EP4003721A1 - Multilayer structure for transporting or storing hydrogen - Google Patents

Multilayer structure for transporting or storing hydrogen

Info

Publication number
EP4003721A1
EP4003721A1 EP20757388.2A EP20757388A EP4003721A1 EP 4003721 A1 EP4003721 A1 EP 4003721A1 EP 20757388 A EP20757388 A EP 20757388A EP 4003721 A1 EP4003721 A1 EP 4003721A1
Authority
EP
European Patent Office
Prior art keywords
polymer
layer
multilayer structure
structure according
bact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20757388.2A
Other languages
German (de)
French (fr)
Inventor
Gilles Hochstetter
Patrick Dang
Thibaut SAVART
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Arkema France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France SA filed Critical Arkema France SA
Publication of EP4003721A1 publication Critical patent/EP4003721A1/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • B29B15/10Coating or impregnating independently of the moulding or shaping step
    • B29B15/12Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/56Winding and joining, e.g. winding spirally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1429Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface
    • B29C65/1435Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • B29C66/712General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined the composition of one of the parts to be joined being different from the composition of the other part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7212Fibre-reinforced materials characterised by the composition of the fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7214Fibre-reinforced materials characterised by the length of the fibres
    • B29C66/72141Fibres of continuous length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7311Thermal properties
    • B29C66/73115Melting point
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7311Thermal properties
    • B29C66/73117Tg, i.e. glass transition temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/733General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence
    • B29C66/7332General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence at least one of the parts to be joined being coloured
    • B29C66/73321General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence at least one of the parts to be joined being coloured both parts to be joined being coloured
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/737General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined
    • B29C66/7377General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline
    • B29C66/73773General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline the to-be-joined area of at least one of the parts to be joined being semi-crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/58Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising fillers only, e.g. particles, powder, beads, flakes, spheres
    • B29C70/64Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising fillers only, e.g. particles, powder, beads, flakes, spheres the filler influencing the surface characteristics of the material, e.g. by concentrating near the surface or by incorporating in the surface by force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/88Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced
    • B29C70/887Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced locally reinforced, e.g. by fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D23/00Producing tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/02Layer formed of wires, e.g. mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/285Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/288Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyketones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/08Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/265Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from at least two different diamines or at least two different dicarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/36Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino acids, polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/16Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge constructed of plastics materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1403Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the type of electromagnetic or particle radiation
    • B29C65/1412Infrared [IR] radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/36Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction
    • B29C65/3604Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the type of elements heated by induction which remain in the joint
    • B29C65/3608Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the type of elements heated by induction which remain in the joint comprising single particles, e.g. fillers or discontinuous fibre-reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/36Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction
    • B29C65/3672Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the composition of the elements heated by induction which remain in the joint
    • B29C65/3676Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the composition of the elements heated by induction which remain in the joint being metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7311Thermal properties
    • B29C66/73117Tg, i.e. glass transition temperature
    • B29C66/73118Tg, i.e. glass transition temperature of different glass transition temperature, i.e. the glass transition temperature of one of the parts to be joined being different from the glass transition temperature of the other part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2507/00Use of elements other than metals as filler
    • B29K2507/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/0026Transparent
    • B29K2995/0027Transparent for light outside the visible spectrum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2023/00Tubular articles
    • B29L2023/005Hoses, i.e. flexible
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7154Barrels, drums, tuns, vats
    • B29L2031/7156Pressure vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • B32B2260/023Two or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0253Polyolefin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/04Cellulosic plastic fibres, e.g. rayon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/06Vegetal fibres
    • B32B2262/062Cellulose fibres, e.g. cotton
    • B32B2262/065Lignocellulosic fibres, e.g. jute, sisal, hemp, flax, bamboo
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/08Animal fibres, e.g. hair, wool, silk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/108Rockwool fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/107Ceramic
    • B32B2264/108Carbon, e.g. graphite particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/40Closed containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2597/00Tubular articles, e.g. hoses, pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/04Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the partial melting of at least one layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0604Liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0609Straps, bands or ribbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0614Single wall
    • F17C2203/0619Single wall with two layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/066Plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • F17C2203/0673Polymers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0675Synthetics with details of composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2109Moulding
    • F17C2209/2118Moulding by injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2109Moulding
    • F17C2209/2127Moulding by blowing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2154Winding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/22Assembling processes
    • F17C2209/221Welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles
    • F17C2270/0171Trucks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0184Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/45Hydrogen technologies in production processes

Definitions

  • TITLE MULTI-LAYER STRUCTURE FOR THE TRANSPORT OR STORAGE OF
  • the electric vehicle still suffers today from several problems, namely the autonomy of the battery, the use in these rare earth batteries whose resources are not inexhaustible as well as a problem of electricity production in different countries to be able to recharge the batteries.
  • Hydrogen therefore represents an alternative to the electric battery since hydrogen can be transformed into electricity by means of a fuel cell and thus power electric vehicles.
  • Hydrogen tanks generally consist of a metallic liner which must prevent the permeation of hydrogen. This first envelope must itself be protected by a second envelope (in composite materials in general) intended to withstand the internal pressure of the tank (for example, 700 bars) and resistant to possible shocks or heat sources. The valve system must also be safe.
  • a resin bladder thermosetting or thermoplastic
  • a liner also called a liner (or sealing sheath)
  • a reinforcing structure made up of fibers (glass, aramid, carbon) also called sheath or reinforcing layer which allow to work at much higher pressures while reducing the mass and avoiding the risk of explosive rupture in the event of severe external attacks. This is how 70 MPa (700bars) practically became the current standard.
  • the liner and the backing layer are made of different materials, which has the disadvantage of exhibiting a lack of adhesion between the liner and the backing layer, which poses problems of liner collapse.
  • an accumulation of gas at the interface between the liner and the composite and, on the other hand, a drop in the internal pressure of the reservoir when simultaneously, there is on the one hand an accumulation of gas at the interface between the liner and the composite and, on the other hand, a drop in the internal pressure of the reservoir.
  • the hydrogen in a low volume and therefore under high pressure, to ensure a sufficient flow rate.
  • composite pipes composed of a sealing sheath (ensuring tightness and chemical resistance), reinforced by an outer layer made of a composite material, which is produced by filament winding, from unidirectional tapes (UD) deposited in successive layers on the liner.
  • UD unidirectional tapes
  • you want to make this hose flexible it is It is interesting to wind the UD tapes with one or more angles of orientation with respect to the axis of the pipe so that the composite reinforcement can withstand the deformations of the composite pipe during its use.
  • the composite reinforcement allows the pipe to resist the internal pressure of the pipe generated by the transported fluid.
  • the sealing sheath must resist collapse, especially during production shutdowns resulting in a sudden drop in pressure. This risk of collapse exists when the sheath is not adherent to the composite reinforcement and then gas may be present between the sealing sheath and the composite reinforcement.
  • a carcass this reinforcement, often metallic, is perforated to be flexible and is therefore not waterproof to the fluid transported. It adds weight, a degree of complexity and an extra cost to the hose. Also, to reduce the weight, or even eliminate the internal carcass of composite pipes, it is necessary for the composite reinforcement to adhere to the sealing sheath, as in the case of type V storage tanks.
  • sealing sheath must be able to be extruded continuously, possibly on the support of an internal carcass, as indicated above.
  • This sealing sheath must be sufficiently chemically stable so that its mechanical characteristics and its tightness do not deteriorate in a crippling manner during the life of the tank or hose.
  • the sealing sheath In the case of a flexible pipe comprising an internal metal casing, the sealing sheath must also withstand the effect of the flow of the material constituting it, following the stresses generated on the sealing sheath by the internal pressure of the pipe. Creep occurs in the joints (space or clearance) between the metal armors (for example of self-stapled zeta geometry or T) on which the sheath rests when the pipe is pressurized by the effluent transported, creating growths of material which generate stress concentrations and are therefore privileged rupture zones of the sealing sheath: the material constituting the sealing sheath must therefore also withstand these stress concentrations.
  • Airborne has developed various flexible hoses, without internal carcass and comprising a sealing sheath adhering to the composite reinforcement, comprising:
  • the matrix of the composite reinforcement has a glass transition temperature, Tg, lower than the temperature of use of the pipe, Tu, ie, in the case of pipes based on PA1 1 or PA12 , a Tg of 50 ° C in the dry state for a pipe use temperature, Tu, of 60 to 80 ° C and in the case of PVDF, a Tg of -40 ° C, for a continuous use temperature above 100 ° C and often close to 130 ° C.
  • the rigidity (modulus) of the matrix remains high beyond its Tg until another transition is reached, the alpha transition towards 100 ° C, beyond its behavior becomes purely rubbery.
  • the matrix of the composite reinforcement is in a completely rubbery state, at the temperature Tu of use of the composite pipe.
  • Ticona in partnership with Airborne, offers a composite pipe comprising a PPS FC reinforcement and a PPS sealing sheath.
  • this structure poses the same problem for the matrix of the composite as the solution based on PVDF (that is to say Tg ⁇ Tu), but which also presents the problem of the temperature of transformation (typically 350 ° C versus 250 ° C, for PPS and PVDF, respectively).
  • PPS is suitable for the matrix of the composite but the problem of the extrusion temperature of the sealing sheath (liner) remains, as well as that of its great rigidity, which limits the flexibility of the liner. composite pipe.
  • the matrix of the composite so as to optimize its mechanical resistance at high temperature and on the other hand the material composing the sheath. sealing, so as to optimize its processing temperature, without degrading the adhesion of the composite reinforcement to the sealing sheath.
  • the possible modification of the composition of the material making up the sealing sheath which will be made to ensure miscibility or less partial with the matrix of the composite, must not result in a significant increase in the manufacturing temperature (extrusion). blowing, injection, rotational molding ...) of this liner, compared to what is practiced today with polyamides and PVDFs.
  • a multilayer structure of the present invention which is a fully bonded, "bi-material” composite pipe or tank, and composed of a high strength composite reinforcement, that is. that is to say comprising a high Tg matrix, deposited in particular by filament winding on a liner previously extruded at relatively low temperature.
  • a high strength composite reinforcement that is. that is to say comprising a high Tg matrix, deposited in particular by filament winding on a liner previously extruded at relatively low temperature.
  • the adhesion between the composite and the liner is very good.
  • the present invention therefore relates to a multilayer structure chosen from a tank, a pipe or tube, intended for transporting or storing hydrogen, comprising, from the inside to the outside, at least one sealing layer and at least one. composite reinforcement layer,
  • said innermost composite reinforcing layer being welded to said outermost adjacent waterproofing layer
  • the inventors have therefore unexpectedly found that the use of a different polymer for the matrix of the composite and the liner and in particular: a matrix of the composite reinforcement composed of a polymer having a Tg
  • Tu significantly higher than the maximum temperature of use of the tank or the pipe, Tu, (Tg> Tu + 20 ° C, in particular Tg> Tu + 30 ° C, typically) so as to remain in its vitreous domain and have great rigidity , thus allowing the composite to have high mechanical resistance,
  • the semi-crystalline polymer composing the liner exhibiting a low melting point, Tm, allowing transformation by extrusion, extrusion blow molding, rotomoulding, injection or by winding a film of pure resin, as the case may be, at a moderate temperature customary for the liner
  • Tm melting point
  • the low Tm semi-crystalline polymers known to date also exhibit a low Tg, which will, in most cases, be below the maximum temperature of use. Consequently, the polymer composing the liner will work in its rubbery domain and will therefore be very flexible and therefore very resistant to fatigue. Its semi-crystalline character will give it good resistance to chemical attack and abrasion and creep,
  • the two aforementioned polymers that making up the matrix of the composite and that making up the liner
  • the two aforementioned polymers are sufficiently miscible with one another to ensure the weldability of the composite on the liner and therefore excellent adhesion between the liner and the composite.
  • the durability of the adhesion will be guaranteed by the durability of the material constituting the mixture at the interface of the two materials, in other words in the welded joint.
  • the miscibility of the two polymers is reflected, preferably by a single Tg, or failing this, by a signature characteristic of a partially homogeneous mixture, for example by the presence of two Tg values intermediate to the Tg of the two pure polymers.
  • multilayer structure is meant for example a tank, a pipe or tube, comprising or consisting of several layers, in particular two layers.
  • the waterproofing layer or layers are the innermost layers compared to the composite reinforcing layers which are the outermost layers.
  • the sealing layer is in contact with the hydrogen even if an inner and therefore the innermost, non-sealed metallic layer, formed by a profiled metal strip wound in a helix such as a strip stapled to form said carcass, is present and on which the sealing layer or layers are coated by extrusion.
  • sealing layers When several sealing layers are present, only the innermost layer of the sealing layers is in direct contact with the hydrogen. When only a waterproofing layer and a composite reinforcing layer are present, thus leading to a multilayer structure with two layers, then these two layers are welded and therefore adhere to each other, in direct contact with each other. the other. When several waterproofing layers are present and / or several composite reinforcing layers, then the outermost layer of said waterproofing layers, and therefore opposite the layer in contact with hydrogen, is welded to the layer the innermost of said composite reinforcement, and therefore adhere to one another, in direct contact with one another.
  • the other composite reinforcement layers are also welded together.
  • the other waterproofing layers are also welded together.
  • sealing layer (s) and the thermoplastic polymer P1 i One or more sealing layers may or may be present.
  • the term “predominantly” means that said at least one polymer is present in more than 50% by weight relative to the total weight of the composition.
  • said at least one majority polymer is present at more than 60% by weight, in particular at more than 70% by weight, particularly at more than 80% by weight, more particularly greater than or equal to 90% by weight 90% by weight, relative to the total weight of the composition.
  • Said composition can also comprise impact modifiers and / or additives.
  • the additives can be selected from an antioxidant, a heat stabilizer, a UV absorber, a light stabilizer, a lubricant, an inorganic filler, a flame retardant, a nucleating agent, a plasticizer, a colorant, black carbon and carbon nanofillers.
  • said composition consists of said thermoplastic polymer P1 i predominantly, from 0 to 5% by weight of impact modifier, from 0 to 5% by weight of additives, the sum of the constituents of the composition being equal to 100% (based on a max of P2i of 90%.
  • Said at least one majority polymer of each layer may be identical or different.
  • a single majority polymer is present at least in the sealing layer welded to the composite reinforcing layer.
  • thermoplastic or thermoplastic polymer
  • Tg glass transition temperature
  • Tf melting temperature
  • Tg, Te and Tf are determined by differential scanning calorimetry (DSC) according to 11357-2: 2013 and 11357-3: 2013 respectively.
  • the number-average molecular mass Mn of said thermoplastic polymer is preferably in a range of 10,000 to 40,000, preferably 12,000 to 30,000. These Mn values may correspond to inherent viscosities greater than or equal to 0.8 as determined in the m-cresol according to ISO 307: 2007 but by changing the solvent (use of m-cresol instead of sulfuric acid and the temperature being 20 ° C).
  • thermoplastic polymers suitable in the present invention, there may be mentioned:
  • polyamides including copolymers, for example polyamide-polyethers, polyesters, and PVDF copolymers and a PVDF / PEI mixture in which PVDF is predominant.
  • semi-crystalline polymers More particularly preferred among the semi-crystalline polymers are the polyamides and their semi-crystalline copolymers.
  • the polyamide can be a homopolyamide or a copolyamide or a mixture thereof.
  • said thermoplastic polymer is a long-chain aliphatic polyamide, that is to say a polyamide having an average number of carbon atoms per nitrogen atom greater than 8.5, preferably greater than 9.
  • the long-chain aliphatic polyamide is chosen from:
  • PA11 polyamide 11
  • PA12 polyamide 12
  • PA1010 polyamide 1010
  • PA1012 polyamide 1012
  • PA1012 polyamide 1212
  • PA1012 polyamide 1212
  • thermoplastic polymer is a long-chain semi-aromatic polyamide, that is to say a polyamide having an average number of carbon atoms per nitrogen atom greater than 8.5, preferably greater than 9 and a
  • the long-chain semi-aromatic polyamide is chosen from polyamide 1 1 / 5T or 11 / 6T or 1 1 / 10T.
  • the rate of 1 1 must be chosen so that the Tm of said polymers is less than 280 ° C, preferably less than 265 ° C.
  • each waterproofing layer consists of a composition comprising the same type of polymer, in particular a polyamide.
  • said composition comprising said polymer P1 i is black in color and capable of absorbing radiation suitable for welding.
  • thermoplastic thermoplastic
  • heated blades with or without contact, ultrasound, infrared, application of vibrations, a rotation of one element to be welded against the other or even laser welding.
  • thermoplastic polymer elements in particular by laser welding requires that the two elements to be welded have different properties with respect to radiation, in particular laser: one of the elements must be transparent to the
  • radiation including laser
  • the other must absorb radiation including laser.
  • the radiation, particularly laser thus passes through the transparent element and then reaches the absorbent element, where it is converted into heat. This makes it possible to melt the contact zone between the two elements and therefore to perform the weld.
  • the two parts to be welded are black in color, therefore including the part transparent to laser radiation.
  • the welding is carried out by a system chosen from among the laser, infrared heating (IR), heating by led, heating by induction or by weight or high frequency (HF) heating.
  • IR infrared heating
  • HF high frequency
  • the composition P1 i comprises non-agglomerated or non-aggregated carbonaceous fillers.
  • the composition P1 i comprises metal particles.
  • the welding is carried out by a laser system.
  • One or more composite reinforcing layers may or may be present.
  • Each of said layers consists of a composition mainly comprising at least one thermoplastic polymer P2j, j corresponding to the number of layers present.
  • the term “predominantly” means that said at least one polymer is present in more than 50% by weight relative to the total weight of the composition.
  • said at least one major polymer is present at more than 60% by weight, in particular at more than 70% by weight, particularly at more than 80% by weight, more particularly greater than or equal to 90% by weight, relative to the weight total composition,
  • Said composition can also comprise impact modifiers and / or additives.
  • the additives can be selected from an antioxidant, a heat stabilizer, a UV absorber, a light stabilizer, a lubricant, an inorganic filler, a flame retardant, a nucleating agent, a plasticizer and a colorant.
  • said composition consists of said thermoplastic polymer P2j predominantly, from 0 to 5% by weight of impact modifier, from 0 to 5% by weight of additives, the sum of the constituents of the composition being equal to 100% (based on a max of P2j of 90%.
  • Said at least one majority polymer of each layer may be identical or different.
  • a single majority polymer is present at least in the composite reinforcing layer welded to the waterproofing layer.
  • each reinforcing layer comprises the same type of polymer, in particular a polyamide.
  • thermoplastic or thermoplastic polymer
  • Tg temperature of glass transition
  • Tf melting temperature
  • Tg, Te and Tf are determined by differential scanning calorimetry (DSC) according to standard 11357-2: 2013 and 11357-3: 2013 respectively.
  • the polymer P2j of the composition of at least one of said composite reinforcing layers is such that its Tg is greater than the maximum temperature of use (Tu) of said structure and in particular, the Tg> Tu + 20 ° C, in particular Tg> Tu + 30 ° C.
  • the polymer P2j has a Tg> Tu + 20 ° C, in particular Tg> Tu + 30 ° C, whatever the position of said reinforcing layer.
  • said reinforcing layer consisting of a composition comprising the polymer P2j having a Tg> Tu + 20 ° C, in particular Tg> Tu + 30 ° C is the layer welded to said sealing layer.
  • the polymer P2j of the composition of at least one of said composite reinforcing layers is such that its Tg is greater than the maximum temperature of use (Tu) of said structure Tg> Tu + 20 ° C and said reinforcing layer consisting of a composition comprising the polymer P2j is the layer welded to said sealing layer.
  • the polymer P2j of the composition of at least one of said composite reinforcing layers is such that its Tg is greater than the maximum temperature of use (Tu) of said structure Tg> Tu + 30 ° C and said reinforcing layer consisting of a composition comprising the polymer P2j is the layer welded to said sealing layer.
  • said reinforcing layer consisting of a composition comprising the polymer P2j has a Tg> Tu + 20 ° C, in particular Tg> Tu + 30 ° C, is the outermost reinforcing layer of the structure .
  • the number-average molecular mass Mn of said thermoplastic polymer is preferably in a range of 10,000 to 40,000, preferably 12,000 to 30,000. These Mn values may correspond to inherent viscosities greater than or equal to 0.8 as determined in the m-cresol according to the ISO 307: 2007 standard but by changing the solvent (use of m-cresol in place of sulfuric acid and the temperature being 20 ° C).
  • thermoplastic polymers suitable in the present invention, there may be mentioned:
  • polyamides in particular comprising an aromatic structure and / or
  • cycloaliphatic including copolymers, for example polyamide-polyethers, polyesters,
  • PAEK polyaryletherketones
  • polyimides in particular polyetherimides (PEI) or polyamide-imides
  • PEI polyetherimides
  • PSU polyarylsulfones
  • polyphenylsulfones in particular polyphenylsulfones
  • PES polyethersulfones
  • semi-crystalline polymers are more particularly preferred, and in particular polyamides and their semi-crystalline copolymers.
  • the nomenclature used to define polyamides is described in standard ISO 1874-1: 201 1 "Plastics - Polyamide materials (PA) for molding and extrusion - Part 1: Description", in particular on page 3 (tables 1 and 2) and is well known to those skilled in the art.
  • the polyamide can be a homopolyamide or a copolyamide or a mixture thereof.
  • the semi-crystalline polyamides are semi-aromatic polyamide, in particular a semi-aromatic polyamide of formula X / YAr, as described in EP1505099, in particular a semi-aromatic polyamide of formula A / XT in which A is chosen from a unit obtained from an amino acid, a unit obtained from a lactam and a unit corresponding to the formula (diamine in Ca). (Cb diacid), with a representing the number of carbon atoms of the diamine and b representing the number of carbon atoms of the diacid, a and b each being between 4 and 36,
  • the unit (diamine in Ca) being chosen from aliphatic diamines, linear or branched, cycloaliphatic diamines and alkylaromatic diamines and the unit (Cb diacid) being chosen from aliphatic, linear or branched diacids, cycloaliphatic diacids and aromatic diacids;
  • XT denotes a unit obtained from the polycondensation of a Cx diamine and terephthalic acid, with x representing the number of carbon atoms of the Cx diamine, x being between 5 and 36, advantageously between 9 and 18, in particular a polyamide of formula A / 5T, A / 6T, A / 9T, A / 10T or A / 1 1 T, A being as defined above, in particular a polyamide chosen from a PA MPMDT / 6T , one PA11 / 10T, one PA 5T / 10T, one PA 11 / BACT, one PA 1 1 / 6T / 10T, one PA MXDT / 10T, one PA MPMDT / 10T, one PA MPMDT / 10T, one PA
  • T corresponds to terephthalic acid
  • MXD corresponds to m-xylylenediamine
  • MPMD corresponds to methylpentamethylene diamine
  • BAC corresponds to
  • Said semi-aromatic polyamides defined above have in particular a Tg greater than or equal to 80 ° C.
  • each composite reinforcing layer consists of a composition comprising the same type of polymer, in particular a polyamide.
  • said composition comprising said polymer P2j is transparent to radiation suitable for welding.
  • Thermoplastic polymers are generally transparent for the purposes of welding, in particular laser.
  • the carbonaceous nanofillers make it possible to impart a black color to a layer of a composition comprising a thermoplastic polymer, while maintaining the transparency to laser radiation of said layer.
  • the carbonaceous nanofillers are not agglomerated or not aggregated.
  • the carbonaceous nanofillers are incorporated into the composition in an amount of 100 ppm to 500 ppm, and preferably of 100 ppm to 250 ppm.
  • the carbon nanofillers are chosen from carbon nanotubes (CNTs), carbon nanofibers, graphene, nanometric carbon black, and mixtures thereof.
  • the carbonaceous nanofillers are devoid of nanometric carbon black.
  • the welding is carried out by a system chosen from among the laser, IR heating or induction heating.
  • the welding is carried out by a laser system.
  • the laser radiation is infrared laser radiation, and preferably has a wavelength of between 700 nm and 1200 nm and preferably between 800 nm and 1100 nm.
  • Said multilayer structure therefore comprises at least one sealing layer and at least one composite reinforcing layer which are welded.
  • each polymer P1 i of each sealing layer is partially or totally miscible with each polymer P1 i of the adjacent layer (s)
  • each polymer P2j of each reinforcing layer is partially or totally miscible with each polymer P2j of the adjacent layer (s)
  • each polymer P2j is partially or totally miscible with each PU polymer when they are adjacent
  • the polymer P21 is partially or totally miscible with the polymer P11 which is adjacent to it
  • the total or partial miscibility of said polymers being defined by the difference in glass transition temperature of the two resins, in the mixture, related to the difference in glass transition temperature of the two resins, before mixing, and the miscibility being total when said difference is equal to 0, and miscibility being partial, when said difference is different from 0, an immiscibility of the polymer P2j with the polymer PU being excluded.
  • miscibility of said polymers When the miscibility of said polymers is partial said difference is said miscibility is greater than said difference is small.
  • said difference is less than 30%, preferably less than 20%, in absolute value.
  • the glass transition temperature (s) of the mixture depending on whether the miscibility is total or partial, which must be between the glass transition temperatures of said polymers before mixing and different from them, by at least 5 ° C, preferably at least 10 ° C.
  • completely miscible means that when, for example, two polymers P11 and PI2 having respectively a Tg1 i and a Tgl2 , are respectively present in two sealing layers or two adjacent reinforcing layers, then the mixture of the two polymers does not has only one Tg1112 whose value is between Tg11 and a Tg1 2.
  • This Tg11I2 value is then greater than Tg1 i by at least 5 ° C, in particular by at least 10 ° C and lower than Tgl2 by at least 5 ° C, in particular by at least 10 ° C.
  • partially miscible means that when, for example, two polymers P1 i and PI2 having respectively a Tg1 i and a Tgl2, are present
  • the mixture of the two polymers has two Tg: Tg'1 i and Tg'1 2 , with Tg1 i ⁇ Tg'1 i ⁇ Tg'1 2 ⁇ Tg1 2 .
  • Tg'1 i and Tg ' ⁇ values are then greater than Tg1 i by at least 5 ° C, in particular by at least 10 ° C and below Tgl2 by at least 5 ° C, in particular by minus 10 ° C.
  • Tg, Tg1 i and Tgl2 An immiscibility of two polymers results in the presence of two Tg, Tg1 i and Tgl2 , in the mixture of the two polymers which correspond to the respective Tg Tg1 i and Tgl2 of the pure polymers taken separately.
  • said welded sealing and reinforcing layers consist of compositions which respectively comprise different polymers.
  • said different polymers can be of the same type.
  • one of the two welded composite waterproofing and reinforcing layers consists of a composition comprising an aliphatic polyamide
  • the other layer consists of a composition comprising a polyamide which is not aliphatic and which is for example a semi-aromatic polyamide so as to have a high tg polymer as the matrix of the composite reinforcement.
  • Said multilayer structure can include up to 10 waterproofing layers and up to
  • said multilayer structure is not necessarily symmetrical and that it can therefore include more sealing layers than composite layers or vice versa.
  • said multilayer structure comprises one, two, three, four, five, six, seven, eight, nine or ten sealing layers and one, two, three, four, five, six, seven, eight, nine or ten layers composite reinforcement.
  • said multilayer structure comprises one, two, three, four or five sealing layers and one, two, three, four or five composite reinforcement layers.
  • said multilayer structure comprises one, two or three sealing layers and one two or three composite reinforcement layers.
  • they consist of compositions which comprise
  • polyamides corresponding to polyamides P1 i and P2j respectively.
  • said multilayer structure comprises a single waterproofing layer and several reinforcing layers, said waterproofing layer being welded to said adjacent reinforcing layer.
  • said multilayer structure comprises a single reinforcing layer and a plurality of sealing layers, said reinforcing layer being welded to said adjacent sealing layer.
  • said multilayer structure comprises a single sealing layer and a single composite reinforcing layer which are welded. All combinations of these two layers are therefore within the scope of the invention, provided that at least said innermost composite reinforcing layer is welded to said outermost adjacent waterproofing layer, the other layers being welded. between them or not.
  • each sealing layer consists of a composition comprising the same type of polymer P1 i, in particular a polyamide.
  • polystyrene resin By the same type of polymer is meant for example a polyamide which can be an identical or different polyamide depending on the layers.
  • said polymer P1 i is a polyamide and said polymer P2j is a polyamide.
  • the polyamide P1 i is identical for all the waterproofing layers.
  • said polymer P1 i is a long-chain aliphatic polyamide, in particular PA1010, PA 1012, PA 1212, PA11, PA12, in particular PA 11 or PA12.
  • the polyamide P1 i is a long-chain semi-aromatic polyamide, in particular PA 11 / 5T, PA 1 1 / 6T or PA 11 / 10T.
  • the level of 11 must be chosen judiciously so that the Tm of said polymers is less than 280 ° C, preferably 265 ° C.
  • each reinforcing layer consists of a composition comprising the same type of polymer P2j, in particular a polyamide.
  • the P2j polyamide is identical for all the reinforcing layers.
  • said polymer P2j is a semi-aromatic polyamide, in particular chosen from a PA MPMDT / 6T, a PA 1 1/1 OT, a PA 1 1 / BACT, a PA 5T / 10T, a PA 11 / 6T / 10T , one PA MXDT / 10T, one PA MPMDT / 10T, one PA BACT / 10T, one PA BACT / 6T,
  • PA BACT / 10T / 6T one PA 11 / BACT / 6T, PA 11 / MPMDT / 6T, PA 11 / MPMDT / 10T, PA 1 1 / BACT / 10T, one PA 1 1 / MXDT / 10T and one PA 5T / 10T.
  • each sealing layer consists of a composition comprising the same type of polymer P1 i, in particular a polyamide
  • each reinforcing layer consists of a composition comprising the same type of polymer P2j, in particular a polyamide, provided that the polyamides P1 i and P2j are different, that is to say that if the sealing layer (s) is or consist (s) of compositions comprising a long-chain aliphatic polyamide then the or the waterproofing layers are or consist of compositions comprising a semi-aromatic polyamide.
  • said polymer P1 i is a long-chain aliphatic polyamide, in particular PA1010, PA 1012, PA 1212, PA11, PA12, in particular PA 11 or PA12 and said polymer P2j is a semi-aromatic polyamide, in particular chosen from a PA MPMDT / 6T, one PA PA11 / 10T, one PA 11 / BACT, one PA 5T / 10T, one PA 11 / 6T / 10T, one PA MXDT / 10T, one PA MPMDT / 10T, one PA BACT / 10T, one PA BACT / 6T, PA BACT / 10T / 6T, one PA 11 / BACT / 6T, PA 1 1 / MPMDT / 6T, PA 11 / MPMDT / 10T, PA 11 / BACT / 10T, one PA 1 1 / MXDT / 10T and a 5T / 10T PA.
  • said multilayer structure consists of a single reinforcing layer and a single sealing layer in which said polymer P1 i is a long-chain aliphatic polyamide, in particular PA1010, PA 1012, PA 1212, PA1 1, PA12, in particular PA 11 or PA12 and said polymer P2j is a semi-aromatic polyamide, in particular chosen from a PA MPMDT / 6T, a PA PA1 1 / 10T, a PA 11 / BACT, a PA 1 1 / 6T / 10T, one PA MXDT / 10T, one PA MPMDT / 10T, one PA BACT / 10T, one PA BACT / 6T, PA BACT / 10T / 6T, one PA 11 / BACT / 6T, PA 1 1 / MPMDT / 6T, PA
  • said multilayer structure is a reservoir.
  • said multilayer structure is a flexible pipe.
  • the maximum temperature of use Tu of said multilayer structure is greater than 50 ° C, in particular greater than 100 ° C.
  • said multilayer structure defined above exhibits resistance to decompression and suitability for drying.
  • the hydrogen in the case of the storage or transport of hydrogen, the hydrogen can diffuse through the sealing layer (s), from the inside of the tube or the tank towards the interface between the last layer of 'waterproofing and the first layer of composite reinforcement, due to the permeability of the sealing layer or layers to transported or stored hydrogen.
  • the accumulation of hydrogen at this location can generate a pressure which will lead to buckling (collapse) of the sealing layer (s), when the pressure inside the tube or the tank will be lower than the pressure at the interface with the composite reinforcement, which may occur in particular when the pumping or transport of hydrogen is stopped during a production shutdown which leads to a pressure drop of several hundred bars at atmospheric pressure or when the tank of storage will be empty.
  • said multilayer structure defined above further comprises a metal carcass located inside the sealing layer.
  • This metallic carcass is not waterproof and corresponds to the innermost layer.
  • said multilayer structure further comprises at least one outer layer, in particular metallic, said layer being the outermost layer of said multilayer structure.
  • Said outer layer is a second reinforcing layer but metallic and not composite.
  • a polymeric protective layer (outermost layer) which notably has an anti-abrasion role or which makes it possible to put an inscription on the structure.
  • constituent fibers of said fibrous material they are in particular fibers of mineral, organic or plant origin.
  • said fibrous material can be sized or not sized.
  • Said fibrous material can therefore comprise up to 0.1% by weight of an organic material (thermosetting or thermoplastic resin type) called sizing.
  • fibers of mineral origin mention may be made of carbon fibers, glass fibers, basalt or basalt-based fibers, silica fibers, or silicon carbide fibers, for example.
  • fibers of organic origin mention may be made of fibers based on a thermoplastic or thermosetting polymer, such as semi-aromatic polyamide fibers, aramid fibers or polyolefin fibers, for example.
  • they are based on an amorphous thermoplastic polymer and have a glass transition temperature Tg greater than the Tg of the polymer or mixture of thermoplastic polymer of constitution of the prepregnation matrix when the latter is amorphous, or greater than the Tm of the polymer or mixture of thermoplastic polymer of constitution of the prepregnation matrix when the latter is semi-crystalline.
  • they are based on a semi-crystalline thermoplastic polymer and have a melting point Tm greater than the Tg of the polymer or mixture of thermoplastic polymer constituting the pre-impregnation matrix when the latter is amorphous, or greater than the Tm of the polymer or mixture of thermoplastic polymer constituting the prepreg matrix when the latter is semi-crystalline.
  • the organic fibers constituting the fibrous material during impregnation with the thermoplastic matrix of the final composite.
  • the fibers of plant origin mention may be made of natural fibers based on flax, hemp, lignin, bamboo, silk, especially spider silk, sisal, and other cellulose fibers, in particular viscose. These fibers of plant origin can be used pure, treated or else coated with a coating layer, with a view to facilitating the adhesion and impregnation of the thermoplastic polymer matrix.
  • the fibrous material can also be a fabric, braided or woven with fibers.
  • organic fibers can be mixed with mineral fibers in order to be pre-impregnated with thermoplastic polymer powder and to form the pre-impregnated fibrous material.
  • the rovings of organic fibers can have several grammages. They can also have several geometries.
  • the fibers constituting the fibrous material may also be in the form of a mixture of these reinforcing fibers of different geometries. Fibers are continuous fibers.
  • the fibrous material consists of continuous carbon or glass fibers or their mixture, in particular carbon fibers. It is used as a wick or several wicks.
  • the present invention relates to a method for manufacturing a multilayer structure as defined above, characterized in that it comprises a step of welding the reinforcing layer as defined above to the layer of sealing as defined above.
  • the soldering step is carried out by a system chosen from among the laser, infrared heating (IR), heating by LED, heating by induction or by layers or high frequency heating (HF).
  • IR infrared heating
  • HF high frequency heating
  • said method comprises a step of extruding said sealing layer on a metal carcass and a step of welding the reinforcing layer on the sealing layer.
  • the present invention relates to the use of a multilayer structure chosen from a tank or pipe or tube comprising, from the inside to the outside, at least one sealing layer as defined above and at least one composite reinforcing layer as defined above,
  • said innermost composite reinforcing layer being welded to said outermost adjacent waterproofing layer
  • the reservoirs are obtained by rotational molding of the liner at a temperature suited to the nature of the thermoplastic resin used, but in all cases below 280 ° C.
  • a wet filament winding process is then used which consists in winding fibers around the liner, which fibers are pre-impregnated in a bath of liquid epoxy.
  • the reservoir is then polymerized in an oven for 2 hours.
  • thermoplastic resin (tape).
  • This tape is deposited by filament winding using a robot comprising a 1500W power laser heater at a speed of 12m / min and there is no polymerization step.
  • Type IV hydrogen storage tank composed of an epoxy composite reinforcement (Tg 80 ° C) carbon fibers T700SC31 E (produced by Toray) and a layer sealing in PA6. : no miscibility between the 2 resins (see table 1) which prevents any welding between the fiber reinforcement and the waterproofing layer.
  • Type IV hydrogen storage tank composed of an epoxy composite reinforcement (Tg 80 ° C) T700SC31 E carbon fibers (produced by Toray) and a layer
  • Example 3 Hydrogen storage tank of type between IV and V, composed of a reinforcement in BACT / 10T carbon fiber T700SC31 E composite (produced by Toray) and a sealing layer in PA6: good partial miscibility between the 2 resins (see table I) which allows a good weld between the fibrous reinforcement and the waterproofing layer.
  • the BACT / 10T type composition chosen has a melting point, Tm, of 283 ° C, a crystallization temperature, Te, of 250 ° C and a glass transition temperature of 164 ° C.
  • Tg, Te and Tf are determined by differential scanning calorimetry (DSC) according to 11357-2: 2013 and 11357-3: 2013 respectively.
  • Example 4 Hydrogen storage tank of type between IV and V, composed of a reinforcement in BACT / 10T carbon fiber composite T700SC31 E (produced by Toray) and a sealing layer in PA66: good partial miscibility between the 2 resins (see table I) which allows a good weld between the fibrous reinforcement and the waterproofing layer.
  • the BACT / 10T type composition chosen has a melting point, Tm, of 283 ° C, a crystallization temperature, Te, of 250 ° C and a glass transition temperature of 164 ° C.
  • Tg, Te and Tf are determined by differential scanning calorimetry (DSC) according to 11357-2: 2013 and 11357-3: 2013 respectively.
  • Example 5 Hydrogen storage tank of type between IV and V, composed of a reinforcement in composite 1 1 / BACT / 10T carbon fibers CT24-5.0 / 270-T140 (produced by SGL Carbon) and a layer sealing in PA1 1: good partial miscibility between the 2 resins (see Table 1) which leads to good welding between the fiber reinforcement and the sealing layer.
  • the composition of type 11 / BACT / 10T chosen exhibits a melting point, Tm, of 280 ° C, a crystallization temperature, Te, of 220 ° C and a glass transition temperature of 160 ° C.
  • the Tg, Te and Tf are determined by differential scanning calorimetry (DSC) according to standard 11357-2: 2013 and 11357-3: 2013 respectively.
  • Example 6 Hydrogen storage tank of type between IV and V, composed of a reinforcement in composite 1 1 / BACT / 10T carbon fibers CT24-5.0 / 270-T140 (produced by SGL Carbon) and a waterproofing layer in PA1 1/1 OT: good partial miscibility between the 2 resins (see table 1) which leads to a good weld between the fiber reinforcement and the waterproofing layer.
  • the type 1 1 / BACT / 10T composition chosen has a melting point, Tm, of 280 ° C, a crystallization temperature, Te, of 220 ° C and a glass transition temperature of 160 ° C.
  • Tm melting point
  • Te crystallization temperature
  • Tg melting point
  • Te crystallization temperature
  • Tf glass transition temperature
  • composition of 1 1/1 OT used for the liner leads to a Tm of 255 ° C.
  • Example 7 Hydrogen storage tank of type between IV and V, composed of a reinforcement in composite 1 1 / BACT carbon fibers CT24-5.0 / 270-T140 (produced by SGL Carbon) and a layer of waterproofing in PA1 1: good partial miscibility between the 2 resins (see Table 1) which leads to good welding between the fibrous reinforcement and the waterproofing layer.
  • the type 1 1 / BACT composition chosen has a melting point, Tm, of 278 ° C, a crystallization temperature, Te, of 210 ° C and a glass transition temperature of 157 ° C.
  • the Tg, Te and Tf are determined by differential scanning calorimetry (DSC) according to standard 11357-2: 2013 and 11357-3: 2013 respectively.
  • Example 8 Hydrogen storage tank of type between IV and V, composed of a reinforcement in composite 1 1 / BACT carbon fibers CT24-5.0 / 270-T140 (produced by SGL Carbon) and a layer of waterproofing in PA1 1 / 10T: good partial miscibility between the 2 resins (see table 1) which leads to good welding between the fiber reinforcement and the waterproofing layer.
  • the type 1 1 / BACT composition chosen has a melting point, Tm, of 278 ° C, a crystallization temperature, Te, of 210 ° C and a glass transition temperature of 157 ° C.
  • Tm melting point
  • Te crystallization temperature
  • Tg, Te and Tf are determined by differential scanning calorimetry (DSC) according to standard 11357-2: 2013 and 11357-3: 2013 respectively.
  • composition of 1 1 / 10T used for the liner leads to a Tm of 255 ° C.
  • the mixture is injected into a mold to make a test specimen which will be characterized as DMA.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Composite Materials (AREA)
  • Thermal Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Laminated Bodies (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

The present invention relates to a multilayer structure selected from a reservoir, a pipe or a tube, for transporting, distributing or storing hydrogen, comprising, from the inside to the outside, at least one sealing layer and at least one composite reinforcing layer, said innermost composite reinforcing layer being welded to said outermost adjacent sealing layer, said sealing layers consisting of a composition predominantly comprising at least one semi-crystalline thermoplastic polymer P1i (i = 1 to n, n being the number of sealing layers), the Tf of which, as measured according to ISO 11357-3: 2013, is less than 280 °C, in particular less than 265 °C, wherein the at least one thermoplastic polymer of each sealing layer may be the same or different, and at least one of said composite reinforcing layers consisting of a fibrous material in the form of continuous fibers impregnated with a composition predominantly comprising at least one thermoplastic polymer P2j, (j = 1 to m, m being the number of reinforcing layers), which is in particular semi-crystalline, said thermoplastic polymer P2j having a Tg, as measured according to ISO 11357-3: 2013, greater than the maximum temperature of use of said structure (Tu), with Tg ≥ Tu + 20 °C, Tu being greater than 50 °C, in particular greater than 100 °C.

Description

DESCRIPTION DESCRIPTION
TITRE : STRUCTURE MULTICOUCHE POUR LE TRANSPORT OU LE STOCKAGE DE TITLE: MULTI-LAYER STRUCTURE FOR THE TRANSPORT OR STORAGE OF
L’HYDROGENE HYDROGEN
[Domaine technique] [Technical area]
La présente demande de brevet concerne des structures multicouches composites pour le transport, la distribution ou le stockage de l’hydrogène et leur procédé de fabrication. [Technique antérieure] The present patent application relates to composite multilayer structures for the transport, distribution or storage of hydrogen and their manufacturing process. [Prior art]
L’un des buts recherchés dans le domaine automobile est de proposer des véhicules de moins en moins polluants. Ainsi, les véhicules électriques ou hybrides comportant une batterie visent à remplacer progressivement les véhicules thermiques, tels que les véhicules à essence ou bien à gasoil. Or, il s’avère que la batterie est un constituant du véhicule relativement complexe. Selon l’emplacement de la batterie dans le véhicule, il peut être nécessaire de la protéger des chocs et de l’environnement extérieur, qui peut être à des températures extrêmes et à une humidité variable. Il est également nécessaire d’éviter tout risque de flammes. One of the goals sought in the automotive field is to offer vehicles that pollute less and less. Thus, electric or hybrid vehicles comprising a battery aim to gradually replace thermal vehicles, such as gasoline or diesel vehicles. However, it turns out that the battery is a relatively complex component of the vehicle. Depending on the location of the battery in the vehicle, it may be necessary to protect it from impact and the external environment, which can be extreme temperatures and varying humidity. It is also necessary to avoid any risk of flames.
De plus, il est important que sa température de fonctionnement n’excède pas 55°C pour ne pas détériorer les cellules de la batterie et préserver sa durée de vie. A l’inverse, par exemple en hiver, il peut être nécessaire d’élever la température de la batterie de manière à optimiser son fonctionnement. In addition, it is important that its operating temperature does not exceed 55 ° C so as not to damage the battery cells and preserve its life. Conversely, for example in winter, it may be necessary to raise the temperature of the battery in order to optimize its operation.
Par ailleurs, le véhicule électrique souffre encore aujourd’hui de plusieurs problèmes à savoir l’autonomie de la batterie, l’utilisation dans ces batteries de terre rares dont les ressources ne sont pas inépuisables ainsi qu’un problème de production d’électricité dans les différents pays pour pouvoir recharger les batteries. In addition, the electric vehicle still suffers today from several problems, namely the autonomy of the battery, the use in these rare earth batteries whose resources are not inexhaustible as well as a problem of electricity production in different countries to be able to recharge the batteries.
L’hydrogène représente donc une alternative à la batterie électrique puisque l’hydrogène peut être transformé en électricité au moyen d’une pile à combustible et alimenter ainsi les véhicules électriques. Hydrogen therefore represents an alternative to the electric battery since hydrogen can be transformed into electricity by means of a fuel cell and thus power electric vehicles.
Néanmoins, le stockage de l’hydrogène est techniquement difficile et coûteux du fait de sa très faible masse molaire et de sa très basse température de liquéfaction, tout However, the storage of hydrogen is technically difficult and expensive because of its very low molar mass and its very low liquefaction temperature, all
particulièrement quand il s’agit d’un stockage mobile. Or le stockage pour être efficace doit s’effectuer sous faible volume, ce qui impose de maintenir l’hydrogène sous forte pression, compte tenu des températures d’utilisation des véhicules. C’est le cas, en particulier, des véhicules routiers hybrides à pile à combustible pour lesquels on vise une autonomie de l’ordre de 600 à 700 km, voire moins pour des usages essentiellement urbains en complément d'une base électrique sur batteries. especially when it comes to mobile storage. However, to be efficient, storage must be carried out in a low volume, which means that the hydrogen must be kept under high pressure, given the vehicle operating temperatures. This is the case, in particular, with fuel cell hybrid road vehicles for which the aim is a range of around 600 to 700 km, or even less for mainly urban uses in addition to an electric base on batteries.
Les réservoirs à hydrogène sont généralement constitués d'une enveloppe (liner) métallique qui doit empêcher la perméation de l'hydrogène. Cette première enveloppe doit elle-même être protégée par une seconde enveloppe (en matériaux composites en général) destinée à supporter la pression interne du réservoir (par exemple, 700 bars) et résistant à d'éventuels chocs ou sources de chaleur. Le système de vanne doit également être sûr. Hydrogen tanks generally consist of a metallic liner which must prevent the permeation of hydrogen. This first envelope must itself be protected by a second envelope (in composite materials in general) intended to withstand the internal pressure of the tank (for example, 700 bars) and resistant to possible shocks or heat sources. The valve system must also be safe.
Selon le Memento sur l’hydrogène de l’association française pour l’hydrogène et la pile à combustible (AFHYPAC) Fiche 4.2, révision Décembre 2016, le stockage et la distribution d’hydrogène sous pression sont une pratique standard, depuis de très nombreuses années, avec des bouteilles ou assemblages de bouteilles cylindriques, en acier, gonflées à 20 ou 25 MPa (types I et II). L’inconvénient de ce mode de stockage est According to the Memento sur l'hydrogen from the French association for hydrogen and the fuel cell (AFHYPAC) Sheet 4.2, revision December 2016, the storage and distribution of hydrogen under pressure is a standard practice, for many years, with cylinders or assemblies of cylindrical cylinders, in steel, inflated to 20 or 25 MPa (types I and II). The downside of this storage method is
l’encombrement - seulement 14 kg/m3 à 20 MPa et à température ordinaire (21 °C) contre 100 kg/m3 pour le méthane - et surtout le poids qui résulte de l’utilisation d’aciers à bas niveaux de contraintes pour éviter les problèmes de fragilisation par l’hydrogène. La situation a radicalement changé avec l'apparition de la technologie des réservoirs composites dits de type III ou IV. Leur principe de base est de séparer les deux fonctions essentielles que sont l'étanchéité et la tenue mécanique pour les gérer l'une the bulk - only 14 kg / m3 at 20 MPa and at ordinary temperature (21 ° C) against 100 kg / m 3 for methane - and above all the weight resulting from the use of steels with low stress levels for avoid hydrogen embrittlement problems. The situation has radically changed with the emergence of so-called type III or IV composite tank technology. Their basic principle is to separate the two essential functions of sealing and mechanical strength in order to manage them one
indépendamment de l'autre. Dans ce type de réservoir on associe une vessie en résine (thermodurcissable ou thermoplastique) encore dénommée liner (ou gaine d’étanchéité) à une structure de renforcement constituée de fibres (verre, aramide, carbone) encore dénommée gaine ou couche de renfort qui permettent de travailler à des pressions beaucoup plus élevées tout en réduisant la masse et en évitant les risques de rupture explosive en cas d’agressions externes sévères. C’est ainsi que 70 MPa (700bars) est pratiquement devenu le standard actuel. independently of the other. In this type of tank, a resin bladder (thermosetting or thermoplastic), also called a liner (or sealing sheath), is associated with a reinforcing structure made up of fibers (glass, aramid, carbon) also called sheath or reinforcing layer which allow to work at much higher pressures while reducing the mass and avoiding the risk of explosive rupture in the event of severe external attacks. This is how 70 MPa (700bars) practically became the current standard.
Dans les réservoirs de type IV, le liner et la couche de renfort sont constitués de matériaux différents, ce qui présente le désavantage de présenter un manque d’adhésion entre le liner et la couche de renfort, ce qui pose des problèmes de collapse du liner lorsque simultanément, il y a d’une part accumulation de gaz à l’interface entre le liner et le composite et d’autre part, une baisse de la pression interne du réservoir. In type IV tanks, the liner and the backing layer are made of different materials, which has the disadvantage of exhibiting a lack of adhesion between the liner and the backing layer, which poses problems of liner collapse. when simultaneously, there is on the one hand an accumulation of gas at the interface between the liner and the composite and, on the other hand, a drop in the internal pressure of the reservoir.
Ce problème a donné lieu au développement des réservoirs de type V, qui sont basés sur l’utilisation du même polymère pour le liner et pour la matrice du composite de façon à garantir une adhésion excellente et durable entre le liner et le composite. This problem has given rise to the development of type V reservoirs, which are based on using the same polymer for the liner and for the matrix of the composite in order to ensure excellent and lasting adhesion between the liner and the composite.
Dans le cas du transport ou de la distribution de l’hydrogène au moyen de tuyaux rigides ou flexibles, il est également préférable que l’hydrogène soit sous un faible volume et donc sous forte pression, pour assurer un débit suffisant. Ainsi, comme pour le stockage, le transport ou la distribution de l’hydrogène, il est intéressant d’utiliser des tuyaux (pipes) composites composés d’une gaine d’étanchéité (assurant l’étanchéité et la résistance chimique), renforcé par une couche externe faite en matériau composite, lequel est fabriqué par enroulement filamentaire, à partir de tapes unidirectionnelles (UD) déposés par couches successives sur le liner. Lorsque l’on souhaite rendre ce tuyau flexible, il est intéressant d’enrouler la tapes UD avec un ou plusieurs angles d’orientation par rapport à l’axe du pipe de façon à ce que le renfort composite puisse supporter les déformations du tuyau composite lors de son utilisation. Le renfort composite permet au pipe de résister à la pression interne du tuyau générée par le fluide transporté. In the case of the transport or distribution of hydrogen by means of rigid or flexible pipes, it is also preferable for the hydrogen to be in a low volume and therefore under high pressure, to ensure a sufficient flow rate. Thus, as for the storage, transport or distribution of hydrogen, it is interesting to use composite pipes (pipes) composed of a sealing sheath (ensuring tightness and chemical resistance), reinforced by an outer layer made of a composite material, which is produced by filament winding, from unidirectional tapes (UD) deposited in successive layers on the liner. When you want to make this hose flexible, it is It is interesting to wind the UD tapes with one or more angles of orientation with respect to the axis of the pipe so that the composite reinforcement can withstand the deformations of the composite pipe during its use. The composite reinforcement allows the pipe to resist the internal pressure of the pipe generated by the transported fluid.
Comme pour les réservoirs de stockage, il est nécessaire que la gaine d’étanchéité résiste au collapse, notamment lors des arrêts de production entraînant une chute brutale de la pression. Ce risque de collapse existe lorsque la gaine n’est pas adhérente au renfort composite et qu’alors, du gaz peut être présent entre la gaine d’étanchéité et le renfort composite. Pour éviter ce phénomène, une solution consiste à mettre un renfort interne à la gaine de pression appelé carcasse : ce renfort souvent métallique, est ajourée pour être flexible et n’est donc pas étanche au fluide transporté. Il ajoute du poids, un degré de complexité et un surcoût au flexible. Aussi, pour réduire le poids, voire supprimer la carcasse interne des tuyaux composites, il est nécessaire que le renfort composite adhère à la gaine d’étanchéité, comme dans le cas des réservoirs de stockage de type V. As with storage tanks, the sealing sheath must resist collapse, especially during production shutdowns resulting in a sudden drop in pressure. This risk of collapse exists when the sheath is not adherent to the composite reinforcement and then gas may be present between the sealing sheath and the composite reinforcement. To avoid this phenomenon, one solution is to put an internal reinforcement in the pressure sheath called a carcass: this reinforcement, often metallic, is perforated to be flexible and is therefore not waterproof to the fluid transported. It adds weight, a degree of complexity and an extra cost to the hose. Also, to reduce the weight, or even eliminate the internal carcass of composite pipes, it is necessary for the composite reinforcement to adhere to the sealing sheath, as in the case of type V storage tanks.
Par ailleurs, la gaine d’étanchéité doit pouvoir être extrudée en continu, éventuellement sur le support d’une carcasse interne, comme indiqué ci-dessus. Cette gaine d’étanchéité doit être suffisamment stable chimiquement pour que ses caractéristiques mécaniques et son étanchéité ne se dégradent pas de manière rédhibitoire pendant la durée de vie du réservoir ou flexible. Furthermore, the sealing sheath must be able to be extruded continuously, possibly on the support of an internal carcass, as indicated above. This sealing sheath must be sufficiently chemically stable so that its mechanical characteristics and its tightness do not deteriorate in a crippling manner during the life of the tank or hose.
Dans le cas d’un tuyau flexible comportant une carcasse métallique interne, la gaine d’étanchéité doit également résister à l’effet du fluage du matériau la constituant, consécutif aux contraintes générées sur la gaine d’étanchéité par la pression interne du tuyau. Le fluage se produit dans les joints (espace ou jeu) entre les armures métalliques (par exemple de géométrie zêta auto agrafé ou T) sur lesquelles la gaine s'appuie lorsque la conduite est pressurisée par l'effluent transporté, créant des excroissances de matière qui génèrent des concentrations de contrainte et sont donc des zones de rupture privilégiées de la gaine d’étanchéité : le matériau constituant la gaine d’étanchéité doit donc également supporter ces concentrations de contraintes. In the case of a flexible pipe comprising an internal metal casing, the sealing sheath must also withstand the effect of the flow of the material constituting it, following the stresses generated on the sealing sheath by the internal pressure of the pipe. Creep occurs in the joints (space or clearance) between the metal armors (for example of self-stapled zeta geometry or T) on which the sheath rests when the pipe is pressurized by the effluent transported, creating growths of material which generate stress concentrations and are therefore privileged rupture zones of the sealing sheath: the material constituting the sealing sheath must therefore also withstand these stress concentrations.
Par exemple, Airborne a développé différent tuyaux flexibles, sans carcasse interne et comportant une gaine d’étanchéité adhérente au renfort composite, comprenant : For example, Airborne has developed various flexible hoses, without internal carcass and comprising a sealing sheath adhering to the composite reinforcement, comprising:
un liner PA 1 1 avec un composite PA11 FC (JIP terminé en 2011 ) ou un liner PA12 avec composite PA12 FC ou encore un liner PVDF avec un composite PVDF FC. Cependant, toutes ces structures ont l’inconvénient que la matrice du renfort composite présente une température de transition vitreuse, Tg, inférieure à la température d’utilisation du pipe, Tu, soit, dans le cas des tuyaux à base de PA1 1 ou PA12, une Tg de 50°C à l’état sec pour une température d’utilisation du pipe, Tu, de 60 à 80°C et dans le cas du PVDF, une Tg de -40°C, pour une température d’utilisation en continue au-delà de 100°C et souvent proche de 130°C. Dans le cas particulier du PVDF, la rigidité (module) de la matrice reste élevée au-delà de sa Tg jusqu’à l’atteinte d’une autre transition, la transition alpha vers 100°C, au-delà son comportement devient purement caoutchoutique. Ainsi, dans tous les cas industriels et commerciaux de tuyau composite à matrice TP que l’on vient de citer, la matrice du renfort composite est dans un état complètement caoutchoutique, à la température Tu d’utilisation du tuyau composite. a PA 11 liner with a PA11 FC composite (JIP completed in 2011) or a PA12 liner with PA12 FC composite or a PVDF liner with a PVDF FC composite. However, all these structures have the drawback that the matrix of the composite reinforcement has a glass transition temperature, Tg, lower than the temperature of use of the pipe, Tu, ie, in the case of pipes based on PA1 1 or PA12 , a Tg of 50 ° C in the dry state for a pipe use temperature, Tu, of 60 to 80 ° C and in the case of PVDF, a Tg of -40 ° C, for a continuous use temperature above 100 ° C and often close to 130 ° C. In the particular case of PVDF, the rigidity (modulus) of the matrix remains high beyond its Tg until another transition is reached, the alpha transition towards 100 ° C, beyond its behavior becomes purely rubbery. Thus, in all the industrial and commercial cases of composite pipe with a TP matrix that we have just mentioned, the matrix of the composite reinforcement is in a completely rubbery state, at the temperature Tu of use of the composite pipe.
Pour remédier à ce problème et disposer d’un renfort composite dont la matrice présente une Tg supérieure à la température maximum d’utilisation, de façon à ne pas être dans un état caoutchoutique à la température d’utilisation, en l’occurrence 130°C, Kutting & Total puis Vitrex et Magma, ont développé une solution composée d’une gaine d’étanchéité (liner) en PEEK renforcé par un composite à matrice PEEK, également. La Tg du PEEK vaut 140°C et répond donc à l’exigence d’une grande rigidité grâce au fait que cette Tg est supérieure à la température maximum d’utilisation. L’inconvénient est que, par voie de conséquence, la gaine d’étanchéité (liner) est également très rigide, ce qui peut limiter sa tenue en fatigue et ce qui est un inconvénient majeur pour la réalisation de tuyaux flexibles. En outre, la température de mise en oeuvre de ce type de gaine d’étanchéité est très élevée (typiquement 380-400°C) et dans le cas du procédé usuel de transformation qui est l’extrusion de tubes, cela pose de grosses difficultés en termes d’outillage et de maîtrise du procédé. To remedy this problem and have a composite reinforcement whose matrix has a Tg greater than the maximum temperature of use, so as not to be in a rubbery state at the temperature of use, in this case 130 ° C, Kutting & Total then Vitrex and Magma, have developed a solution composed of a PEEK liner reinforced with a PEEK matrix composite, too. The Tg of PEEK is 140 ° C and therefore meets the requirement for high rigidity thanks to the fact that this Tg is greater than the maximum temperature of use. The disadvantage is that, as a consequence, the sealing sheath (liner) is also very rigid, which can limit its resistance to fatigue and which is a major drawback for the production of flexible pipes. In addition, the temperature for using this type of sealing sheath is very high (typically 380-400 ° C) and in the case of the usual transformation process which is the extrusion of tubes, this poses great difficulties. in terms of tools and process control.
Par ailleurs, Ticona (Celanese) en partenarait avec Airborne, propose un tuyau composite comportant un renfort PPS FC et une gaine d’étanchéité en PPS. In addition, Ticona (Celanese) in partnership with Airborne, offers a composite pipe comprising a PPS FC reinforcement and a PPS sealing sheath.
Pour les Tu > 90°C, cette structure pose le même problème pour la matrice du composite que la solution à base de PVDF (c’est-à-dire Tg < Tu ), mais qui présente de plus le problème de la température de transformation (typiquement 350°C contre 250°C, pour le PPS et le PVDF, respectivement). For Tu> 90 ° C, this structure poses the same problem for the matrix of the composite as the solution based on PVDF (that is to say Tg <Tu), but which also presents the problem of the temperature of transformation (typically 350 ° C versus 250 ° C, for PPS and PVDF, respectively).
Pour les Tu <90°C, le PPS convient pour la matrice du composite mais le problème de la température d’extrusion de la gaine d’étanchéité (liner) demeure, ainsi que la celui de sa grande rigidité, qui limite la flexibilité du tuyau composite. For Tu <90 ° C, PPS is suitable for the matrix of the composite but the problem of the extrusion temperature of the sealing sheath (liner) remains, as well as that of its great rigidity, which limits the flexibility of the liner. composite pipe.
Le cas des réservoirs à hydrogène pose un problème technique similaire car son remplissage rapide avec de l’hydrogène provoque une augmentation de la température à du réservoir en raison de la compression de l’hydrogène, notamment à environ 1 10°C, ce qui nécessite un surdimensionnement du composite, dans le cas ou la matrice du composité présente une Tg inférieure à cette température. The case of hydrogen tanks poses a similar technical problem because its rapid filling with hydrogen causes an increase in the temperature of the tank due to the compression of the hydrogen, in particular at around 1 10 ° C, which requires oversizing of the composite, in the case where the matrix of the composite has a Tg below this temperature.
Ainsi, il reste à optimiser d’une part, la matrice du composite de façon à optimiser sa résistance mécanique à haute température et d’autre part le matériau composant la gaine d’étanchéité, de façon à optimiser sa température de mise en oeuvre, sans dégrader l’adhésion du renfort composite à la gaine d’étanchéité. Ainsi, la modification éventuelle de la composition du matériau composant la gaine d’étanchéité, qui sera faite pour assurer une miscibilité ou moins partielle avec la matrice du composite, ne doit pas se traduire par une augmentation significative de la température de fabrication (extrusion- soufflage, injection, rotomoulage...) de ce liner, par rapport à ce qui se pratique aujourd’hui avec les polyamides et les PVDF. Thus, it remains to optimize on the one hand, the matrix of the composite so as to optimize its mechanical resistance at high temperature and on the other hand the material composing the sheath. sealing, so as to optimize its processing temperature, without degrading the adhesion of the composite reinforcement to the sealing sheath. Thus, the possible modification of the composition of the material making up the sealing sheath, which will be made to ensure miscibility or less partial with the matrix of the composite, must not result in a significant increase in the manufacturing temperature (extrusion). blowing, injection, rotational molding ...) of this liner, compared to what is practiced today with polyamides and PVDFs.
Ces problèmes sont résolus par la fourniture d’une structure multicouche de la présente invention qui est un tuyau ou un réservoir composite totalement lié (fully bonded), « bi- matière », et composé d’un renfort composite de haute résistance, c'est-à-dire comportant une matrice de haute Tg, déposé notamment par enroulement filamentaire sur un liner préalablement extrudé à relativement basse température. L’adhésion entre le composite et le liner est très bonne. These problems are solved by providing a multilayer structure of the present invention which is a fully bonded, "bi-material" composite pipe or tank, and composed of a high strength composite reinforcement, that is. that is to say comprising a high Tg matrix, deposited in particular by filament winding on a liner previously extruded at relatively low temperature. The adhesion between the composite and the liner is very good.
Dans toute cette description, les termes « liner », « gaine d’étanchéité » et « gaine de pression » ont la même signification. Throughout this description, the terms "liner", "sealing sheath" and "pressure sheath" have the same meaning.
La présente invention concerne donc une structure multicouche choisie parmi un réservoir, un tuyau ou tube, destinée au transport ou au stockage d’hydrogène, comprenant, de l’intérieur vers l’extérieur, au moins une couche d’étanchéité et au moins une couche de renfort composite, The present invention therefore relates to a multilayer structure chosen from a tank, a pipe or tube, intended for transporting or storing hydrogen, comprising, from the inside to the outside, at least one sealing layer and at least one. composite reinforcement layer,
ladite couche de renfort composite la plus interne étant soudée à ladite couche d’étanchéité adjacente la plus externe, said innermost composite reinforcing layer being welded to said outermost adjacent waterproofing layer,
lesdites couches d’étanchéité étant constituées d’une composition comprenant majoritairement au moins un polymère thermoplastique P1 i (i=1 à n, n étant le nombre de couches d’étanchéité) semi-cristallin dont la Tf, telle que mesurée selon ISO 11357-3 : 2013, est inférieure à 280°C, en particulier inférieure à 265°C, said sealing layers consisting of a composition mainly comprising at least one thermoplastic polymer P1 i (i = 1 to n, n being the number of sealing layers) semi-crystalline whose Tf, as measured according to ISO 11357 -3: 2013, is below 280 ° C, especially below 265 ° C,
ledit au moins un polymère thermoplastique de chaque couche d’étanchéité pouvant être identique ou différent, et au moins l’une des dites couches de renfort composite étant constituée d’un matériau fibreux sous forme de fibres continues imprégné par une composition comprenant majoritairement au moins un polymère thermoplastique P2j, (j=1 à m, m étant le nombre de couches de renfort) en particulier semi-cristallin, ledit polymère thermoplastique P2j présentant une Tg, telle que mesurée selon ISO 1 1357-3 : 2013, supérieure à la température maximum d’utilisation de ladite structure (Tu), avec Tg > Tu + 20°C, notamment Tg > Tu + 30°C, Tu étant supérieure à 50°C, en particulier supérieure à 100°C. said at least one thermoplastic polymer of each sealing layer possibly being the same or different, and at least one of said composite reinforcing layers consisting of a fibrous material in the form of continuous fibers impregnated with a composition mainly comprising at least a thermoplastic polymer P2j, (j = 1 to m, m being the number of reinforcement layers) in particular semi-crystalline, said thermoplastic polymer P2j having a Tg, as measured according to ISO 1 1357-3: 2013, greater than the maximum temperature of use of said structure (Tu), with Tg> Tu + 20 ° C, in particular Tg> Tu + 30 ° C, Tu being greater than 50 ° C, in particular greater than 100 ° C.
Les Inventeurs ont donc trouvé de manière inattendue que l’utilisation d’un polymère différent pour la matrice du composite et le liner et notamment : une matrice du renfort composite composée d’un polymère présentant une Tg The inventors have therefore unexpectedly found that the use of a different polymer for the matrix of the composite and the liner and in particular: a matrix of the composite reinforcement composed of a polymer having a Tg
significativement supérieure à la température maximum d’utilisation du réservoir ou du tuyau, Tu, (Tg > Tu+20°C, notamment Tg > Tu + 30°C, typiquement) de façon à rester dans son domaine vitreux et présenter une grande rigidité, permettant ainsi au composite de présenter une grande résistance mécanique, significantly higher than the maximum temperature of use of the tank or the pipe, Tu, (Tg> Tu + 20 ° C, in particular Tg> Tu + 30 ° C, typically) so as to remain in its vitreous domain and have great rigidity , thus allowing the composite to have high mechanical resistance,
le polymère semi-cristallin composant le liner présentant une basse température de fusion, Tf, permettant une transformation par extrusion, extrusion soufflage, rotomoulage, injection ou par bobinage de film de résine pure, selon les cas, à une température modérée et usuelle pour l’homme de l’art, en rapport avec la Tf de ce polymère qui est inférieure à 280°C, de préférence inférieure à 265°C. Les polymères semi-cristallins de basse Tf connus à ce jour, présentent également une basse Tg, qui sera, dans la plupart des cas, inférieure à la température maximum d’utilisation. En conséquence, le polymère composant le liner travaillera dans son domaine caoutchoutique et sera donc très flexible et donc très résistant à la fatigue. Son caractère semi cristallin lui assurera une bonne résistance aux agressions chimiques et à l’abrasion et au fluage, the semi-crystalline polymer composing the liner exhibiting a low melting point, Tm, allowing transformation by extrusion, extrusion blow molding, rotomoulding, injection or by winding a film of pure resin, as the case may be, at a moderate temperature customary for the liner A person skilled in the art, in relation to the Tm of this polymer which is less than 280 ° C, preferably less than 265 ° C. The low Tm semi-crystalline polymers known to date also exhibit a low Tg, which will, in most cases, be below the maximum temperature of use. Consequently, the polymer composing the liner will work in its rubbery domain and will therefore be very flexible and therefore very resistant to fatigue. Its semi-crystalline character will give it good resistance to chemical attack and abrasion and creep,
et, les deux polymères précités (celui composant la matrice du composite et celui composant le liner) sont suffisamment miscibles entre eux pour assurer la soudabilité du composite sur le liner et par conséquent, une excellente adhérence entre le liner et le composite. La durabilité de l’adhésion sera garantie par la durabilité du matériau constituant le mélange à l’interface des deux matériaux, autrement dit dans le joint soudé. La miscibilité des deux polymères se traduit, de préférence par une Tg unique, ou à défaut, par une signature caractéristique d’un mélange partiellement homogène, par exemple par la présence de deux Tg de valeurs intermédiaires à la Tg des deux polymères purs. and, the two aforementioned polymers (that making up the matrix of the composite and that making up the liner) are sufficiently miscible with one another to ensure the weldability of the composite on the liner and therefore excellent adhesion between the liner and the composite. The durability of the adhesion will be guaranteed by the durability of the material constituting the mixture at the interface of the two materials, in other words in the welded joint. The miscibility of the two polymers is reflected, preferably by a single Tg, or failing this, by a signature characteristic of a partially homogeneous mixture, for example by the presence of two Tg values intermediate to the Tg of the two pure polymers.
Une immiscibilité de deux polymères se traduit par la présence de deux Tg dans le mélange des deux polymères qui correspondent aux Tg respectives des polymères purs pris séparément. An immiscibility of two polymers results in the presence of two Tg in the mixture of the two polymers which correspond to the respective Tg of the pure polymers taken separately.
Par « structure multicouche » il faut entendre par exemple un réservoir, un tuyau ou tube, comprenant ou constitué de plusieurs couches, notamment de deux couches. By "multilayer structure" is meant for example a tank, a pipe or tube, comprising or consisting of several layers, in particular two layers.
La couche ou les couches d’étanchéités sont les couches les plus internes par rapport aux couches de renfort composites qui sont les couches les plus externes. The waterproofing layer or layers are the innermost layers compared to the composite reinforcing layers which are the outermost layers.
La couche d’étanchéité est en contact avec l’hydrogène même si une couche intérieure et donc la plus intérieure, métallique non étanche, formée par une bande en métal profilée enroulée en hélice telle qu'un feuillard agrafé pour former ladite carcasse, est présente et sur laquelle on revêt la ou les couches d’étanchéité par extrusion. The sealing layer is in contact with the hydrogen even if an inner and therefore the innermost, non-sealed metallic layer, formed by a profiled metal strip wound in a helix such as a strip stapled to form said carcass, is present and on which the sealing layer or layers are coated by extrusion.
Lorsque plusieurs couches d’étanchéité sont présentes, seule la couche la plus interne des couches d’étanchéité est en contact direct avec l’hydrogène. Lorsque seules une couche d’étanchéité et une couche de renfort composite sont présentes, conduisant donc à une structure multicouche à deux couches, alors ces deux couches sont soudées et donc adhèrent l’une à l’autre, en contact direct l’une avec l’autre. Lorsque plusieurs couches d’étanchéité sont présentes et/ou plusieurs couches de renfort composite, alors la couche la plus externe desdites couches d’étanchéité, et donc à l’opposé de la couche en contact avec l’hydrogène, est soudée à la couche la plus interne desdites de renfort composite, et donc adhèrent l’une à l’autre, en contact direct l’une avec l’autre. When several sealing layers are present, only the innermost layer of the sealing layers is in direct contact with the hydrogen. When only a waterproofing layer and a composite reinforcing layer are present, thus leading to a multilayer structure with two layers, then these two layers are welded and therefore adhere to each other, in direct contact with each other. the other. When several waterproofing layers are present and / or several composite reinforcing layers, then the outermost layer of said waterproofing layers, and therefore opposite the layer in contact with hydrogen, is welded to the layer the innermost of said composite reinforcement, and therefore adhere to one another, in direct contact with one another.
Les autres couches de renfort composite sont également soudées entre elles. The other composite reinforcement layers are also welded together.
Les autres couches d’étanchéité sont également soudées entre elles. The other waterproofing layers are also welded together.
S’agissant de la ou des couches d’étanchéité et du polymère thermoplastique P1 i Une ou plusieurs couches d’étanchéité peut ou peuvent être présente(s). Regarding the sealing layer (s) and the thermoplastic polymer P1 i One or more sealing layers may or may be present.
Chacune desdites couches est constituée d’une composition comprenant majoritairement au moins un polymère thermoplastique PU, i correspondant au nombre de couches présentes i est compris de 1 à 10, en particulier de 1 à 5, notamment de 1 à 3, préférentiellement i = 1. Each of said layers consists of a composition mainly comprising at least one thermoplastic PU polymer, i corresponding to the number of layers present i is from 1 to 10, in particular from 1 to 5, in particular from 1 to 3, preferably i = 1 .
Le terme « majoritairement » signifie que ledit au moins un polymère est présent à plus de 50% en poids par rapport au poids total de la composition. The term “predominantly” means that said at least one polymer is present in more than 50% by weight relative to the total weight of the composition.
Avantageusement, ledit au moins un polymère majoritaire est présent à plus de 60% en poids notamment à plus de 70% en poids, particulièrement à plus de 80% en poids, plus particulièrement supérieur ou égal à 90% en poids 90% en poids, par rapport au poids total de la composition. Advantageously, said at least one majority polymer is present at more than 60% by weight, in particular at more than 70% by weight, particularly at more than 80% by weight, more particularly greater than or equal to 90% by weight 90% by weight, relative to the total weight of the composition.
Ladite composition peut également comprendre des modifiants choc et/ou des additifs. Said composition can also comprise impact modifiers and / or additives.
Les additifs peuvent être choisis parmi un antioxydant, un stabilisant à la chaleur, un absorbeur d’UV, un stabilisant à la lumière, un lubrifiant, une charge inorganique, un agent ignifugeant, un agent nucléant, un plastifiant, un colorant, du noir de carbone et des nanocharges carbonées. The additives can be selected from an antioxidant, a heat stabilizer, a UV absorber, a light stabilizer, a lubricant, an inorganic filler, a flame retardant, a nucleating agent, a plasticizer, a colorant, black carbon and carbon nanofillers.
Avantageusement, ladite composition est constituée dudit polymère thermoplastique P1 i majoritairement, de 0 à 5% en poids de modifiant choc, de 0 à 5% en poids d’additifs, la somme des constituants de la composition étant égale à 100% (basé sur un max de P2i de 90%. Advantageously, said composition consists of said thermoplastic polymer P1 i predominantly, from 0 to 5% by weight of impact modifier, from 0 to 5% by weight of additives, the sum of the constituents of the composition being equal to 100% (based on a max of P2i of 90%.
Ledit au moins un polymère majoritaire de chaque couche peut être identique ou différent. Dans un mode de réalisation, un seul polymère majoritaire est présent au moins dans la couche d’étanchéité soudée à la couche de renfort composite. Said at least one majority polymer of each layer may be identical or different. In one embodiment, a single majority polymer is present at least in the sealing layer welded to the composite reinforcing layer.
Polymère thermoplastique P1 i Thermoplastic polymer P1 i
On entend par thermoplastique, ou polymère thermoplastique, un matériau généralement solide à température ambiante semi-cristallin, et qui se ramollit lors d’une augmentation de température, en particulier après passage de sa température de transition vitreuse (Tg), et pouvant présenter une fusion franche au passage de sa température dite de fusion (Tf), et qui redevient solide lors d’une diminution de température en dessous de sa température de cristallisation. The term thermoplastic, or thermoplastic polymer, is understood to mean a material which is generally solid at room temperature semi-crystalline, and which softens during an increase. temperature, in particular after passing through its glass transition temperature (Tg), and which may present a clear melting when passing its so-called melting temperature (Tf), and which becomes solid again when the temperature drops below its crystallization temperature.
La Tg, la Te et la Tf sont déterminées par analyse calorimétrique différentielle (DSC) selon la norme 11357-2 :2013 et 11357-3 :2013 respectivement. Tg, Te and Tf are determined by differential scanning calorimetry (DSC) according to 11357-2: 2013 and 11357-3: 2013 respectively.
La masse moléculaire moyenne en nombre Mn dudit polymère thermoplastique est de préférence dans une plage allant de 10000 à 40000, de préférence de 12000 à 30000. Ces valeurs Mn peuvent correspondre à des viscosités inhérentes supérieures ou égales à 0,8 telle que déterminées dans le m-crésol selon la norme ISO 307:2007 mais en changeant le solvant (utilisation du m-crésol à la place de l’acide sulfurique et la température étant de 20°C). The number-average molecular mass Mn of said thermoplastic polymer is preferably in a range of 10,000 to 40,000, preferably 12,000 to 30,000. These Mn values may correspond to inherent viscosities greater than or equal to 0.8 as determined in the m-cresol according to ISO 307: 2007 but by changing the solvent (use of m-cresol instead of sulfuric acid and the temperature being 20 ° C).
Comme exemples de polymères thermoplastiques semi-cristallins convenables dans la présente invention, on peut citer : As examples of semi-crystalline thermoplastic polymers suitable in the present invention, there may be mentioned:
les polyamides, y compris les copolymères par exemple les copolymères polyamides- polyéthers, polyesters, et le PVDF et un mélange PVDF/PEI dans lequel le PVDF est majoritaire. polyamides, including copolymers, for example polyamide-polyethers, polyesters, and PVDF copolymers and a PVDF / PEI mixture in which PVDF is predominant.
Plus particulièrement préférés parmi les polymères semi-cristallins, sont les polyamides et leurs copolymères semi-cristallins. More particularly preferred among the semi-crystalline polymers are the polyamides and their semi-crystalline copolymers.
La nomenclature utilisée pour définir les polyamides est décrite dans la norme ISO 1874- 1 :201 1 "Plastiques - Matériaux polyamides (PA) pour moulage et extrusion - Partie 1 : Désignation", notamment en page 3 (tableaux 1 et 2) et est bien connue de l’homme du métier. The nomenclature used to define polyamides is described in standard ISO 1874-1: 201 1 "Plastics - Polyamide materials (PA) for molding and extrusion - Part 1: Description", in particular on page 3 (tables 1 and 2) and is well known to those skilled in the art.
Le polyamide peut être un homopolyamide ou un copolyamide ou un mélange de ceux-ci. Avantageusement, ledit polymère thermoplastique est un polyamide aliphatique à longue chaîne, c’est-à-dire un polyamide présentant un nombre moyen d’atome de carbone par atome d’azote supérieur à 8,5, de préférence supérieur à 9. The polyamide can be a homopolyamide or a copolyamide or a mixture thereof. Advantageously, said thermoplastic polymer is a long-chain aliphatic polyamide, that is to say a polyamide having an average number of carbon atoms per nitrogen atom greater than 8.5, preferably greater than 9.
En particulier, le polyamide aliphatique à longue chaîne est choisi parmi : In particular, the long-chain aliphatic polyamide is chosen from:
le polyamide 1 1 (PA11 ), le polyamide 12 (PA12), le polyamide 1010 (PA1010), le polyamide 1012 (PA1012), le polyamide 1212 (PA1012), ou un mélange de ceux-ci ou un copolyamide de ceux-ci, en particulier le PA11 et le PA12. polyamide 11 (PA11), polyamide 12 (PA12), polyamide 1010 (PA1010), polyamide 1012 (PA1012), polyamide 1212 (PA1012), or a mixture thereof or a copolyamide thereof , in particular PA11 and PA12.
Avantageusement, ledit polymère thermoplastique est un polyamide semi-aromatique à longue chaîne, c’est-à-dire un polyamide présentant un nombre moyen d’atome de carbone par atome d’azote supérieur à 8,5, de préférence supérieur à 9 et une Advantageously, said thermoplastic polymer is a long-chain semi-aromatic polyamide, that is to say a polyamide having an average number of carbon atoms per nitrogen atom greater than 8.5, preferably greater than 9 and a
température de fusion comprise entre 240°C à moins de 280°C. melting temperature from 240 ° C to less than 280 ° C.
En particulier, le polyamide semi-aromatique à longue chaîne est choisi parmi le polyamide 1 1/5T ou 11/6T ou le 1 1/10T. Bien évidemment dans ce cas, le taux de 1 1 doit être choisit de façon à ce que la Tf desdits polymères soit inférieure à 280°C, de préférence inférieure à 265°C. In particular, the long-chain semi-aromatic polyamide is chosen from polyamide 1 1 / 5T or 11 / 6T or 1 1 / 10T. Obviously in this case, the rate of 1 1 must be chosen so that the Tm of said polymers is less than 280 ° C, preferably less than 265 ° C.
Avantageusement, chaque couche d’étanchéité est constituée d’une composition comprenant le même type de polymère, en particulier un polyamide. Advantageously, each waterproofing layer consists of a composition comprising the same type of polymer, in particular a polyamide.
Avantageusement, ladite composition comprenant ledit polymère P1 i est de couleur noire et susceptible d’absorber un rayonnement adapté à la soudure. Advantageously, said composition comprising said polymer P1 i is black in color and capable of absorbing radiation suitable for welding.
Il existe diverses méthodes permettant de souder des éléments en polymère There are various methods for soldering polymer elements
thermoplastique. Ainsi, il peut être utilisé des lames chauffantes avec ou sans contact, des ultrasons, des infra-rouges, une application de vibrations, une rotation d’un élément à souder contre l’autre ou encore la soudure laser. thermoplastic. Thus, it can be used heated blades with or without contact, ultrasound, infrared, application of vibrations, a rotation of one element to be welded against the other or even laser welding.
La soudure d'éléments en polymère thermoplastique, notamment par soudure laser nécessite que les deux éléments à souder présentent des propriétés différentes vis-à-vis du rayonnement, notamment laser : l’un des éléments doit être transparent au The welding of thermoplastic polymer elements, in particular by laser welding requires that the two elements to be welded have different properties with respect to radiation, in particular laser: one of the elements must be transparent to the
rayonnement, notamment laser, et l’autre doit absorber le rayonnement notamment laser. Le rayonnement notamment laser traverse ainsi l’élément transparent puis atteint l’élément absorbant, où il est converti en chaleur. Cela permet de faire fondre la zone de contact entre les deux éléments et donc de réaliser la soudure. radiation, including laser, and the other must absorb radiation including laser. The radiation, particularly laser, thus passes through the transparent element and then reaches the absorbent element, where it is converted into heat. This makes it possible to melt the contact zone between the two elements and therefore to perform the weld.
Dans certaines applications, il est souhaitable que les deux pièces à souder soient de couleur noire, y compris donc la pièce transparente au rayonnement laser. In some applications, it is desirable that the two parts to be welded are black in color, therefore including the part transparent to laser radiation.
Afin de les rendre absorbants, il est connu de leur ajouter divers additifs, dont par exemple le noir de carbone, qui confère au polymère une couleur noire et permet d’absorber un rayonnement adapté à la soudure. In order to make them absorbent, it is known practice to add various additives to them, including for example carbon black, which gives the polymer a black color and makes it possible to absorb radiation suitable for welding.
Dans un mode de réalisation, la soudure est effectuée par un système choisi parmi le laser, un chauffage infra-rouge (IR), un chauffage par led, un chauffage par induction ou par pondes ou chauffage hautes fréquences (HF). In one embodiment, the welding is carried out by a system chosen from among the laser, infrared heating (IR), heating by led, heating by induction or by weight or high frequency (HF) heating.
Dans le cas où la soudure est effectuée par soudage laser, alors la composition P1 i comprend des charges carbonées non agglomérées ou non agrégées. In the case where the welding is carried out by laser welding, then the composition P1 i comprises non-agglomerated or non-aggregated carbonaceous fillers.
Dans le cas où la soudure est effectuée par induction, alors la composition P1 i comprend des particules métalliques. In the case where the welding is carried out by induction, then the composition P1 i comprises metal particles.
Avantageusement, la soudure est effectuée par un système laser. Advantageously, the welding is carried out by a laser system.
S’agissant de la couche de renfort composite et du polymère thermoplastique P2j Regarding the composite reinforcing layer and the P2j thermoplastic polymer
Une ou plusieurs couches de renfort composite peut ou peuvent être présente(s). One or more composite reinforcing layers may or may be present.
Chacune desdites couches est constituée d’une composition comprenant majoritairement au moins un polymère thermoplastique P2j, j correspondant au nombre de couches présentes. Each of said layers consists of a composition mainly comprising at least one thermoplastic polymer P2j, j corresponding to the number of layers present.
j est compris de 1 à 10, en particulier de 1 à 5, notamment de 1 à 3, préférentiellement j = 1 . Le terme « majoritairement » signifie que ledit au moins un polymère est présent à plus de 50% en poids par rapport au poids total de la composition. j is from 1 to 10, in particular from 1 to 5, in particular from 1 to 3, preferably j = 1. The term “predominantly” means that said at least one polymer is present in more than 50% by weight relative to the total weight of the composition.
Avantageusement, ledit au moins un polymère majoritaire est présent à plus de 60% en poids notamment à plus de 70% en poids, particulièrement à plus de 80% en poids, plus particulièrement supérieur ou égal à 90% en poids, par rapport au poids total de la composition, Advantageously, said at least one major polymer is present at more than 60% by weight, in particular at more than 70% by weight, particularly at more than 80% by weight, more particularly greater than or equal to 90% by weight, relative to the weight total composition,
Ladite composition peut également comprendre des modifiants choc et/ou des additifs. Said composition can also comprise impact modifiers and / or additives.
Les additifs peuvent être choisis parmi un antioxydant, un stabilisant à la chaleur, un absorbeur d’UV, un stabilisant à la lumière, un lubrifiant, une charge inorganique, un agent ignifugeant, un agent nucléant, un plastifiant et un colorant. The additives can be selected from an antioxidant, a heat stabilizer, a UV absorber, a light stabilizer, a lubricant, an inorganic filler, a flame retardant, a nucleating agent, a plasticizer and a colorant.
Avantageusement, ladite composition est constituée dudit polymère thermoplastique P2j majoritairement, de 0 à 5% en poids de modifiant choc, de 0 à 5% en poids d’additifs, la somme des constituants de la composition étant égale à 100% (basé sur un max de P2j de 90%. Advantageously, said composition consists of said thermoplastic polymer P2j predominantly, from 0 to 5% by weight of impact modifier, from 0 to 5% by weight of additives, the sum of the constituents of the composition being equal to 100% (based on a max of P2j of 90%.
Ledit au moins un polymère majoritaire de chaque couche peut être identique ou différent. Dans un mode de réalisation, un seul polymère majoritaire est présent au moins dans la couche de renfort composite soudée à la couche d’étanchéité. Said at least one majority polymer of each layer may be identical or different. In one embodiment, a single majority polymer is present at least in the composite reinforcing layer welded to the waterproofing layer.
Dans un mode de réalisation, chaque couche de renfort comprend le même type de polymère, en particulier un polyamide. In one embodiment, each reinforcing layer comprises the same type of polymer, in particular a polyamide.
Polymère thermoplastique P2j P2j thermoplastic polymer
On entend par thermoplastique, ou polymère thermoplastique, un matériau généralement solide à température ambiante, pouvant être semi-cristallin ou amorphe, en particulier semi-cristallin et qui se ramollit lors d’une augmentation de température, en particulier après passage de sa température de transition vitreuse (Tg) et s’écoule à plus haute température lorsqu’il est amorphe, ou pouvant présenter une fusion franche au passage de sa température dite de fusion (Tf) lorsqu’il est semi-cristallin, et qui redevient solide lors d’une diminution de température en dessous de sa température de cristallisation, Te, (pour un semi-cristallin) et en dessous de sa température de transition vitreuse (pour un amorphe). The term thermoplastic, or thermoplastic polymer, is understood to mean a material which is generally solid at room temperature, which may be semi-crystalline or amorphous, in particular semi-crystalline and which softens during an increase in temperature, in particular after passing its temperature of glass transition (Tg) and flows at a higher temperature when it is amorphous, or may present a clear melting at the passage of its so-called melting temperature (Tf) when it is semi-crystalline, and which becomes solid again during 'a decrease in temperature below its crystallization temperature, Te, (for a semi-crystalline) and below its glass transition temperature (for an amorphous).
La Tg, Te et la Tf sont déterminées par analyse calorimétrique différentielle (DSC) selon la norme 1 1357-2 :2013 et 11357-3 :2013 respectivement. Tg, Te and Tf are determined by differential scanning calorimetry (DSC) according to standard 11357-2: 2013 and 11357-3: 2013 respectively.
Le polymère P2j de la composition d’au moins une desdites couches de renfort composite est tel que sa Tg est supérieure à la température maximum d’utilisation (Tu) de ladite structure et en particulier, la Tg > Tu + 20°C, notamment Tg > Tu + 30°C. The polymer P2j of the composition of at least one of said composite reinforcing layers is such that its Tg is greater than the maximum temperature of use (Tu) of said structure and in particular, the Tg> Tu + 20 ° C, in particular Tg> Tu + 30 ° C.
Dans un mode de réalisation, le polymère P2j présente une Tg > Tu + 20°C, notamment Tg > Tu + 30°C, quelle que soit la position de ladite couche de renfort. Dans un autre mode de réalisation, ladite couche de renfort constituée d’une composition comprenant le polymère P2j présentant une Tg > Tu + 20°C, notamment Tg > Tu + 30°C, est la couche soudée à ladite couche d’étanchéité. In one embodiment, the polymer P2j has a Tg> Tu + 20 ° C, in particular Tg> Tu + 30 ° C, whatever the position of said reinforcing layer. In another embodiment, said reinforcing layer consisting of a composition comprising the polymer P2j having a Tg> Tu + 20 ° C, in particular Tg> Tu + 30 ° C, is the layer welded to said sealing layer.
Dans un mode de réalisation, le polymère P2j de la composition d’au moins une desdites couches de renfort composite est tel que sa Tg est supérieure à la température maximum d’utilisation (Tu) de ladite structure Tg > Tu + 20°C et ladite couche de renfort constituée d’une composition comprenant le polymère P2j est la couche soudée à ladite couche d’étanchéité. In one embodiment, the polymer P2j of the composition of at least one of said composite reinforcing layers is such that its Tg is greater than the maximum temperature of use (Tu) of said structure Tg> Tu + 20 ° C and said reinforcing layer consisting of a composition comprising the polymer P2j is the layer welded to said sealing layer.
Dans un mode de réalisation, le polymère P2j de la composition d’au moins une desdites couches de renfort composite est tel que sa Tg est supérieure à la température maximum d’utilisation (Tu) de ladite structure Tg > Tu + 30°C et ladite couche de renfort constituée d’une composition comprenant le polymère P2j est la couche soudée à ladite couche d’étanchéité. In one embodiment, the polymer P2j of the composition of at least one of said composite reinforcing layers is such that its Tg is greater than the maximum temperature of use (Tu) of said structure Tg> Tu + 30 ° C and said reinforcing layer consisting of a composition comprising the polymer P2j is the layer welded to said sealing layer.
Dans un autre mode de réalisation, ladite couche de renfort constituée d’une composition comprenant le polymère P2j présente une Tg > Tu + 20°C, notamment Tg > Tu + 30°C, est la couche de renfort la plus externe de la structure. La masse moléculaire moyenne en nombre Mn dudit polymère thermoplastique est de préférence dans une plage allant de 10000 à 40000, de préférence de 12000 à 30000. Ces valeurs Mn peuvent correspondre à des viscosités inhérentes supérieures ou égales à 0,8 telle que déterminées dans le m- crésol selon la norme ISO 307:2007 mais en changeant le solvant (utilisation du m-crésol à la place de l’acide sulfurique et la température étant de 20°C). In another embodiment, said reinforcing layer consisting of a composition comprising the polymer P2j has a Tg> Tu + 20 ° C, in particular Tg> Tu + 30 ° C, is the outermost reinforcing layer of the structure . The number-average molecular mass Mn of said thermoplastic polymer is preferably in a range of 10,000 to 40,000, preferably 12,000 to 30,000. These Mn values may correspond to inherent viscosities greater than or equal to 0.8 as determined in the m-cresol according to the ISO 307: 2007 standard but by changing the solvent (use of m-cresol in place of sulfuric acid and the temperature being 20 ° C).
Comme exemples de polymères thermoplastiques semi-cristallins convenables dans la présente invention, on peut citer : As examples of semi-crystalline thermoplastic polymers suitable in the present invention, there may be mentioned:
les polyamides, en particulier comprenant une structure aromatique et/ou polyamides, in particular comprising an aromatic structure and / or
cycloaliphatique, y compris les copolymères par exemple les copolymères polyamides- polyéthers, polyesters, cycloaliphatic, including copolymers, for example polyamide-polyethers, polyesters,
les polyaryléthercétones (PAEK), polyaryletherketones (PAEK),
les polyétheréther cétones (PEEK), polyetherether ketones (PEEK),
les polyéthercétone cétones (PEKK), polyetherketone ketones (PEKK),
les polyéthercétoneéthercétone cétones (PEKEKK), polyetherketoneetherketone ketones (PEKEKK),
les polyimides en particulier les polyétherimides (PEI) ou les polyamide-imides, les polylsulfones (PSU) en particulier les polyarylsulfones tels que les polyphényl sulfonespolyimides, in particular polyetherimides (PEI) or polyamide-imides, polylsulfones (PSU) in particular polyarylsulfones such as polyphenylsulfones
(PPSU), (PPSU),
les polyéthersulfones (PES). polyethersulfones (PES).
les polymères semi-cristallins sont plus particulièrement préférés, et en particulier les polyamides et leurs copolymères semi-cristallins. La nomenclature utilisée pour définir les polyamides est décrite dans la norme ISO 1874- 1 :201 1 "Plastiques - Matériaux polyamides (PA) pour moulage et extrusion - Partie 1 : Désignation", notamment en page 3 (tableaux 1 et 2) et est bien connue de l’homme du métier. semi-crystalline polymers are more particularly preferred, and in particular polyamides and their semi-crystalline copolymers. The nomenclature used to define polyamides is described in standard ISO 1874-1: 201 1 "Plastics - Polyamide materials (PA) for molding and extrusion - Part 1: Description", in particular on page 3 (tables 1 and 2) and is well known to those skilled in the art.
Le polyamide peut être un homopolyamide ou un copolyamide ou un mélange de ceux-ci. Avantageusement, les polyamides semi-cristallins sont des polyamide semi-aromatiques, notamment un polyamide semi-aromatique de formule X/YAr, tel que décrits dans EP1505099, notamment un polyamide semi-aromatique de formule A/XT dans laquelle A est choisi parmi un motif obtenu à partir d'un aminoacide, un motif obtenu à partir d’un lactame et un motif répondant à la formule (diamine en Ca). (diacide en Cb), avec a représentant le nombre d’atomes de carbone de la diamine et b représentant le nombre d’atome de carbone du diacide, a et b étant chacun compris entre 4 et 36, The polyamide can be a homopolyamide or a copolyamide or a mixture thereof. Advantageously, the semi-crystalline polyamides are semi-aromatic polyamide, in particular a semi-aromatic polyamide of formula X / YAr, as described in EP1505099, in particular a semi-aromatic polyamide of formula A / XT in which A is chosen from a unit obtained from an amino acid, a unit obtained from a lactam and a unit corresponding to the formula (diamine in Ca). (Cb diacid), with a representing the number of carbon atoms of the diamine and b representing the number of carbon atoms of the diacid, a and b each being between 4 and 36,
avantageusement entre 9 et 18, le motif (diamine en Ca) étant choisi parmi les diamines aliphatiques, linéaires ou ramifiés, les diamines cycloaliphatiques et les diamines alkylaromatiques et le motif (diacide en Cb) étant choisi parmi les diacides aliphatiques, linéaires ou ramifiés, les diacides cycloaliphatiques et les diacides aromatiques; advantageously between 9 and 18, the unit (diamine in Ca) being chosen from aliphatic diamines, linear or branched, cycloaliphatic diamines and alkylaromatic diamines and the unit (Cb diacid) being chosen from aliphatic, linear or branched diacids, cycloaliphatic diacids and aromatic diacids;
X.T désigne un motif obtenu à partir de la polycondensation d'une diamine en Cx et de l’acide téréphtalique, avec x représentant le nombre d’atomes de carbone de la diamine en Cx, x étant compris entre 5 et 36, avantageusement entre 9 et 18, notamment un polyamide de formule A/5T, A/6T, A/9T, A/10T ou A/1 1 T, A étant tel que défini ci-dessus, en particulier un polyamide choisi parmi un PA MPMDT/6T, un PA11/10T, un PA 5T/10T, un PA 11/BACT, un PA 1 1/6T/10T, un PA MXDT/10T, un PA MPMDT/10T, un PA XT denotes a unit obtained from the polycondensation of a Cx diamine and terephthalic acid, with x representing the number of carbon atoms of the Cx diamine, x being between 5 and 36, advantageously between 9 and 18, in particular a polyamide of formula A / 5T, A / 6T, A / 9T, A / 10T or A / 1 1 T, A being as defined above, in particular a polyamide chosen from a PA MPMDT / 6T , one PA11 / 10T, one PA 5T / 10T, one PA 11 / BACT, one PA 1 1 / 6T / 10T, one PA MXDT / 10T, one PA MPMDT / 10T, one PA
BACT/10T, un PA BACT/6T, PA BACT/10T/6T, un PA 1 1/BACT/6T, PA 11/MPMDT/6T, PA 11/MPMDT/10T, PA 11/BACT/10T, un PA 11/MXDT/10T, un 1 1/5T/10T. BACT / 10T, one PA BACT / 6T, PA BACT / 10T / 6T, one PA 1 1 / BACT / 6T, PA 11 / MPMDT / 6T, PA 11 / MPMDT / 10T, PA 11 / BACT / 10T, one PA 11 / MXDT / 10T, a 1 1 / 5T / 10T.
T correspond à l’acide téréphtalique, MXD correspond à la m-xylylène diamine, MPMD correspond à la méthylpentaméthylène diamine et BAC correspond au T corresponds to terephthalic acid, MXD corresponds to m-xylylenediamine, MPMD corresponds to methylpentamethylene diamine and BAC corresponds to
bis(aminométhyl)cyclohexane.Lesdits polyamides semi-aromatiques ci-dessus définis présentent notamment une Tg supérieure ou égal à 80°C. bis (aminomethyl) cyclohexane. Said semi-aromatic polyamides defined above have in particular a Tg greater than or equal to 80 ° C.
Avantageusement, chaque couche de renfort composite est constituée d’une composition comprenant le même type de polymère, en particulier un polyamide. Advantageously, each composite reinforcing layer consists of a composition comprising the same type of polymer, in particular a polyamide.
Avantageusement, ladite composition comprenant ledit polymère P2j est transparente à un rayonnement adaptée à la soudure. Advantageously, said composition comprising said polymer P2j is transparent to radiation suitable for welding.
Les polymères thermoplastiques sont généralement transparents pour les besoins de la soudure, notamment laser. Les nanocharges carbonées permettent de conférer une couleur noire à une couche d’une composition comprenant un polymère thermoplastique, tout en conservant la transparence au rayonnement laser de ladite couche. Thermoplastic polymers are generally transparent for the purposes of welding, in particular laser. The carbonaceous nanofillers make it possible to impart a black color to a layer of a composition comprising a thermoplastic polymer, while maintaining the transparency to laser radiation of said layer.
Avantageusement, les nanocharges carbonées sont non agglomérées ou non agrégées. Avantageusement, les nanocharges carbonées sont incorporées dans la composition en une quantité de 100 ppm à 500 ppm, et de préférence de 100 ppm à 250 ppm. Advantageously, the carbonaceous nanofillers are not agglomerated or not aggregated. Advantageously, the carbonaceous nanofillers are incorporated into the composition in an amount of 100 ppm to 500 ppm, and preferably of 100 ppm to 250 ppm.
Avantageusement, les nanocharges carbonées sont choisies parmi les nanotubes de carbone (NTC), les nanofibres de carbone, le graphène, le noir de carbone nanométrique et leurs mélanges. Advantageously, the carbon nanofillers are chosen from carbon nanotubes (CNTs), carbon nanofibers, graphene, nanometric carbon black, and mixtures thereof.
Avantageusement, les nanocharges carbonées sont dépourvues de noir de carbone nanométrique. Advantageously, the carbonaceous nanofillers are devoid of nanometric carbon black.
Dans un mode de réalisation, la soudure est effectuée par un système choisi parmi le laser, un chauffage IR ou un chauffage par induction. In one embodiment, the welding is carried out by a system chosen from among the laser, IR heating or induction heating.
Avantageusement, la soudure est effectuée par un système laser. Advantageously, the welding is carried out by a laser system.
Avantageusement, le rayonnement laser est un rayonnement laser infrarouge, et de préférence présente une longueur d’onde comprise entre 700 nm et 1200 nm et de préférence entre 800 nm et 1 100 nm. Advantageously, the laser radiation is infrared laser radiation, and preferably has a wavelength of between 700 nm and 1200 nm and preferably between 800 nm and 1100 nm.
S’agissant de la structure Regarding the structure
Ladite structure multicouche comprend donc au moins une couche d’étanchéité et au moins une couche de renfort composite qui sont soudées. Said multilayer structure therefore comprises at least one sealing layer and at least one composite reinforcing layer which are welded.
Dans un mode de réalisation, dans ladite structure multicouche, chaque polymère P1 i de chaque couche d’étanchéité est partiellement ou totalement miscible avec chaque polymère P1 i de la ou des couches adjacente(s), chaque polymère P2j de chaque couche de renfort est partiellement ou totalement miscible avec chaque polymère P2j de la ou des couches adjacente(s), et chaque polymère P2j est partiellement ou totalement miscible avec chaque polymère PU lorsqu’elles sont adjacentes, et le polymère P21 est partiellement ou totalement miscible avec le polymère P11 qui lui est adjacent, la miscibilité totale ou partielle desdits polymères étant définie par la différence de température de transition vitreuse des deux résines, dans le mélange, rapportées à la différence de température de transition vitreuse des deux résines, avant le mélange, et la miscibilité étant totale lorsque la dite différence est égale à 0, et la miscibilité étant partielle, lorsque ladite différence est différente de 0, une immiscibilité du polymère P2j avec le polymère PU étant exclue. In one embodiment, in said multilayer structure, each polymer P1 i of each sealing layer is partially or totally miscible with each polymer P1 i of the adjacent layer (s), each polymer P2j of each reinforcing layer is partially or totally miscible with each polymer P2j of the adjacent layer (s), and each polymer P2j is partially or totally miscible with each PU polymer when they are adjacent, and the polymer P21 is partially or totally miscible with the polymer P11 which is adjacent to it, the total or partial miscibility of said polymers being defined by the difference in glass transition temperature of the two resins, in the mixture, related to the difference in glass transition temperature of the two resins, before mixing, and the miscibility being total when said difference is equal to 0, and miscibility being partial, when said difference is different from 0, an immiscibility of the polymer P2j with the polymer PU being excluded.
Lorsque la miscibilité desdits polymères est partielle ladite différence est ladite miscibilité est d’autant plus grande que ladite différence est faible. When the miscibility of said polymers is partial said difference is said miscibility is greater than said difference is small.
Avantageusement, lorsque la miscibilité desdits polymères est partielle, ladite différence est inférieure à 30%, préférentiellement inférieure à 20%, en valeur absolue. Advantageously, when the miscibility of said polymers is partial, said difference is less than 30%, preferably less than 20%, in absolute value.
Dans un mode de réalisation, la ou les températures de transition vitreuse du mélange, selon que la miscibilité est totale ou partielle, qui doivent être comprises entre les températures de transition vitreuse desdits polymères avant mélange et différentes d’elles, d’au moins 5°C, de préférence d’au moins 10°C. L’expression « totalement miscible » signifie que lorsque par exemple, deux polymères P11 et PI2 présentant respectivement une Tg1 i et une Tgl2, sont présents respectivement dans deux couches d’étanchéité ou deux couches de renfort adjacentes, alors le mélange des deux polymères ne présente qu’une seule Tg1112 dont la valeur est comprise entre Tg11 et une Tg12. In one embodiment, the glass transition temperature (s) of the mixture, depending on whether the miscibility is total or partial, which must be between the glass transition temperatures of said polymers before mixing and different from them, by at least 5 ° C, preferably at least 10 ° C. The expression “completely miscible” means that when, for example, two polymers P11 and PI2 having respectively a Tg1 i and a Tgl2 , are respectively present in two sealing layers or two adjacent reinforcing layers, then the mixture of the two polymers does not has only one Tg1112 whose value is between Tg11 and a Tg1 2.
Cette valeur Tg11I2 est alors supérieure à Tg1 i d’au moins 5°C, en particulier d’au moins 10°C et inférieure à Tgl2 d’au moins 5°C, en particulier d’au moins 10°C. This Tg11I2 value is then greater than Tg1 i by at least 5 ° C, in particular by at least 10 ° C and lower than Tgl2 by at least 5 ° C, in particular by at least 10 ° C.
L’expression « partiellement miscible » signifie que lorsque par exemple, deux polymères P1 i et PI2 présentant respectivement une Tg1 i et une Tgl2, sont présents The expression "partially miscible" means that when, for example, two polymers P1 i and PI2 having respectively a Tg1 i and a Tgl2, are present
respectivement dans deux couches d’étanchéité ou deux couches de renfort adjacentes, alors le mélange des deux polymères présente deux Tg : Tg’1 i et Tg’12, avec Tg1 i < Tg’1 i < Tg’12 < Tg12. respectively in two waterproofing layers or two adjacent reinforcing layers, then the mixture of the two polymers has two Tg: Tg'1 i and Tg'1 2 , with Tg1 i <Tg'1 i <Tg'1 2 <Tg1 2 .
Ces valeurs Tg’1 i et Tg’^ sont alors supérieures à Tg1 i d’au moins 5°C, en particulier d’au moins 10°C et inférieure à Tgl2 d’au moins 5°C, en particulier d’au moins 10°C. These Tg'1 i and Tg '^ values are then greater than Tg1 i by at least 5 ° C, in particular by at least 10 ° C and below Tgl2 by at least 5 ° C, in particular by minus 10 ° C.
Une immiscibilité de deux polymères se traduit par la présence de deux Tg, Tg1 i et Tgl2, dans le mélange des deux polymères qui correspondent aux Tg respectives Tg1 i et Tgl2 des polymères purs pris séparément. An immiscibility of two polymers results in the presence of two Tg, Tg1 i and Tgl2 , in the mixture of the two polymers which correspond to the respective Tg Tg1 i and Tgl2 of the pure polymers taken separately.
Avantageusement, lesdites couches d’étanchéité et de renfort soudées sont constituées de compositions qui comprennent respectivement des polymères différents. Advantageously, said welded sealing and reinforcing layers consist of compositions which respectively comprise different polymers.
Néanmoins, lesdits polymères différents peuvent être du même type. However, said different polymers can be of the same type.
Ainsi, si l”une des deux couches d’étanchéité et de renfort composite soudées est constituée d’une composition comprenant un polyamide aliphatique, alors l’autre couche est constituée d’une composition comprenant un polyamide qui n’est pas aliphatique et qui est par exemple un polyamide semi-aromatique de façon à disposer d’un polymère de haute tg comme matrice du renfort composite. Thus, if one of the two welded composite waterproofing and reinforcing layers consists of a composition comprising an aliphatic polyamide, then the other layer consists of a composition comprising a polyamide which is not aliphatic and which is for example a semi-aromatic polyamide so as to have a high tg polymer as the matrix of the composite reinforcement.
Ladite structure multicouche peut comprendre jusqu’à 10 couches d’étanchéité et jusqu’à Said multilayer structure can include up to 10 waterproofing layers and up to
10 couches de renfort composite. 10 layers of composite reinforcement.
11 est bien évident que ladite structure multicouche n’est pas obligatoirement symétrique et qu’elle peut donc comprendre plus de couches d’étanchéité que de couches composites ou vice et versa. It is obvious that said multilayer structure is not necessarily symmetrical and that it can therefore include more sealing layers than composite layers or vice versa.
Avantageusement, ladite structure multicouche comprend une, deux, trois, quatre, cinq, six, sept, huit, neuf ou dix couches d’étanchéité et une, deux, trois, quatre, cinq, six, sept, huit, neuf ou dix couches de renfort composite. Advantageously, said multilayer structure comprises one, two, three, four, five, six, seven, eight, nine or ten sealing layers and one, two, three, four, five, six, seven, eight, nine or ten layers composite reinforcement.
Avantageusement, ladite structure multicouche comprend une, deux, trois, quatre ou cinq, couches d’étanchéité et une, deux, trois, quatre ou cinq couches de renfort composite. Avantageusement, ladite structure multicouche comprend une, deux ou trois couches d’étanchéité et une deux ou trois couches de renfort composite. Avantageusement, elles sont constituées de compositions qui comprennent Advantageously, said multilayer structure comprises one, two, three, four or five sealing layers and one, two, three, four or five composite reinforcement layers. Advantageously, said multilayer structure comprises one, two or three sealing layers and one two or three composite reinforcement layers. Advantageously, they consist of compositions which comprise
respectivement des polymères différents. respectively different polymers.
Avantageusement, elles sont constituées de compositions qui comprennent Advantageously, they consist of compositions which comprise
respectivement des polyamides correspondant aux polyamides P1 i et P2j. polyamides corresponding to polyamides P1 i and P2j respectively.
Avantageusement, elles sont constituées de compositions qui comprennent Advantageously, they consist of compositions which comprise
respectivement des polyamides différents. different polyamides respectively.
Dans un mode de réalisation, ladite structure multicouche comprend une seule couche d’étanchéité et plusieurs couches de renfort, ladite couche d’étanchéité étant soudée à ladite couche de renfort adjacente. In one embodiment, said multilayer structure comprises a single waterproofing layer and several reinforcing layers, said waterproofing layer being welded to said adjacent reinforcing layer.
Dans un autre mode de réalisation, la ladite structure multicouche comprend une seule couche de renfort et plusieurs couches d’étanchéité, ladite couche de renfort étant soudée à ladite couche d’étanchéité adjacente. In another embodiment, said multilayer structure comprises a single reinforcing layer and a plurality of sealing layers, said reinforcing layer being welded to said adjacent sealing layer.
Dans un mode de réalisation avantageux, ladite structure multicouche comprend une seule couche d’étanchéité et une seule couche de renfort composite qui sont soudées. Toutes les combinaisons de ces deux couches sont donc dans la portée de l’invention, à la condition qu’au moins ladite couche de renfort composite la plus interne soit soudée à ladite couche d’étanchéité adjacente la plus externe, les autres couches étant soudées entre elles ou non. In an advantageous embodiment, said multilayer structure comprises a single sealing layer and a single composite reinforcing layer which are welded. All combinations of these two layers are therefore within the scope of the invention, provided that at least said innermost composite reinforcing layer is welded to said outermost adjacent waterproofing layer, the other layers being welded. between them or not.
Avantageusement, dans ladite structure multicouche, chaque couche d’étanchéité est constituée d’une composition comprenant le même type de polymère P1 i, en particulier un polyamide. Advantageously, in said multilayer structure, each sealing layer consists of a composition comprising the same type of polymer P1 i, in particular a polyamide.
Par l’expression même type de polymère, il faut entendre par exemple un polyamide qui peut être un polyamide identique ou différent en fonction des couches. By the same type of polymer is meant for example a polyamide which can be an identical or different polyamide depending on the layers.
Avantageusement, ledit polymère P1 i est un polyamide et ledit polymère P2j est un polyamide. Advantageously, said polymer P1 i is a polyamide and said polymer P2j is a polyamide.
Avantageusement, le polyamide P1 i est identique pour toutes les couches d’étanchéité. Avantageusement, ledit polymère P1 i est un polyamide aliphatique à longue chaîne, en particulier PA1010, PA 1012, PA 1212, PA11 , PA12, notamment PA 1 1 ou PA12. Advantageously, the polyamide P1 i is identical for all the waterproofing layers. Advantageously, said polymer P1 i is a long-chain aliphatic polyamide, in particular PA1010, PA 1012, PA 1212, PA11, PA12, in particular PA 11 or PA12.
Avantageusement le polyamide P1 i est un polyamide semi-aromatique à longue chaîne, en particulier PA 11/5T, PA 1 1/6T ou PA 11/10T. Bien évidemment dans ce cas, le taux de 11 doit être choisit judicieusement de façon à ce que la Tf desdits polymères soit inférieure à 280°C, de préférence 265°C. Advantageously, the polyamide P1 i is a long-chain semi-aromatic polyamide, in particular PA 11 / 5T, PA 1 1 / 6T or PA 11 / 10T. Obviously in this case, the level of 11 must be chosen judiciously so that the Tm of said polymers is less than 280 ° C, preferably 265 ° C.
Avantageusement, dans ladite structure multicouche, chaque couche de renfort est constituée d’une composition comprenant le même type de polymère P2j, en particulier un polyamide. Advantageously, in said multilayer structure, each reinforcing layer consists of a composition comprising the same type of polymer P2j, in particular a polyamide.
Avantageusement, le polyamide P2j est identique pour toutes les couches de renfort. Avantageusement, ledit polymère P2j est un polyamide semi-aromatique, en particulier choisi parmi un PA MPMDT/6T, un PA 1 1/1 OT, un PA 1 1/BACT, un PA 5T/10T, un PA 11/6T/10T, un PA MXDT/10T, un PA MPMDT/10T, un PA BACT/10T, un PA BACT/6T,Advantageously, the P2j polyamide is identical for all the reinforcing layers. Advantageously, said polymer P2j is a semi-aromatic polyamide, in particular chosen from a PA MPMDT / 6T, a PA 1 1/1 OT, a PA 1 1 / BACT, a PA 5T / 10T, a PA 11 / 6T / 10T , one PA MXDT / 10T, one PA MPMDT / 10T, one PA BACT / 10T, one PA BACT / 6T,
PA BACT/10T/6T, un PA 11/BACT/6T, PA 11/MPMDT/6T, PA 11/MPMDT/10T, PA 1 1/BACT/10T, un PA 1 1/MXDT/10T et un PA 5T/10T. PA BACT / 10T / 6T, one PA 11 / BACT / 6T, PA 11 / MPMDT / 6T, PA 11 / MPMDT / 10T, PA 1 1 / BACT / 10T, one PA 1 1 / MXDT / 10T and one PA 5T / 10T.
Avantageusement, dans ladite structure multicouche, chaque couche d’étanchéité est constituée d’une composition comprenant le même type de polymère P1 i, en particulier un polyamide et chaque couche de renfort est constituée d’une composition comprenant le même type de polymère P2j, en particulier un polyamide, à condition que les polyamides P1 i et P2j soient différents, c’est à dire que si la ou les couches d’étanchéité est ou sont constituée(s) de compositions comprenant un polyamide aliphatique à longue chaîne alors la ou les couches d’étanchéité est ou sont constituée(s) de compositions comprenant un polyamide semi-aromatique. Advantageously, in said multilayer structure, each sealing layer consists of a composition comprising the same type of polymer P1 i, in particular a polyamide, and each reinforcing layer consists of a composition comprising the same type of polymer P2j, in particular a polyamide, provided that the polyamides P1 i and P2j are different, that is to say that if the sealing layer (s) is or consist (s) of compositions comprising a long-chain aliphatic polyamide then the or the waterproofing layers are or consist of compositions comprising a semi-aromatic polyamide.
Avantageusement, ledit polymère P1 i est un polyamide aliphatique à longue chaîne, en particulier PA1010, PA 1012, PA 1212, PA11 , PA12, notamment PA 11 ou PA12 et ledit polymère P2j est un polyamide semi-aromatique, en particulier choisi parmi un PA MPMDT/6T, un PA PA11/10T, un PA 11/BACT, un PA 5T/10T, un PA 11/6T/10T, un PA MXDT/10T, un PA MPMDT/10T, un PA BACT/10T, un PA BACT/6T, PA BACT/10T/6T, un PA 11/BACT/6T, PA 1 1/MPMDT/6T, PA 11/MPMDT/10T, PA 11/ BACT/10T, un PA 1 1/MXDT/10T et un PA 5T/10T. Advantageously, said polymer P1 i is a long-chain aliphatic polyamide, in particular PA1010, PA 1012, PA 1212, PA11, PA12, in particular PA 11 or PA12 and said polymer P2j is a semi-aromatic polyamide, in particular chosen from a PA MPMDT / 6T, one PA PA11 / 10T, one PA 11 / BACT, one PA 5T / 10T, one PA 11 / 6T / 10T, one PA MXDT / 10T, one PA MPMDT / 10T, one PA BACT / 10T, one PA BACT / 6T, PA BACT / 10T / 6T, one PA 11 / BACT / 6T, PA 1 1 / MPMDT / 6T, PA 11 / MPMDT / 10T, PA 11 / BACT / 10T, one PA 1 1 / MXDT / 10T and a 5T / 10T PA.
Avantageusement, ladite structure multicouche est constituée d’une seule couche de renfort et d’une seule couche d’étanchéité dans lesquelles ledit polymère P1 i est un polyamide aliphatique à longue chaîne, en particulier PA1010, PA 1012, PA 1212, PA1 1 , PA12, notamment PA 11 ou PA12 et ledit polymère P2j est un polyamide semi- aromatique, en particulier choisi parmi un PA MPMDT/6T, un PA PA1 1/10T, un PA 11/BACT, un PA 1 1/6T/10T, un PA MXDT/10T, un PA MPMDT/10T, un PA BACT/10T, un PA BACT/6T, PA BACT/10T/6T, un PA 11/BACT/6T, PA 1 1/MPMDT/6T, PA Advantageously, said multilayer structure consists of a single reinforcing layer and a single sealing layer in which said polymer P1 i is a long-chain aliphatic polyamide, in particular PA1010, PA 1012, PA 1212, PA1 1, PA12, in particular PA 11 or PA12 and said polymer P2j is a semi-aromatic polyamide, in particular chosen from a PA MPMDT / 6T, a PA PA1 1 / 10T, a PA 11 / BACT, a PA 1 1 / 6T / 10T, one PA MXDT / 10T, one PA MPMDT / 10T, one PA BACT / 10T, one PA BACT / 6T, PA BACT / 10T / 6T, one PA 11 / BACT / 6T, PA 1 1 / MPMDT / 6T, PA
1 1/MPMDT/10T, PA 11/ BACT/10T, un PA 1 1/MXDT/10T. 1 1 / MPMDT / 10T, PA 11 / BACT / 10T, one PA 1 1 / MXDT / 10T.
Selon un mode de réalisation, ladite structure multicouche est un réservoir. According to one embodiment, said multilayer structure is a reservoir.
Selon un autre mode de réalisation, ladite structure multicouche est un tuyau flexible. According to another embodiment, said multilayer structure is a flexible pipe.
La température maximum d’utilisation Tu de ladite structure multicouche est supérieure à 50°C, en particulier supérieure à 100 °C. The maximum temperature of use Tu of said multilayer structure is greater than 50 ° C, in particular greater than 100 ° C.
Dans un mode de réalisation, ladite structure multicouche définie ci-dessus présente une résistance à la décompression et une aptitude au séchage. In one embodiment, said multilayer structure defined above exhibits resistance to decompression and suitability for drying.
En effet, dans le cas du stockage ou du transport de l’hydrogène, l’hydrogène peut diffuser au travers de la ou des couches d’étanchéité, de l’intérieur du tube ou du réservoir vers l’interface entre la dernière couche d’étanchéité et la première couche de renfort composite, du fait de la perméabilité de la ou des couches d’étanchéité à l’hydrogène transporté ou stocké. L’accumulation d’hydrogène à cette endroit peut générer une pression qui conduira au flambement (collapse) de la ou des couches d’étanchéité, lorsque la pression interne au tube ou au réservoir sera plus faible que la pression à l’interface avec le renfort composite, ce qui pourra se produire notamment lorsque le pompage ou le transport de l’hydrogène sera stoppé lors d’un arrêt de production qui conduit à une chute de la pression de plusieurs centaines de bars à la pression atmosphérique ou lorsque le réservoir de stockage sera vide. Il en est de même lors des tests d’épreuve des réservoirs sous pression interne d’eau : cette eau est susceptible de migrer par perméation, à l’interface entre le renfort composite et la dernière couche de d'étanchéité et sera par la suite très difficile à éliminer, entraînant de longs et coûteux cycles de séchage desdits réservoirs de stockage, notamment sous vide. In fact, in the case of the storage or transport of hydrogen, the hydrogen can diffuse through the sealing layer (s), from the inside of the tube or the tank towards the interface between the last layer of 'waterproofing and the first layer of composite reinforcement, due to the permeability of the sealing layer or layers to transported or stored hydrogen. The accumulation of hydrogen at this location can generate a pressure which will lead to buckling (collapse) of the sealing layer (s), when the pressure inside the tube or the tank will be lower than the pressure at the interface with the composite reinforcement, which may occur in particular when the pumping or transport of hydrogen is stopped during a production shutdown which leads to a pressure drop of several hundred bars at atmospheric pressure or when the tank of storage will be empty. The same is true during the proof tests of tanks under internal water pressure: this water is liable to migrate by permeation, at the interface between the composite reinforcement and the last layer of waterproofing and will subsequently be very difficult to remove, resulting in long and expensive drying cycles of said storage tanks, in particular under vacuum.
Dans un autre mode de réalisation, ladite structure multicouche définie ci-dessus comprend de plus une carcasse métallique située à l’intérieur de la couche d’étanchéité. Cette carcasse métallique est non étanche et correspond à la couche la plus interne. Avantageusement, ladite structure multicouche comprend de plus au moins une couche externe, notamment métallique, ladite couche étant la couche plus externe de ladite structure multicouche. In another embodiment, said multilayer structure defined above further comprises a metal carcass located inside the sealing layer. This metallic carcass is not waterproof and corresponds to the innermost layer. Advantageously, said multilayer structure further comprises at least one outer layer, in particular metallic, said layer being the outermost layer of said multilayer structure.
Ladite couche externe est une seconde couche de renfort mais métallique et non composite. Said outer layer is a second reinforcing layer but metallic and not composite.
Il peut également y avoir sur la structure une couche de protection polymérique (couche la plus externe) qui a notamment un rôle anti-abrasion ou qui permet de pouvoir mettre une inscription sur la structure. There may also be on the structure a polymeric protective layer (outermost layer) which notably has an anti-abrasion role or which makes it possible to put an inscription on the structure.
S’agissant du matériau fibreux Regarding the fibrous material
Concernant les fibres de constitution dudit matériau fibreux, ce sont notamment des fibres d’origine minérale, organique ou végétale. Regarding the constituent fibers of said fibrous material, they are in particular fibers of mineral, organic or plant origin.
Avantageusement, ledit matériau fibreux peut être ensimé ou non ensimé. Advantageously, said fibrous material can be sized or not sized.
Ledit matériau fibreux peut donc comprendre jusqu'à 0,1% en poids d’un matériau de nature organique (type résine thermodurcissable ou thermoplastique) dénommé ensimage. Said fibrous material can therefore comprise up to 0.1% by weight of an organic material (thermosetting or thermoplastic resin type) called sizing.
Parmi les fibres d’origine minérale, on peut citer les fibres de carbone, les fibres de verre, les fibres de basalte ou à base de basalte, les fibres de silice, ou les fibres de carbure de silicium par exemple. Parmi les fibres d’origine organique, on peut citer les fibres à base de polymère thermoplastique ou thermodurcissable, telles que des fibres de polyamides semi-aromatiques, des fibres d’aramide ou des fibres en polyoléfines par exemple. De préférence, elles sont à base de polymère thermoplastique amorphe et présentent une température de transition vitreuse Tg supérieure à la Tg du polymère ou mélange de polymère thermoplastique de constitution de la matrice de pré-imprégnation lorsque ce dernier est amorphe, ou supérieure à la Tf du polymère ou mélange de polymère thermoplastique de constitution de la matrice de pré-imprégnation lorsque ce dernier est semi-cristallin. Avantageusement, elles sont à base de polymère thermoplastique semi- cristallin et présentent une température de fusion Tf supérieure à la Tg du polymère ou mélange de polymère thermoplastique de constitution de la matrice de pré-imprégnation lorsque ce dernier est amorphe, ou supérieure à la Tf du polymère ou mélange de polymère thermoplastique de constitution de la matrice de pré-imprégnation lorsque ce dernier est semi-cristallin. Ainsi, il n’y a aucun risque de fusion pour les fibres organiques de constitution du matériau fibreux lors de l’imprégnation par la matrice thermoplastique du composite final. Parmi les fibres d’origine végétale, on peut citer les fibres naturelles à base de lin, de chanvre, de lignine, de bambou, de soie notamment d’araignée, de sisal, et d’autres fibres cellulosiques, en particulier de viscose. Ces fibres d’origine végétale peuvent être utilisées pures, traitées ou bien enduites d’une couche d’enduction, en vue de faciliter l’adhérence et l’imprégnation de la matrice de polymère thermoplastique.Among the fibers of mineral origin, mention may be made of carbon fibers, glass fibers, basalt or basalt-based fibers, silica fibers, or silicon carbide fibers, for example. Among the fibers of organic origin, mention may be made of fibers based on a thermoplastic or thermosetting polymer, such as semi-aromatic polyamide fibers, aramid fibers or polyolefin fibers, for example. Preferably, they are based on an amorphous thermoplastic polymer and have a glass transition temperature Tg greater than the Tg of the polymer or mixture of thermoplastic polymer of constitution of the prepregnation matrix when the latter is amorphous, or greater than the Tm of the polymer or mixture of thermoplastic polymer of constitution of the prepregnation matrix when the latter is semi-crystalline. Advantageously, they are based on a semi-crystalline thermoplastic polymer and have a melting point Tm greater than the Tg of the polymer or mixture of thermoplastic polymer constituting the pre-impregnation matrix when the latter is amorphous, or greater than the Tm of the polymer or mixture of thermoplastic polymer constituting the prepreg matrix when the latter is semi-crystalline. Thus, there is no risk of fusion for the organic fibers constituting the fibrous material during impregnation with the thermoplastic matrix of the final composite. Among the fibers of plant origin, mention may be made of natural fibers based on flax, hemp, lignin, bamboo, silk, especially spider silk, sisal, and other cellulose fibers, in particular viscose. These fibers of plant origin can be used pure, treated or else coated with a coating layer, with a view to facilitating the adhesion and impregnation of the thermoplastic polymer matrix.
Le matériau fibreux peut également être un tissu, tressé ou tissé avec des fibres. The fibrous material can also be a fabric, braided or woven with fibers.
Il peut également correspondre à des fibres avec des fils de maintien. It can also correspond to fibers with retaining threads.
Ces fibres de constitution peuvent être utilisées seules ou en mélanges. Ainsi, des fibres organiques peuvent être mélangées aux fibres minérales pour être pré-imprégnées de poudre polymère thermoplastique et former le matériau fibreux pré-imprégné. These constitution fibers can be used alone or in mixtures. Thus, organic fibers can be mixed with mineral fibers in order to be pre-impregnated with thermoplastic polymer powder and to form the pre-impregnated fibrous material.
Les mèches de fibres organiques peuvent avoir plusieurs grammages. Elles peuvent en outre présenter plusieurs géométries. Les fibres de constitution du matériau fibreux peuvent en outre se présenter sous forme d’un mélange de ces fibres de renfort de différentes géométries. Les fibres sont des fibres continues. The rovings of organic fibers can have several grammages. They can also have several geometries. The fibers constituting the fibrous material may also be in the form of a mixture of these reinforcing fibers of different geometries. Fibers are continuous fibers.
De préférence le matériau fibreux est constitué par des fibres continues de carbone ou de verre ou leur mélange, en particulier des fibres de carbone. Il est utilisé sous forme d’une mèche ou de plusieurs mèches. Preferably, the fibrous material consists of continuous carbon or glass fibers or their mixture, in particular carbon fibers. It is used as a wick or several wicks.
Selon un autre aspect, la présente invention concerne un procédé de fabrication d’une structure multicouche telle que définie ci-dessus, caractérisé en ce qu’il comprend une étape de soudure de la couche de renfort telle que définie ci-dessus sur la couche de d’étanchéité telle que définie ci-dessus. According to another aspect, the present invention relates to a method for manufacturing a multilayer structure as defined above, characterized in that it comprises a step of welding the reinforcing layer as defined above to the layer of sealing as defined above.
Avantageusement, l’étape de soudure est effectuée par un système choisi parmi le laser, un chauffage infra-rouge (IR), un chauffage par led, un chauffage par induction ou par pondes ou chauffage hautes fréquences (HF). Advantageously, the soldering step is carried out by a system chosen from among the laser, infrared heating (IR), heating by LED, heating by induction or by layers or high frequency heating (HF).
Avantageusement, ledit procédé comprend une étape d’extrusion de ladite couche d’étanchéité sur une carcasse métallique et une étape de soudage de la couche de renfort sur la couche d’étanchéité. Selon un autre aspect, la présente invention concerne l'utilisation d’une structure multicouche choisie parmi un réservoir ou tuyau ou tube comprenant, de l’intérieur vers l’extérieur, au moins une couche d’étanchéité telle que définie ci-dessus et au moins une couche de renfort composite telle que définie ci-dessus , Advantageously, said method comprises a step of extruding said sealing layer on a metal carcass and a step of welding the reinforcing layer on the sealing layer. According to another aspect, the present invention relates to the use of a multilayer structure chosen from a tank or pipe or tube comprising, from the inside to the outside, at least one sealing layer as defined above and at least one composite reinforcing layer as defined above,
ladite couche de renfort composite la plus interne étant soudée à ladite couche d’étanchéité adjacente la plus externe, said innermost composite reinforcing layer being welded to said outermost adjacent waterproofing layer,
lesdites couches d’étanchéité étant constituées d’une composition comprenant majoritairement au moins un polymère thermoplastique P1 i (i=1 à n, n étant le nombre de couches d’étanchéité) semi-cristallin dont la Tf, telle que mesurée selon ISO 11357-3 : 2013, est inférieure à 280°C, en particulier inférieure à 265°C, said sealing layers consisting of a composition mainly comprising at least one thermoplastic polymer P1 i (i = 1 to n, n being the number of sealing layers) semi-crystalline whose Tf, as measured according to ISO 11357 -3: 2013, is below 280 ° C, especially below 265 ° C,
ledit au moins un polymère thermoplastique de chaque couche d’étanchéité pouvant être identique ou différent, et au moins l’une des dites couches de renfort composite étant constituée d’un matériau fibreux sous forme de fibres continues imprégné par une composition comprenant majoritairement au moins un polymère thermoplastique P2j, (j=1 à m, m étant le nombre de couches de renfort) en particulier semi-cristallin, ledit polymère thermoplastique P2j présentant une Tg, telle que mesurée selon ISO 1 1357-3 : 2013, supérieure à la température maximum d’utilisation de ladite structure (Tu), avec Tg > Tu + 20°C, notamment Tg > Tu + 30°C, Tu étant supérieure à 50°C, en particulier supérieure à 100°C, said at least one thermoplastic polymer of each sealing layer possibly being the same or different, and at least one of said composite reinforcing layers consisting of a fibrous material in the form of continuous fibers impregnated with a composition mainly comprising at least a thermoplastic polymer P2j, (j = 1 to m, m being the number of reinforcement layers) in particular semi-crystalline, said thermoplastic polymer P2j having a Tg, as measured according to ISO 1 1357-3: 2013, greater than the maximum temperature of use of said structure (Tu), with Tg> Tu + 20 ° C, in particular Tg> Tu + 30 ° C, Tu being greater than 50 ° C, in particular greater than 100 ° C,
pour la préparation d’un réservoir ou tuyau ou tube pour le transport, la distribution ou le stockage de l’hydrogène. for the preparation of a tank or pipe or tube for the transport, distribution or storage of hydrogen.
EXEMPLES EXAMPLES
Dans tous les exemples, les réservoirs sont obtenus par rotomoulage du liner à une température adaptée à la nature de la résine thermoplastique utilisée, mais dans tous les cas inférieure à 280°C. In all the examples, the reservoirs are obtained by rotational molding of the liner at a temperature suited to the nature of the thermoplastic resin used, but in all cases below 280 ° C.
Dans le cas de l’epoxy, on utilise ensuite un procédé d’enroulement filamentaire voie humide qui consiste à enrouler des fibres autour du liner, lesquelles fibres étant préalablement pré-imprégnée dans un bain d’epoxy liquide. Le réservoir est ensuite polymérisé en étuve pendant 2h. In the case of epoxy, a wet filament winding process is then used which consists in winding fibers around the liner, which fibers are pre-impregnated in a bath of liquid epoxy. The reservoir is then polymerized in an oven for 2 hours.
Dans tous les autres cas, on utilise ensuite un matériau fibreux préalablement imprégné par la résine thermoplastique (tape). Cette tape est déposée par enroulement filamentaire au moyen d’un robot comportant un chauffage laser de puissance 1500W à la vitesse de 12m/min et il n’y a pas d’étape de polymérisation. In all other cases, a fibrous material is then used which has been impregnated with the thermoplastic resin (tape). This tape is deposited by filament winding using a robot comprising a 1500W power laser heater at a speed of 12m / min and there is no polymerization step.
Exemplel (contre exemple) : Example (counter example):
Réservoir de stockage d’hydrogène de type IV, composé d’un renfort en composite époxy (Tg 80°C) fibres de carbone T700SC31 E (produite par Toray) et d’une couche d’étanchéité en PA6. : aucune miscibilité entre les 2 résines (cf tableau 1 ) ce qui empêche toute soudure entre le renfort fibreux et la couche d’étanchéité. Type IV hydrogen storage tank, composed of an epoxy composite reinforcement (Tg 80 ° C) carbon fibers T700SC31 E (produced by Toray) and a layer sealing in PA6. : no miscibility between the 2 resins (see table 1) which prevents any welding between the fiber reinforcement and the waterproofing layer.
Exemple 2 (contre exemple) : Example 2 (counter example):
Réservoir de stockage d’hydrogène de type IV, composé d’un renfort en composite époxy (Tg 80°C) fibres de carbone T700SC31 E (produite par Toray) et d’une couche Type IV hydrogen storage tank, composed of an epoxy composite reinforcement (Tg 80 ° C) T700SC31 E carbon fibers (produced by Toray) and a layer
d’étanchéité en HDPE. : aucune miscibilité entre les 2 résines (cf tableau 1 ) ce qui empêche toute soudure entre le renfort fibreux et la couche d’étanchéité. waterproofing in HDPE. : no miscibility between the 2 resins (see Table 1) which prevents any welding between the fiber reinforcement and the waterproofing layer.
Exemple 3 : Réservoir de stockage d’hydrogène de type entre IV et V, composé d’un renfort en composite BACT/10T fibres de carbone T700SC31 E (produite par Toray) et d’une couche d’étanchéité en PA6 : bonne miscibilité partielle entre les 2 résines (cf table I) ce qui autorise une bonne soudure entre le renfort fibreux et la couche d’étanchéité. Example 3: Hydrogen storage tank of type between IV and V, composed of a reinforcement in BACT / 10T carbon fiber T700SC31 E composite (produced by Toray) and a sealing layer in PA6: good partial miscibility between the 2 resins (see table I) which allows a good weld between the fibrous reinforcement and the waterproofing layer.
La composition de type BACT/10T choisie présente une température de fusion, Tf, de 283°C, une température de cristallisation, Te, de 250°C et une température de transition vitreuse de 164°C. The BACT / 10T type composition chosen has a melting point, Tm, of 283 ° C, a crystallization temperature, Te, of 250 ° C and a glass transition temperature of 164 ° C.
La Tg, la Te et la Tf sont déterminées par analyse calorimétrique différentielle (DSC) selon la norme 11357-2 :2013 et 11357-3 :2013 respectivement. Tg, Te and Tf are determined by differential scanning calorimetry (DSC) according to 11357-2: 2013 and 11357-3: 2013 respectively.
Exemple 4 : Réservoir de stockage d’hydrogène de type entre IV et V, composé d’un renfort en composite BACT/10T fibres de carbone T700SC31 E (produite par Toray) et d’une couche d’étanchéité en PA66: bonne miscibilité partielle entre les 2 résines (cf table I) ce qui autorise une bonne soudure entre le renfort fibreux et la couche d’étanchéité. La composition de type BACT/10T choisie présente une température de fusion, Tf, de 283°C, une température de cristallisation, Te, de 250°C et une température de transition vitreuse de 164°C. La Tg, la Te et la Tf sont déterminées par analyse calorimétrique différentielle (DSC) selon la norme 11357-2 :2013 et 11357-3 :2013 respectivement. Example 4: Hydrogen storage tank of type between IV and V, composed of a reinforcement in BACT / 10T carbon fiber composite T700SC31 E (produced by Toray) and a sealing layer in PA66: good partial miscibility between the 2 resins (see table I) which allows a good weld between the fibrous reinforcement and the waterproofing layer. The BACT / 10T type composition chosen has a melting point, Tm, of 283 ° C, a crystallization temperature, Te, of 250 ° C and a glass transition temperature of 164 ° C. Tg, Te and Tf are determined by differential scanning calorimetry (DSC) according to 11357-2: 2013 and 11357-3: 2013 respectively.
Le plus haut point de fusion du liner PA66 (268, 8°C ) par rapport au liner PA6 (220°C) de l’exemple 3, facilite la mise en oeuvre de la tape et la fabrication du réservoir. The higher melting point of the PA66 liner (268.8 ° C) compared to the PA6 liner (220 ° C) of Example 3, facilitates the application of the tape and the manufacture of the tank.
Exemple 5 : Réservoir de stockage d’hydrogène de type entre IV et V, composé d’un renfort en composite 1 1/BACT/10T fibres de carbone CT24-5.0/270-T140 (produite par SGL Carbon) et d’une couche d’étanchéité en PA1 1 : bonne miscibilité partielle entre les 2 résines (cf tableau 1 ) ce qui conduit à une bonne soudure entre le renfort fibreux et la couche d’étanchéité. La composition de type 11/BACT/10T choisie présente une température de fusion, Tf, de 280°C, une température de cristallisation, Te, de 220°C et une température de transition vitreuse de 160°C. La Tg, la Te et la Tf sont déterminées par analyse calorimétrique différentielle (DSC) selon la norme 1 1357-2 :2013 et 1 1357-3 :2013 respectivement. Example 5: Hydrogen storage tank of type between IV and V, composed of a reinforcement in composite 1 1 / BACT / 10T carbon fibers CT24-5.0 / 270-T140 (produced by SGL Carbon) and a layer sealing in PA1 1: good partial miscibility between the 2 resins (see Table 1) which leads to good welding between the fiber reinforcement and the sealing layer. The composition of type 11 / BACT / 10T chosen exhibits a melting point, Tm, of 280 ° C, a crystallization temperature, Te, of 220 ° C and a glass transition temperature of 160 ° C. The Tg, Te and Tf are determined by differential scanning calorimetry (DSC) according to standard 11357-2: 2013 and 11357-3: 2013 respectively.
Exemple 6 : Réservoir de stockage d’hydrogène de type entre IV et V, composé d’un renfort en composite 1 1/BACT/10T fibres de carbone CT24-5.0/270-T140 (produite par SGL Carbon) et d’une couche d’étanchéité en PA1 1/1 OT : bonne miscibilité partielle entre les 2 résines (cf tableau 1 ) ce qui conduit à une bonne soudure entre le renfort fibreux et la couche d’étanchéité. Example 6: Hydrogen storage tank of type between IV and V, composed of a reinforcement in composite 1 1 / BACT / 10T carbon fibers CT24-5.0 / 270-T140 (produced by SGL Carbon) and a waterproofing layer in PA1 1/1 OT: good partial miscibility between the 2 resins (see table 1) which leads to a good weld between the fiber reinforcement and the waterproofing layer.
La composition de type 1 1/BACT/10T choisie présente une température de fusion, Tf, de 280°C, une température de cristallisation, Te, de 220°C et une température de transition vitreuse de 160°C. La Tg, la Te et la Tf sont déterminées par analyse calorimétrique différentielle (DSC) selon la norme 1 1357-2 :2013 et 1 1357-3 :2013 respectivement. The type 1 1 / BACT / 10T composition chosen has a melting point, Tm, of 280 ° C, a crystallization temperature, Te, of 220 ° C and a glass transition temperature of 160 ° C. The Tg, Te and Tf are determined by differential scanning calorimetry (DSC) according to standard 11357-2: 2013 and 11357-3: 2013 respectively.
La composition du 1 1/1 OT utilisée pour le liner conduit à une Tf de 255°C. The composition of 1 1/1 OT used for the liner leads to a Tm of 255 ° C.
Le fait d’utiliser un liner en 1 1/1 OT dont le point de fusion est de 255°C, proche de celui de la résine 1 1/BACT/10T utilisée comme matrice du composite, facilite la mise en oeuvre du réservoir. The fact of using a 1 1/1 OT liner with a melting point of 255 ° C, close to that of the 1 1 / BACT / 10T resin used as the matrix of the composite, facilitates the use of the tank.
Exemple 7 : Réservoir de stockage d’hydrogène de type entre IV et V, composé d’un renfort en composite 1 1/BACT fibres de carbone CT24-5.0/270-T140 (produite par SGL Carbon) et d’une couche d’étanchéité en PA1 1 : bonne miscibilité partielle entre les 2 résines (cf tableau 1 ) ce qui conduit à une bonne soudure entre le renfort fibreux et la couche d’étanchéité. La composition de type 1 1/BACT choisie présente une température de fusion, Tf, de 278°C, une température de cristallisation, Te, de 210°C et une température de transition vitreuse de 157°C. La Tg, la Te et la Tf sont déterminées par analyse calorimétrique différentielle (DSC) selon la norme 1 1357-2 :2013 et 1 1357-3 :2013 respectivement. Example 7: Hydrogen storage tank of type between IV and V, composed of a reinforcement in composite 1 1 / BACT carbon fibers CT24-5.0 / 270-T140 (produced by SGL Carbon) and a layer of waterproofing in PA1 1: good partial miscibility between the 2 resins (see Table 1) which leads to good welding between the fibrous reinforcement and the waterproofing layer. The type 1 1 / BACT composition chosen has a melting point, Tm, of 278 ° C, a crystallization temperature, Te, of 210 ° C and a glass transition temperature of 157 ° C. The Tg, Te and Tf are determined by differential scanning calorimetry (DSC) according to standard 11357-2: 2013 and 11357-3: 2013 respectively.
Le fait d’utiliser un polymère de type 1 1/BACT qui cristallise lentement, permet de baisser les températures de mise en oeuvre de la tape par rapport au 1 1/BACT/10T de l’exemple précédent et facilite l’utilisation d’un liner en PA1 1 . The fact of using a polymer of type 1 1 / BACT which crystallizes slowly, makes it possible to lower the processing temperatures of the tape compared with the 1 1 / BACT / 10T of the previous example and facilitates the use of a PA1 liner 1.
Exemple 8 : Réservoir de stockage d’hydrogène de type entre IV et V, composé d’un renfort en composite 1 1/BACT fibres de carbone CT24-5.0/270-T140 (produite par SGL Carbon) et d’une couche d’étanchéité en PA1 1/10T : bonne miscibilité partielle entre les 2 résines (cf tableau 1 ) ce qui conduit à une bonne soudure entre le renfort fibreux et la couche d’étanchéité. Example 8: Hydrogen storage tank of type between IV and V, composed of a reinforcement in composite 1 1 / BACT carbon fibers CT24-5.0 / 270-T140 (produced by SGL Carbon) and a layer of waterproofing in PA1 1 / 10T: good partial miscibility between the 2 resins (see table 1) which leads to good welding between the fiber reinforcement and the waterproofing layer.
La composition de type 1 1/BACT choisie présente une température de fusion, Tf, de 278°C, une température de cristallisation, Te, de 210°C et une température de transition vitreuse de 157°C. La Tg, la Te et la Tf sont déterminées par analyse calorimétrique différentielle (DSC) selon la norme 1 1357-2 :2013 et 1 1357-3 :2013 respectivement. The type 1 1 / BACT composition chosen has a melting point, Tm, of 278 ° C, a crystallization temperature, Te, of 210 ° C and a glass transition temperature of 157 ° C. The Tg, Te and Tf are determined by differential scanning calorimetry (DSC) according to standard 11357-2: 2013 and 11357-3: 2013 respectively.
La composition du 1 1/10T utilisée pour le liner conduit à une Tf de 255°C. The composition of 1 1 / 10T used for the liner leads to a Tm of 255 ° C.
Le fait d’utiliser un liner en 1 1/1 OT dont le point de fusion est de 255°C, proche du 1 1/BACT qui constitue la résine de renfort du composite, facilite la mise en oeuvre du réservoir. Dans tous les exemples dans le tableau 1 ci-dessous, pour évaluer la miscibilité des résines, les mélanges ont été réalisés à partir de poudres d’une granulométrie d’environ 150 pm sur micro-DSM avec un temps de recirculation de 1 minute après fusion. Tous les mélanges ont été faits à 300°C, à l’exception du mélange époxy-polyéthylène qui a été effectué à 220°C. The fact of using a 1 1/1 OT liner, the melting point of which is 255 ° C., close to 1 1 / BACT which constitutes the reinforcing resin of the composite, facilitates the use of the tank. In all the examples in Table 1 below, to evaluate the miscibility of the resins, the mixtures were made from powders with a particle size of about 150 μm on micro-DSM with a recirculation time of 1 minute after fusion. All mixtures were made at 300 ° C except for the epoxy-polyethylene mixture which was made at 220 ° C.
A la fin du mélange, le mélange est injecté dans un moule pour faire une éprouvette qui sera caractérisé en DMA. At the end of the mixing, the mixture is injected into a mold to make a test specimen which will be characterized as DMA.
[Tableau 1] [Table 1]
***Les mesures de Tg sont faites par DMTA selon la norme ISO 4664 1 *** Tg measurements are made by DMTA according to ISO 4664 1
Résultats des tests de miscibilité : - colonne 4 : température de transition vitreuse de chaque résine avant mélangeMiscibility test results: - column 4: glass transition temperature of each resin before mixing
- colonne 5 : température de transition vitreuse des résines dans le mélange- column 5: glass transition temperature of the resins in the mixture
- colonne 6 : rapport entre les différences de température de transition vitreuse des résines dans le mélange et avant le mélange. - column 6: ratio between the glass transition temperature differences of the resins in the mixture and before the mixture.
100% indique une non miscibilité des résines, 100% indicates an immiscibility of the resins,
<80% indique une faible miscibilité, <80% indicates poor miscibility,
< 30% indique bonne miscibilité bien que partielle, <30% indicates good, although partial, miscibility,
0 indique une miscibilité totale. 0 indicates full miscibility.

Claims

REVENDICATIONS
1. Structure multicouche choisie parmi un réservoir, un tuyau ou tube, destinée au transport, à la distribution ou au stockage de l’hydrogène, comprenant, de l’intérieur vers l’extérieur, au moins une couche d’étanchéité et au moins une couche de renfort composite, 1. Multilayer structure chosen from a tank, a pipe or tube, intended for the transport, distribution or storage of hydrogen, comprising, from the inside to the outside, at least one sealing layer and at least a composite reinforcing layer,
ladite couche de renfort composite la plus interne étant soudée à ladite couche d’étanchéité adjacente la plus externe, said innermost composite reinforcing layer being welded to said outermost adjacent waterproofing layer,
lesdites couches d’étanchéité étant constituées d’une composition comprenant majoritairement au moins un polymère thermoplastique P1 i (i=1 à n, n étant le nombre de couches d’étanchéité) semi-cristallin dont la Tf, telle que mesurée selon ISO 11357-3 : 2013, est inférieure à 280°C, en particulier inférieure à 265°C, ledit au moins un polymère thermoplastique de chaque couche d’étanchéité pouvant être identique ou différent, et au moins l’une des dites couches de renfort composite étant constituée d’un matériau fibreux sous forme de fibres continues imprégné par une composition comprenant majoritairement au moins un polymère said sealing layers consisting of a composition mainly comprising at least one thermoplastic polymer P1 i (i = 1 to n, n being the number of sealing layers) semi-crystalline whose Tf, as measured according to ISO 11357 -3: 2013, is less than 280 ° C, in particular less than 265 ° C, said at least one thermoplastic polymer of each sealing layer possibly being the same or different, and at least one of said composite reinforcement layers consisting of a fibrous material in the form of continuous fibers impregnated with a composition predominantly comprising at least one polymer
thermoplastique P2j, (j=1 à m, m étant le nombre de couches de renfort) en particulier semi-cristallin, ledit polymère thermoplastique P2j présentant une Tg, telle que mesurée selon ISO 11357-3 : 2013, supérieure à la température maximum d’utilisation de ladite structure (Tu), avec Tg > Tu + 20°C, notamment Tg > Tu + 30°C, Tu étant supérieure à 50°C, en particulier supérieure à 100°C. thermoplastic P2j, (j = 1 to m, m being the number of reinforcing layers) in particular semi-crystalline, said thermoplastic polymer P2j having a Tg, as measured according to ISO 11357-3: 2013, greater than the maximum temperature d 'use of said structure (Tu), with Tg> Tu + 20 ° C, in particular Tg> Tu + 30 ° C, Tu being greater than 50 ° C, in particular greater than 100 ° C.
2. Structure multicouche selon la revendication 1 dans laquelle chaque polymère P1 i de chaque couche d’étanchéité est partiellement ou totalement miscible avec chaque polymère P1 i de la ou des couches adjacente(s), chaque polymère P2j de chaque couche de renfort est partiellement ou totalement miscible avec chaque polymère P2j de la ou des couches adjacente(s), et le polymère P21 est 2. Multilayer structure according to claim 1 wherein each polymer P1 i of each sealing layer is partially or completely miscible with each polymer P1 i of the adjacent layer (s), each polymer P2j of each reinforcing layer is partially or completely miscible with each polymer P2j of the adjacent layer (s), and the polymer P21 is
partiellement ou totalement miscible avec le polymère P1 1 qui lui est adjacent, la miscibilité totale ou partielle desdits polymères étant définie par la différence de température de transition vitreuse des deux résines, dans le mélange, rapportées à la différence de température de transition vitreuse des deux résines, avant le mélange, et la miscibilité étant totale lorsque la dite différence est égale à 0, et la miscibilité étant partielle, lorsque ladite différence est différente de 0. partially or totally miscible with the polymer P1 1 which is adjacent to it, the total or partial miscibility of said polymers being defined by the difference in glass transition temperature of the two resins, in the mixture, related to the difference in glass transition temperature of the two resins, before mixing, and the miscibility being total when the said difference is equal to 0, and the miscibility being partial, when the said difference is other than 0.
3. Structure multicouche selon l’une des revendications 1 ou 2, caractérisée en ce que chaque couche d’étanchéité comprend le même type de polymère, en particulier un polyamide. 3. Multilayer structure according to one of claims 1 or 2, characterized in that each sealing layer comprises the same type of polymer, in particular a polyamide.
4. Structure multicouche selon l’une des revendications 1 ou 2, caractérisée en ce que chaque couche de renfort comprend le même type de polymère, en particulier un polyamide. 4. Multilayer structure according to one of claims 1 or 2, characterized in that each reinforcing layer comprises the same type of polymer, in particular a polyamide.
5. Structure multicouche selon l’une des revendications 3 ou 4, caractérisée en ce que chaque couche d’étanchéité comprend le même type de polymère, en particulier un polyamide et chaque couche de renfort comprend le même type de polymère, en particulier un polyamide. 5. Multilayer structure according to one of claims 3 or 4, characterized in that each sealing layer comprises the same type of polymer, in particular a polyamide and each reinforcing layer comprises the same type of polymer, in particular a polyamide. .
6. Structure multicouche selon l’une des revendications 1 à 5, caractérisée en ce 6. Multilayer structure according to one of claims 1 to 5, characterized in that
qu’elle présente une seule couche d’étanchéité et une seule couche de renfort. that it has a single layer of waterproofing and a single layer of reinforcement.
7. Structure multicouche selon l’une des revendications 1 à 6, caractérisée en ce que ladite structure est un réservoir ou un tuyau flexible. 7. Multilayer structure according to one of claims 1 to 6, characterized in that said structure is a reservoir or a flexible pipe.
8. Structure multicouche selon l’une des revendications 1 à 7, caractérisée en ce que ladite composition comprenant lesdits polymères P1 et P2 comprend également des additifs, tels que les noirs de carbone, les nanotubes de carbone (NTC) ou les graphènes leur permettant d’absorber un rayonnement adapté à la soudure. 8. Multilayer structure according to one of claims 1 to 7, characterized in that said composition comprising said polymers P1 and P2 also comprises additives, such as carbon blacks, carbon nanotubes (CNTs) or graphenes allowing them absorb radiation suitable for welding.
9. Structure multicouche selon l’une des revendications 1 à 8, caractérisée en ce que ladite composition comprenant ledit polymère P2j est transparente à un 9. Multilayer structure according to one of claims 1 to 8, characterized in that said composition comprising said polymer P2j is transparent to a
rayonnement adapté à la soudure. radiation suitable for welding.
10. Structure multicouche selon la revendication 8 ou 9, caractérisée en ce que la 10. Multilayer structure according to claim 8 or 9, characterized in that the
soudure est effectuée par un système choisi parmi le laser, un chauffage infra-rouge (IR), un chauffage par led, un chauffage par induction ou par pondes ou chauffage hautes fréquences (HF). welding is carried out by a system chosen from among the laser, infrared heating (IR), heating by led, heating by induction or by layers or high frequency heating (HF).
1 1. Structure multicouche selon l’une des revendications 1 à 10, caractérisée en ce que ledit polymère P1 i est un polyamide. 1 1. Multilayer structure according to one of claims 1 to 10, characterized in that said polymer P1 i is a polyamide.
12. Structure multicouche selon l’une des revendications 1 à 10, caractérisée en ce que ledit polymère P2j est un polyamide. 12. Multilayer structure according to one of claims 1 to 10, characterized in that said polymer P2j is a polyamide.
13. Structure multicouche selon l’une des revendications 11 ou 12, caractérisée en ce que ledit polymère P1 i et ledit polymère P2j sont des polyamides. 13. Multilayer structure according to one of claims 11 or 12, characterized in that said polymer P1 i and said polymer P2j are polyamides.
14. Structure multicouche selon la revendication 1 1 ou 13, caractérisée en ce que ledit polymère P1 i est un polyamide aliphatique à longue chaîne, en particulier PA1010, PA 1012, PA 1212, PA11 , PA12, notamment PA 11 ou PA12 ou semi-aromatique, en particulier PA 11/5T, PA 1 1/6T et PA1 1/10T. 14. Multilayer structure according to claim 1 1 or 13, characterized in that said polymer P1 i is a long-chain aliphatic polyamide, in particular PA1010, PA 1012, PA 1212, PA11, PA12, in particular PA 11 or PA12 or semi- aromatic, in particular PA 11 / 5T, PA 1 1 / 6T and PA1 1 / 10T.
15. Structure multicouche selon la revendication 12 ou 13, caractérisée en ce que ledit polymère P2j est un polyamide semi-aromatique, en particulier choisi parmi un PA MPMDT/6T, un PA 1 1/10T, un PA 1 1/BACT, un PA 5T/10T un PA 11/6T/10T, un PA MXDT/10T, un PA MPMDT/10T, un PA BACT/10T, un PA BACT/6T, PA 15. Multilayer structure according to claim 12 or 13, characterized in that said polymer P2j is a semi-aromatic polyamide, in particular chosen from a PA MPMDT / 6T, a PA 1 1 / 10T, a PA 1 1 / BACT, a PA 5T / 10T one PA 11 / 6T / 10T, one PA MXDT / 10T, one PA MPMDT / 10T, one PA BACT / 10T, one PA BACT / 6T, PA
BACT/10T/6T, un PA 1 1/BACT/6T, PA 11/MPMDT/6T, PA 11/MPMDT/10T, PA BACT / 10T / 6T, one PA 1 1 / BACT / 6T, PA 11 / MPMDT / 6T, PA 11 / MPMDT / 10T, PA
1 1/BACT/10T, un PA 1 1/MXDT/10T, un PA11/5T/10T. 1 1 / BACT / 10T, one PA 1 1 / MXDT / 10T, one PA11 / 5T / 10T.
16. Structure multicouche selon l’une des revendications 13 à 15, caractérisée en ce que ledit polymère P1 i est un polyamide aliphatique à longue chaîne, en particulier PA1010, PA 1012, PA 1212, PA11 , PA12,ou semi-aromatique, en particulier PA 1 1/5T, ou PA 11/6T ou PA 1 1/10T, notamment PA 1 1 ou PA12 et ledit polymère P2j est un polyamide semi-aromatique, en particulier choisi parmi un PA MPMDT/6T, un PA PA1 1/10T, un PA 11/BACT, un PA 5T/10T, un PA 1 1/6T/10T, un PA MXDT/10T, un PA MPMDT/10T, un PA BACT/10T, un PA BACT/6T, PA BACT/10T/6T, un PA16. Multilayer structure according to one of claims 13 to 15, characterized in that said polymer P1 i is a long-chain aliphatic polyamide, in particular PA1010, PA 1012, PA 1212, PA11, PA12, or semi-aromatic, in in particular PA 1 1 / 5T, or PA 11 / 6T or PA 1 1 / 10T, in particular PA 1 1 or PA12 and said polymer P2j is a semi-aromatic polyamide, in particular chosen from a PA MPMDT / 6T, a PA PA1 1 / 10T, one PA 11 / BACT, one PA 5T / 10T, one PA 1 1 / 6T / 10T, one PA MXDT / 10T, one PA MPMDT / 10T, one PA BACT / 10T, one PA BACT / 6T, PA BACT / 10T / 6T, one PA
1 1/BACT/6T, PA 11/MPMDT/6T, PA 1 1/MPMDT/10T, PA 11/ BACT/10T, un PA 1 1/MXDT/10T, un PA11/5T/10T. 1 1 / BACT / 6T, PA 11 / MPMDT / 6T, PA 1 1 / MPMDT / 10T, PA 11 / BACT / 10T, one PA 1 1 / MXDT / 10T, one PA11 / 5T / 10T.
17. Structure multicouche selon l’une des revendications 1 à 16, caractérisée en ce qu’elle présente une résistance à la décompression et une aptitude au séchage. 17. A multilayer structure according to one of claims 1 to 16, characterized in that it exhibits resistance to decompression and suitability for drying.
18. Structure multicouche selon l’une des revendications 1 à 17, caractérisée en ce que ladite structure comprend de plus une carcasse métallique située à l’intérieur de la couche d’étanchéité. 18. Multilayer structure according to one of claims 1 to 17, characterized in that said structure further comprises a metal frame located inside the sealing layer.
19. Structure multicouche selon l’une des revendications 1 à 18, caractérisée en ce que ladite structure comprend de plus au moins une couche externe, notamment métallique, ladite couche étant la couche plus externe de ladite structure 19. Multilayer structure according to one of claims 1 to 18, characterized in that said structure further comprises at least one outer layer, in particular metallic, said layer being the outermost layer of said structure
multicouche. multilayer.
20. Structure multicouche selon l’une des revendications 1 à 19, caractérisée en ce que le matériau fibreux est choisi parmi les fibres de verre et les fibres de carbone ou de basalte ou à base de basalte. 20. Multilayer structure according to one of claims 1 to 19, characterized in that the fibrous material is chosen from glass fibers and carbon or basalt fibers or based on basalt.
21. Procédé de fabrication d’une structure multicouche telle que définie dans l’une des revendications 1 à 20, caractérisé en ce qu’il comprend une étape de soudure de la couche de renfort telle que définie dans la revendication 1 sur la couche d’étanchéité telle que définie dans la revendication 1. 21. A method of manufacturing a multilayer structure as defined in one of claims 1 to 20, characterized in that it comprises a step of welding the reinforcing layer as defined in claim 1 on the layer of sealing as defined in claim 1.
22. Procédé selon la revendication 21 , caractérisé en ce que l’étape de la soudure est effectuée par un système choisi parmi le laser, un chauffage infra-rouge (IR), un chauffage par led, un chauffage par induction ou par pondes ou chauffage hautes fréquences (HF). 22. The method of claim 21, characterized in that the soldering step is carried out by a system chosen from among the laser, infrared heating (IR), heating by led, heating by induction or by layers or high frequency heating (HF).
23. Procédé selon la revendication 21 ou 22, caractérisé en ce qu’il comprend une étape d’extrusion de ladite couche d’étanchéité sur une carcasse métallique et une étape de soudage de la couche de renfort sur la couche d’étanchéité. 23. The method of claim 21 or 22, characterized in that it comprises a step of extruding said sealing layer on a metal carcass and a step of welding the reinforcing layer on the sealing layer.
EP20757388.2A 2019-07-30 2020-07-28 Multilayer structure for transporting or storing hydrogen Pending EP4003721A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1908669A FR3099409B1 (en) 2019-07-30 2019-07-30 MULTI-LAYER STRUCTURE FOR TRANSPORT OR STORAGE OF HYDROGEN
PCT/FR2020/051386 WO2021019181A1 (en) 2019-07-30 2020-07-28 Multilayer structure for transporting or storing hydrogen

Publications (1)

Publication Number Publication Date
EP4003721A1 true EP4003721A1 (en) 2022-06-01

Family

ID=68654702

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20757388.2A Pending EP4003721A1 (en) 2019-07-30 2020-07-28 Multilayer structure for transporting or storing hydrogen

Country Status (7)

Country Link
US (1) US20220258446A1 (en)
EP (1) EP4003721A1 (en)
JP (1) JP2022542263A (en)
KR (1) KR20220040485A (en)
CN (1) CN114174066A (en)
FR (1) FR3099409B1 (en)
WO (1) WO2021019181A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3106646B1 (en) * 2020-01-28 2022-06-24 Arkema France MULTILAYER STRUCTURE FOR TRANSPORT OR STORAGE OF HYDROGEN
FR3106647B1 (en) * 2020-01-28 2021-12-31 Arkema France MULTILAYER STRUCTURE FOR TRANSPORT OR STORAGE OF HYDROGEN
FR3121627B1 (en) * 2021-04-07 2023-12-29 Arkema France MULTILAYER STRUCTURE FOR TRANSPORT OR STORAGE OF HYDROGEN
EP4177040A1 (en) * 2021-11-09 2023-05-10 Arkema France Tank for storing gas
FR3136396A1 (en) * 2022-06-08 2023-12-15 Arkema France Tank for storing a fluid under pressure
CN115403923A (en) * 2022-09-06 2022-11-29 董泽民 Transparent flame-retardant nylon and preparation method thereof
CN116518162B (en) * 2023-07-04 2023-08-29 西南石油大学 Basalt fiber composite pipeline for hydrogen transportation and manufacturing method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO314958B1 (en) * 1998-06-24 2003-06-16 Wellstream Int Ltd Flexible, polymeric, composite rudder such as a flexible riser
FR2836652B1 (en) * 2002-03-04 2005-02-11 Solvay METHOD FOR WELDING PLASTIC MULTILAYER BANDS USING ELECTROMAGNETIC RADIATION AND RESULTING COMPOSITE TUBE
FR2858626B1 (en) * 2003-08-05 2005-10-07 Atofina SOFT SEMI AROMATIC POLYAMIDES WITH LOW HUMIDITY RESUME
KR20150046790A (en) * 2013-09-24 2015-05-04 한일튜브 주식회사 Hydrogen transfer tube
CN107002873A (en) 2014-11-28 2017-08-01 三菱瓦斯化学株式会社 The manufacture method of pressure vessel, pad and pressure vessel
WO2016199643A1 (en) * 2015-06-09 2016-12-15 横浜ゴム株式会社 Hydrogen-dispensing hose
FR3044959B1 (en) * 2015-12-15 2017-12-08 Arkema France MULTILAYER STRUCTURE COMPRISING CONTINUOUS FIBERS FOR TRANSPORTING HEAT TRANSFER FLUID
KR102542302B1 (en) 2015-12-18 2023-06-09 디에스엠 아이피 어셋츠 비.브이. pressure vessel
FR3049952B1 (en) * 2016-04-08 2018-03-30 Arkema France POLYAMIDE COMPOSITION FOR PIPES CONTAINING PETROLEUM OR GAS
FR3059072B1 (en) * 2016-11-18 2019-01-25 Technip France FLEXIBLE FLUID TRANSPORT DRIVE, ASSOCIATED INSTALLATION AND METHOD
FR3076337B1 (en) * 2017-12-29 2020-01-17 Technip France FLEXIBLE UNDERWATER PIPE COMPRISING A MULTI-LAYERED OUTER SHEATH

Also Published As

Publication number Publication date
WO2021019181A1 (en) 2021-02-04
KR20220040485A (en) 2022-03-30
JP2022542263A (en) 2022-09-30
FR3099409A1 (en) 2021-02-05
FR3099409B1 (en) 2021-10-01
US20220258446A1 (en) 2022-08-18
CN114174066A (en) 2022-03-11

Similar Documents

Publication Publication Date Title
WO2021019181A1 (en) Multilayer structure for transporting or storing hydrogen
EP4251413A1 (en) Multilayer structure for transporting or storing hydrogen
WO2009007616A2 (en) Method for impregnating continuous fibres with a composite polymer matrix containing a grafted fluorinated polymer
EP4003720A1 (en) Multilayer structure for transporting or storing gas or for exploiting offshore oil deposits under the sea
CA3156621A1 (en) Method for preparing a hydrogen tank comprising a sealing layer and a base
WO2021152255A1 (en) Multilayer structure for transporting or storing hydrogen
WO2023083783A1 (en) Tank for storing gas
EP4363210A1 (en) Multilayer structure for transporting or storing hydrogen
EP4096922A1 (en) Multilayer structure for transporting or storing hydrogen
WO2021152252A1 (en) Multilayer structure for transporting or storing hydrogen
EP4096923A1 (en) Multilayer structure for transporting or storing hydrogen
EP4221975A1 (en) Multi-layer structure for storing hydrogen
FR3046106A1 (en) LONGITUDINAL PROFILE REINFORCEMENT FOR FLEXIBLE TUBULAR DRIVING
WO2022214753A1 (en) Multilayer structure for transporting or storing hydrogen

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220222

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA