EP4006315B1 - Aube de guidage à orientation variable pour un moteur de turbine à gaz, et procédé d'exploitation des première et seconde aubes de guidage à orientation variable adjacentes et disposées dans une veine de gaz d'un moteur de turbine à gaz - Google Patents

Aube de guidage à orientation variable pour un moteur de turbine à gaz, et procédé d'exploitation des première et seconde aubes de guidage à orientation variable adjacentes et disposées dans une veine de gaz d'un moteur de turbine à gaz Download PDF

Info

Publication number
EP4006315B1
EP4006315B1 EP21211096.9A EP21211096A EP4006315B1 EP 4006315 B1 EP4006315 B1 EP 4006315B1 EP 21211096 A EP21211096 A EP 21211096A EP 4006315 B1 EP4006315 B1 EP 4006315B1
Authority
EP
European Patent Office
Prior art keywords
button
vane
airfoil
depression
guide vane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21211096.9A
Other languages
German (de)
English (en)
Other versions
EP4006315A1 (fr
Inventor
Daniel POICK
David Batch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pratt and Whitney Canada Corp
Original Assignee
Pratt and Whitney Canada Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pratt and Whitney Canada Corp filed Critical Pratt and Whitney Canada Corp
Publication of EP4006315A1 publication Critical patent/EP4006315A1/fr
Application granted granted Critical
Publication of EP4006315B1 publication Critical patent/EP4006315B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/16Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes
    • F01D17/162Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes for axial flow, i.e. the vanes turning around axes which are essentially perpendicular to the rotor centre line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/147Construction, i.e. structural features, e.g. of weight-saving hollow blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/56Fluid-guiding means, e.g. diffusers adjustable
    • F04D29/563Fluid-guiding means, e.g. diffusers adjustable specially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • F01D5/142Shape, i.e. outer, aerodynamic form of the blades of successive rotor or stator blade-rows
    • F01D5/143Contour of the outer or inner working fluid flow path wall, i.e. shroud or hub contour
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/60Assembly methods
    • F05D2230/64Assembly methods using positioning or alignment devices for aligning or centring, e.g. pins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/122Fluid guiding means, e.g. vanes related to the trailing edge of a stator vane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/123Fluid guiding means, e.g. vanes related to the pressure side of a stator vane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/124Fluid guiding means, e.g. vanes related to the suction side of a stator vane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/80Platforms for stationary or moving blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • F05D2250/71Shape curved
    • F05D2250/712Shape curved concave

Definitions

  • the invention relates generally to aircraft engines, and more particularly to a variable orientation guide vane for a gas turbine engine, to a variable guide vane assembly for a gas turbine engine, as well as to a method of operating adjacent variable orientation first and second vanes disposed in an annular gas path of a gas turbine engine.
  • VGVs variable guide vanes
  • VGVs are commonly used in aircraft gas turbine engine compressors and fans, and in some turbine designs.
  • VGVs have spindles through their rotational axis that penetrate the casing and allow the VGVs to be rotated using an actuation mechanism.
  • VGVs direct air onto rotors of the gas turbine engine at a desired angle of incidence for engine performance and efficiency.
  • the range of motion of VGVs can be limited in existing arrangements of VGVs. Improvement is desirable.
  • EP 1,988,259 discloses a turbine nozzle with a de-icing device.
  • EP 3,246,518 discloses a guide vane ring, a corresponding assembly and a turbomachine.
  • variable orientation guide vane for a gas turbine engine
  • the variable orientation guide vane comprising: an airfoil for interacting with a fluid in a gas path of the gas turbine engine, the airfoil having a leading edge and a trailing edge; and a button, the airfoil being mounted to the button and rotatable with the button about an axis during use, the button having a leading end at an angular position corresponding to an angular position of the leading edge of the airfoil relative to the axis, the button including a platform surface for facing the gas path and defining part of the gas path during use, the platform surface including a depression for receiving therein part of an adjacent variable orientation guide vane, the depression defining a sunken portion of the platform surface that is lower than a leading end portion of the platform surface at or adjacent the leading end of the button.
  • first and second vanes disposed in an annular gas path of a gas turbine engine
  • the first vane having a first button and a first airfoil mounted to the first button
  • the second vane having a second button and a second airfoil mounted to the second button
  • the first and second buttons being rotatably disposed in respective receptacles formed in a shroud defining part of the annular gas path
  • the first button including a platform surface including a depression defining a sunken portion of the platform surface that is lower than a leading end portion of the platform surface at or adjacent the leading end of the button
  • the method comprising: rotating the first and second vanes; and when rotating the first and second vanes, receiving part of the second airfoil of the second vane in the depression formed in the first button of the first vane.
  • variable guide vanes VGVs
  • the VGVs described herein may allow for an expanded range of motion for VGVs and consequently may allow VGVs to adopt more aggressive vane angles. Relatively aggressive vane angles of VGVs may be desirable in some operating conditions of gas turbine engines such as at lower power outputs and/or when idling.
  • a VGV as described herein may include a button of the VGV that is configured to provide additional clearance between adjacent VGVs to widen spatial constraints and allow for adjacent (i.e., neighboring) VGVs to adopt relatively aggressive vane angles without colliding with each other.
  • connection and “coupled” may include both direct connection/coupling (in which two elements contact each other) and indirect connection/coupling (in which at least one additional element is located between the two elements).
  • FIG. 1 is a schematic axial cross-section view of an exemplary reverse flow turboprop gas turbine engine 10 comprising one or more VGVs 12, as described herein.
  • Gas turbine engine 10 may be of a type preferably provided for use in subsonic flight to drive a load such as propeller 14 via low-pressure shaft 16 (sometimes called "power shaft") coupled to low-pressure turbine 18.
  • Propeller 14 may be coupled to low-pressure shaft 16 via a speed-reducing gearbox (not shown) in some embodiments.
  • Low-pressure turbine 18 and low-pressure shaft 16 may be part of a first spool of gas turbine engine 10 known as a low-pressure spool.
  • Gas turbine engine 10 may comprise a second or high-pressure spool comprising high-pressure turbine 20, (e.g., multistage) compressor 22 and high-pressure shaft 24.
  • Compressor 22 may draw ambient air into gas turbine engine 10 via annular radial air inlet duct 26, increase the pressure of the drawn air and deliver the pressurized air to combustor 28 where the pressurized air is mixed with fuel and ignited for generating an annular stream of hot combustion gas.
  • High-pressure turbine 20 may extract energy from the hot expanding combustion gas and thereby drive compressor 22.
  • the hot combustion gas leaving high-pressure turbine 20 may be accelerated as it further expands, flows through and drives low pressure turbine 18.
  • the combustion gas may then exit gas turbine engine 10 via exhaust duct 30.
  • VGVs 12 may be suitable for installation in a core gas path 32 of gas turbine engine 10.
  • VGVs 12 may be variable inlet guide vanes disposed upstream of compressor 22.
  • VGVs 12 may instead be disposed between two rotor stages of compressor 22.
  • Gas path 32 may have a substantially annular shape and may have central axis A, which may correspond to a central axis of gas turbine engine 10, and may also correspond to an axis of rotation of a spool including compressor 22.
  • a plurality of VGVs 12 may be angularly distributed within annular gas path 32 and about central axis A. In other words, the plurality of VGVs 12 may be arranged to define a circular array of VGVs 12 within the annular gas path 32.
  • VGVs 12 may have a controllably variable orientation that may be controlled via a controller of gas turbine engine 10 based on operating parameters of gas turbine engine 10. In some embodiments, the orientation of VGVs 12 may be synchronously varied via a unison ring or via another suitable drive mechanism.
  • FIGS. 2A and 2B are schematic representations of one VGV 12 at different orientations relative to central axis A and also relative to fluid flow F in annular gas path 32.
  • FIG. 2A shows a situation where VGV 12 is aligned with central axis A. In other words, a chord C of VGV 12 may be substantially parallel with central axis A. This orientation of VGV 12 may correspond to a reference (e.g., zero) orientation where vane angle ⁇ equals 0.
  • annular gas path 32 may be substantially wide open and VGVs 12 may provide relatively little influence on flow F at the current angle of incidence with flow F.
  • FIG. 2B shows a situation where VGV 12 is oriented at a non-zero vane angle ⁇ where VGV 12 is oriented obliquely to central axis A and to the general direction of flow F.
  • the effective area of annular gas path 32 may be reduced by the orientation of the cooperating plurality of VGVs 12 in comparison with that of FIG. 2A .
  • VGVs 12 may also provide a greater influence on flow F in this orientation.
  • VGVs 12 may be rotatable within a range of orientations (e.g., vane angle ⁇ ). In some embodiments, VGVs 12 may be rotatable in one or both directions from the zero angular position of FIG.
  • VGVs 12 may be symmetric or asymmetric about the zero position.
  • VGVs 12 may be rotatable to a more aggressive vane angle ⁇ in one direction than in the opposite direction.
  • FIG. 3 is a tridimensional view of two exemplary adjacent VGVs 12A, 12B rotatably mounted to shroud 34.
  • Shroud 34 may be a radially-inner shroud ring relative to annular gas path 32.
  • Shroud 34 may include shroud surface 36 defining part of a radially-inner boundary of annular gas path 32.
  • VGV 12A may include airfoil 38A mounted to button 40A.
  • Airfoil 38A may interact with fluid flow F inside of annular gas path 32 and may include leading edge 42A and trailing edge 44A.
  • Airfoil 38A and button 40A may be rotatable as a unit about vane axis VA.
  • Vane axis VA may be oriented partially radially or substantially entirely radially relative to central axis A.
  • Airfoil 38A may be integrally formed (e.g., cast, machined) with button 40A or may be separately formed and attached to button 40A by welding for example.
  • Button 40A may define a platform for VGV 12A and may include platform surface 46A for facing annular gas path 32 and defining part of annular gas path 32 adjacent airfoil 38 and at a radial extremity of airfoil 38A.
  • Platform surface 46A may include depression 48A for receiving therein part (e.g., a trailing edge) of an adjacent VGV 12.
  • Depression 48A may define a sunken (e.g., concave, recessed) portion of platform surface 46A that is lower than a surrounding portion of platform surface 46A outside of depression 48A.
  • Button 40A may be received in receptacle 50A formed in shroud 34.
  • Receptacle 50A may formed in shroud surface 36 and open to annular gas path 32.
  • VGV 12B may, but not necessarily, be substantially identical to VGV 12A and may be angularly offset from VGV 12A in annular gas path 32 relative to central axis A. Only two VGVs 12A, 12B are shown in FIG. 3 but it is understood that more than two VGVs 12A, 12B may be circumferentially distributed around shroud 34 and installed in respective receptacles.
  • Receptacle 50C is shown without a VGV installed therein to show an exemplary internal configuration of receptacle 50C.
  • VGV 12B may include airfoil 38B mounted to button 40B. Airfoil 38B may interact with fluid flow F inside of annular gas path 32 and may include leading edge 42B and trailing edge 44B.
  • Airfoil 38B and button 40B may be rotatable as a unit about vane axis VB.
  • Vane axis VB may be oriented partially radially or substantially entirely radially relative to central axis A.
  • Button 40B may include platform surface 46B including depression 48A for receiving therein part (e.g., trailing edge 44A) of VGV 12A.
  • FIG. 3 shows shroud 34 being a radially-inner shroud of annular gas path 32 and buttons 40A, 40B being disposed at radially-inner ends of their respective VGVs 12A, 12B.
  • aspects of this disclosure may also be applied to a radially-outer shroud and to buttons disposed at radially outer ends of their respective VGVs 12A, 12B.
  • depressions 48A, 48B or other types of cutouts or recesses could instead, or in addition, be incorporated in radially-outer buttons to provide additional clearance (i.e., prevent interference) between adjacent VGVs 12A, 12B.
  • FIG. 4 is an enlarged tridimensional view of buttons 40A, 40B of VGVs 12A, 12B shown in FIG. 3 .
  • the range of vane angles ⁇ may include a more aggressive orientation, as shown in FIG. 4 , where the part (e.g., trailing edge 44A) of airfoil 38A of VGV 12A is received inside depression 48B of platform surface 46B of VGV 12B.
  • depression 48B may allow part of airfoil 38A to radially overlap button 40B and thereby provide additional clearance to expand the range of orientations of VGV 12A without interference between VGV 12A and VGV 12B.
  • part of airfoil 38A may be permitted to overlap a (e.g., partially circular) periphery of button 40B when viewed along vane axis VB.
  • Fillets 52A, 52B may be respectively disposed at junctions of airfoils 38A, 38B with respective buttons 40A, 40B.
  • FIG. 5 is a schematic side view of VGV 12B.
  • VGV 12A may have a substantially identical construction as VGV 12B.
  • Button 40B may have leading end 54B and trailing end 56B.
  • Leading end 54B may be a foremost region of button 40B toward oncoming fluid flow F when the vane angle ⁇ of VGV 12B is at the zero orientation shown in FIG. 2A .
  • leading end 54B of button 40B may be disposed at an angular position corresponding to an angular position of leading edge 42B of airfoil 38B relative to vane axis VB.
  • Trailing end 56B may be diametrically opposed to leading end 54B and may be a rearmost region of button 40B in relation to the oncoming fluid flow F.
  • Depression 48B may define a sunken portion of platform surface 46B that is lower than a leading end portion 58B of platform surface 46B at or adjacent leading end 54B of button 40B. In some embodiments, some of platform surface 46B outside of depression 48B may be substantially flush with shroud surface 36 when vane angle ⁇ of VGV 12B is at the zero orientation shown in FIG. 2A . Accordingly, platform surface 46B and shroud surface 36 may cooperatively define a relatively smooth boundary of annular gas path 32 with little discontinuity for interacting with fluid flow F when vane angle ⁇ of VGV 12B is at the zero orientation.
  • Shroud surface 36 may be non-parallel to central axis A in some embodiments.
  • shroud surface 36 may be oriented obliquely to central axis A depending on the location of VGV 12B along annular gas path 32.
  • button 40B may have a non-uniform (e.g., tapered) configuration where a thickness T1 at leading end 54B of button 40B may be greater than a thickness T2 at trailing end 56B.
  • the specific configuration of button 40B may depend on the orientation of shroud surface 36 and also the orientation of vane axis VB so that some or a majority of platform surface 46B may be substantially flush with shroud surface 36.
  • Depression 48B may have location D of maximum depth relative to one or more portion(s) of platform surface 46B outside of depression 48B. Location D of depression 48B may also be below shroud surface 36. Depression 48B may be disposed closer to leading end 54B of button 40B than to trailing end 56B of button 40B along central axis A. Also, location D of maximum depth may be disposed closer to leading end 54B of button 40B than to trailing end 56B of button 40B along central axis A. At location D of depression 48B, button 40B may have a thickness T3. In some embodiments, thickness T1 of button 40B at leading end 54B may be greater than thickness T3. In some embodiments, thickness T3 may be greater than thickness T2 of button 40B at trailing end 56B. As shown in FIG. 5 , thicknesses T1, T2 and T3 may be measured along a direction substantially parallel to vane axis VB.
  • FIG. 6A is an enlarged tridimensional view of an exemplary button 140 of VGV 112 without depression 48B formed therein showing a reference/baseline geometry of platform surface 146 of button 140 to which airfoil 138 may be mounted.
  • VGV 112 may have a construction substantially identical to VGV 12A except for the lack of depression 48B. Like elements are identified using reference numerals that have been incremented by 100.
  • VGV 112 may, in some embodiments, be a precursor to VGV 12B before the forming (e.g., machining) of depression 48B into button 140.
  • FIG. 6B is an enlarged tridimensional view of button 40B in isolation showing depression 48B formed in platform surface 46B.
  • Depression 48B may have a concave shape facing annular gas path 32 (shown in FIG. 5 ). Depression 48B may be disposed outside of fillet 52B defined at the junction of button 40B and airfoil 38B.
  • Depression 48B may include a periphery of button 40B (i.e., be radially outwardly open) to permit part of VGV 12A to laterally enter depression 48B and overlap button 40B at larger (i.e., more aggressive) vane angles ⁇ .
  • location D of maximum depth may be disposed at or near a periphery of button 40B. Accordingly, the depth of depression 48B may gradually increase toward the periphery of button 40B.
  • depression 48B may have a generally streamlined/contoured overall shape to provide favorable aerodynamic conditions.
  • the shape, size and location of depression 48B may be selected based on spatial constraints and the clearance desired for specific applications and vane geometries.
  • depression 48B may include one or more transition surfaces 60B that provide smooth/blended transitions with surrounding portion(s) of platform surface 46B disposed outside of depression 48B.
  • transition surface 60B may provide a fillet surface blend with a portion of platform surface 46B disposed outside of depression 48B.
  • transition surface 60B may provide a tangent-continuous type of surface continuity with a portion of platform surface 46B disposed outside of depression 48B.
  • transition surface 60B may provide a curvature-continuous type of surface continuity with a portion of platform surface 46B disposed outside of depression 48B. In some embodiments, transition surface 60B may provide such type(s) of surface continuity with leading end portion 58B of platform surface 46B at or adjacent leading end 54B of button 40B.
  • FIG. 7 is a schematic top view of VGV 12B.
  • Depression 48B may be disposed in a forward left quadrant of button 40B.
  • a second depression 48B may be disposed in an opposite forward right quadrant of button 40B.
  • Both depressions 48B may be mirror images of each other or may be of different shapes and sizes depending on the clearance requirements on each side of airfoil 38B.
  • Depression 48B may be angularly offset from leading end 54B of button 40B relative to vane axis VB extending normal to the page in FIG. 7 . Accordingly, in some embodiments, leading end 54B of button 40B may be devoid of any part of depression 48B. In other words, leading end 54B of button 40B may be outside of depression 48B. A location D of maximum depth of depression 48B may be angularly offset from leading end 54B of button 40B. In some embodiments, location D of maximum depth of depression 48B may be angularly offset from leading end 54B by an angle ⁇ between 30 degrees and 60 degrees relative to vane axis VB for example.
  • button 40B may have periphery P.
  • periphery P may be partially or entirely circular, or of another shape.
  • a majority of periphery P of button 40B may be substantially circular.
  • Part of periphery P at and near trailing end 56B may be non-circular (e.g., linear).
  • leading edge 42B of airfoil 38B may be disposed within periphery P.
  • trailing edge 44B of airfoil 38B may be disposed outside of periphery P.
  • FIG. 8 is a flowchart of a method 100 of operating VGVs 12A, 12B described herein or using other VGVs. Aspects of method 100 may be combined with aspects of VGVs 12A, 12B and with other methods or actions disclosed herein. In various embodiments, method 100 may include:
  • button 40B may be disposed radially inwardly or radially outwardly of airfoil 38B of VGV 12B.
  • the part (e.g., of trailing edge 44A) of VGV 12A may be disposed inside periphery P of button 40B when the part of VGV 12A is received in depression 48B.
  • the part (e.g., of trailing edge 44A) of VGV 12A may radially overlap platform surface 46B of button 40B when the part of VGV 12A is received in depression 48B.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Claims (15)

  1. Aube de guidage à orientation variable (12 ; 112) pour un moteur à turbine à gaz (10), l'aube de guidage à orientation variable (12 ; 112) comprenant :
    un profil aérodynamique (38A ; 38B ; 138) pour interagir avec un fluide (F) dans un trajet de gaz du moteur à turbine à gaz (10), le profil aérodynamique (38A ; 38B ; 138) ayant un bord d'attaque (42A ; 42B) et un bord de fuite (44A ; 44B) ; et
    un bouton (40A ; 40B ; 140), le profil aérodynamique (38A ; 38B ; 138) étant monté sur le bouton (40A ; 40B ; 140) et pouvant tourner avec le bouton (40B ; 40B ; 140) autour d'un axe (VA ; VB) lors de l'utilisation, le bouton (40A ; 40B ; 140) ayant une extrémité avant (54B) à une position angulaire correspondant à une position angulaire du bord d'attaque (42A ; 42B) du profil aérodynamique (38A ; 38B ; 138) par rapport à l'axe (VA ; VB), le bouton (40A ; 40B ; 140) comportant une surface de plate-forme (46A ; 46B ; 146) pour faire face au trajet de gaz et définissant une partie du trajet de gaz pendant l'utilisation, caractérisée en ce que la surface de plate-forme (46A ; 46B ; 146) comporte une dépression (48A ; 48B) pour y recevoir une partie d'une aube de guidage à orientation variable (12 ; 112) adjacente, la dépression (48A ; 48B) définissant une partie enfoncée de la surface de plate-forme (46A ; 46B ; 146) qui est inférieure à une partie d'extrémité avant (58B) de la surface de plate-forme (46A ; 46B ; 146) au niveau de ou adjacente à l'extrémité avant (54B) du bouton (40A ; 40B ; 140).
  2. Aube de guidage à orientation variable (12 ; 112) selon la revendication 1, dans laquelle un emplacement (D) d'une profondeur maximale de la dépression (48A ; 48B) est décalé angulairement de l'extrémité avant (54B) du bouton (40A ; 40B ; 140) d'un angle (β) compris entre 30 degrés et 60 degrés par rapport à l'axe.
  3. Aube de guidage à orientation variable (12 ; 112) selon la revendication 1 ou 2, dans laquelle un ou l'emplacement (D) d'une profondeur maximale de la dépression (48A ; 48B) est plus proche de l'extrémité avant (54B) du bouton (40A ; 40B ; 140) que d'une extrémité arrière (56B) du bouton (40A ; 40B ; 140) .
  4. Aube de guidage à orientation variable (12 ; 112) selon une quelconque revendication précédente, dans laquelle :
    le bouton (40A ; 40B ; 140) a une première épaisseur (T1) le long de l'axe (VA ; VB) à l'extrémité avant (54B) du bouton (40A ; 40B ; 140) ; et
    la première épaisseur (T1) du bouton (40A ; 40B ; 140) est supérieure à une seconde épaisseur (T3) du bouton (40A ; 40B ; 140) selon l'axe (VA ; VB) à un emplacement (D) d'une profondeur maximale de la dépression (48A ; 48B).
  5. Aube de guidage à orientation variable (12 ; 112) selon une quelconque revendication précédente, dans laquelle la dépression (48A ; 48B) est disposée à l'extérieur d'une transition de congé (52B) entre le bouton (40A ; 40B ; 140) et le profil aérodynamique (38A ; 38B ; 130).
  6. Aube de guidage à orientation variable (12 ; 112) selon une quelconque revendication précédente, dans laquelle :
    le bouton (40A ; 40B ; 140) comporte une périphérie (P) vue selon l'axe (VA ; VB) ;
    le bord d'attaque (42A ; 42B) du profil aérodynamique (38A ; 38B ; 138) est disposé à l'intérieur de la périphérie (P) ; et
    le bord de fuite (44A ; 44B) du profil aérodynamique (38A ; 38B ; 138) est disposé à l'extérieur de la périphérie (P).
  7. Ensemble d'aubes de guidage variables pour un moteur à turbine à gaz (10), l'ensemble d'aubes de guidage variables comprenant :
    un carénage (34) comportant une surface de carénage (36) définissant une première partie d'un trajet de gaz annulaire (32) du moteur à turbine à gaz (10), le carénage (34) comportant un réceptacle (50A, 50B, 50C) défini dans la surface de carénage (36) ;
    une aube de guidage à orientation variable (12 ; 112) selon une quelconque revendication précédente, l'aube de guidage à orientation variable (12 ; 112) étant une première aube (12A) montée rotative à l'intérieur du trajet de gaz annulaire (32),
    le profil aérodynamique étant un premier profil aérodynamique (38A), le bouton (40A) étant reçu dans le réceptacle (50A) du carénage (34), la surface de plate-forme (46A) définissant une seconde partie du trajet de gaz annulaire (32) adjacente au premier profil aérodynamique (38A) ; et
    une seconde aube (12B) montée rotative à l'intérieur du trajet de gaz annulaire (32) adjacente à la première aube (12A), la seconde aube (12B) comportant un second profil aérodynamique (38B), la seconde aube (12B) pouvant tourner entre : une première orientation où une partie du second profil aérodynamique (38B) de la seconde aube (12B) est à l'extérieur de la dépression (48A) dans la surface de plate-forme (46A) de la première aube (12A) ; et une seconde orientation où la partie du second profil aérodynamique (38B) de la seconde aube (12B) est à l'intérieur de la dépression (48A) dans la surface de plate-forme (46A) de la première aube (12A).
  8. Ensemble d'aubes de guidage variables selon la revendication 7, dans lequel :
    la première aube (12A) peut tourner dans une plage d'orientations par rapport à un axe central (A) du trajet de gaz annulaire (32) ; et
    une partie environnante de la surface de plate-forme (46A) à l'extérieur de la dépression (48A) est sensiblement de niveau avec la surface de carénage (36) lorsqu'une corde (C) de la première aube (12A) est sensiblement parallèle à l'axe central (A) du trajet de gaz annulaire (32).
  9. Ensemble d'aubes de guidage variables selon la revendication 7 ou 8, dans lequel le bouton (40A) est disposé radialement vers l'intérieur du premier profil aérodynamique (38A) par rapport au trajet de gaz annulaire (32).
  10. Ensemble d'aubes de guidage variables selon l'une quelconque des revendications 7 à 9, dans lequel la dépression (48A) est disposée plus près d'une extrémité avant (54B) du bouton (40A) que d'une extrémité arrière (56B) du bouton (40A) .
  11. Ensemble d'aubes de guidage variables selon l'une quelconque des revendications 7 à 10, dans lequel la partie du second profil aérodynamique (38B) de la seconde aube (12B) est un bord de fuite (44B) du second profil aérodynamique (12B).
  12. Aube de guidage à orientation variable (12 ; 112) selon l'une quelconque des revendications 1 à 6 ou ensemble d'aubes de guidage variables selon l'une quelconque des revendications 7 à 11, dans lequel la dépression (48A ; 48B) comporte une surface de transition (60B) fournissant une continuité de surface continue tangente avec :
    la partie d'extrémité avant (58B) de la surface de plate-forme (46A ; 46B ; 146) du bouton (40A ; 40B ; 140) ; et/ou
    une partie extérieure de la surface de plate-forme (46A ; 46B ; 146) à l'extérieur de la dépression (48A ; 48B).
  13. Procédé d'actionnement de première et seconde aubes adjacentes à orientation variable (12A, 12B) disposées dans un trajet de gaz annulaire (32) d'un moteur à turbine à gaz (10), la première aube (12A) ayant un premier bouton (40A) et un premier profil aérodynamique (38A) monté sur le premier bouton (40A), la seconde aube (12B) ayant un second bouton (40B) et un second profil aérodynamique (38B) monté sur le second bouton (40B), les premier et second boutons (40A, 40B) étant disposés de manière rotative dans des réceptacles respectifs (50A, 50B) formés dans un carénage (34) définissant une partie du trajet de gaz annulaire (32), le premier bouton (40A) comportant une surface de plate-forme (46A) comportant une dépression (48A) définissant une partie enfoncée de la surface de plate-forme (46A) qui est inférieure à une partie d'extrémité avant (58B) de la surface de plate-forme (46A) au niveau de ou adjacente à l'extrémité avant (54B) du bouton (40A), le procédé comprenant :
    la rotation des première et seconde aubes (12A, 12B) ; et
    lors de la rotation des première et seconde aubes (12A, 12B), la réception d'une partie du second profil aérodynamique (38B) de la seconde aube (12B) dans la dépression (48A) formée dans le premier bouton (40A) de la première aube (12A).
  14. Procédé selon la revendication 13, dans lequel :
    le premier bouton (40A) est disposé radialement vers l'intérieur du premier profil aérodynamique (38A) de la première aube (12A) ; et/ou
    la partie du second profil aérodynamique (38B) de la seconde aube (12B) chevauche radialement la surface de plate-forme (46A) de la première aube (12A) par rapport au trajet de gaz annulaire (32) lorsque la partie du second profil aérodynamique (38B) de la seconde aube (12B) est reçue dans la dépression (48A) formée dans le premier bouton (40A) de la première aube (12A).
  15. Procédé selon la revendication 13 ou 14, dans lequel :
    la première aube (12A) est rotative autour d'un axe (VA) ;
    le premier bouton (40A) a une périphérie (P) vue selon l'axe (VA) ; et
    un bord de fuite du second profil aérodynamique (38B) de la seconde aube (12B) est disposé à l'intérieur de la périphérie (P) du premier bouton (40A) lorsque la partie du second profil aérodynamique (38A) de la seconde aube (12B) est reçue dans la dépression (48A).
EP21211096.9A 2020-11-27 2021-11-29 Aube de guidage à orientation variable pour un moteur de turbine à gaz, et procédé d'exploitation des première et seconde aubes de guidage à orientation variable adjacentes et disposées dans une veine de gaz d'un moteur de turbine à gaz Active EP4006315B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US17/105,831 US11572798B2 (en) 2020-11-27 2020-11-27 Variable guide vane for gas turbine engine

Publications (2)

Publication Number Publication Date
EP4006315A1 EP4006315A1 (fr) 2022-06-01
EP4006315B1 true EP4006315B1 (fr) 2023-10-11

Family

ID=78819387

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21211096.9A Active EP4006315B1 (fr) 2020-11-27 2021-11-29 Aube de guidage à orientation variable pour un moteur de turbine à gaz, et procédé d'exploitation des première et seconde aubes de guidage à orientation variable adjacentes et disposées dans une veine de gaz d'un moteur de turbine à gaz

Country Status (5)

Country Link
US (1) US11572798B2 (fr)
EP (1) EP4006315B1 (fr)
CN (1) CN114562338A (fr)
CA (1) CA3140517A1 (fr)
PL (1) PL4006315T3 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3109959B1 (fr) * 2020-05-06 2022-04-22 Safran Helicopter Engines Compresseur de turbomachine comportant une paroi fixe pourvue d’un traitement de forme
DE102021109844A1 (de) * 2021-04-19 2022-10-20 MTU Aero Engines AG Gasturbinen-Schaufelanordnung
US11970948B2 (en) * 2022-08-09 2024-04-30 Pratt & Whitney Canada Corp. Variable vane airfoil with airfoil twist to accommodate protuberance

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2835349C2 (de) * 1978-08-11 1979-12-20 Mtu Motoren- Und Turbinen-Union Muenchen Gmbh, 8000 Muenchen Verstelleitgitter für hochbelastete Verdichter, insbesondere von Gasturbinentriebwerken
US6283705B1 (en) * 1999-02-26 2001-09-04 Allison Advanced Development Company Variable vane with winglet
US6843638B2 (en) 2002-12-10 2005-01-18 Honeywell International Inc. Vane radial mounting apparatus
FR2899637B1 (fr) * 2006-04-06 2010-10-08 Snecma Aube de stator a calage variable de turbomachine
GB2437298B (en) * 2006-04-18 2008-10-01 Rolls Royce Plc A Seal Between Rotor Blade Platforms And Stator Vane Platforms, A Rotor Blade And A Stator Vane
US7963742B2 (en) * 2006-10-31 2011-06-21 United Technologies Corporation Variable compressor stator vane having extended fillet
DE102006052003A1 (de) 2006-11-03 2008-05-08 Rolls-Royce Deutschland Ltd & Co Kg Strömungsarbeitsmaschine mit verstellbaren Statorschaufeln
US7806652B2 (en) * 2007-04-10 2010-10-05 United Technologies Corporation Turbine engine variable stator vane
GB0708459D0 (en) 2007-05-02 2007-06-06 Rolls Royce Plc A temperature controlling arrangement
DE102008058014A1 (de) * 2008-11-19 2010-05-20 Rolls-Royce Deutschland Ltd & Co Kg Mehrschaufelige Verstellstatoreinheit einer Strömungsarbeitsmaschine
FR2941018B1 (fr) * 2009-01-09 2011-02-11 Snecma Aube a calage variable pour etage de redresseur, comprenant une plateforme interne non circulaire
US8123471B2 (en) 2009-03-11 2012-02-28 General Electric Company Variable stator vane contoured button
EP2738356B1 (fr) * 2012-11-29 2019-05-01 Safran Aero Boosters SA Aube de redresseur de turbomachine, redresseur de turbomachine et procédé de montage associé
US9638212B2 (en) * 2013-12-19 2017-05-02 Pratt & Whitney Canada Corp. Compressor variable vane assembly
US9631504B2 (en) * 2014-04-02 2017-04-25 Solar Turbines Incorporated Variable guide vane extended variable fillet
DE102015205208A1 (de) * 2015-03-23 2016-09-29 Bosch Mahle Turbo Systems Gmbh & Co. Kg Ladeeinrichtung mit variabler Turbinengeometrie
DE102016207212A1 (de) 2016-04-28 2017-11-02 MTU Aero Engines AG Leitschaufelkranz für eine Strömungsmaschine

Also Published As

Publication number Publication date
CN114562338A (zh) 2022-05-31
PL4006315T3 (pl) 2024-02-26
US11572798B2 (en) 2023-02-07
EP4006315A1 (fr) 2022-06-01
CA3140517A1 (fr) 2022-05-27
US20220170380A1 (en) 2022-06-02

Similar Documents

Publication Publication Date Title
EP4006315B1 (fr) Aube de guidage à orientation variable pour un moteur de turbine à gaz, et procédé d'exploitation des première et seconde aubes de guidage à orientation variable adjacentes et disposées dans une veine de gaz d'un moteur de turbine à gaz
EP3502416B1 (fr) Aube directrice à entrée et moteur à turbine à gaz associé
EP2071135B1 (fr) Paroi d'extrémité d'aube statorique profilée en 3D pour agencement d'aube de turbine variable
US10107302B2 (en) Durable riblets for engine environment
US20090067978A1 (en) Variable area turbine vane arrangement
US11952900B2 (en) Variable guide vane sealing
CN108930557B (zh) 用于压缩机导叶前缘辅助导叶的方法及系统
US11333041B2 (en) Turbine nozzle having an angled inner band flange
EP2728196A2 (fr) Passage d'écoulement de purge
EP3196409A2 (fr) Aube de compresseur de turbine
US11274563B2 (en) Turbine rear frame for a turbine engine
US11473434B2 (en) Gas turbine engine airfoil
US11156103B2 (en) Turbine blades having damper pin slot features
US10815821B2 (en) Variable airfoil with sealed flowpath
EP3108119B1 (fr) Moteur à double flux à engrenage avec aubes mobiles de compresseur basse pression
US11933193B2 (en) Turbine engine with an airfoil having a set of dimples
US20170335712A1 (en) Variable area vane having minimized end gap losses
US10774661B2 (en) Shroud for a turbine engine
CN113389599B (zh) 具有高加速度和低叶片转动的翼型件的涡轮发动机
EP3108117B1 (fr) Profil aérodynamique de turbine à gaz
US12018838B2 (en) Cowl assembly for a gas turbine engine
US20240060430A1 (en) Gas turbine engine
US20240011407A1 (en) Turbine engine with a rotating blade having a fin
EP4144959A1 (fr) Machine à fluide pour un moteur d'aéronef et moteur d'aéronef

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221201

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F01D 5/14 20060101ALN20230403BHEP

Ipc: F04D 29/56 20060101ALI20230403BHEP

Ipc: F01D 17/16 20060101AFI20230403BHEP

INTG Intention to grant announced

Effective date: 20230424

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602021005802

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231121

Year of fee payment: 3

Ref country code: DE

Payment date: 20231019

Year of fee payment: 3

Ref country code: CZ

Payment date: 20231122

Year of fee payment: 3

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20231011

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1620421

Country of ref document: AT

Kind code of ref document: T

Effective date: 20231011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231011

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240211

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240112

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231011

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240111

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231011

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231011

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231011

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240111

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231011

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231011

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231201

Year of fee payment: 3