesting unit 115 of the luminaire 100.
  • the illumination sensors 130 measure the amount of light (e.g., in lumens, lux, etc.) in the environment of the luminaire 100.
  • the illumination sensors 130 may be positioned near the illumination sources 108a-108n and may face toward the environment, in order to measure the combined light from the illumination sources 108a- 108n and from external sources of ambient light (such as, e.g., sunlight, lightning, or other sources of light in the environment) that is reflected back to the luminaire 100.
  • the ambient light harvesting unit 115 may include a set of computer-executable instructions that are executable by the one or more processors 110 and that are stored on the one or more memories 118 of the luminaire 100, where the one or more memories 118 are, for example, one or more tangible, non-transitory memories, components, or data storage devices.
  • the one or more memories 118 may also store instructions for executing a sensor malfunction unit 120 configured to detect malfunctions of an illumination sensor 130 and generate alarms and/or modify the operation of the luminaire 100 based on detected malfunctions.
  • the one or more memories 118 may also store other data 122 (which may include, e.g., setpoint values, deadband ranges for setpoint values, setpoint deadband threshold values, sensitivity settings, alarm threshold values, etc.) that is accessible to the one or more processors 110. Additionally, the one or more memories 118 may store other computer-executable instructions 125 that are executable by the one or more processors 110 to cause luminaire 100 perform other operations in addition to ambient light harvesting control.
  • other data 122 which may include, e.g., setpoint values, deadband ranges for setpoint values, setpoint deadband threshold values, sensitivity settings, alarm threshold values, etc.
  • the other computer-executable instructions 125 may be executable by the one or more processors 110 to cause the luminaire 100 to perform its run-time lighting operations, to communicate with other luminaires and/or with a back-end server (e.g., wirelessly) to coordinate lighting functions across a group of luminaires, to execute diagnostic and/or maintenance operations, etc.
  • a back-end server e.g., wirelessly
  • the ambient light harvesting unit 115 may cause the one or more drivers 112 of the luminaire 100 to energize or activate the one or more illumination sources 108a-108n based on the amount of light measured in the environment of the luminaire 100 by the one or more illumination sensors 130, such that the intensity at which the one or more illumination sources 108a-108n are energized decreases as the amount of light measured in the environment of the luminaire 100 increases, and vice versa.
  • the ambient light harvesting unit 115 may cause the one or more drivers 112 of the luminaire 100 to modify the intensity at which the one or more illumination sources 108a- 108n are energized based on the difference between the amount of light in the environment of the luminaire 100 (e.g., including light produced by the illumination sources 108a-108n as well as light from external sources, such as sunlight, other luminaires, flame sources within the hazardous environment, etc.) as measured by the one or more illumination sensors 130 over a certain period of time and a setpoint amount of light associated with the luminaire 100.
  • the setpoint value may be pre-configured or pre-defined.
  • the setpoint value may be modified by a user or an operator
  • the ambient light harvesting unit 115 may be configurable by a user to operate in a high sensitivity, medium sensitivity, or low sensitivity setting.
  • the interval of time e.g., duration of time, period of time, etc.
  • the interval of time over which the illumination sensors 130 measure the amount of light in the environment of the luminaire 100 before the intensity of the illumination sources 108a-108n is adjusted is longer, and when the ambient light harvesting unit 115 is operating in the high sensitivity setting, the interval of time over which the illumination sensors 130 measure the amount of light in the environment of the luminaire 100 before the intensity of the illumination sources 108a-108n is adjusted is shorter.
  • the interval of time (over which the amount of light in the environment of the luminaire 100 is measured prior to adjusting the intensity of the illumination sources 108a-108n) has a greater, longer, or larger duration than the duration of the interval of time (over which the amount of light in the environment of the luminaire 100 is measured prior to adjusting the intensity of the illumination sources 108a-108n) while the ambient light harvesting unit 115 is operating in the high sensitivity setting.
  • the amount of light in the environment of the luminaire 100 may be averaged over the interval of time based on the current sensitivity setting, which may have been selected by the user.
  • the luminaire 100 may react to changes in the amount of light in the environment of the luminaire 100 detected by the illumination sensors 130 more quickly.
  • the amount of time required to elapse for the luminaire 100 to react to changes in the amount of light in the environment while set at the high sensitivity setting is shorter than the amount of time required to elapse for the luminaire 100 to react to changes of light in the environment while set at the low sensitivity setting.
  • a high sensitivity setting may be useful in environments in which the amount of light in the environment of the luminaire 100 typically changes frequently and drastically.
  • the luminaire 100 may react to changes in the amount of light in the environment of the luminaire 100 detected by the illumination sensors 130 more slowly (e.g., more gradually).
  • the amount of time that elapses prior to the luminaire 100 reacting to changes in the amount of light in the environment while operating in the low sensitivity setting is longer than the amount of time that elapses prior to the luminaire 100 reacting to changes of light in the environment while operating in the high sensitivity setting.
  • a low sensitivity setting may be useful in environments in which the amount of light in the environment of the luminaire 100 typically does not change frequently or drastically.
  • the luminaire 100 when the ambient light harvesting unit 115 is operating in a low sensitivity setting, the luminaire 100 will not modify the intensity at which its illumination sources 108a-108n are energized based on a momentary change in the amount of light in the environment of the luminaire 100, e.g., a change in ambient light caused by a flash of lightning, or by a user or equipment in the hazardous environment flashing light towards the sensor.
  • a momentary change in the amount of light in the environment of the luminaire 100 e.g., a change in ambient light caused by a flash of lightning, or by a user or equipment in the hazardous environment flashing light towards the sensor.
  • the ambient light harvesting unit 115 may cause the one or more drivers 112 of the luminaire 100 to cease modifying (or to adjust the modification of) the intensity at which the one or more illumination sources 108a-108n are energized when the difference between the amount of light in the environment of the luminaire 100 measured by the one or more illumination sensors 130 over the interval of time and the setpoint amount of light associated with the luminaire 100 is below a deadband setpoint threshold value.
  • the deadband setpoint threshold value may be based on the setpoint value (e.g.,
  • the deadband threshold value may be pre-configured or pre-defined. Moreover, in some examples, the deadband threshold value may be modified by a user or an operator.
  • the ambient light harvesting unit 115 may cause the one or more drivers 112 of the luminaire 100 to maintain the current intensity at which they are energizing the one or more illumination sources 108a-108n.
  • FIG. 2 illustrates a graph 200 illustrating an example measurement of the amount of light in the environment of the luminaire 100 over time and example times at which illumination intensity is increased and decreased to maintain a 10% setpoint deadband.
  • the setpoint (202) amount of light associated with the luminaire 100 is 1500 lumens
  • the deadband (204) is a range spanning ⁇ 10% of the setpoint 202.
  • the illumination intensity is increased until the difference between the amount of light in the environment of the luminaire 100 and the setpoint amount of light associated with the luminaire 100 is less than 10% of the setpoint (i.e., less than 150 lumens below the setpoint, at point 206 as shown in FIG. 2).
  • the illumination intensity is maintained until the difference between the amount of light in the environment of the luminaire 100 and the setpoint amount of light associated with the luminaire 100 is greater or more than 10% of the setpoint (i.e., greater or more than 150 lumens above the setpoint, at point 208 as shown in FIG. 2), at which point the illumination intensity is decreased until the difference between the amount of light in the environment of the luminaire 100 and the setpoint amount of light associated with the luminaire 100 is less than 10% of the setpoint (i.e., less than 150 lumens above the setpoint, at point 210 as shown in FIG. 2).
  • the illumination intensity is maintained until the difference between the amount of light in the environment of the luminaire 100 and the setpoint amount of light in the environment of the luminaire 100 is greater or more than 10% of the setpoint (i.e., greater or more than 150 lumens below the setpoint, at point 212 as shown in FIG. 2), at which point the illumination intensity is increased until the difference between the amount of light in the environment of the luminaire 100 and the setpoint amount of light associated with the luminaire 100 is less than 10% of the setpoint (i.e., less than 150 lumens below the setpoint, at point 214 as shown in FIG. 2), and so on.
  • the ambient light harvesting unit 115 may cause the one or more drivers 112 of the luminaire 100 to modify the intensity of the one or more illumination sources 108a-108n in steps based on the difference between the amount of light in the environment of the luminaire 100 measured by the one or more illumination sensors 130 and the setpoint amount of light associated with the luminaire 100.
  • FIG. 3 illustrates a graph 250 illustrating exemplary step modifications of the intensity of the one or more illumination sources 108a-108n. As shown in FIG.
  • the illumination intensity is increased (when the measured amount of light in the environment of the luminaire 100 is less than the setpoint amount of light associated with the luminaire 100) or decreased (when the measured amount of light in the environment of the luminaire 100 is greater or more than the setpoint amount of light associated with the luminaire 100) by a first intensity factor (e.g., increased or decreased by 20%).
  • a first intensity factor e.g., increased or decreased by 20%
  • the illumination intensity is increased or decreased by a second intensity factor (e.g., by increased or decreased by 10%).
  • the illumination intensity is increased or decreased by a third intensity factor (e.g., by increased or decreased by 5%)
  • a fourth range 258 e.g., a difference of between 50 and 0 lumens
  • the illumination intensity is increased or decreased by a fourth intensity factor (e.g., by increased or decreased by 1%).
  • the illumination intensity is adjusted rapidly by larger steps, but when the difference between the amount of light in the environment of the luminaire 100 measured by the one or more illumination sensors 130 and the setpoint amount of light associated with the luminaire 100 is of a smaller magnitude, the illumination intensity is adjusted more slowly by smaller steps.
  • the amount of light in the environment of the luminaire 100 may be quickly adjusted to a very precise setpoint amount of light.
  • the changes to the illumination intensity are proportional to the difference between the measured amount of light in the environment of the luminaire 100 and the setpoint amount of light associated with the luminaire, the adjustment process appears to be smooth to a user or operator working in the hazardous environment. Accordingly, users or operators are not distracted, startled, or annoyed as the illumination intensity is adjusted.
  • the sensor malfunction unit 120 may cause the luminaire 100 to detect malfunctions of an illumination sensor 130 and generate alarms and/or modify the operation of the luminaire 100 based on detected malfunctions of the illumination sensor 130.
  • the sensor malfunction unit 120 may determine that an illumination sensor 130 is malfunctioning when measurements of the amount of light in the environment of the luminaire 100 by the illumination sensor 130 fail to change (or change very little) over an interval of time (e.g., 15 minutes, 20 minutes, 30 minutes, etc.) during which the intensity of the illumination sources 108a-108n has been modified by more than an alarm threshold amount.
  • the interval period of time and/or the alarm threshold amount may be pre-configured or pre-defined.
  • the interval period of time and/or the alarm threshold amount may be modified by a user or an operator
  • the sensor malfunction unit 120 may generate an alarm indicating that the sensor 130 is malfunctioning. In some examples, the alarm may be transmitted to an external device, such as a controller or a device associated with a user or operator in the hazardous environment. In some examples, upon the sensor malfunction unit 120 determining that an illumination sensor 130 is malfunctioning, the sensor malfunction unit 120 may cause the one or more drivers 112 of the luminaire 100 to modify the intensity of the one or more illumination sources 108a-108n to full intensity (e.g., 100% intensity), e.g., as a default mitigating response.
  • full intensity e.g., 100% intensity
  • the illumination sensor 130 is malfunctioning by over-measuring the amount of light in the environment of the luminaire 100, users or operators in the hazardous environment will still be provided with lighting as needed.
  • other mitigating responses may be defined and additionally or alternatively performed by the luminaire 100 upon detecting the malfunction of the sensors 130.
  • information from external sources e.g., other devices or sensors connected to the luminaire via wired or wireless connections
  • the sensor malfunction unit 120 is not necessary for the sensor malfunction unit 120 to detect and respond to malfunctioning illumination sensors 130.
  • FIG. 4 depicts an example hazardous environment in which the self-adjusting hazardous environment lighting unit, light fixture, or luminaire of FIG. 1 may be located or disposed.
  • the self-adjusting FIE luminaire 301 of FIG. 4 may be an embodiment of the self-adjusting FIE luminaire 100.
  • FIG. 4 is discussed below in conjunction with reference numbers included in FIG. 1.
  • the self-adjusting luminaire 301 is a node of a wireless network 302 of the hazardous environment 300, where the wireless network 302 includes other nodes such as other luminaires 305, 308 and a wireless gateway 310 which communicatively interconnects the wireless network 302 and a wired network 312 associated with the hazardous environment 300.
  • each of the luminaires 301 , 305, 308 is a self-adjusting luminaire.
  • one of the luminaires 301 is a self-adjusting primary luminaire, while the other luminaires 305, 308 are secondary luminaires, such as those as described in
  • each wired communication interface may include both a digital component or portion and an analog component or portion so that both digital and analog signals may delivered over a common, integral, or single, physical transmission medium (such as a wire, a cable, etc.).
  • the digital component may deliver administrative messages (e.g., such as alert messages, status messages, sensor data, configuration messages, and/or other types of messages that do not include any control or driving instructions) between the self-adjusting primary luminaire 301 and the secondary luminaires 305, 308, while the analog component may deliver driving commands issued by the self- adjusting primary luminaire 301 to the secondary luminaires 305, 308, e.g., including commands indicating intensity levels at which illumination sources of the secondary luminaires 305, 308 are to be energized.
  • administrative messages e.g., such as alert messages, status messages, sensor data, configuration messages, and/or other types of messages that do not include any control or driving instructions
  • the analog component may deliver driving commands issued by the self- adjusting primary luminaire 301 to the secondary luminaires 305, 308, e.g., including commands indicating intensity levels at which illumination sources of the secondary luminaires 305, 308 are to be energized.
  • the self-adjusting primary luminaire 301 may send driving commands to the secondary luminaires 305, 308 via the analog component of its wired communication interface, and may send administrative messages to (and receive administrative messages from) the secondary luminaires 305, 308 via the digital component of its wired communication interface.
  • self-adjusting primary luminaire 301 may have on-board sensors, while the secondary luminaires 305, 308 may not have on-board illumination sensors.
  • the self-adjusting primary luminaire 301 may generate driving commands for modifying the intensity of both its own illumination sources and the illumination sources of the secondary luminaires 305, 308 based on a difference between a setpoint amount of light and an amount of light measured by the on-board illumination sensors of the self-adjusting primary luminaire 301 .
  • the wired network 312 includes a wired backbone 315 (e.g., which may be Ethernet, broadband, fiber optic, or any suitable type of wired backbone) to which a back end server, host, controller, computing device, and/or group of computing devices behaving as a single logical server or host 318 is communicatively connected.
  • the host 318 may be implemented by an individual computing device, by one or more controllers and/or systems associated with the hazardous environment (such as a programmable logic controller (PLC), distributed control system (DCS), or other type of industrial process control system), by a bank of servers, by a computing cloud, or by any suitable arrangement of one or more computing devices.
  • PLC programmable logic controller
  • DCS distributed control system
  • the host 318 may service nodes of the wired network 312 and/or nodes of the wireless network 302.
  • the host 318 may provide (e.g., via download or other mechanism) configuration and/or operating instructions 125 and/or data 122 (e.g., that correspond to governing or controlling run-time lighting, diagnostic, maintenance, and/or other operations) to one or more nodes of the network(s) 302, 312, such as the self- adjusting luminaire 301 , other luminaires 305, 308, and/or other nodes.
  • the host 318 may provide instructions and/or data that are related to ambient light harvesting settings for the self-adjusting luminaire 301 .
  • the host 318 may provide a setpoint amount of light associated with the self-adjusting luminaire 301 , a deadband range for the setpoint amount of light or a setpoint deadband threshold value, a sensitivity setting, an alarm threshold value, etc.
  • Wired network 312 also includes a user computing device 320 which is communicatively connected via the backbone 315.
  • the server 318 and the user computing device 320 may be disposed or located in one or more remote or enclosed locations 322 that protect the server 318 and the user computing device 320 from the harsh conditions of the hazardous environment 300.
  • the protected user computing device 320 may be communicatively connected to the wired backbone 315 via a wireless link and access point, where the access point is communicatively connected in a wired manner to the backbone 315.
  • a user 325 may utilize the computing device 320 to configure, modify, and/or otherwise provide instructions and/or data utilized by and/or stored at the host 318, and/or to view data and information provided by other devices and/or nodes via the wired network 312 and/or the wireless network 302 corresponding to the hazardous environment 300.
  • the user 325 may provide input indicating a setpoint amount of light associated with the self-adjusting luminaire 301 , a deadband range for the setpoint amount of light or a setpoint deadband threshold value, an alarm threshold value, etc., input indicating a preferred ambient light harvesting sensitivity setting (high, medium, low, etc.) or input regarding other configuration instructions for the luminaire 301.
  • the wired network 312 and the wireless network 302 may be in compliance with applicable hazardous environment standards and regulations.
  • the wireless network 302 may utilize Wi-Fi, WirelessFIART, and/or one or more other communication protocols that are suitable for (e.g., is in compliance with all regulations and standards that are applicable to) the hazardous environment 300, and devices of the networks 302, 312 that are located at least partially within the hazardous environment 300 (e.g., the luminaire self-adjusting 301 , the other luminaires 305, 308, the wireless gateway 310, and the backbone 315) may similarly comply with all applicable hazardous environment standards and regulations that pertain to the hazardous environment 300.
  • the example hazardous environment 300 includes a portable computing device 332 that is operated by a user 335 within the hazardous environment 300.
  • the portable computing device 332 is compliant with hazardous environment standards and regulations applicable to the hazardous environment 300.
  • the portable computing device 332 may be configured to communicate with the self-adjusting luminaire 301 , the other luminaires 305, 308, and/or with other nodes of the wireless network 302 using a WirelessFIART protocol or some other protocol that is suitable for (e.g., is in compliance with all regulations and standards that are applicable to) the hazardous environment 300.
  • the portable computing device 332 may be any type of wireless or mobile computing device, such as a laptop, tablet, smart phone, smart device, wearable computing device (e.g., virtual reality device, headset, or other body-borne device), etc.
  • the portable computing device 332 may or may not be a node of the wireless network 302.
  • the portable computing device 332 is a server, host, controller, computing device, and/or group of computing devices behaving as a single logical server or host that services the nodes of the wireless network 302.
  • the host 332 may provide (e.g., via download or other mechanism) configuration and/or operational instructions 125 and/or data 122 (e.g., that correspond to governing or controlling run-time lighting, diagnostic, maintenance, and/or other operations) to one or more nodes of the wireless network 302, such as to the self-adjusting luminaire 301 and/or the other luminaires 305, 308,.
  • the host 332 may provide instructions and/or data that are related to ambient light harvesting settings for the self-adjusting luminaire 301.
  • the host 332 may provide a setpoint amount of light associated with the self-adjusting luminaire 301 , a deadband range for the setpoint amount of light or a setpoint deadband threshold value, an alarm threshold value, etc.
  • a user 335 may utilize a user interface of the host 332 to configure, modify, and/or otherwise provide instructions and/or data stored at the host 332, and/or to view data and information provided by other devices and/or nodes via the wireless network 302 corresponding to the hazardous environment 300.
  • the user 335 may provide input indicating a setpoint amount of light associated with the self-adjusting luminaire 301 , a deadband range for the setpoint amount of light or a setpoint deadband threshold value, a sensitivity setting for the self-adjusting luminaire 301 , an alarm threshold value, etc., or input regarding other configuration instructions for the luminaire.
  • a user 325, 335 may utilize one or more of the user interface computing devices 320, 332 to provide input indicating a setpoint amount of light associated with the self-adjusting luminaire 301 , a deadband range for the setpoint amount of light or a setpoint deadband threshold value, a sensitivity setting for the self-adjusting luminaire 301 , an alarm threshold value, etc., or to provide input regarding other configuration instructions for the self-adjusting luminaire 301 .
  • a user 325, 335 may provide input indicating a sensitivity level setting for the ambient light harvesting of the self-adjusting luminaire 301.
  • the input may indicate that particular luminaires are to be set at different sensitivity levels. For instance, the self-adjusting luminaire 301 may be set to a high sensitivity level, while another luminaire 305 may be set to a low sensitivity level, and still another luminaire 308 is set to a medium sensitivity level.
  • FIG. 5 is a flow diagram of an example method 500 performed by a self-adjusting hazardous environment luminaire, such as the luminaire 100 depicted in FIG. 1 or the luminaire 301 depicted in FIG. 4.
  • the ambient light harvesting unit 115 of the luminaire 100 may include instructions which, when executed by the one or more processors 110, cause the self-adjusting hazardous environment luminaire 100 to perform at least a portion of the method 500.
  • the method 500 may include additional, fewer, and/or alternate actions, in embodiments.
  • the self-adjusting luminaire may continuously measure an amount of light within an environment associated with the self-adjusting luminaire over a first interval of time, e.g., by utilizing one or more sensors included in the self-adjusting luminaire.
  • the amount of light in the environment associated with the self-adjusting luminaire may include ambient light in the environment as well as light provided by one or more illumination sources of the luminaire, and may be measured in lumens, lux, or any other suitable unit of measure.
  • the self-adjusting luminaire may average the amount of light measured in the environment associated with the self-adjusting luminaire over the first interval of time.
  • a duration of the interval of time may correspond to a sensitivity setting of the luminaire, for example.
  • the self-adjusting luminaire may determine a difference (which may be, e.g., a magnitude of a difference, a difference value, etc.) between the measured amount of light in the environment associated with the self-adjusting luminaire (or the average amount of light measured in the environment associated with the self-adjusting luminaire over the first interval of time) and a setpoint amount of light associated with the self-adjusting luminaire.
  • the setpoint amount of light associated with the luminaire may be pre-configured.
  • the luminaire may receive an indication of the setpoint amount of light associated with the luminaire selected by a user, e.g., via a wired interface or a wireless interface of the self-adjusting luminaire.
  • the self-adjusting luminaire may modify the energization of the one or more illumination sources of the self-adjusting luminaire based on the determined difference between a measured amount of light in the environment and a setpoint amount of light, in accordance with the continuous measuring, e.g., over the first interval of time.
  • the self-adjusting luminaire may modify the intensity of the energization of the one or more illumination sources by multiplying the current intensity of the energization by an intensity factor, where the intensity factor corresponds to a magnitude of the difference between the measured amount of light in the environment and the setpoint amount of light.
  • the intensity factor may be one of a plurality of intensity factors, with each intensity factor corresponding to a particular range of values of the difference between the measured amount of light in the environment and the setpoint amount of light (e.g., as discussed above with respect to FIG. 3).
  • a first calculated difference falling within a first range of values for the difference between the measured amount of light in the environment and the setpoint amount of light, may correspond to a first intensity factor, while a second calculated difference, smaller or less than the first calculated difference, and falling into a second range of values for the difference between the measured amount of light in the environment and the setpoint amount of light (different from the first range of values), may correspond to a second intensity factor that is smaller or less than the first intensity factor.
  • the intensity of energization is modified based on multiplying the current intensity by a larger intensity factor, but when the difference between the measured amount of light in the environment and the setpoint amount of light is of a smaller magnitude, the intensity of energization is modified based on multiplying the current intensity by a smaller intensity factor.
  • the self-adjusting luminaire may continuously measure a second amount of light within the environment associated with the self-adjusting luminaire by the one or more sensors included in the self-adjusting luminaire over a second interval of time occurring after the modification has been performed.
  • the self-adjusting luminaire may generate an alarm corresponding to a difference between the measured amount of light over the first time interval and the measured amount of light over the second time interval.
  • the alarm may be generated when the difference between the measured amount of light over the first interval of time and the measured amount of light over the second interval of time is zero, or is otherwise below an alarm threshold amount of light difference, thus indicating a possible malfunction of the on-board sensors.
  • the method 500 may include modifying, over the second interval of time, an energization of the one or more illumination sources of the self-adjusting luminaire based on the alarm.
  • the energization of the one or more illumination sources may be modified to a full intensity or 100% intensity based on the alarm.
  • the method 500 may include transmitting an indication of the alarm via a wired interface or a wireless interface of the self-adjusting luminaire, e.g., to a user and/or to a back-end computing device.
  • the method 500 may further include ceasing to modify the energization of the one or more illumination sources (or otherwise adjusting the modification) when the difference between the measured amount of light in the environment and the setpoint amount of light is less than a deadband setpoint threshold value calculated based on the setpoint amount of light (e.g., as discussed above with respect to FIG. 2).
  • the deadband setpoint threshold value may be 5% of the setpoint amount of light, 10% of the setpoint amount of light, 15% of the setpoint amount of light, etc.
  • the self-adjusting luminaire may cease modifying the energization of the one or more illumination sources, e.g., until the difference between the measured amount of light in the environment and the setpoint amount of light associated with the luminaire is greater or more than 5% (or 10%, 15%, etc.) of the setpoint amount of light, at which point modifying may resume.
  • embodiments of the novel and inventive self-adjusting hazardous environment lighting unit, light fixture, or luminaire disclosed herein provide significant advantages over known techniques for using ambient light harvesting techniques in hazardous environments.
  • a portable computing device which may operate in conjunction with embodiments of the hazardous environment lighting unit, light lighting unit, light fixture, or luminaire disclosed herein can be any suitable device capable of wireless communications such as a smartphone, a tablet computer, a laptop computer, a wearable or body-borne device, a drone, a camera, a media-streaming dongle or another personal media device, a wireless hotspot, a femtocell, or a broadband router.
  • the portable computing device and/or embodiments of the disclosed hazardous environment lighting unit, light fixture, or luminaire can operate as an internet-of-things (loT) device or an Industrial internet-of-things (NoT) device.
  • Modules may be software modules (e.g., code stored on non-transitory machine-readable medium) or hardware modules.
  • a hardware module is a tangible, non-transitory unit capable of performing certain operations and may be configured or arranged in a certain manner.
  • a hardware module can include dedicated circuitry or logic that is permanently configured (e.g., as a special-purpose processor, such as a field programmable gate array (FPGA) or an application-specific integrated circuit (ASIC)) to perform certain operations.
  • FPGA field programmable gate array
  • ASIC application-specific integrated circuit
  • a hardware module may also include programmable logic or circuitry (e.g., as encompassed within a general-purpose processor or other programmable processor) that is temporarily configured by software to perform certain operations.
  • the decision to implement a hardware module in dedicated and permanently configured circuitry, or in temporarily configured circuitry (e.g., configured by software) may be driven by cost and time considerations.
  • the techniques can be provided as part of the operating system, a library used by multiple applications, a particular software application, etc.
  • the software can be executed by one or more general-purpose processors or one or more special-purpose processors.

Abstract

A self-adjusting luminaire (100) whose primary operation is to provide ambient or focused lighting in a hazardous environment is configured to modify (e.g., continuously) the energization intensity levels of its on-board illumination sources (108a, 108n) based on magnitudes of difference between an amount of light in the environment of the luminaire (e.g., including both light produced by the luminaire and ambient light) as measured by on-board sensors (130) and a setpoint amount of light corresponding to the luminaire. Further, the self-adjusting luminaire may detect that its on-board sensors are malfunctioning when the illumination sensors fail to sense a change in the amount of light in the environment of the luminaire after the luminaire has modified the energization intensity levels of its illumination sources. Upon detecting a sensor malfunction, the self-adjusting luminaire may generate an alarm, and/or may automatically modify the intensity of its illumination sources to mitigate effects of the detected malfunction.

Description

SMART DIMMING & SENSOR FAILURE DETECTION AS PART OF BUILT IN AMBIENT LIGHT HARVESTING INSIDE THE LUMINAIRE
FIELD OF THE DISCLOSURE
[0001] This disclosure relates to self-adjusting luminaires, lighting units, and light fixtures that are disposed in hazardous environments, such as intrinsically safe and/or explosion proof luminaires, lighting units, and light fixtures that provide ambient, task, and/or focused light within hazardous environments.
BACKGROUND
[0002] The background description provided within this document is for the purpose of generally presenting the context of the disclosure. Work of the presently named inventors, to the extent described in this background section, as well as aspects of the description that may not otherwise qualify as prior art at the time of filing, are neither expressly nor impliedly admitted as prior art against the present disclosure.
[0003] Intrinsically safe and/or explosion proof luminaires, lighting units, and light fixtures provide general, ambient light and/or task or focused light within hazardous environments such as industrial process plants, manufacturing facilities, oil refineries, power-generating systems, mines, and the like. As such, intrinsically safe and/or explosion proof luminaires, lighting units, and light fixtures must comply with all standards and/or regulatory rules that are applicable to the particular hazardous environment in which they are disposed, e.g., to prevent ignition and/or explosion of hazardous atmospheric mixtures such as flammable gases and/or dust, to protect electronics within the luminaire from being compromised or damaged, to contain any explosion that may occur, etc. Such luminaires may be rated by Class, Division, and Group. For example, a Class 1 , Division 1 , Group D, E, and F is a commonly required rating for products that are located in hazardous environments within the petrochemical industry, in which flammable vapors may be present. Generally speaking, intrinsically safe and/or explosion proof luminaires, lighting units, and light fixtures are designed to limit undesirable and/or dangerous effects of thermal and/or electrical energy generated during both their normal use and maintenance, as well as during fault conditions. For ease of reading, intrinsically safe and/or explosion proof luminaires, lighting units, and/or light fixtures that are located in hazardous environments are generically referred to herein as “hazardous environment (FIE) luminaires, lighting units, and/or light fixtures”, and/or simply as “luminaires, lighting units, and/or light fixtures.”
[0004] Currently, many luminaires, lighting units, and light fixtures provide light at a fixed, factory-configured level of intensity. Flowever, when there is also ambient light in the environment of a luminaire (e.g., sunlight entering through a window), maintaining a fixed, factory-configured level of intensity may waste energy and affect the useful life of the illumination sources (e.g., LEDs) of the luminaire.
[0005] Some known luminaires, lighting units, and light fixtures are configured to save energy using ambient light harvesting techniques. Generally speaking, ambient light harvesting techniques involve dimming or powering off a luminaire when there is more ambient light generated by other sources in the environment of the luminaire, and powering on or increasing the light produced by the luminaire when there is less ambient light generated by other sources in the environment of the luminaire. For instance, some known luminaires are configured to dim or brighten based on the time of day, to account for expected daylight at each time of day, etc. Additionally, some known luminaires are controlled based on external light sensors which detect ambient light, and such luminaires are powered on when the detected ambient light falls below a certain threshold or powered off when the detected ambient light rises above a different threshold. For instance, light sensors disposed in an environment of the luminaire may detect ambient light and transmit an indication of the detected ambient light to a controller, which generates control signals for turning on and off the luminaire in an ambient light harvesting mode based on the ambient light detected by the sensors. Furthermore, some known luminaires use the amount of ambient light that is measured when the luminaire powers up for the first time as a setpoint amount of ambient light.
[0006] Known luminaires, lighting units, and light fixtures that use ambient light harvesting techniques, though, typically do not account for the ways in which these ambient light harvesting techniques affect users or operators working in the hazardous environment. For example, drastic or sudden changes in light may be startling, distracting, or annoying to users or operators working in the hazardous environment. Distracting or startling a user or operator is particularly dangerous in the context of a hazardous environment because a distracted or startled user or operator may miss warning signs of imminent dangerous events such as explosions or toxic spills.
[0007] Moreover, some known luminaires that use ambient light harvesting techniques rely on a same set of multiple light sensors positioned in different locations in the same environment to determine whether any of the light sensors are malfunctioning. For instance, known luminaires may determine that one of several light sensors in an environment is malfunctioning if the light sensor measures a different amount of ambient light than the other light sensors in the environment. Flowever, known luminaires, lighting units, and light fixtures that use ambient light harvesting techniques typically are not capable of determining, by a given luminaire, that a light sensor associated with that luminaire is malfunctioning without receiving information from or about other light sensors in the environment. Consequently, known luminaires have no way of detecting a light sensor error if a wired or wireless connection between the luminaire and the other light sensors in the environment is not operational or suffers from significant interference and/or degraded performance. Light sensor errors in ambient light harvesting luminaires are particularly dangerous in hazardous environments because lighting may affect the ability of users or operators within the hazardous environment to do their jobs. For instance, if a light sensor erroneously detects high levels of ambient light and accordingly causes the illumination sources of the luminaire to energize at low intensity levels, users or operators within the hazardous environment may be unable to fully see critical issues occurring in the hazardous environment, such as warning signs of imminent spills or explosions.
SUMMARY
[0008] The systems, methods, and techniques disclosed herein relate to a self-adjusting hazardous environment (HE) luminaire, lighting unit, or light fixture disposed in a hazardous environment. During its normal run-time operations, embodiments of the disclosed HE luminaire, lighting unit, or light fixture radiates general or ambient light and/or task or focused light into the hazardous environment. In particular, the disclosed self-adjusting HE luminaire, lighting unit, or light fixture is configured to continuously modify the intensity at which its illumination sources are energized based on a difference between a measured amount of light in the environment of the luminaire (i.e., which includes both ambient light and light produced by the luminaire) and a setpoint (e.g., target) amount of light for the hazardous environment.
[0009] Advantageously, the self-adjusting luminaire automatically makes larger changes to the intensity at which the illumination sources of the self-adjusting luminaire are energized when there are larger differences between the measured amount of light and the setpoint amount of light, and makes smaller changes to the intensity at which the illumination sources of the self-adjusting luminaire are energized when there are smaller differences between the measured amount of light and the setpoint amount of light. In this way, the self-adjusting luminaire modifies the intensity of its illumination sources until the setpoint amount of light is achieved, in a way that appears to be gradual to a user or operator in the hazardous environment, reducing the chances that a user or operator in the hazardous environment is startled or distracted by the adjustment. Furthermore, in some examples, the self-adjusting luminaire modifies the intensity of its illumination sources until the measured amount of light is within a certain small range of the setpoint amount of light (e.g., within 10% of the setpoint amount of light). In this way, the self-adjusting luminaire avoids annoying or distracting users with frequent modifying (which may be seen as flickering or flashing) as the measured amount of light in the environment of the luminaire approaches or exceeds the setpoint amount of light from above or below.
[0010] Additionally, the self-adjusting luminaire can determine whether its on-board light sensor (used interchangeably with “illumination sensor” herein) is malfunctioning based on the light sensor’s own measurements. In particular, if a self-adjusting luminaire modifies the intensity of one or more of its illumination sources, but the light sensor detects no change (or a change below an alarm threshold value) in the amount of light in the environment, the self- adjusting luminaire may determine that the light sensor is malfunctioning. Accordingly, in some examples, the self-adjusting luminaire may generate an alarm indicating that the light sensor is malfunctioning, e.g., and may transmit the alarm to a lighting control system. Moreover, in some examples, the self-adjusting luminaire may additionally or alternatively modify the intensity of one or more of its illumination sources to full power so that light sensor errors do not affect users or operators in the hazardous environment. Advantageously, because the self-adjusting luminaire is able to determine light sensor errors without external information, in some examples, the self-adjusting luminaire may accommodate light sensor errors even if a wired or wireless network in the hazardous environment is not operational or suffers from interference or other performance-affecting conditions.
[0011] In an embodiment, a luminaire is provided. The luminaire comprises: one or more processors; one or more illumination sources; one or more drivers; one or more illumination sensors configured to measure amounts of light in an environment associated with the luminaire, the light in the environment associated with the luminaire including both ambient light and light provided by the one or more illumination sources; and one or more memories storing a set of computer-executable instructions that, when executed by the one or more processors, cause the luminaire to: cause the one or more drivers to energize the one or more illumination sources to generate light at a first intensity level; determine a modification to the first intensity level based on a magnitude of a difference between a setpoint amount of light and a first amount of light, the first amount of light measured by the one or more illumination sensors while the one or more illumination sources are energized to generate light at the first intensity level; and cause the one or more drivers to modify the first intensity level based on the determined modification.
[0012] In an embodiment, a method performed by a self-adjusting luminaire is provided. The method comprises: continuously measuring, by one or more sensors included in the self-adjusting luminaire over an interval of time, an amount of light within an environment associated with the self-adjusting luminaire, the light within the environment associated with the self-adjusting luminaire including both ambient light and light provided by one or more illumination sources of the luminaire; and modifying, over the interval of time in accordance with the continuous measuring, an energization of the one or more illumination sources of the self-adjusting luminaire based on a magnitude of a difference between a measured amount of light in the environment and a setpoint amount of light.
BRIEF DESCRIPTION OF THE DRAWINGS
[0013] FIG. 1 is a block diagram of an example self-adjusting hazardous environment lighting unit, light fixture, or luminaire.
[0014] FIG. 2 is a graph illustrating an example measurement of amount of light over time for a hazardous environment and example times at which a self-adjusting luminaire’s illumination intensity is increased and decreased to maintain a setpoint deadband.
[0015] FIG. 3 is a graph illustrating example step modifications of illumination intensity made by a self-adjusting luminaire based on a difference between a measured amount of light in a hazardous environment and a setpoint amount of light for the hazardous environment.
[0016] FIG. 4 depicts an example hazardous environment in which the self-adjusting hazardous environment lighting unit, light fixture, or luminaire of FIG. 1 may be located or disposed.
[0017] FIG. 5 is a flow diagram of an example method performed by a self-adjusting hazardous environment luminaire.
DETAILED DESCRIPTION
[0018] FIG. 1 is a block diagram of an example self-adjusting hazardous environment lighting unit, light lighting unit, light fixture, or luminaire 100 that modifies the energization intensity levels of its on-board illumination sources based on the difference between the amount of light in the environment of the self-adjusting luminaire as measured by on-board sensors and a setpoint amount of light associated with the luminaire, and detects malfunctions associated with the on-board sensors The terms “lighting unit”, “light fixture”, and “luminaire” are utilized interchangeably herein to refer to an electrically powered group of components that operates to supply general or ambient light and/or task or focused light in the portion of the electromagnetic spectrum that is visible to the human eye, e.g., from about 380 to 740 nanometers. The luminaire 100 is disposed within a hazardous environment, such as an industrial process plant, a manufacturing facility, an oil refinery, a power generating system, a mine, etc. As such, the luminaire 100 is a hazardous environment (FIE) luminaire that is compliant with any (and in some cases, all) standards and/or regulations governing its configuration, installation, and usage within the hazardous environment. That is, the luminaire 100 complies with standard and/or regulated thermal and electrical limits so as to limit the energy generated by the luminaire 100 that is available for potential ignition and/or explosion within the hazardous environment. Further, the HE luminaire 100 includes at least one hazardous location enclosure or housing 102 in which its components are typically disposed or enclosed. For example, the hazardous location enclosure or housing 102 may be explosion- proof, flame-proof, water-proof, sealed, hermetically sealed, dust ignition protected, etc. In some embodiments of the luminaire 100 (not shown in FIG. 1), a single luminaire 100 may include multiple hazardous location enclosures or housings 102, each of which surrounds a different subset of components of the luminaire 100; however, for ease of reading herein (and not for limitation purposes) the hazardous location enclosure or housing 102 is referred to using the singular tense. Moreover, at least one portion 105 of the hazardous location enclosure or housing 102 is at least partly transparent or visible light-permeable, so that illumination or light generated by one or more illumination sources IL-1 to IL-n (corresponding to references 108a-108n in FIG. 1 ) of the luminaire 100 is able to radiate into the hazardous environment. The illumination sources 108a-108n may be any suitable type of illumination source that generates visible light, e.g., incandescent, halogen, fluorescent, metal halide, xenon, LEDs (light emitting diodes), etc.
[0019] In FIG. 1 , the luminaire 100 includes one or more processors 110, one or more drivers 112 (e.g., drivers for illuminations sources), one or more illumination sources 108a- 108n, and one or more illumination sensors 130 that are enclosed in, surrounded by, and/or otherwise protected by the hazardous location enclosure 102.
[0020] In some embodiments, the luminaire 100 is communicatively connected to one or more networks via one or more communication interfaces 128a-128m. For example, the luminaire 100 may be communicatively connected to a wireless network via a first communication interface (COM1 ) 128a and/or may be communicatively connected to a wired network via a second communication interface (COMm) 128m. As such, the luminaire 100 may be a node of a wireless network and/or may be a node of a wired network. Each of the wireless and/or wired networks may include one or more other nodes such as, for example, a back-end computer, controller, or server that is disposed in a non-hazardous environment or otherwise is shielded from the harsh conditions of the hazardous environment. Other examples of nodes which may be included in the wireless and/or wired network may include, in some configurations, one or more other luminaires, sensors, and other devices disposed within the hazardous environment.
[0021] Generally speaking, the one or more processors 110 instruct the one or more drivers 112 to energize or activate the one or more illumination sources 108a-108n, e.g., individually or independently, and/or as a set or group in a coordinated manner. For example, the one or more processors 110 may instruct the one or more drivers 112 to energize or activate the one or more illumination sources 108a-108n based on or in accordance with instructions and/or information provided by an ambient light harvesting unit 115 of the luminaire 100. As the illumination sources 108a-108n of the luminaire 100 radiate visible light through the at least partially transparent portion 105 of the hazardous location enclosure 102, the illumination sensors 130 measure the amount of light (e.g., in lumens, lux, etc.) in the environment of the luminaire 100. For instance, the illumination sensors 130 may be positioned near the illumination sources 108a-108n and may face toward the environment, in order to measure the combined light from the illumination sources 108a- 108n and from external sources of ambient light (such as, e.g., sunlight, lightning, or other sources of light in the environment) that is reflected back to the luminaire 100.
[0022] The ambient light harvesting unit 115 may include a set of computer-executable instructions that are executable by the one or more processors 110 and that are stored on the one or more memories 118 of the luminaire 100, where the one or more memories 118 are, for example, one or more tangible, non-transitory memories, components, or data storage devices. The one or more memories 118 may also store instructions for executing a sensor malfunction unit 120 configured to detect malfunctions of an illumination sensor 130 and generate alarms and/or modify the operation of the luminaire 100 based on detected malfunctions. In some arrangements, the one or more memories 118 may also store other data 122 (which may include, e.g., setpoint values, deadband ranges for setpoint values, setpoint deadband threshold values, sensitivity settings, alarm threshold values, etc.) that is accessible to the one or more processors 110. Additionally, the one or more memories 118 may store other computer-executable instructions 125 that are executable by the one or more processors 110 to cause luminaire 100 perform other operations in addition to ambient light harvesting control. For example, the other computer-executable instructions 125 may be executable by the one or more processors 110 to cause the luminaire 100 to perform its run-time lighting operations, to communicate with other luminaires and/or with a back-end server (e.g., wirelessly) to coordinate lighting functions across a group of luminaires, to execute diagnostic and/or maintenance operations, etc.
[0023] Generally speaking, the ambient light harvesting unit 115 may cause the one or more drivers 112 of the luminaire 100 to energize or activate the one or more illumination sources 108a-108n based on the amount of light measured in the environment of the luminaire 100 by the one or more illumination sensors 130, such that the intensity at which the one or more illumination sources 108a-108n are energized decreases as the amount of light measured in the environment of the luminaire 100 increases, and vice versa. In particular, the ambient light harvesting unit 115 may cause the one or more drivers 112 of the luminaire 100 to modify the intensity at which the one or more illumination sources 108a- 108n are energized based on the difference between the amount of light in the environment of the luminaire 100 (e.g., including light produced by the illumination sources 108a-108n as well as light from external sources, such as sunlight, other luminaires, flame sources within the hazardous environment, etc.) as measured by the one or more illumination sensors 130 over a certain period of time and a setpoint amount of light associated with the luminaire 100. In some examples, the setpoint value may be pre-configured or pre-defined.
Moreover, in some examples, the setpoint value may be modified by a user or an operator
[0024] In some examples, the ambient light harvesting unit 115 may be configurable by a user to operate in a high sensitivity, medium sensitivity, or low sensitivity setting. Generally speaking, when the ambient light harvesting unit 115 is operating in the low sensitivity setting, the interval of time (e.g., duration of time, period of time, etc.) over which the illumination sensors 130 measure the amount of light in the environment of the luminaire 100 before the intensity of the illumination sources 108a-108n is adjusted is longer, and when the ambient light harvesting unit 115 is operating in the high sensitivity setting, the interval of time over which the illumination sensors 130 measure the amount of light in the environment of the luminaire 100 before the intensity of the illumination sources 108a-108n is adjusted is shorter. In other words, while the ambient light harvesting unit 115 is operating in the low sensitivity setting, the interval of time (over which the amount of light in the environment of the luminaire 100 is measured prior to adjusting the intensity of the illumination sources 108a-108n) has a greater, longer, or larger duration than the duration of the interval of time (over which the amount of light in the environment of the luminaire 100 is measured prior to adjusting the intensity of the illumination sources 108a-108n) while the ambient light harvesting unit 115 is operating in the high sensitivity setting. For instance, the amount of light in the environment of the luminaire 100 may be averaged over the interval of time based on the current sensitivity setting, which may have been selected by the user. Consequently, when the ambient light harvesting unit 115 is operating in the high sensitivity setting, the luminaire 100 may react to changes in the amount of light in the environment of the luminaire 100 detected by the illumination sensors 130 more quickly. In other words, the amount of time required to elapse for the luminaire 100 to react to changes in the amount of light in the environment while set at the high sensitivity setting is shorter than the amount of time required to elapse for the luminaire 100 to react to changes of light in the environment while set at the low sensitivity setting. For example, a high sensitivity setting may be useful in environments in which the amount of light in the environment of the luminaire 100 typically changes frequently and drastically. In contrast, when the ambient light harvesting unit 115 is operating in the low sensitivity setting, the luminaire 100 may react to changes in the amount of light in the environment of the luminaire 100 detected by the illumination sensors 130 more slowly (e.g., more gradually). In other words, the amount of time that elapses prior to the luminaire 100 reacting to changes in the amount of light in the environment while operating in the low sensitivity setting is longer than the amount of time that elapses prior to the luminaire 100 reacting to changes of light in the environment while operating in the high sensitivity setting. For example, a low sensitivity setting may be useful in environments in which the amount of light in the environment of the luminaire 100 typically does not change frequently or drastically. Accordingly, when the ambient light harvesting unit 115 is operating in a low sensitivity setting, the luminaire 100 will not modify the intensity at which its illumination sources 108a-108n are energized based on a momentary change in the amount of light in the environment of the luminaire 100, e.g., a change in ambient light caused by a flash of lightning, or by a user or equipment in the hazardous environment flashing light towards the sensor.
[0025] In some examples, the ambient light harvesting unit 115 may cause the one or more drivers 112 of the luminaire 100 to cease modifying (or to adjust the modification of) the intensity at which the one or more illumination sources 108a-108n are energized when the difference between the amount of light in the environment of the luminaire 100 measured by the one or more illumination sensors 130 over the interval of time and the setpoint amount of light associated with the luminaire 100 is below a deadband setpoint threshold value. The deadband setpoint threshold value may be based on the setpoint value (e.g.,
20% of the setpoint, 10% of the setpoint, 5% of the setpoint, 1% of the setpoint, etc.). Furthermore, in some examples, the deadband threshold value may be pre-configured or pre-defined. Moreover, in some examples, the deadband threshold value may be modified by a user or an operator.
[0026] In other words, when the illumination sensors 130 measure an amount of light that is within a deadband range of the setpoint amount of light, the ambient light harvesting unit 115 may cause the one or more drivers 112 of the luminaire 100 to maintain the current intensity at which they are energizing the one or more illumination sources 108a-108n.
[0027] For example, FIG. 2 illustrates a graph 200 illustrating an example measurement of the amount of light in the environment of the luminaire 100 over time and example times at which illumination intensity is increased and decreased to maintain a 10% setpoint deadband. In the example shown in FIG. 2, the setpoint (202) amount of light associated with the luminaire 100 is 1500 lumens, and the deadband (204) is a range spanning ± 10% of the setpoint 202. As shown in FIG. 2, the illumination intensity is increased until the difference between the amount of light in the environment of the luminaire 100 and the setpoint amount of light associated with the luminaire 100 is less than 10% of the setpoint (i.e., less than 150 lumens below the setpoint, at point 206 as shown in FIG. 2). After this point, the illumination intensity is maintained until the difference between the amount of light in the environment of the luminaire 100 and the setpoint amount of light associated with the luminaire 100 is greater or more than 10% of the setpoint (i.e., greater or more than 150 lumens above the setpoint, at point 208 as shown in FIG. 2), at which point the illumination intensity is decreased until the difference between the amount of light in the environment of the luminaire 100 and the setpoint amount of light associated with the luminaire 100 is less than 10% of the setpoint (i.e., less than 150 lumens above the setpoint, at point 210 as shown in FIG. 2). After this point, the illumination intensity is maintained until the difference between the amount of light in the environment of the luminaire 100 and the setpoint amount of light in the environment of the luminaire 100 is greater or more than 10% of the setpoint (i.e., greater or more than 150 lumens below the setpoint, at point 212 as shown in FIG. 2), at which point the illumination intensity is increased until the difference between the amount of light in the environment of the luminaire 100 and the setpoint amount of light associated with the luminaire 100 is less than 10% of the setpoint (i.e., less than 150 lumens below the setpoint, at point 214 as shown in FIG. 2), and so on.
[0028] Advantageously, by maintaining the intensity of the illumination sources 108a-108n while and when the difference between the measured amount of light in the environment of the luminaire 100 and the setpoint amount of light associated with the luminaire 100 is below a deadband setpoint threshold value, or otherwise is significantly smaller or less than the setpoint value, fewer modifications and adjustments to the intensity are needed.
Accordingly, users or operators in the hazardous environment will not be irritated or distracted by frequent small, inconsequential intensity adjustments (which may appear to the user or operator as flickering or flashing) when the measured amount of light in the environment of the luminaire 100 is already within a reasonable tolerance range of the setpoint amount of light associated with the luminaire 100.
[0029] Furthermore, referring back to FIG. 1 , in some examples, the ambient light harvesting unit 115 may cause the one or more drivers 112 of the luminaire 100 to modify the intensity of the one or more illumination sources 108a-108n in steps based on the difference between the amount of light in the environment of the luminaire 100 measured by the one or more illumination sensors 130 and the setpoint amount of light associated with the luminaire 100. For instance, FIG. 3 illustrates a graph 250 illustrating exemplary step modifications of the intensity of the one or more illumination sources 108a-108n. As shown in FIG. 3, when the difference between the amount of light in the environment of the luminaire 100 measured by the one or more illumination sensors 130 and the setpoint amount of light associated with the luminaire 100 is within a first range 252 (e.g., a difference of between 200 and 500 lumens), the illumination intensity is increased (when the measured amount of light in the environment of the luminaire 100 is less than the setpoint amount of light associated with the luminaire 100) or decreased (when the measured amount of light in the environment of the luminaire 100 is greater or more than the setpoint amount of light associated with the luminaire 100) by a first intensity factor (e.g., increased or decreased by 20%). When the difference between the amount of light in the environment of the luminaire 100 measured by the one or more illumination sensors 130 and the setpoint amount of light associated with the luminaire of the luminaire 100 is within a second range 354 (e.g., a difference of between 100 and 200 lumens), the illumination intensity is increased or decreased by a second intensity factor (e.g., by increased or decreased by 10%). Similarly, when the difference is within a third range 256 (e.g., a difference of between 100 and 50 lumens), the illumination intensity is increased or decreased by a third intensity factor (e.g., by increased or decreased by 5%), and when the difference is within a fourth range 258 (e.g., a difference of between 50 and 0 lumens), the illumination intensity is increased or decreased by a fourth intensity factor (e.g., by increased or decreased by 1%). Accordingly, when the difference between the amount of light in the environment of the luminaire 100 measured by the one or more illumination sensors 130 and the setpoint amount of light associated with the luminaire 100 is of a larger magnitude, the illumination intensity is adjusted rapidly by larger steps, but when the difference between the amount of light in the environment of the luminaire 100 measured by the one or more illumination sensors 130 and the setpoint amount of light associated with the luminaire 100 is of a smaller magnitude, the illumination intensity is adjusted more slowly by smaller steps. Using the technique depicted in FIG. 3, advantageously, the amount of light in the environment of the luminaire 100 may be quickly adjusted to a very precise setpoint amount of light. Furthermore, because the changes to the illumination intensity are proportional to the difference between the measured amount of light in the environment of the luminaire 100 and the setpoint amount of light associated with the luminaire, the adjustment process appears to be smooth to a user or operator working in the hazardous environment. Accordingly, users or operators are not distracted, startled, or annoyed as the illumination intensity is adjusted.
[0030] Referring back to FIG. 1 , the sensor malfunction unit 120 may cause the luminaire 100 to detect malfunctions of an illumination sensor 130 and generate alarms and/or modify the operation of the luminaire 100 based on detected malfunctions of the illumination sensor 130. In particular, the sensor malfunction unit 120 may determine that an illumination sensor 130 is malfunctioning when measurements of the amount of light in the environment of the luminaire 100 by the illumination sensor 130 fail to change (or change very little) over an interval of time (e.g., 15 minutes, 20 minutes, 30 minutes, etc.) during which the intensity of the illumination sources 108a-108n has been modified by more than an alarm threshold amount. For instance, in some examples, the interval period of time and/or the alarm threshold amount may be pre-configured or pre-defined. Moreover, in some examples, the interval period of time and/or the alarm threshold amount may be modified by a user or an operator
[0031] In some examples, upon the sensor malfunction unit 120 determining that an illumination sensor 130 is malfunctioning, the sensor malfunction unit 120 may generate an alarm indicating that the sensor 130 is malfunctioning. In some examples, the alarm may be transmitted to an external device, such as a controller or a device associated with a user or operator in the hazardous environment. In some examples, upon the sensor malfunction unit 120 determining that an illumination sensor 130 is malfunctioning, the sensor malfunction unit 120 may cause the one or more drivers 112 of the luminaire 100 to modify the intensity of the one or more illumination sources 108a-108n to full intensity (e.g., 100% intensity), e.g., as a default mitigating response. Accordingly, if the illumination sensor 130 is malfunctioning by over-measuring the amount of light in the environment of the luminaire 100, users or operators in the hazardous environment will still be provided with lighting as needed. Of course, other mitigating responses may be defined and additionally or alternatively performed by the luminaire 100 upon detecting the malfunction of the sensors 130. Advantageously, because measurements from the on-board illumination sensor(s) 130 itself are used to determine whether the illumination sensor 130 is malfunctioning, information from external sources (e.g., other devices or sensors connected to the luminaire via wired or wireless connections) is not necessary for the sensor malfunction unit 120 to detect and respond to malfunctioning illumination sensors 130.
[0032] FIG. 4 depicts an example hazardous environment in which the self-adjusting hazardous environment lighting unit, light fixture, or luminaire of FIG. 1 may be located or disposed. For example, the self-adjusting FIE luminaire 301 of FIG. 4 may be an embodiment of the self-adjusting FIE luminaire 100. For ease of discussion (and not for limitation purposes), FIG. 4 is discussed below in conjunction with reference numbers included in FIG. 1.
[0033] As illustrated in FIG. 4, the self-adjusting luminaire 301 is a node of a wireless network 302 of the hazardous environment 300, where the wireless network 302 includes other nodes such as other luminaires 305, 308 and a wireless gateway 310 which communicatively interconnects the wireless network 302 and a wired network 312 associated with the hazardous environment 300. In some examples, each of the luminaires 301 , 305, 308 is a self-adjusting luminaire. [0034] In other examples, one of the luminaires 301 is a self-adjusting primary luminaire, while the other luminaires 305, 308 are secondary luminaires, such as those as described in
Indian Patent Application No. _ (Attorney Docket Number 33015/19-017), the content of which is hereby incorporated by reference in its entirety. In particular, in these examples, the self-adjusting primary luminaire 301 may communicate wirelessly with other nodes of a wireless network within a hazardous environment, while the secondary luminaires 305, 308 communicate with the self-adjusting primary luminaire 301 via respective wired communication interfaces. In particular, each wired communication interface may include both a digital component or portion and an analog component or portion so that both digital and analog signals may delivered over a common, integral, or single, physical transmission medium (such as a wire, a cable, etc.). The digital component may deliver administrative messages (e.g., such as alert messages, status messages, sensor data, configuration messages, and/or other types of messages that do not include any control or driving instructions) between the self-adjusting primary luminaire 301 and the secondary luminaires 305, 308, while the analog component may deliver driving commands issued by the self- adjusting primary luminaire 301 to the secondary luminaires 305, 308, e.g., including commands indicating intensity levels at which illumination sources of the secondary luminaires 305, 308 are to be energized. Accordingly, the self-adjusting primary luminaire 301 may send driving commands to the secondary luminaires 305, 308 via the analog component of its wired communication interface, and may send administrative messages to (and receive administrative messages from) the secondary luminaires 305, 308 via the digital component of its wired communication interface. In some examples, self-adjusting primary luminaire 301 may have on-board sensors, while the secondary luminaires 305, 308 may not have on-board illumination sensors. In such examples, the self-adjusting primary luminaire 301 may generate driving commands for modifying the intensity of both its own illumination sources and the illumination sources of the secondary luminaires 305, 308 based on a difference between a setpoint amount of light and an amount of light measured by the on-board illumination sensors of the self-adjusting primary luminaire 301 .
[0035] The wired network 312 includes a wired backbone 315 (e.g., which may be Ethernet, broadband, fiber optic, or any suitable type of wired backbone) to which a back end server, host, controller, computing device, and/or group of computing devices behaving as a single logical server or host 318 is communicatively connected. The host 318 may be implemented by an individual computing device, by one or more controllers and/or systems associated with the hazardous environment (such as a programmable logic controller (PLC), distributed control system (DCS), or other type of industrial process control system), by a bank of servers, by a computing cloud, or by any suitable arrangement of one or more computing devices. The host 318 may service nodes of the wired network 312 and/or nodes of the wireless network 302. For example, the host 318 may provide (e.g., via download or other mechanism) configuration and/or operating instructions 125 and/or data 122 (e.g., that correspond to governing or controlling run-time lighting, diagnostic, maintenance, and/or other operations) to one or more nodes of the network(s) 302, 312, such as the self- adjusting luminaire 301 , other luminaires 305, 308, and/or other nodes. Further, the host 318 may provide instructions and/or data that are related to ambient light harvesting settings for the self-adjusting luminaire 301 . For instance, the host 318 may provide a setpoint amount of light associated with the self-adjusting luminaire 301 , a deadband range for the setpoint amount of light or a setpoint deadband threshold value, a sensitivity setting, an alarm threshold value, etc.
[0036] Wired network 312 also includes a user computing device 320 which is communicatively connected via the backbone 315. The server 318 and the user computing device 320 may be disposed or located in one or more remote or enclosed locations 322 that protect the server 318 and the user computing device 320 from the harsh conditions of the hazardous environment 300. In some arrangements (not shown in FIG. 4), the protected user computing device 320 may be communicatively connected to the wired backbone 315 via a wireless link and access point, where the access point is communicatively connected in a wired manner to the backbone 315. A user 325 may utilize the computing device 320 to configure, modify, and/or otherwise provide instructions and/or data utilized by and/or stored at the host 318, and/or to view data and information provided by other devices and/or nodes via the wired network 312 and/or the wireless network 302 corresponding to the hazardous environment 300. For example, via the user computing device 320, the user 325 may provide input indicating a setpoint amount of light associated with the self-adjusting luminaire 301 , a deadband range for the setpoint amount of light or a setpoint deadband threshold value, an alarm threshold value, etc., input indicating a preferred ambient light harvesting sensitivity setting (high, medium, low, etc.) or input regarding other configuration instructions for the luminaire 301.
[0037] The wired network 312 and the wireless network 302 may be in compliance with applicable hazardous environment standards and regulations. For example, the wireless network 302 may utilize Wi-Fi, WirelessFIART, and/or one or more other communication protocols that are suitable for (e.g., is in compliance with all regulations and standards that are applicable to) the hazardous environment 300, and devices of the networks 302, 312 that are located at least partially within the hazardous environment 300 (e.g., the luminaire self-adjusting 301 , the other luminaires 305, 308, the wireless gateway 310, and the backbone 315) may similarly comply with all applicable hazardous environment standards and regulations that pertain to the hazardous environment 300.
[0038] As further depicted in FIG. 4, the example hazardous environment 300 includes a portable computing device 332 that is operated by a user 335 within the hazardous environment 300. The portable computing device 332 is compliant with hazardous environment standards and regulations applicable to the hazardous environment 300. For example, the portable computing device 332 may be configured to communicate with the self-adjusting luminaire 301 , the other luminaires 305, 308, and/or with other nodes of the wireless network 302 using a WirelessFIART protocol or some other protocol that is suitable for (e.g., is in compliance with all regulations and standards that are applicable to) the hazardous environment 300. The portable computing device 332 may be any type of wireless or mobile computing device, such as a laptop, tablet, smart phone, smart device, wearable computing device (e.g., virtual reality device, headset, or other body-borne device), etc. The portable computing device 332 may or may not be a node of the wireless network 302.
[0039] In some embodiments, the portable computing device 332 is a server, host, controller, computing device, and/or group of computing devices behaving as a single logical server or host that services the nodes of the wireless network 302. For example, the host 332 may provide (e.g., via download or other mechanism) configuration and/or operational instructions 125 and/or data 122 (e.g., that correspond to governing or controlling run-time lighting, diagnostic, maintenance, and/or other operations) to one or more nodes of the wireless network 302, such as to the self-adjusting luminaire 301 and/or the other luminaires 305, 308,. Further, the host 332 may provide instructions and/or data that are related to ambient light harvesting settings for the self-adjusting luminaire 301. For instance, the host 332 may provide a setpoint amount of light associated with the self-adjusting luminaire 301 , a deadband range for the setpoint amount of light or a setpoint deadband threshold value, an alarm threshold value, etc. A user 335 may utilize a user interface of the host 332 to configure, modify, and/or otherwise provide instructions and/or data stored at the host 332, and/or to view data and information provided by other devices and/or nodes via the wireless network 302 corresponding to the hazardous environment 300. For example, the user 335 may provide input indicating a setpoint amount of light associated with the self-adjusting luminaire 301 , a deadband range for the setpoint amount of light or a setpoint deadband threshold value, a sensitivity setting for the self-adjusting luminaire 301 , an alarm threshold value, etc., or input regarding other configuration instructions for the luminaire.
[0040] Generally speaking, a user 325, 335 may utilize one or more of the user interface computing devices 320, 332 to provide input indicating a setpoint amount of light associated with the self-adjusting luminaire 301 , a deadband range for the setpoint amount of light or a setpoint deadband threshold value, a sensitivity setting for the self-adjusting luminaire 301 , an alarm threshold value, etc., or to provide input regarding other configuration instructions for the self-adjusting luminaire 301 . As one example, a user 325, 335 may provide input indicating a sensitivity level setting for the ambient light harvesting of the self-adjusting luminaire 301. In some examples, the input may indicate that particular luminaires are to be set at different sensitivity levels. For instance, the self-adjusting luminaire 301 may be set to a high sensitivity level, while another luminaire 305 may be set to a low sensitivity level, and still another luminaire 308 is set to a medium sensitivity level.
[0041] FIG. 5 is a flow diagram of an example method 500 performed by a self-adjusting hazardous environment luminaire, such as the luminaire 100 depicted in FIG. 1 or the luminaire 301 depicted in FIG. 4. For example, the ambient light harvesting unit 115 of the luminaire 100 may include instructions which, when executed by the one or more processors 110, cause the self-adjusting hazardous environment luminaire 100 to perform at least a portion of the method 500. The method 500 may include additional, fewer, and/or alternate actions, in embodiments.
[0042] At block 502, the self-adjusting luminaire may continuously measure an amount of light within an environment associated with the self-adjusting luminaire over a first interval of time, e.g., by utilizing one or more sensors included in the self-adjusting luminaire. The amount of light in the environment associated with the self-adjusting luminaire may include ambient light in the environment as well as light provided by one or more illumination sources of the luminaire, and may be measured in lumens, lux, or any other suitable unit of measure.
[0043] Optionally, at block 503, the self-adjusting luminaire may average the amount of light measured in the environment associated with the self-adjusting luminaire over the first interval of time. A duration of the interval of time may correspond to a sensitivity setting of the luminaire, for example.
[0044] At block 504, the self-adjusting luminaire may determine a difference (which may be, e.g., a magnitude of a difference, a difference value, etc.) between the measured amount of light in the environment associated with the self-adjusting luminaire (or the average amount of light measured in the environment associated with the self-adjusting luminaire over the first interval of time) and a setpoint amount of light associated with the self-adjusting luminaire. In some examples, the setpoint amount of light associated with the luminaire may be pre-configured. In some examples, the luminaire may receive an indication of the setpoint amount of light associated with the luminaire selected by a user, e.g., via a wired interface or a wireless interface of the self-adjusting luminaire.
[0045] At block 506, the self-adjusting luminaire may modify the energization of the one or more illumination sources of the self-adjusting luminaire based on the determined difference between a measured amount of light in the environment and a setpoint amount of light, in accordance with the continuous measuring, e.g., over the first interval of time. In some examples, the self-adjusting luminaire may modify the intensity of the energization of the one or more illumination sources by multiplying the current intensity of the energization by an intensity factor, where the intensity factor corresponds to a magnitude of the difference between the measured amount of light in the environment and the setpoint amount of light. For instance, the intensity factor may be one of a plurality of intensity factors, with each intensity factor corresponding to a particular range of values of the difference between the measured amount of light in the environment and the setpoint amount of light (e.g., as discussed above with respect to FIG. 3). In some examples, a first calculated difference, falling within a first range of values for the difference between the measured amount of light in the environment and the setpoint amount of light, may correspond to a first intensity factor, while a second calculated difference, smaller or less than the first calculated difference, and falling into a second range of values for the difference between the measured amount of light in the environment and the setpoint amount of light (different from the first range of values), may correspond to a second intensity factor that is smaller or less than the first intensity factor.
[0046] That is, when the difference between the measured amount of light in the environment and the setpoint amount of light is of a greater magnitude, the intensity of energization is modified based on multiplying the current intensity by a larger intensity factor, but when the difference between the measured amount of light in the environment and the setpoint amount of light is of a smaller magnitude, the intensity of energization is modified based on multiplying the current intensity by a smaller intensity factor.
[0047] Optionally, at block 508, the self-adjusting luminaire may continuously measure a second amount of light within the environment associated with the self-adjusting luminaire by the one or more sensors included in the self-adjusting luminaire over a second interval of time occurring after the modification has been performed.
[0048] Optionally, at block 510, the self-adjusting luminaire may generate an alarm corresponding to a difference between the measured amount of light over the first time interval and the measured amount of light over the second time interval. In some instances, the alarm may be generated when the difference between the measured amount of light over the first interval of time and the measured amount of light over the second interval of time is zero, or is otherwise below an alarm threshold amount of light difference, thus indicating a possible malfunction of the on-board sensors.
[0049] In some examples, the method 500 may include modifying, over the second interval of time, an energization of the one or more illumination sources of the self-adjusting luminaire based on the alarm. For example, the energization of the one or more illumination sources may be modified to a full intensity or 100% intensity based on the alarm. In some examples, the method 500 may include transmitting an indication of the alarm via a wired interface or a wireless interface of the self-adjusting luminaire, e.g., to a user and/or to a back-end computing device.
[0050] In some examples (not shown in FIG. 5), the method 500 may further include ceasing to modify the energization of the one or more illumination sources (or otherwise adjusting the modification) when the difference between the measured amount of light in the environment and the setpoint amount of light is less than a deadband setpoint threshold value calculated based on the setpoint amount of light (e.g., as discussed above with respect to FIG. 2). For example, the deadband setpoint threshold value may be 5% of the setpoint amount of light, 10% of the setpoint amount of light, 15% of the setpoint amount of light, etc. Accordingly, when the difference between the measured amount of light in the environment and the setpoint amount of light in the environment is less than 5% (or 10%, 15%, etc.) of the setpoint amount of light, the self-adjusting luminaire may cease modifying the energization of the one or more illumination sources, e.g., until the difference between the measured amount of light in the environment and the setpoint amount of light associated with the luminaire is greater or more than 5% (or 10%, 15%, etc.) of the setpoint amount of light, at which point modifying may resume.
[0051] Accordingly, embodiments of the novel and inventive self-adjusting hazardous environment lighting unit, light fixture, or luminaire disclosed herein provide significant advantages over known techniques for using ambient light harvesting techniques in hazardous environments.
[0052] The following additional considerations apply to the foregoing discussion:
[0053] A portable computing device, which may operate in conjunction with embodiments of the hazardous environment lighting unit, light lighting unit, light fixture, or luminaire disclosed herein can be any suitable device capable of wireless communications such as a smartphone, a tablet computer, a laptop computer, a wearable or body-borne device, a drone, a camera, a media-streaming dongle or another personal media device, a wireless hotspot, a femtocell, or a broadband router. Further, the portable computing device and/or embodiments of the disclosed hazardous environment lighting unit, light fixture, or luminaire can operate as an internet-of-things (loT) device or an Industrial internet-of-things (NoT) device.
[0054] Certain embodiments are described in this disclosure as including logic or a number of components or modules. Modules may be software modules (e.g., code stored on non-transitory machine-readable medium) or hardware modules. A hardware module is a tangible, non-transitory unit capable of performing certain operations and may be configured or arranged in a certain manner. A hardware module can include dedicated circuitry or logic that is permanently configured (e.g., as a special-purpose processor, such as a field programmable gate array (FPGA) or an application-specific integrated circuit (ASIC)) to perform certain operations. A hardware module may also include programmable logic or circuitry (e.g., as encompassed within a general-purpose processor or other programmable processor) that is temporarily configured by software to perform certain operations. The decision to implement a hardware module in dedicated and permanently configured circuitry, or in temporarily configured circuitry (e.g., configured by software) may be driven by cost and time considerations.
[0055] When implemented in software, the techniques can be provided as part of the operating system, a library used by multiple applications, a particular software application, etc. The software can be executed by one or more general-purpose processors or one or more special-purpose processors.
[0056] Upon reading this disclosure, those of skill in the art will appreciate still additional alternative structural and functional designs for a self-adjusting hazardous environment lighting unit, light fixture, or luminaire. Thus, while this document illustrates and describes particular embodiments and applications, the disclosed embodiments are not limited to the precise construction and components disclosed. Various modifications, changes and variations, which will be apparent to those of ordinary skill in the art, may be made in the disclosed arrangement, operation and details of the method, and apparatus without departing from the spirit and scope defined in the appended claims.

Claims

What is Claimed is:
1. A luminaire, comprising: one or more processors; one or more illumination sources; one or more drivers; one or more illumination sensors configured to measure amounts of light in an environment associated with the luminaire, the light in the environment associated with the luminaire including both ambient light and light provided by the one or more illumination sources; and one or more memories storing a set of computer-executable instructions that, when executed by the one or more processors, cause the luminaire to: cause the one or more drivers to energize the one or more illumination sources to generate light at a first intensity level; determine a modification to the first intensity level based on a magnitude of a difference between a setpoint amount of light and a first amount of light, the first amount of light measured by the one or more illumination sensors while the one or more illumination sources are energized to generate light at the first intensity level; and cause the one or more drivers to modify the first intensity level based on the determined modification.
2. The luminaire of claim 1 , wherein the one or more drivers modify the first intensity level at a first time, and the computer-executable instructions, when executed by the one or more processors, cause the luminaire further to: cause the one or more drivers to adjust the modification to the first intensity level when a magnitude of the difference between the setpoint amount of light and an amount of light corresponding to the modified first intensity level at a second time subsequent to the first time is less than a threshold value, the threshold value determined based on the setpoint amount of light.
3. The luminaire of claim 1 , wherein the luminaire further comprises one or more of a wired interface or a wireless interface communicatively connecting the luminaire to at least one of a back-end system or a user interface, and wherein the computer-executable instructions, when executed by the one or more processors, cause the luminaire further to: receive an indication of the setpoint amount of light via the one or more of the wired interface or the wireless interface.
4. The luminaire of claim 1 , wherein the first amount of light is an averaged first amount of light measured by the one or more illumination sensors while the one or more illumination sources are energized to generate light at the first intensity level over an interval of time; and wherein the difference between the setpoint amount of light and the first amount of light is a difference between the setpoint amount of light and the averaged first amount of light.
5. The luminaire of claim 4, wherein the computer-executable instructions, when executed by the one or more processors, cause the one or more drivers to modify the first intensity level upon an ending of the interval of time.
6. The luminaire of claim 1 , wherein: the determination of the modification to the first intensity level based on the magnitude of the difference between the setpoint amount of light and the first amount of light includes a calculation of the difference between the setpoint amount of light and the first amount of light; and the modification to the first intensity level includes a multiplying of the first intensity level by an intensity factor, the intensity factor corresponding to the calculated difference.
7. The luminaire of claim 6, wherein the intensity factor is one of a plurality of intensity factors, and wherein each of the plurality of intensity factors corresponds to a respective range of values of differences between the setpoint amount of light and measured amounts of light.
8. The luminaire of claim 7, wherein a first calculated difference, corresponding to a first range of values, corresponds to a first intensity factor; and wherein a second calculated difference that is less than the first calculated difference and that corresponds to a second range of values corresponds to a second intensity factor that is less than the first intensity factor.
9. The luminaire of claim 1 , wherein the computer-executable instructions, when executed by the one or more processors, cause the luminaire further to: generate an alarm based on a magnitude of a difference between the first amount of light and a second amount of light, the second amount of light measured by the one or more illumination sensors while the one or more illumination sources are energized to generate light at the modified first intensity level.
10. The luminaire of claim 9, wherein the alarm corresponds to the magnitude of the difference between the first amount of light and the second amount of light being less than a threshold.
11 . The luminaire of claim 9, wherein the computer-executable instructions, when executed by the one or more processors, cause the luminaire further to: upon the generation of the alarm, cause the one or more drivers to energize the one or more illumination sources to generate light at a second intensity.
12. The luminaire of claim 11 , wherein the second intensity is 100% intensity.
13. The luminaire of claim 9, wherein the luminaire further comprises one or more of a wired interface or a wireless interface communicatively connecting the luminaire to at least one of a back-end system or a user interface, and wherein the computer-executable instructions, when executed by the one or more processors, cause the luminaire further to: transmit an indication of the alarm via the at least one of the wired interface or the wireless interface.
14. A method performed by a self-adjusting luminaire, the method comprising: continuously measuring, by one or more sensors included in the self-adjusting luminaire over an interval of time, an amount of light within an environment associated with the self-adjusting luminaire, the light within the environment associated with the self- adjusting luminaire including both ambient light and light provided by one or more illumination sources of the luminaire; and modifying, over the interval of time in accordance with the continuous measuring, an energization of the one or more illumination sources of the self-adjusting luminaire based on a magnitude of a difference between a measured amount of light in the environment and a setpoint amount of light.
15. The method of claim 14, further comprising: adjusting the modifying of the energization of the one or more illumination sources when the difference between the measured amount of light in the environment and the setpoint amount of light is less than a threshold value, the threshold value calculated based on the setpoint amount of light.
16. The method of claim 14, further comprising: receiving an indication of the setpoint amount of light via a wired interface or a wireless interface communicatively connecting the self-adjusting luminaire to at least one of a back-end system or a user interface.
17. The method of claim 14, further comprising averaging the amount of light within an environment associated with the self-adjusting luminaire over the interval of time; and wherein modifying, over the interval of time in accordance with the continuous measuring, the energization of the one or more illumination sources of the self-adjusting luminaire based on the difference between the measured amount of light in the environment and the setpoint amount of light includes modifying the energization of the of the one or more illumination sources of the self-adjusting luminaire based on a difference between the average measured amount of light in the environment over the interval of time and the setpoint amount of light.
18. The method of claim 14, wherein modifying, over the interval of time in accordance with the continuous measuring, the energization of the one or more illumination sources of the self-adjusting luminaire based on the difference between the measured amount of light in the environment and the setpoint amount of light includes: calculating the difference between the setpoint amount of light and the measured amount of light in the environment; and modifying an intensity level of the energization of the one or more illumination sources of the self-adjusting luminaire based on multiplying a current intensity level of the energization of the one or more illumination sources by an intensity factor, the intensity factor corresponding to the calculated difference.
19. The method of claim 18, wherein the intensity factor is one of a plurality of intensity factors, and wherein each of the plurality of intensity factors corresponds to a respective range of values of differences between the setpoint amount of light and measured amounts of light.
20. The method of claim 18, wherein a first calculated difference, corresponding to a first range of values, corresponds to a first intensity factor; and wherein a second calculated difference that is less than the first calculated difference and that corresponds to a second range of values corresponds to a second intensity factor that is less than the first intensity factor.
21 . The method of claim 14, wherein the interval of time is a first interval of time and wherein the measured amount of light is a first measured amount of light, and wherein the method further comprises: subsequent to modifying the energization of the one or more illumination sources, continuously measuring, by the one or more sensors included in the self-adjusting luminaire over a second interval of time, a second amount of light within the environment associated with the self-adjusting luminaire; and generating an alarm based on a magnitude of a difference between the second measured amount of light and the first measured amount of light.
22. The method of claim 21 , wherein the alarm corresponds to the magnitude of the difference between the first measured amount of light and the second measured amount of light being less than a threshold.
23. The method of claim 21 , wherein the modifying of the energization of the one or more illumination sources is a first modification, and the method further comprises: upon generating the alarm, performing a second modification to the energization of the one or more illumination sources of the self-adjusting luminaire.
24. The method of claim 23, wherein performing the second modification to the energization of the one or more illumination sources of the self-adjusting luminaire includes modifying the energization of the one or more illumination sources of the self-adjusting luminaire to 100% intensity.
25. The method of claim 21 , further comprising: transmitting an indication of the alarm via at least one of a wired interface or a wireless interface of the self-adjusting luminaire.
EP20767905.1A 2019-09-20 2020-08-21 Smart dimming & sensor failure detection as part of built in ambient light harvesting inside the luminaire Pending EP4011176A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IN201921037990 2019-09-20
US16/786,213 US11343898B2 (en) 2019-09-20 2020-02-10 Smart dimming and sensor failure detection as part of built in daylight harvesting inside the luminaire
PCT/US2020/047434 WO2021055139A1 (en) 2019-09-20 2020-08-21 Smart dimming & sensor failure detection as part of built in ambient light harvesting inside the luminaire

Publications (1)

Publication Number Publication Date
EP4011176A1 true EP4011176A1 (en) 2022-06-15

Family

ID=74882377

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20767905.1A Pending EP4011176A1 (en) 2019-09-20 2020-08-21 Smart dimming & sensor failure detection as part of built in ambient light harvesting inside the luminaire

Country Status (6)

Country Link
US (2) US11343898B2 (en)
EP (1) EP4011176A1 (en)
CN (1) CN114616925A (en)
CA (1) CA3150093A1 (en)
MX (1) MX2022003368A (en)
WO (1) WO2021055139A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11706864B1 (en) * 2020-07-24 2023-07-18 Synapse Wireless, Inc. Systems and methods for verifying operation and configuration of a lighting network
US20220349746A1 (en) * 2021-05-03 2022-11-03 Artilux, Inc. Optical Detector Module and a Method for Operating the Same
CN116086605A (en) * 2023-01-12 2023-05-09 武汉海微科技有限公司 Light sensation visual detection method and system

Family Cites Families (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5701058A (en) 1996-01-04 1997-12-23 Honeywell Inc. Method of semiautomatic ambient light sensor calibration in an automatic control system
US6548967B1 (en) 1997-08-26 2003-04-15 Color Kinetics, Inc. Universal lighting network methods and systems
US6720745B2 (en) 1997-08-26 2004-04-13 Color Kinetics, Incorporated Data delivery track
GB2370675B (en) 2000-11-15 2003-04-30 Maurice Bligh Colour-coded evacuation signalling system
US9955551B2 (en) * 2002-07-12 2018-04-24 Yechezkal Evan Spero Detector controlled illuminating system
US7604378B2 (en) * 2003-07-02 2009-10-20 S.C. Johnson & Son, Inc. Color changing outdoor lights with active ingredient and sound emission
US7199724B2 (en) 2005-05-17 2007-04-03 Motorola, Inc. Method and apparatus to aide in emergency egress
CA2559150C (en) 2005-09-12 2013-11-19 Acuity Brands, Inc. Activation device for an intelligent luminaire manager
US7683301B2 (en) 2006-02-08 2010-03-23 The Regents Of The University Of California Method for preventing incorrect lighting adjustment in a daylight harvesting system
US7781713B2 (en) 2006-02-08 2010-08-24 The Regents Of The University Of California Method for calibrating a lighting control system that facilitates daylight harvesting
US7614767B2 (en) 2006-06-09 2009-11-10 Abl Ip Holding Llc Networked architectural lighting with customizable color accents
CA2708978C (en) 2006-12-11 2016-03-15 Tir Technology Lp Luminaire control system and method
US7859398B2 (en) 2006-12-13 2010-12-28 Eaton Corporation System and method for maintaining and controlling a plurality of wireless light fixtures
US7915829B2 (en) 2007-03-18 2011-03-29 Signal Fire Remotely monitored and controlled distributed emergency power system
US9374876B2 (en) * 2007-08-24 2016-06-21 Martin A. Alpert Multi-chip light emitting diode light device
US8731689B2 (en) 2008-05-06 2014-05-20 Abl Ip Holding, Llc Networked, wireless lighting control system with distributed intelligence
US8364325B2 (en) 2008-06-02 2013-01-29 Adura Technologies, Inc. Intelligence in distributed lighting control devices
US8021021B2 (en) * 2008-06-26 2011-09-20 Telelumen, LLC Authoring, recording, and replication of lighting
WO2010019810A1 (en) 2008-08-14 2010-02-18 Cooper Technologies Company Led devices for offset wide beam generation
US8299722B2 (en) * 2008-12-12 2012-10-30 Cirrus Logic, Inc. Time division light output sensing and brightness adjustment for different spectra of light emitting diodes
US8977371B2 (en) 2009-01-29 2015-03-10 Koninklijkle Philips Electronics N.V. Lighting control system responsive to ambient lighting conditions
CN102388678A (en) 2009-04-09 2012-03-21 皇家飞利浦电子股份有限公司 Intelligent lighting control system
US8975778B2 (en) * 2009-07-30 2015-03-10 Lutron Electronics Co., Inc. Load control system providing manual override of an energy savings mode
US8901769B2 (en) * 2009-07-30 2014-12-02 Lutron Electronics Co., Inc. Load control system having an energy savings mode
WO2011139764A2 (en) 2010-04-27 2011-11-10 Cooper Technologies Company Linkable linear light emitting diode system
US10321541B2 (en) 2011-03-11 2019-06-11 Ilumi Solutions, Inc. LED lighting device
US9010956B1 (en) 2011-03-15 2015-04-21 Cooper Technologies Company LED module with on-board reflector-baffle-trim ring
US8901825B2 (en) 2011-04-12 2014-12-02 Express Imaging Systems, Llc Apparatus and method of energy efficient illumination using received signals
ES2552078T3 (en) 2011-10-31 2015-11-25 Koninklijke Philips N.V. Improved lighting network to serve mobile cellular users and its method of operation
CA2854784C (en) 2011-11-03 2021-07-20 Digital Lumens Incorporated Methods, systems, and apparatus for intelligent lighting
JP6138821B2 (en) 2011-12-23 2017-05-31 フィリップス ライティング ホールディング ビー ヴィ Protocol for visible light communication
US8960971B1 (en) 2012-04-02 2015-02-24 Cooper Technologies Company Adjustable mounting system for a luminaire
CN104205677B (en) 2012-04-13 2017-08-25 飞利浦灯具控股公司 Method and apparatus for visible light communication
US9429298B1 (en) 2012-04-25 2016-08-30 Cooper Technologies Company Three axis adjustment for emergency lights emitting an asymmetric beam pattern to illuminate a path of egress
US8757847B2 (en) 2012-06-29 2014-06-24 Eaton Corporation Pedestal light assembly
US9706623B2 (en) * 2012-08-24 2017-07-11 Abl Ip Holding Llc Learning capable control of chaotic lighting
JP6223450B2 (en) 2012-08-30 2017-11-01 フィリップス ライティング ホールディング ビー ヴィ Control of one or more light sources via a portable device
WO2014043138A1 (en) 2012-09-12 2014-03-20 Cooper Technologies Company Light-emitting diode light retrofit fixtures
US8942564B2 (en) 2012-11-07 2015-01-27 Qualcomm Incorporated Methods and apparatus for communicating information using visible light signals and/or radio signals
US10040007B2 (en) 2012-11-30 2018-08-07 Empire Technology Development Llc Filtration system for filtration of solids from a liquid
US9143230B2 (en) 2012-12-01 2015-09-22 Qualcomm Incorporated Methods and apparatus for communications using visible light communications signaling in combination with wireless radio signaling
US9288875B2 (en) * 2012-12-10 2016-03-15 The Watt Stopper, Inc. Method and apparatus for multiple sensor lighting control systems for daylight harvesting
US9520939B2 (en) 2013-03-06 2016-12-13 Qualcomm Incorporated Methods and apparatus for using visible light communications for controlling access to an area
CN105027473B (en) 2013-03-12 2017-12-08 飞利浦灯具控股公司 Communication system, illuminator and the method for sending information
WO2014141058A1 (en) 2013-03-12 2014-09-18 Koninklijke Philips N.V. An emergency manager for a lighting device
US9804024B2 (en) * 2013-03-14 2017-10-31 Mojo Labs, Inc. Light measurement and/or control translation for daylighting
WO2014153027A1 (en) 2013-03-19 2014-09-25 Michael Simmons Guidance indicator and system for providing egress assistance
JP6290373B2 (en) 2013-04-04 2018-03-07 フィリップス ライティング ホールディング ビー ヴィ Daylight daylighting system to prevent unauthorized changes
CN105122684B (en) 2013-04-19 2018-03-02 飞利浦灯具控股公司 Coding visible ray is received in the presence of interference
US9612585B2 (en) 2013-05-28 2017-04-04 Abl Ip Holding Llc Distributed building control system
RU2663652C2 (en) 2013-07-05 2018-08-08 Филипс Лайтинг Холдинг Б.В. Communication device in the communication network operation method, communication device, lamp, equipped with such communication device
US9980351B2 (en) * 2013-08-12 2018-05-22 Abl Ip Holding Llc Lighting element-centric network of networks
JP6469686B2 (en) 2013-08-16 2019-02-13 フィリップス ライティング ホールディング ビー ヴィ Lighting control using mobile computing devices
EP3036975B1 (en) 2013-08-23 2019-05-15 Signify Holding B.V. Control of a lighting system
US9119169B2 (en) 2013-10-16 2015-08-25 Qualcomm Incorporated Beacon group information assisted wireless location determination
US10470267B2 (en) * 2013-11-22 2019-11-05 Ideal Industries Lighting Llc Ambient light regulation methods
DE102013113053B4 (en) * 2013-11-26 2019-03-28 Schott Ag Driver circuit with a semiconductor light source and method for operating a driver circuit
DE102013020698A1 (en) 2013-11-29 2015-06-03 Cooper Crouse-Hinds Gmbh Luminaire and method for temperature determination
US20160128154A1 (en) 2014-01-06 2016-05-05 Lunera Lighting Inc. Lighting System With Built-in Intelligence
US20150195880A1 (en) 2014-01-06 2015-07-09 Lunera Lighting, Inc. Lighting system with built-in intelligence
US20170339765A1 (en) 2014-01-06 2017-11-23 Lunera Lighting, Inc. Lighting system built-in intelligence
US9832826B2 (en) 2014-05-30 2017-11-28 Abl Ip Holding Llc Emergency lighting system
US10009100B2 (en) 2014-06-18 2018-06-26 Qualcomm Incorporated Transmission of identifiers using visible light communication
US9735868B2 (en) 2014-07-23 2017-08-15 Qualcomm Incorporated Derivation of an identifier encoded in a visible light communication signal
US9474128B2 (en) 2014-08-15 2016-10-18 Phase Final, Inc. Lighting device with ambient light sensor
US10020881B2 (en) 2014-11-25 2018-07-10 Qualcomm Incorporated Method and apparatus for transmitting secure VLC identifiers
US9826581B2 (en) * 2014-12-05 2017-11-21 Cree, Inc. Voltage configurable solid state lighting apparatuses, systems, and related methods
US9970639B2 (en) 2014-12-18 2018-05-15 Hubbell Incorporated Circuit boards for LED-based light fixtures
US9679448B2 (en) 2015-03-11 2017-06-13 Dialight Corporation Control and monitoring of battery-backed emergency lighting systems
US9660727B2 (en) 2015-04-28 2017-05-23 Qualcomm Incorporated Coherent decoding of visible light communication (VLC) signals
WO2016176693A1 (en) 2015-04-29 2016-11-03 Inception Innovations, Llc Color-changing lighting dynamic control
WO2016178994A1 (en) 2015-05-01 2016-11-10 Cooper Technologies Company Self-learning auto-cutoff daylight detection control for light fixtures
US9468078B1 (en) 2015-05-01 2016-10-11 Abl Ip Holding Llc Lighting system with cellular networking
US9930758B2 (en) 2015-09-15 2018-03-27 Cooper Technologies Company Light fixture as an access point in a communication network
US10281112B1 (en) 2015-10-20 2019-05-07 Eaton Intelligent Power Limited Method and system for producing a beam of illumination having smooth edges
US10383191B2 (en) 2015-11-30 2019-08-13 Eaton Intelligent Power Limited Fail-safe lighting control system
EP3395129B1 (en) 2015-12-22 2020-03-18 Signify Holding B.V. Demand responsive lighting control system and method
US10371345B2 (en) 2015-12-28 2019-08-06 Eaton Intelligent Power Limited Light emitting diode (LED) module for LED luminaire
US10117300B2 (en) 2016-02-19 2018-10-30 Cooper Technologies Company Configurable lighting system
WO2017156434A1 (en) 2016-03-10 2017-09-14 Cooper Technologies Company Light fixture with ferroresonant transformer power source
CA2929349A1 (en) 2016-04-29 2017-10-29 Hubbell Incorporated Light fixture
MX2018014437A (en) 2016-06-02 2019-04-01 Eaton Intelligent Power Ltd Redundant power supply and control for light fixtures.
US10401007B1 (en) 2016-07-19 2019-09-03 Cooper Technologies Company Integrated sensing and control of light fixtures
US9820361B1 (en) 2016-07-20 2017-11-14 Abl Ip Holding Llc Wireless lighting control system
US9857162B1 (en) 2016-09-22 2018-01-02 Qualcomm Incorporated Mobile device positioning using modulated light signals and coarse positioning information
US9813150B1 (en) 2016-09-23 2017-11-07 Qualcomm Incorporated Controllable selection of light-capture devices
US9924574B1 (en) * 2016-10-28 2018-03-20 Uledo Llc. Method and apparatus for controlling light output from a LED lamp
CN110023678B (en) 2016-12-02 2021-05-18 伊顿智能动力有限公司 Antenna for dangerous position lamp
US10355781B2 (en) 2017-01-13 2019-07-16 Eaton Intelligent Power Limited Locating assets using auto-commissioned light fixtures in a lighting system
US10422494B2 (en) 2017-05-03 2019-09-24 Eaton Intelligent Power Limited High mast luminaire
US20190023460A1 (en) 2017-07-21 2019-01-24 Doskocil Manufacturing Company, Inc. Container enclosure assembly
US10959300B2 (en) 2018-01-04 2021-03-23 Signify Holding B.V. Integrated sensor modules for light fixtures
US10966305B2 (en) 2018-01-04 2021-03-30 Signify Holding B.V. Integrated antenna assemblies for light fixtures
US10354655B1 (en) * 2018-01-10 2019-07-16 Abl Ip Holding Llc Occupancy counting by sound
US20190226666A1 (en) 2018-01-24 2019-07-25 Eaton Intelligent Power Limited Integrated Caps For Pole-Mounted Light Fixtures
EP3756027A1 (en) 2018-02-22 2020-12-30 Signify Holding B.V. Location services using a light fixture
EP3756364A1 (en) 2018-02-22 2020-12-30 Signify Holding B.V. Location services using a light fixture

Also Published As

Publication number Publication date
US11343898B2 (en) 2022-05-24
WO2021055139A1 (en) 2021-03-25
US20210092822A1 (en) 2021-03-25
US20220264735A1 (en) 2022-08-18
MX2022003368A (en) 2022-06-08
CA3150093A1 (en) 2021-03-25
CN114616925A (en) 2022-06-10

Similar Documents

Publication Publication Date Title
US20220264735A1 (en) Smart Dimming & Sensor Failure Detection as Part of Built in Daylight Harvesting Inside the Luminaire
CA3013034C (en) Fail-safe lighting control system
US7825602B2 (en) Outdoor lighting system with controlled luminance
US20120033338A1 (en) Monitoring device for an electrical power source and load
EP3143843A1 (en) Emergency lighting system
US20190200433A1 (en) Output adjustment of a light fixture in response to environmental conditions
EP2612543B1 (en) Method and apparatus for operating a group of lighting fixture nodes
US11769380B2 (en) Event indications of hazardous environment luminaires using visual sequences
EP4005351B1 (en) Smart luminaire group control using intragroup communication
CN108011662A (en) A kind of optical module and its monitoring method
US10448484B1 (en) Integrated digital lighting controller
US20230156888A1 (en) Luminaire for remote monitoring of power usage
EP3821685B1 (en) A light device and a lighting system
US20230276559A1 (en) Providing industrial network reliability using luminaires
EP3412119A1 (en) Add-on unit for monitoring and controlling a lighting arrangement
ITMO20070265A1 (en) PLANT AND METHOD FOR DISTRIBUTED LIGHTING CONTROL, PARTICULARLY FOR LIGHTING OUTDOOR ENVIRONMENTS

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220309

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)