EP3994758A1 - Cell with electric energy storage device and housing - Google Patents

Cell with electric energy storage device and housing

Info

Publication number
EP3994758A1
EP3994758A1 EP20737140.2A EP20737140A EP3994758A1 EP 3994758 A1 EP3994758 A1 EP 3994758A1 EP 20737140 A EP20737140 A EP 20737140A EP 3994758 A1 EP3994758 A1 EP 3994758A1
Authority
EP
European Patent Office
Prior art keywords
cell
electrical
energy storage
cap
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20737140.2A
Other languages
German (de)
French (fr)
Inventor
Julian FISCHER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fischer Power Solutions GmbH
Original Assignee
FER Fischer Edelstahlrohre GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FER Fischer Edelstahlrohre GmbH filed Critical FER Fischer Edelstahlrohre GmbH
Publication of EP3994758A1 publication Critical patent/EP3994758A1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/176Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/82Fixing or assembling a capacitive element in a housing, e.g. mounting electrodes, current collectors or terminals in containers or encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/643Cylindrical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/654Means for temperature control structurally associated with the cells located inside the innermost case of the cells, e.g. mandrels, electrodes or electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/15Lids or covers characterised by their shape for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/152Lids or covers characterised by their shape for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/179Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/51Connection only in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/512Connection only in parallel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the invention relates to a cell with an electrical energy store and a hollow cylindrical housing.
  • the electrical energy store is arranged in the housing and the housing tightly encloses the electrical energy store.
  • the electrical energy store has a first energy storage pole and a second energy storage pole.
  • the housing has an outer jacket, an inner jacket, a first cap and a second cap.
  • the housing of the cell has the shape of a hollow cylinder.
  • a hollow cylinder is understood to mean a general hollow cylinder.
  • a general hollow cylinder is defined by an outer jacket surface, an inner jacket surface, a first base surface and a second base surface, the base surfaces closing off the areas between the inner jacket surface and the outer jacket surface.
  • a general hollow cylinder can not only be vertical but also oblique. It can also have not only base areas with circular or oval, but also with polygonal cross-sectional contours.
  • the hollow cylindrical housing can also be a prism.
  • the outer jacket forms the outer jacket surface
  • the inner jacket forms the inner jacket surface
  • the housing tightly encloses the electrical energy storage unit arranged in the housing.
  • tightly enclosed means on the one hand that the electrical energy storage device is protected against environmental influences so that its functionality is not impaired, and on the other hand that the electrical energy storage device does not pose any danger to the environment.
  • the two energy storage poles of the electrical energy store are also referred to as the positive pole and the negative pole.
  • One cell or several electrically interconnected cells are used to supply electrical devices with electrical energy.
  • the electrical devices are, for example, smartphones, laptops and automobiles.
  • Two cells are interconnected in such a way that they are electrically connected either in series or in parallel.
  • Generic cells known from practice are, for example, lithium-ion round cells.
  • Such a round cell has a vertical hollow cylinder-shaped housing with an inner jacket and an outer jacket, where the inner jacket and the outer jacket have circular cross-sectional contours.
  • the two caps are adapted to the inner jacket and the outer jacket.
  • the electrical energy store is arranged in the housing and is often wrapped around the inner jacket.
  • the first energy storage pole of the electrical energy store is electrically connected to the first cap and the second energy storage pole is electrically connected to the second cap.
  • the cells are therefore only electrically contacted via the two caps, one cap representing the negative pole and the other cap representing the positive pole.
  • Several generic cells can be electrically connected in series or in parallel.
  • first and a second cell these are preferably also arranged geometrically in series, so that the first cap of the first cell and the second cap of the second cell are opposite one another.
  • the first cap and the second cap are electrically connected to one another by a cell connector.
  • electrically parallel connection of a first and a second cell these are preferably also arranged geometrically parallel, so that the first cap of the first cell and the first cap of the second cell lie next to one another.
  • the first two caps are electrically connected to one another by a cell connector.
  • the type of electrical connection of cells thus influences their geometric arrangement and the orientation of the cells in this arrangement. This means a loss of symmetry and reduces the packing density of the cells.
  • the orientation of cells relates to the sequence of their caps in relation to one another, ie to the sequence of the plus and minus poles. This is a limitation that is a disadvantage.
  • the temperature of the electrical energy store in a cell must be in a predetermined temperature range so that the maximum possible performance of the electrical energy store is given and the maximum possible service life of the electrical energy store is achieved.
  • the electrical energy storage device when charging and discharging, the electrical energy storage device generates heat.
  • the current flowing during charging and discharging also has an effect Heat in the areas of the housing through which the current flows. These areas also include, in particular, the areas of electrical contacting of the housing, for example on the caps.
  • the ambient temperature of cells and the heat generated during charging and discharging in cells can cause the specified temperature range to be exceeded. If the temperature rises so far that it is outside the specified temperature range, there is a risk of thermal runaway. It is therefore necessary to control the temperature of the cells so that the temperature of the electrical energy storage device is in the specified temperature range. A lack of temperature control or a temperature control that does not keep the electrical energy storage device in the specified temperature range therefore represents a further disadvantage.
  • the object of the present invention is to overcome or at least alleviate the disadvantages set out.
  • the object is achieved by a cell with the features of claim 1.
  • the inner jacket and the first cap form a first electrical cell conductor and, on the other hand, the outer jacket and the second cap form a second electrical cell conductor.
  • the first electrical cell conductor and the second electrical cell conductor are electrically insulated from one another.
  • the first energy storage pole and the inner jacket and on the other hand the second energy storage pole and the outer jacket are electrically connected to one another.
  • the inner jacket has, on the one hand, a first socket on the first cap and, on the other hand, a second socket for plugs of a cell connector on the second cap.
  • the sockets are of different sizes in order to avoid polarity reversal.
  • the housing is designed such that a medium for temperature control of the cell can be accommodated in the inner jacket.
  • the hollow cylindrical shape of the housing in connection with the assignment of the elements of the housing, namely the outer jacket, the inner jacket, the first cap and the second cap, to the first electrical cell conductor and the second electrical cell conductor and the electrical connection of the mecanicman means to the first energy storage pole and the Connection of the outer jacket to the second energy storage pole enables both an electrical series connection and an electrical parallel connection of two geometrically arranged cells in series, regardless of their orientation.
  • the orientation of the cells relates to the sequence of their caps to one another in the geometrically serial arrangement, that is to the sequence of first and second caps.
  • the serial cell connector has a first connector, a second connector, and a collar.
  • the first plug is designed to be complementary to one of the sockets, and the second plug to be complementary to the other socket, so that the two cells are geometrically arranged relative to one another by the serial cell connector.
  • the first plug is for electrical contacting of the socket and thus the first electrical cell conductor and the collar is designed for electrical contacting of the outer jacket and there with the second electrical cell conductor.
  • the first connector and the collar are electrically connected to one another.
  • the first electrical cell conductor of one cell and the second electrical cell conductor of the other cell are electrically connected to one another by the series cell connector.
  • the described configuration of the serial cell connector enables two cells to be electrically connected in series regardless of their orientation to one another.
  • the parallel cell connector has a first connector, a second connector and a ring.
  • the first plug is complementary to one of the two sockets and the second plug is complementary to the other socket, so that the two cells are geometrically arranged with respect to one another by the parallel cell connector.
  • both the first plug and the second plug are designed for making electrical contact with the sockets.
  • the ring is designed for making electrical contact with the outer sheaths of the two cells.
  • the configuration of the parallel cell connector described enables two cells to be electrically connected in parallel regardless of their geometric orientation to one another.
  • the housing and thus the inner jacket are designed to accommodate a medium for controlling the temperature of the cell. If a medium is accommodated in the inner jacket, it is used to supply or remove heat so that the electrical energy store is in the specified temperature range.
  • the electrical energy storage device is arranged directly on the inner jacket. As a result, the thermal resistance between the electrical energy store and the inner jacket is low and efficient temperature control is possible.
  • the outer jacket and also the caps are preferably arranged on the energy store so that the thermal resistance is as low as possible.
  • the housing of the cell is also characterized by its simplicity. Because the components of the housing, namely the outer jacket, the inner jacket, the first cap and the second cap, are easy to manufacture and assemble. This reduces manufacturing effort and manufacturing costs.
  • the energy store in the cell is usually layered, for example by folding it in itself or by wrapping it around the inner jacket.
  • the energy storage device thus has layers.
  • the energy storage device resembles a coil. Consequently, the energy store also has a corresponding inductance, which affects transient changes in a current through the energy store.
  • the first energy storage pole and the first cap and on the other hand the second energy storage pole and the second cap are electrically connected to one another.
  • the inner jacket and the first cap and on the other hand the first energy storage pole are electrically connected and on the other hand the outer jacket and the second cap and on the other hand the second energy storage pole are electrically connected.
  • the electrical connection between the first energy storage pole and the first cap is such that the first energy storage pole, preferably at each layer of the energy storage device, and the first cap are electrically connected to one another.
  • the electrical connection between the second energy storage pole and the second cap is such that the second energy storage pole, preferably at each layer of the energy storage device, and the second cap are electrically connected to one another.
  • the housing is designed in such a way that a medium for temperature control of the cell can flow through the inner jacket.
  • This medium is preferably a liquid medium.
  • a liquid medium is characterized in that, on the one hand, it has a high heat capacity and, on the other hand, it is in direct contact with the inner jacket, so that the thermal resistance between the medium and the inner deficiency is low.
  • One advantage of a liquid medium over a solid medium is that the heat supplied to or removed from the electrical energy storage device is not only transported by the thermal conductivity of the medium, but also by the movement of the flowing medium.
  • the first socket and the second socket in the inner jacket of the housing are designed to accommodate plugs of cell connectors.
  • the first socket and / or the second socket are or is designed for plugging, screwing, gluing, soldering, welding, squeezing or pressing a plug of a cell connector.
  • screwing and plugging in compared to gluing, soldering, welding, squeezing and pressing is that these connections are easier to separate.
  • gluing, soldering, welding, squeezing and pressing compared to plugging and screwing is that the connections usually have a lower electrical resistance.
  • the housing of the cell can accommodate a wide variety of electrical energy storage devices.
  • the electrical energy store is a lithium-ion, sodium-ion, manganese-ion, magnesium-ion or lithium-sulfur energy store.
  • the electrical energy store can also be a capacitor such.
  • a super capacitor is e.g. B. a double layer capacitor, pseudo capacitor or hybrid capacitor.
  • the housing with outer jacket, inner jacket, first cap and second cap pe can have a wide variety of hollow cylindrical geometries.
  • the inner jacket has a circular transverse Has cutting contour.
  • the outer jacket has a circular cross-sectional contour.
  • the outer jacket has a polygonal cross-sectional contour.
  • the first electrical cell conductor is in one piece and is made from a single piece.
  • the second electrical cell conductor is in one piece and is made from a single piece.
  • the housing preferably the outer jacket, has a predetermined breaking point, so that the housing breaks at the predetermined breaking point when the energy store exerts a predetermined force on the predetermined breaking point.
  • the energy store then exerts such a force on the predetermined breaking point, for example, when it goes through thermally, for example as a result of electrical overload.
  • an electrical connection always means an electrically conductive connection and an electrical contact means an electrically conductive contact.
  • Fig. La, lb a first embodiment of a cell
  • FIG. 3 shows an electrical series connection of two cells according to the first embodiment through an embodiment of a series cell connector
  • FIG. La shows a first exemplary embodiment of a cell 1 in a perspective view
  • FIG. Lb shows a longitudinal section of the exemplary embodiment.
  • the cell has an electrical energy store 2 and a vertical hollow cylinder-shaped housing 3.
  • the housing 3 has an outer casing 4, an inner casing 5, a first cap 6 and a second cap 7. Both the outer jacket 4 and the inner jacket 5 each have a circular cross-sectional contour.
  • a first electrical cell conductor 8 is formed by the inner jacket 5 and the first cap 6 and a second electrical cell conductor 9 is formed by the outer jacket 4 and the second cap 7. Both the first electrical cell conductor 8 and the second electrical cell conductor 9 are each made in one piece from a single piece and are electrically conductive. The first electrical cell conductor 8 and the second electrical cell conductor 9 are electrically isolated from one another.
  • first cell conductor 8 and the second cell conductor 9 simplifies the production of the cell 1, which also reduces the production costs.
  • association between the first cap 6 and the inner jacket 5 and the second cap 7 with the outer jacket 4 simplifies the joining of the first cell conductor 8 and the second cell conductor 9 to the insertion of the first cell conductor 8 into the second cell conductor 9 .
  • a further simplification is given by the fact that the electrical energy store 2 is wound onto the inner jacket 5.
  • the inner jacket 5 is preferably used as a winding mandrel for winding up the electrical energy store 2.
  • Individual energy storage layers 20 of the energy store are shown by way of example in the lower half of FIG.
  • the inner jacket 5 has a first socket 10 on the one hand, ie at the level of the first cap 6, and on the other hand, ie at the level of the second cap 7, a second socket 11 for plugs of a cell connector.
  • the first socket 10 and the second socket 11 are identical and designed for plugging in the plug of a cell connector.
  • the electrical energy store 2 is a lithium-ion energy store and has a first energy storage pole 12 and a second energy storage pole 13.
  • the electrical energy store 2 is arranged in the housing 3.
  • first energy storage pole 12 and the first electrical cell conductor 8 and, on the other hand, the second energy storage pole 13 and the second electrical cell conductor 9 are electrically connected to one another. Accordingly, on the one hand the inner jacket 5 and the first cap 6 and on the other hand the first energy storage pole 12 are electrically connected and on the other hand the outer jacket 4 and the second cap 7 and on the other hand the second energy storage pole 13 are electrically connected.
  • the electrical connection between the first energy storage pole 12 and the first cap 6 is such that the first energy storage pole 12 on each energy storage layer 20 of the electrical energy store 2 and the first cap 6 are electrically connected to one another.
  • An electrical connection to the cell 1 can thus be established via the first cell conductor 8, that is to say the first cap 6 and the inner jacket 5, and via the second cell conductor 9, that is to the outer jacket 4 and the second cap 7. It should be noted that the first socket 10 and the second socket 11 belong to the inner jacket 5.
  • the temperature of the electrical energy store 2 in the cell 1 must be in a predetermined temperature range so that the maximum possible performance of the electrical energy store 2 is given and its maximum possible service life is achieved.
  • the ambient temperature of the cell 1 and the heat generated during the charging and discharging of the electrical energy storage device 2 in the electrical energy storage device 2 can cause the specified temperature range to be left. Consequently, it is necessary to control the temperature of the cell 1 so that the temperature of the electrical energy store 2 is in the specified temperature range.
  • the housing 3 is therefore designed in such a way that a liquid medium for controlling the temperature of the cell 1 can flow through the inner jacket 7.
  • a liquid medium is characterized by the fact that on the one hand it has a high heat capacity and on the other hand it is in direct contact with the inner sleeve. tel 5, so that the thermal resistance between the medium and réelleman gel 5 is low.
  • the housing 3 also tightly encloses the electrical energy store 2. Tightly enclosed means on the one hand that the electrical energy store 2 is protected against environmental influences so that its functionality is not impaired, and on the other hand that the electrical energy store 2 does not pose any danger to the environment.
  • the tight order also relates to the medium, so that the medium does not get into the housing 3.
  • Fig. 2 shows a second embodiment of a cell 1 in a perspective view.
  • the second exemplary embodiment differs from the first exemplary embodiment exclusively in that the outer jacket 4 does not have a circular, but a rectangular cross-sectional contour. Otherwise, the explanations relating to the first exemplary embodiment apply accordingly to the second exemplary embodiment.
  • Fig. 3 shows a longitudinal section of an electrical series connection of two cells 1 according to the first embodiment through awhosbei game of a series cell connector 14.
  • the two cells 1 are geometrically arranged serially.
  • Fig. 4a shows the serial cell connector 14 from Fig. 3 separately in a perspective view.
  • 4b shows the components of the serial cell connector 14 pulled apart along its longitudinal axis.
  • 4c shows a longitudinal section of the serial cell connector 14. It has a first connector 15, a second connector 16 and a collar 17.
  • the first plug 15 and the second plug 16 are complementary to the first socket 10 and second socket 11 and are therefore also the same.
  • the two cells 1 are geometrically angeord net to each other as shown in FIG.
  • the first plug 15 is designed to make electrical contact with the first socket 10 and thus the first electrical cell conductor 8, and the collar 17 is designed for electrically contacting the outer jacket 4 and thus the second electrical cell conductor 9.
  • the first plug 15 and the collar 17 are electrically connected to one another.
  • the series cell connector 14 the first electrical cell conductor 8 of one cell 1 and the second electrical cell conductor 9 of the other cell 1 are electrically connected to one another.
  • the configuration of the se- rienzellverbinders 14 enables an electrical series connection of two cells 1 regardless of their orientation to each other. Independence from the orientation means that the electrical series connection is retained even if the orientation of one or both cells 1 is reversed. If the orientation of one of the two cells is reversed, then the first socket 10 and the second socket 11 are exchanged.
  • FIG. 5 shows a longitudinal section of an electrical parallel connection of two cells 1 according to the first exemplary embodiment through an exemplary embodiment of a parallel cell connector 18.
  • the two cells 1 are geometrically arranged in series.
  • Fig. 6a shows the parallel cell connector 18 from FIG. 5 separately in a perspective view.
  • Fig. 6b shows the components of the parallel cell connector 18 pulled apart along its longitudinal axis.
  • 6c shows a longitudinal section of the parallel cell connector 18. It has a first connector 15, a second connector 16 and a ring 19.
  • the first plug 15 and the second plug 16 are complementary to the first socket 10 and second socket 11 and are therefore also the same.
  • the two cells 1 are geometrically angeord net to each other as shown in FIG.
  • both the first plug 15 and the second plug 16 are designed for electrical contacting of the first socket 10 and the second socket 11.
  • the ring 19 is designed to make electrical contact with the outer sheaths 4 of the two cells 1.
  • the parallel cell connector 18 on the one hand the first electrical-specific cell conductor 8 of one cell 1 and the first electrical cell conductor 8 of the other cell 1 and on the other hand the second electrical cell conductor 9 of one cell 1 and the second electrical cell conductor 9 of the other cell 1 electrically connected to each other.
  • the configuration of the Parallelzellver connector 18 described allows two cells 1 to be electrically connected in parallel, regardless of their geometric orientation to one another.
  • the hollow cylindrical shape of the housing 3 in conjunction with the assignment of the outer jacket 4, the inner jacket 5, the first cap 6 and the second cap 7 to the first electrical cell conductor 8 and second electrical cell conductor 9 and the electrical connection of the first electrical cell conductor 8 with the first energy storage pole 12 and the connection of the second electrical cell conductor 9 to the second energy storage pole 13 both an electrical series circuit and an electrical parallel circuit of two geometrically serially arranged cells 1 regardless of their geometrical orientation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

The invention relates to a cell (1) with an electric energy storage device (2) and a hollow cylindrical housing (3), wherein the electric energy storage device (2) is arranged in the housing (3), and the housing (3) seals the electric energy storage device (2). The electric energy storage device (2) has a first energy storage device pole (12) and a second energy storage device pole (13), and the housing (3) has an outer casing (4), an inner casing (5), a first cap (6), and a second cap (7). The aim of the invention is to provide a temperature control system for the cell (1), said temperature control system keeping the electric energy storage device (2) in a specified temperature range. This is achieved in that a first electric cell conductor (8) is formed by the inner casing (5) and the first cap (6), and a second electric cell conductor (9) is formed by the outer casing (4) and the second cap (7); the first energy storage device pole (12) and the inner casing (5) are electrically connected together, and the second energy storage device pole (13) and the outer casing (4) are electrically connected together; the inner casing (5) has a first socket (10) on the first cap (6) and a second socket (11) on the second cap (7) for plugs (15, 16) of a cell connector (14, 18); and the housing (3) is designed such that a medium for controlling the temperature of the cell (1) can be received in the inner casing (5).

Description

Zelle mit elektrischem Energiespeicher und Gehäuse Cell with electrical energy storage and housing
Die Erfindung betrifft eine Zelle mit einem elektrischen Energiespeicher und einem hohlzylinderförmigen Gehäuse. The invention relates to a cell with an electrical energy store and a hollow cylindrical housing.
Der elektrische Energiespeicher ist im Gehäuse angeordnet und das Gehäuse umschließt den elektrischen Energiespeicher dicht. Der elektrische Energie speicher weist einen ersten Energiespeicherpol und einen zweiten Energie speicherpol auf. Das Gehäuse weist einen Außenmantel, einen Innenmantel, eine erste Kappe und eine zweite Kappe auf. The electrical energy store is arranged in the housing and the housing tightly encloses the electrical energy store. The electrical energy store has a first energy storage pole and a second energy storage pole. The housing has an outer jacket, an inner jacket, a first cap and a second cap.
Das Gehäuse der Zelle hat die Form eines Hohlzylinders. Unter einem Hohl- Zylinder wird ein allgemeiner Hohlzylinder verstanden. Ein allgemeiner Hohlzylinder ist durch eine Außenmantelfläche, Innenmantelfläche, eine ers te Grundfläche und eine zweite Grundfläche bestimmt, wobei die Grundflä chen die Bereiche zwischen Innenmantelfläche und Außenmantelfläche ab schließen. Ein allgemeiner Hohlzylinder kann nicht nur senkrecht, sondern auch schief sein. Auch kann er nicht nur Grundflächen mit kreisrunden oder ovalen, sondern auch mit mehreckigen Querschnittskonturen aufweisen. Ins besondere kann das hohlzylinderförmige Gehäuse auch ein Prisma sein. Beim Gehäuse bildet der Außenmantel die Außenmantelfläche, der Innen mantel die Innenmantelfläche, die erste Kappe, die erste Grundfläche und die zweite Kappe die zweite Grundfläche. The housing of the cell has the shape of a hollow cylinder. A hollow cylinder is understood to mean a general hollow cylinder. A general hollow cylinder is defined by an outer jacket surface, an inner jacket surface, a first base surface and a second base surface, the base surfaces closing off the areas between the inner jacket surface and the outer jacket surface. A general hollow cylinder can not only be vertical but also oblique. It can also have not only base areas with circular or oval, but also with polygonal cross-sectional contours. In particular, the hollow cylindrical housing can also be a prism. In the case of the housing, the outer jacket forms the outer jacket surface, the inner jacket forms the inner jacket surface, the first cap, the first base surface and the second cap the second base surface.
Das Gehäuse umschließt den im Gehäuse angeordneten elektrischen Energie speicher dicht. Dabei bedeutet dicht umschlossen zum einen, dass der elektri sche Energiespeicher gegen Umwelteinflüsse geschützt ist, sodass er in sei ner Funktionalität nicht beeinträchtigt ist, und zum anderen, dass vom elekt- rischen Energiespeicher keine Gefahren für die Umwelt ausgehen. The housing tightly encloses the electrical energy storage unit arranged in the housing. Here, tightly enclosed means on the one hand that the electrical energy storage device is protected against environmental influences so that its functionality is not impaired, and on the other hand that the electrical energy storage device does not pose any danger to the environment.
Die beiden Energiespeicherpole des elektrischen Energiespeichers werden auch als Pluspol und Minuspol bezeichnet. The two energy storage poles of the electrical energy store are also referred to as the positive pole and the negative pole.
Eine Zelle oder mehrere miteinander elektrisch verschaltete Zellen werden zur Versorgung von elektrischen Geräten mit elektrischer Energie verwendet. Bei den elektrischen Geräten handelt es sich zum Beispiel um Smartphones, Laptops und Automobile. Zwei Zellen sind derart miteinander verschaltet, dass sie elektrisch entweder seriell oder parallel verbunden sind. Aus der Praxis bekannte gattungsgemäße Zellen sind zum Beispiel Lithium- Ionen-Rundzellen. Eine solche Rundzelle weist ein senkrechtes hohlzylinder förmiges Gehäuse mit einem Innenmantel und einem Außenmantel auf, wo bei der Innenmantel und der Außenmantel kreisrunde Querschnittskonturen haben. Die beiden Kappen sind an den Innenmantel und an den Außenmantel angepasst. Der elektrische Energiespeicher ist im Gehäuse angeordnet und oftmals um den Innenmantel gewickelt. Der erste Energiespeicherpol des elektrischen Energiespeichers ist mit der ersten Kappe elektrisch verbunden und der zweite Energiespeicherpol ist mit der zweiten Kappe elektrisch ver- bunden. Eine elektrische Kontaktierung der Zellen erfolgt demnach lediglich über die beiden Kappen, wobei die eine Kappe den Minuspol und die andere Kappe den Pluspol darstellt. One cell or several electrically interconnected cells are used to supply electrical devices with electrical energy. The electrical devices are, for example, smartphones, laptops and automobiles. Two cells are interconnected in such a way that they are electrically connected either in series or in parallel. Generic cells known from practice are, for example, lithium-ion round cells. Such a round cell has a vertical hollow cylinder-shaped housing with an inner jacket and an outer jacket, where the inner jacket and the outer jacket have circular cross-sectional contours. The two caps are adapted to the inner jacket and the outer jacket. The electrical energy store is arranged in the housing and is often wrapped around the inner jacket. The first energy storage pole of the electrical energy store is electrically connected to the first cap and the second energy storage pole is electrically connected to the second cap. The cells are therefore only electrically contacted via the two caps, one cap representing the negative pole and the other cap representing the positive pole.
Mehrere gattungsgemäße Zellen können elektrisch seriell oder parallel ver bunden sein. Zur elektrisch seriellen Verbindung einer ersten und einer zwei- te Zelle sind diese vorzugsweise auch geometrisch seriell angeordnet, sodass die erste Kappe der ersten Zelle und die zweite Kappe der zweiten Zelle ei nander gegenüberliegen. Die erste Kappe und die zweite Kappe sind durch einen Zellverbinder elektrisch miteinander verbunden. Zur elektrisch paralle len Verbindung einer ersten und einer zweiten Zelle sind diese vorzugsweise auch geometrisch parallel angeordnet, sodass die erste Kappe der ersten Zel le und die erste Kappe der zweiten Zelle nebeneinander liegen. Die beiden ersten Kappen sind durch einen Zellverbinder elektrisch miteinander verbun den. Zwar sind auch weitere geometrische Anordnungen bei elektrisch seriell und parallel verbundenen Zellen bekannt, jedoch erfordern diese aufwendige- re Zellverbinder. Somit beeinflusst die Art der elektrischen Verbindung von Zellen deren geometrische Anordnung und die Orientierung der Zellen in dieser Anordnung. Das bedeutet einen Symmetrieverlust und reduziert die Packungsdichte der Zellen. Die Orientierung von Zellen bezieht sich auf die Abfolge ihrer Kappen zueinander, also auf die Abfolge der Plus- und Minu- spole. Das ist eine Einschränkung, welche einen Nachteil darstellt. Several generic cells can be electrically connected in series or in parallel. For the electrical serial connection of a first and a second cell, these are preferably also arranged geometrically in series, so that the first cap of the first cell and the second cap of the second cell are opposite one another. The first cap and the second cap are electrically connected to one another by a cell connector. For the electrically parallel connection of a first and a second cell, these are preferably also arranged geometrically parallel, so that the first cap of the first cell and the first cap of the second cell lie next to one another. The first two caps are electrically connected to one another by a cell connector. Although other geometrical arrangements are also known for cells connected electrically in series and in parallel, these require more complex cell connectors. The type of electrical connection of cells thus influences their geometric arrangement and the orientation of the cells in this arrangement. This means a loss of symmetry and reduces the packing density of the cells. The orientation of cells relates to the sequence of their caps in relation to one another, ie to the sequence of the plus and minus poles. This is a limitation that is a disadvantage.
Die Temperatur des elektrischen Energiespeichers in einer Zelle muss in ei nem vorgegebenen Temperaturbereich liegen, damit die maximal mögliche Leistungsfähigkeit des elektrischen Energiespeichers gegeben ist und die ma ximal mögliche Lebensdauer des elektrischen Energiespeichers erreicht wird. Jedoch entsteht beim Laden und Entladen im elektrischen Energiespeicher Wärme. Der beim Laden und Entladen fließende Strom bewirkt aber auch Wärme in den Bereichen des Gehäuses, durch welche der Strom fließt. Zu diesen Bereichen gehören insbesondere auch die Bereiche der elektrischen Kontaktierung des Gehäuses zum Beispiel an den Kappen. Die Umgebungs temperatur von Zellen und die beim Laden und Entladen in Zellen entstehen- de Wärme können ein Verlassen des vorgegebenen Temperaturbereichs be wirken. Steigt die Temperatur soweit an, dass sie außerhalb des vorgegebe nen Temperaturbereichs liegt, besteht die Gefahr eines thermischen Durchge hens. Deshalb ist es notwendig, Zellen zu temperieren, sodass die Tempera tur des elektrischen Energiespeichers in dem vorgegebenen Temperaturbe- reich liegt. Eine fehlende Temperierung oder eine Temperierung, welche den elektrischen Energiespeicher nicht im vorgegebenen Temperaturbereich hält, stellt somit einen weiteren Nachteil dar. The temperature of the electrical energy store in a cell must be in a predetermined temperature range so that the maximum possible performance of the electrical energy store is given and the maximum possible service life of the electrical energy store is achieved. However, when charging and discharging, the electrical energy storage device generates heat. The current flowing during charging and discharging also has an effect Heat in the areas of the housing through which the current flows. These areas also include, in particular, the areas of electrical contacting of the housing, for example on the caps. The ambient temperature of cells and the heat generated during charging and discharging in cells can cause the specified temperature range to be exceeded. If the temperature rises so far that it is outside the specified temperature range, there is a risk of thermal runaway. It is therefore necessary to control the temperature of the cells so that the temperature of the electrical energy storage device is in the specified temperature range. A lack of temperature control or a temperature control that does not keep the electrical energy storage device in the specified temperature range therefore represents a further disadvantage.
Aufgabe der vorliegenden Erfindung ist eine Überwindung oder zumindest Abmilderung der dargelegten Nachteile. Die Aufgabe ist durch eine Zelle mit den Merkmalen von Patentanspruch 1 gelöst. Bei dieser Zelle bilden einerseits der Innenmantel und die erste Kappe einen ersten elektrischen Zellleiter und andererseits der Außenmantel und die zweite Kappe einen zweiten elektrischen Zellleiter. Dabei sind der erste elektrische Zellleiter und der zweite elektrische Zellleiter voneinander elekt- risch isoliert. Weiter sind einerseits der erste Energiespeicherpol und der In nenmantel und andererseits der zweite Energiespeicherpol und der Außen mantel elektrisch miteinander verbunden. Der Innenmantel weist einerseits an der ersten Kappe eine erste Buchse und andererseits an der zweiten Kappe eine zweite Buchse für Stecker eines Zellverbinders auf. Vorzugsweise sind die Buchsen unterschiedlich groß ausgebildet, um ein Verpolen zu vermei den. Weiter ist das Gehäuse derart ausgebildet, sodass ein Medium zur Tem perierung der Zelle im Innenmantel aufnehmbar ist. The object of the present invention is to overcome or at least alleviate the disadvantages set out. The object is achieved by a cell with the features of claim 1. In this cell, on the one hand, the inner jacket and the first cap form a first electrical cell conductor and, on the other hand, the outer jacket and the second cap form a second electrical cell conductor. The first electrical cell conductor and the second electrical cell conductor are electrically insulated from one another. Furthermore, on the one hand the first energy storage pole and the inner jacket and on the other hand the second energy storage pole and the outer jacket are electrically connected to one another. The inner jacket has, on the one hand, a first socket on the first cap and, on the other hand, a second socket for plugs of a cell connector on the second cap. Preferably, the sockets are of different sizes in order to avoid polarity reversal. Furthermore, the housing is designed such that a medium for temperature control of the cell can be accommodated in the inner jacket.
Die Hohlzylinderform des Gehäuses in Verbindung mit der Zuordnung der Elemente des Gehäuses, nämlich des Außenmantels, des Innenmantels, der ersten Kappe und der zweiten Kappe, zum ersten elektrischen Zellleiter und zweiten elektrischen Zellleiter und die elektrische Verbindung des Innenman tels mit dem ersten Energiespeicherpol und die Verbindung des Außenman tels mit dem zweiten Energiespeicherpol ermöglichen sowohl eine elektri sche Serienschaltung als auch eine elektrische Parallelschaltung von zwei geometrisch seriell angeordneten Zellen unabhängig von deren Orientierung. Die Orientierung der Zellen bezieht sich auf die Abfolge ihrer Kappen zuei nander in der geometrisch seriellen Anordnung, also auf die Abfolge von ers ten und zweiten Kappen. The hollow cylindrical shape of the housing in connection with the assignment of the elements of the housing, namely the outer jacket, the inner jacket, the first cap and the second cap, to the first electrical cell conductor and the second electrical cell conductor and the electrical connection of the Innenman means to the first energy storage pole and the Connection of the outer jacket to the second energy storage pole enables both an electrical series connection and an electrical parallel connection of two geometrically arranged cells in series, regardless of their orientation. The orientation of the cells relates to the sequence of their caps to one another in the geometrically serial arrangement, that is to the sequence of first and second caps.
Bei zwei geometrisch seriell angeordneten Zellen erfolgt eine elektrische Se- rienschaltung dieser durch einen Serienzell verbinder und eine elektrische Pa rallelschaltung dieser durch einen Parallelzellverbinder. In the case of two geometrically arranged cells in series, these are electrically connected in series using a series cell connector and these are electrically connected in parallel with a parallel cell connector.
Der Serienzellverbinder weist einen ersten Stecker, einen zweiten Stecker und einen Kragen auf. Der erste Stecker ist komplementär zu einer der bei den Buchsen, und der zweite Stecker komplementär zu der anderen Buchse ausgebildet, sodass die beiden Zellen durch den Serienzellverbinder zueinan der geometrisch angeordnet werden. Weiter ist der erste Stecker zur elektri schen Kontaktierung der Buchse und damit des ersten elektrischen Zellleiters und ist der Kragen zur elektrischen Kontaktierung des Außenmantels und da mit des zweiten elektrischen Zellleiters ausgebildet. Dabei sind der erste Ste cker und der Kragen elektrisch miteinander verbunden. Somit werden durch den Serienzellverbinder der erste elektrische Zellleiter der einen Zelle und der zweite elektrische Zellleiter der anderen Zelle elektrisch miteinander ver bunden. Die beschriebene Konfiguration des Serienzell Verbinders ermöglicht eine elektrische Reihenschaltung von zwei Zellen unabhängig von deren Ori- entierung zueinander. The serial cell connector has a first connector, a second connector, and a collar. The first plug is designed to be complementary to one of the sockets, and the second plug to be complementary to the other socket, so that the two cells are geometrically arranged relative to one another by the serial cell connector. Furthermore, the first plug is for electrical contacting of the socket and thus the first electrical cell conductor and the collar is designed for electrical contacting of the outer jacket and there with the second electrical cell conductor. The first connector and the collar are electrically connected to one another. Thus, the first electrical cell conductor of one cell and the second electrical cell conductor of the other cell are electrically connected to one another by the series cell connector. The described configuration of the serial cell connector enables two cells to be electrically connected in series regardless of their orientation to one another.
Der Parallelzellverbinder weist einen ersten Stecker, einen zweiten Stecker und einen Ring auf. Der erste Stecker ist komplementär zu einer der beiden Buchsen und der zweite Stecker ist komplementär zu der anderen Buchse ausgebildet, sodass die beiden Zellen durch den Parallelzellverbinder geo- metrisch zueinander angeordnet werden. Weiter sind sowohl der erste Ste cker als auch der zweite Stecker zur elektrischen Kontaktierung der Buchsen ausgebildet. Der Ring ist zur elektrischen Kontaktierung der Außenmäntel von den beiden Zellen ausgebildet. Somit werden durch den Parallelzellver binder zum einen der erste elektrische Zellleiter der einen Zelle und der erste elektrische Zellleiter der anderen Zelle und zum anderen der zweite elektri sche Zellleiter der einen Zelle und der zweite elektrische Zellleiter der ande ren Zelle elektrisch miteinander verbunden. Die beschriebene Konfiguration des Parallelzellverbinders ermöglicht eine elektrische Parallelschaltung von zwei Zellen unabhängig von deren geometrischer Orientierung zueinander. Das Gehäuse und damit der Innenmantel ist zur Aufnahme eines Mediums zur Temperierung der Zelle ausgebildet. Wenn ein Medium im Innenmantel aufgenommen ist, dann dient dieses zur Zu- oder Abführung von Wärme, so- dass der elektrische Energiespeicher im vorgegebenen Temperaturbereich ist. Für gewöhnlich ist der elektrische Energiespeicher unmittelbar auf dem In nenmantel angeordnet. Dadurch ist der thermische Widerstand zwischen elektrischem Energiespeicher und Innenmantel gering und eine effiziente Temperierung möglich. Vorzugsweise ist auch der Außenmantel und sind auch die Kappen auf dem Energiespeicher angeordnet, sodass der thermische Widerstand möglichst gering ist. The parallel cell connector has a first connector, a second connector and a ring. The first plug is complementary to one of the two sockets and the second plug is complementary to the other socket, so that the two cells are geometrically arranged with respect to one another by the parallel cell connector. Furthermore, both the first plug and the second plug are designed for making electrical contact with the sockets. The ring is designed for making electrical contact with the outer sheaths of the two cells. Thus, on the one hand, the first electrical cell conductor of one cell and the first electrical cell conductor of the other cell and, on the other hand, the second electrical cell conductor of one cell and the second electrical cell conductor of the other cell are electrically connected to each other by the parallel cell connector. The configuration of the parallel cell connector described enables two cells to be electrically connected in parallel regardless of their geometric orientation to one another. The housing and thus the inner jacket are designed to accommodate a medium for controlling the temperature of the cell. If a medium is accommodated in the inner jacket, it is used to supply or remove heat so that the electrical energy store is in the specified temperature range. Usually, the electrical energy storage device is arranged directly on the inner jacket. As a result, the thermal resistance between the electrical energy store and the inner jacket is low and efficient temperature control is possible. The outer jacket and also the caps are preferably arranged on the energy store so that the thermal resistance is as low as possible.
Weiter zeichnet sich das Gehäuse der Zelle durch seine Einfachheit aus. Denn die Komponenten des Gehäuses, nämlich der Außenmantel, der Innen mantel, die erste Kappe und die zweite Kappe, sind einfach herzustellen und zusammenzufugen. Dadurch sinken Herstellungsaufwand und Herstellungs- kosten. The housing of the cell is also characterized by its simplicity. Because the components of the housing, namely the outer jacket, the inner jacket, the first cap and the second cap, are easy to manufacture and assemble. This reduces manufacturing effort and manufacturing costs.
Der Energiespeicher in der Zelle ist für gewöhnlich geschichtet, zum Bei spiel durch Falten in sich oder durch Wickeln um den Innenmantel. Somit weist der Energiespeicher Schichten auf. Der Energiespeicher ähnelt inso weit einer Spule. Folglich weist der Energiespeicher auch eine entsprechende Induktivität auf, welche transiente Änderungen eines Stroms durch den Ener giespeicher beeinträchtigt. Deshalb ist in einer Ausgestaltung der Zelle vor gesehen, dass einerseits der erste Energiespeicherpol und die erste Kappe und andererseits der zweite Energiespeicherpol und die zweite Kappe elekt risch miteinander verbunden sind. Somit sind also zum einen einerseits der Innenmantel und die erste Kappe und andererseits der erste Energiespeicher pol elektrisch verbunden und sind zum anderen einerseits der Außenmantel und die zweite Kappe und andererseits der zweite Energiespeicherpol elekt risch verbunden. Die elektrische Verbindung zwischen dem ersten Energie speicherpol und der ersten Kappe ist derart, dass der erste Energiespeicherpol an vorzugsweise jeder Schicht des Energiespeichers und die erste Kappe mit einander elektrisch verbunden sind. Entsprechend ist die elektrische Verbin dung zwischen dem zweiten Energiespeicherpol und der zweiten Kappe der art, dass der zweite Energiespeicherpol an vorzugsweise jeder Schicht des Energiespeichers und die zweite Kappe miteinander elektrisch verbunden sind. Diese Verbindung der Schichten des Energiespeichers bewirkt eine elektrische Parallelschaltung der Schichten, wodurch die Induktivität des Energiespeichers abnimmt. Durch die zusätzlichen elektrischen Verbindun gen nimmt auch sowohl der elektrische als auch thermische Widerstand ab und steigt die maximale Stromstärke an. The energy store in the cell is usually layered, for example by folding it in itself or by wrapping it around the inner jacket. The energy storage device thus has layers. In this respect, the energy storage device resembles a coil. Consequently, the energy store also has a corresponding inductance, which affects transient changes in a current through the energy store. In one embodiment of the cell it is therefore provided that on the one hand the first energy storage pole and the first cap and on the other hand the second energy storage pole and the second cap are electrically connected to one another. Thus on the one hand the inner jacket and the first cap and on the other hand the first energy storage pole are electrically connected and on the other hand the outer jacket and the second cap and on the other hand the second energy storage pole are electrically connected. The electrical connection between the first energy storage pole and the first cap is such that the first energy storage pole, preferably at each layer of the energy storage device, and the first cap are electrically connected to one another. Correspondingly, the electrical connection between the second energy storage pole and the second cap is such that the second energy storage pole, preferably at each layer of the energy storage device, and the second cap are electrically connected to one another. This connection of the layers of the energy store causes an electrical parallel connection of the layers, which reduces the inductance of the Energy storage decreases. The additional electrical connections also reduce both the electrical and thermal resistance and the maximum current strength increases.
In einer weiteren Ausgestaltung der Zelle ist vorgesehen, dass das Gehäuse derart ausgebildet ist, sodass ein Medium zur Temperierung der Zelle durch den Innenmantel strömbar ist. Bei diesem Medium handelt es sich vorzugs weise um ein flüssiges Medium. Ein flüssiges Medium zeichnet sich dadurch aus, dass es zum einen eine hohe Wärmekapazität hat und zum anderen im unmittelbaren Kontakt mit dem Innenmantel ist, sodass der thermische Wi- derstand zwischen Medium und Innenmangel gering ist. Ein Vorteil eines flüssigen Mediums gegenüber einem festen Medium ist, dass dem elektri schen Energiespeicher zu- oder abgeführte Wärme nicht nur durch die Wär meleitfähigkeit des Mediums, sondern auch durch die Bewegung des ström enden Mediums transportiert wird. Die erste Buchse und die zweite Buchse im Innenmantel des Gehäuses sind zur Aufnahme von Steckern von Zellverbindem ausgebildet. In einer weite ren Ausgestaltung der Zelle ist vorgesehen, dass die erste Buchse und/oder die zweite Buchse zum Stecken, Verschrauben, Verkleben, Verlöten, Ver schweißen, Verquetschen oder Verpressen eines Steckers eines Zellverbin- ders ausgebildet sind bzw. ist. Ein Vorteil von Verschrauben und Stecken ge genüber Verkleben, Verlöten, Verschweißen, Verquetschen und Verpressen ist, dass diese Verbindungen leichter trennbar sind. Ein Vorteil von Verkle ben, Verlöten, Verschweißen, Verquetschen und Verpressen gegenüber Ste cken und Verschrauben ist, dass die Verbindungen für gewöhnlich einen ge- ringeren elektrischen Widerstand aufweisen. In a further embodiment of the cell it is provided that the housing is designed in such a way that a medium for temperature control of the cell can flow through the inner jacket. This medium is preferably a liquid medium. A liquid medium is characterized in that, on the one hand, it has a high heat capacity and, on the other hand, it is in direct contact with the inner jacket, so that the thermal resistance between the medium and the inner deficiency is low. One advantage of a liquid medium over a solid medium is that the heat supplied to or removed from the electrical energy storage device is not only transported by the thermal conductivity of the medium, but also by the movement of the flowing medium. The first socket and the second socket in the inner jacket of the housing are designed to accommodate plugs of cell connectors. In a further embodiment of the cell it is provided that the first socket and / or the second socket are or is designed for plugging, screwing, gluing, soldering, welding, squeezing or pressing a plug of a cell connector. One advantage of screwing and plugging in compared to gluing, soldering, welding, squeezing and pressing is that these connections are easier to separate. An advantage of gluing, soldering, welding, squeezing and pressing compared to plugging and screwing is that the connections usually have a lower electrical resistance.
Das Gehäuse der Zelle kann verschiedenste elektrische Energiespeicher be herbergen. In einer Ausgestaltung der Zelle ist vorgesehen, dass der elektri sche Energiespeicher ein Lithium-Ionen-, Natrium-Ionen-, Mangan-Ionen-, Magnesium-Ionen- oder Lithium-Schwefel-Energiespeicher ist. Alternativ dazu kann der elektrische Energiespeicher auch ein Kondensator wie z. B. ein Superkondensator sein. Ein Superkondensator ist z. B. ein Doppelschicht kondensator, Pseudokondensator oder Hybridkondensator. The housing of the cell can accommodate a wide variety of electrical energy storage devices. In one embodiment of the cell it is provided that the electrical energy store is a lithium-ion, sodium-ion, manganese-ion, magnesium-ion or lithium-sulfur energy store. Alternatively, the electrical energy store can also be a capacitor such. B. be a super capacitor. A super capacitor is e.g. B. a double layer capacitor, pseudo capacitor or hybrid capacitor.
Das Gehäuse mit Außenmantel, Innenmantel, erster Kappe und zweiter Kap pe kann verschiedenste hohlzylinderförmige Geometrien aufweisen. In einer Ausgestaltung ist vorgesehen, dass der Innenmantel eine kreisförmige Quer- schnittskontur aufweist. In einer weiteren Ausgestaltung ist vorgesehen, dass der Außenmantel eine kreisförmige Querschnittskontur aufweist. In einer zur vorangehenden alternativen Ausgestaltung ist vorgesehen, dass der Außen mantel eine vieleckige Querschnittskontur aufweist. Um die Herstellung weiter zu vereinfachen und infolgedessen die Herstel lungskosten auch weiter zu senken, ist in einer weiteren Ausgestaltung vor gesehen, dass der erste elektrische Zellleiter einstückig ist und aus einem ein zigen Stück hergestellt ist. In einer weiteren Ausgestaltung, welche die glei che Zielrichtung wie die vorangehende hat, ist vorgesehen, dass der zweite elektrische Zellleiter einstückig ist und aus einem einzigen Stück hergestellt ist. The housing with outer jacket, inner jacket, first cap and second cap pe can have a wide variety of hollow cylindrical geometries. In one embodiment it is provided that the inner jacket has a circular transverse Has cutting contour. In a further embodiment it is provided that the outer jacket has a circular cross-sectional contour. In an alternative to the preceding embodiment, it is provided that the outer jacket has a polygonal cross-sectional contour. In order to further simplify production and consequently further reduce production costs, a further embodiment provides that the first electrical cell conductor is in one piece and is made from a single piece. In a further embodiment, which has the same aim as the previous one, it is provided that the second electrical cell conductor is in one piece and is made from a single piece.
In einer weiteren Ausgestaltung ist vorgesehen, dass das Gehäuse, vorzugs weise der Außenmantel, eine Sollbruchstelle aufweist, sodass das Gehäuse an der Sollbruchstelle bricht, wenn der Energiespeicher eine vorgegebene Kraft auf die Sollbruchstelle ausübt. Der Energiespeicher übt zum Beispiel dann eine solche Kraft auf die Sollbruchstelle aus, wenn er thermisch durch geht, zum Beispiel infolge einer elektrischen Überlastung. In a further embodiment it is provided that the housing, preferably the outer jacket, has a predetermined breaking point, so that the housing breaks at the predetermined breaking point when the energy store exerts a predetermined force on the predetermined breaking point. The energy store then exerts such a force on the predetermined breaking point, for example, when it goes through thermally, for example as a result of electrical overload.
Im Kontext der Erfindung bedeutet eine elektrische Verbindung stets eine elektrisch leitende Verbindung und eine elektrische Kontaktierung eine elekt- risch leitende Kontaktierung. In the context of the invention, an electrical connection always means an electrically conductive connection and an electrical contact means an electrically conductive contact.
Im Einzelnen ist eine Vielzahl von Möglichkeiten gegeben, die Zelle auszu gestalten und weiterzubilden. Dazu wird verwiesen sowohl auf die dem Pa tentanspruch 1 nachgeordneten Patentansprüche als auch auf die nachfolgen de Beschreibung von bevorzugten Ausführungsbeispielen einer Zelle in Ver- bindung mit der Zeichnung. In der Zeichnung zeigt abstrahiert In detail, there is a multitude of possibilities to design and train the cell. For this purpose, reference is made both to the patent claims subordinate to the patent claim 1 and to the following de description of preferred exemplary embodiments of a cell in conjunction with the drawing. In the drawing shows abstracted
Fig. la, lb ein erstes Ausführungsbeispiel einer Zelle, Fig. La, lb a first embodiment of a cell,
Fig. 2 ein zweites Ausführungsbeispiel einer Zelle, 2 shows a second exemplary embodiment of a cell,
Fig. 3 eine elektrische Serienschaltung von zwei Zellen gemäß dem ersten Ausführungsbeispiel durch ein Ausführungsbeispiel eines Serienzellverbinders, 3 shows an electrical series connection of two cells according to the first embodiment through an embodiment of a series cell connector,
Fig. 4a-4c das Ausführungsbeispiel eines Serienzellverbinders, Fig. 5 eine elektrische Parallelschaltung von zwei Zellen gemäß dem ersten Ausfuhrungsbeispiel durch ein Ausfuhrungsbeispiel eines Parallelzellverbinders und 4a-4c the embodiment of a serial cell connector, 5 shows an electrical parallel connection of two cells according to the first exemplary embodiment through an exemplary embodiment of a parallel cell connector and
Fig. 6a-6c das Ausfuhrungsbeispiel eines Parallelzell verbinders. Fig. la zeigt ein erstes Ausfuhrungsbeispiel einer Zelle 1 in perspektivischer Ansicht und Fig. lb einen Längsschnitt des Ausfuhrungsbeispiels. Die Zelle weist einen elektrischen Energiespeicher 2 und ein senkrechtes hohlzylinder förmiges Gehäuse 3 auf. Fig. 6a-6c the exemplary embodiment of a parallel cell connector. FIG. La shows a first exemplary embodiment of a cell 1 in a perspective view and FIG. Lb shows a longitudinal section of the exemplary embodiment. The cell has an electrical energy store 2 and a vertical hollow cylinder-shaped housing 3.
Das Gehäuse 3 weist einen Außenmantel 4, einen Innenmantel 5, eine erste Kappe 6 und eine zweite Kappe 7 auf. Sowohl der Außenmantel 4 als auch der Innenmantel 5 weisen jeweils eine kreisförmige Querschnittskontur auf. Ein erster elektrischer Zellleiter 8 ist durch den Innenmantel 5 und die erste Kappe 6 und ein zweiter elektrischer Zellleiter 9 ist durch den Außenmantel 4 und die zweite Kappe 7 gebildet. Sowohl der erste elektrische Zellleiter 8 als auch der zweite elektrische Zellleiter 9 sind jeweils einstückig aus einem einzigen Stück hergestellt und elektrisch leitend. Der erste elektrische Zelllei ter 8 und der zweite elektrische Zellleiter 9 sind elektrisch voneinander iso liert. The housing 3 has an outer casing 4, an inner casing 5, a first cap 6 and a second cap 7. Both the outer jacket 4 and the inner jacket 5 each have a circular cross-sectional contour. A first electrical cell conductor 8 is formed by the inner jacket 5 and the first cap 6 and a second electrical cell conductor 9 is formed by the outer jacket 4 and the second cap 7. Both the first electrical cell conductor 8 and the second electrical cell conductor 9 are each made in one piece from a single piece and are electrically conductive. The first electrical cell conductor 8 and the second electrical cell conductor 9 are electrically isolated from one another.
Durch die Einstückigkeit des ersten Zellleiters 8 und des zweiten Zellleiters 9 ist die Herstellung der Zelle 1 vereinfacht, wodurch auch die Herstellungs kosten sinken. Hinzu kommt, dass durch die Zuordnung einerseits der ersten Kappe 6 zum Innenmantel 5 und andererseits der zweiten Kappe 7 zum Au ßenmantel 4 das Zusammenfügen des ersten Zellleiters 8 und des zweiten Zellleiters 9 sich auf ein Einschieben des ersten Zellleiters 8 in den zweiten Zellleiter 9 vereinfacht. Eine weitere Vereinfachung ist dadurch gegeben, dass der elektrische Energiespeicher 2 auf den Innenmantel 5 gewickelt ist. Vorzugsweise wird der Innenmantel 5 als Wickeldom zum Aufwickeln des elektrischen Energiespeichers 2 verwendet. Einzelne Energiespeicherlagen 20 des Energiespeichers sind beispielhaft in der unteren Hälfte von Fig. lb dargestellt. The one-piece nature of the first cell conductor 8 and the second cell conductor 9 simplifies the production of the cell 1, which also reduces the production costs. In addition, the association between the first cap 6 and the inner jacket 5 and the second cap 7 with the outer jacket 4 simplifies the joining of the first cell conductor 8 and the second cell conductor 9 to the insertion of the first cell conductor 8 into the second cell conductor 9 . A further simplification is given by the fact that the electrical energy store 2 is wound onto the inner jacket 5. The inner jacket 5 is preferably used as a winding mandrel for winding up the electrical energy store 2. Individual energy storage layers 20 of the energy store are shown by way of example in the lower half of FIG.
Der Innenmantel 5 weist einerseits an, also in Höhe, der ersten Kappe 6 eine erste Buchse 10 und andererseits an, also in Höhe, der zweiten Kappe 7 eine zweite Buchse 11 für Stecker eines Zellverbinders auf. Die erste Buchse 10 und die zweite Buchse 11 sind gleich und zum Stecken der Stecker eines Zellverbinders ausgebildet. The inner jacket 5 has a first socket 10 on the one hand, ie at the level of the first cap 6, and on the other hand, ie at the level of the second cap 7, a second socket 11 for plugs of a cell connector. The first socket 10 and the second socket 11 are identical and designed for plugging in the plug of a cell connector.
Der elektrische Energiespeicher 2 ist ein Lithium-Ionen-Energiespeicher und weist einen ersten Energiespeicherpol 12 und einen zweiten Energiespeicher- pol 13 auf. Der elektrische Energiespeicher 2 ist im Gehäuse 3 angeordnet. The electrical energy store 2 is a lithium-ion energy store and has a first energy storage pole 12 and a second energy storage pole 13. The electrical energy store 2 is arranged in the housing 3.
Zum einen sind der erste Energiespeicherpol 12 und der erste elektrische Zellleiter 8 und zum anderen sind der zweite Energiespeicherpol 13 und der zweite elektrische Zellleiter 9 elektrisch miteinander verbunden. Demnach sind zum einen einerseits jeweils der Innenmantel 5 und die erste Kappe 6 und andererseits der erste Energiespeicherpol 12 elektrisch verbunden und sind zum anderen einerseits jeweils der Außenmantel 4 und die zweite Kap pe 7 und andererseits der zweite Energiespeicherpol 13 elektrisch verbunden. Die elektrische Verbindung zwischen dem ersten Energiespeicherpol 12 und der ersten Kappe 6 ist derart, dass der erste Energiespeicherpol 12 an jeder Energiespeicherlage 20 des elektrischen Energiespeichers 2 und die erste Kappe 6 miteinander elektrisch verbunden sind. Eine elektrische Verbindung mit der Zelle 1 kann somit über den ersten Zellleiter 8, also die erste Kappe 6 und den Innenmantel 5, und über den zweiten Zellleiter 9, also den Außen mantel 4 und die zweite Kappe 7 hergestellt werden. Dabei ist zu berücksich- tigen, dass die erste Buchse 10 und die zweite Buchse 11 zum Innenmantel 5 gehören. On the one hand, the first energy storage pole 12 and the first electrical cell conductor 8 and, on the other hand, the second energy storage pole 13 and the second electrical cell conductor 9 are electrically connected to one another. Accordingly, on the one hand the inner jacket 5 and the first cap 6 and on the other hand the first energy storage pole 12 are electrically connected and on the other hand the outer jacket 4 and the second cap 7 and on the other hand the second energy storage pole 13 are electrically connected. The electrical connection between the first energy storage pole 12 and the first cap 6 is such that the first energy storage pole 12 on each energy storage layer 20 of the electrical energy store 2 and the first cap 6 are electrically connected to one another. An electrical connection to the cell 1 can thus be established via the first cell conductor 8, that is to say the first cap 6 and the inner jacket 5, and via the second cell conductor 9, that is to the outer jacket 4 and the second cap 7. It should be noted that the first socket 10 and the second socket 11 belong to the inner jacket 5.
Die Temperatur des elektrischen Energiespeichers 2 in der Zelle 1 muss in ei nem vorgegebenen Temperaturbereich liegen, damit die maximal mögliche Leistungsfähigkeit des elektrischen Energiespeichers 2 gegeben ist und seine maximal mögliche Lebensdauer erreicht wird. Die Umgebungstemperatur der Zelle 1 und die beim Laden und Entladen des elektrischen Energiespei chers 2 im elektrischen Energiespeicher 2 entstehende Wärme können ein Verlassen des vorgegebenen Temperaturbereichs bewirken. Folglich ist es notwendig, die Zelle 1 zu temperieren, sodass die Temperatur des elektri- sehen Energiespeichers 2 in dem vorgegebenen Temperaturbereich liegt. Deshalb ist das Gehäuse 3 derart ausgebildet, dass ein flüssiges Medium zur Temperierung der Zelle 1 durch den Innenmantel 7 strömbar ist. Ein flüss iges Medium zeichnet sich dadurch aus, dass es zum einen eine hohe Wärme kapazität hat und zum anderen im unmittelbaren Kontakt mit dem Innenman- tel 5 ist, sodass der thermische Widerstand zwischen Medium und Innenman gel 5 gering ist. The temperature of the electrical energy store 2 in the cell 1 must be in a predetermined temperature range so that the maximum possible performance of the electrical energy store 2 is given and its maximum possible service life is achieved. The ambient temperature of the cell 1 and the heat generated during the charging and discharging of the electrical energy storage device 2 in the electrical energy storage device 2 can cause the specified temperature range to be left. Consequently, it is necessary to control the temperature of the cell 1 so that the temperature of the electrical energy store 2 is in the specified temperature range. The housing 3 is therefore designed in such a way that a liquid medium for controlling the temperature of the cell 1 can flow through the inner jacket 7. A liquid medium is characterized by the fact that on the one hand it has a high heat capacity and on the other hand it is in direct contact with the inner sleeve. tel 5, so that the thermal resistance between the medium and Innenman gel 5 is low.
Weiter umschließt das Gehäuse 3 den elektrischen Energiespeicher 2 dicht. Dabei bedeutet dicht umschlossen zum einen, dass der elektrische Energie- Speicher 2 gegen Umwelteinflüsse geschützt ist, sodass er in seiner Funktio nalität nicht beeinträchtigt ist, und zum anderen, dass vom elektrischen Ener giespeicher 2 keine Gefahren für die Umwelt ausgehen. Das dichte Um schließen bezieht sich auch auf das Medium, sodass das Medium nicht in das Gehäuse 3 gelangt. Fig. 2 zeigt ein zweites Ausführungsbeispiel einer Zelle 1 in perspektivischer Ansicht. Das zweite Ausführungsbeispiel unterscheidet sich vom ersten Aus- fühnmgsbeispiel ausschließlich dadurch, dass der Außenmantel 4 keine kreisförmige, sondern eine rechteckige Querschnittskontur aufweist. Im Üb rigen gelten die Ausführungen zum ersten Ausführungsbeispiel für das zwei- te Ausführungsbeispiel entsprechend. The housing 3 also tightly encloses the electrical energy store 2. Tightly enclosed means on the one hand that the electrical energy store 2 is protected against environmental influences so that its functionality is not impaired, and on the other hand that the electrical energy store 2 does not pose any danger to the environment. The tight order also relates to the medium, so that the medium does not get into the housing 3. Fig. 2 shows a second embodiment of a cell 1 in a perspective view. The second exemplary embodiment differs from the first exemplary embodiment exclusively in that the outer jacket 4 does not have a circular, but a rectangular cross-sectional contour. Otherwise, the explanations relating to the first exemplary embodiment apply accordingly to the second exemplary embodiment.
Fig. 3 zeigt einen Längsschnitt einer elektrische Serienschaltung von zwei Zellen 1 gemäß dem ersten Ausführungsbeispiel durch ein Ausführungsbei spiel eines Serienzellverbinders 14. Die beiden Zellen 1 sind geometrisch se riell angeordnet. Fig. 4a zeigt den Serienzellverbinder 14 aus Fig. 3 separat in perspektivi scher Ansicht. Fig. 4b zeigt die Komponenten des Serienzellverbinders 14 entlang seiner Längsachse auseinandergezogen. Fig. 4c zeigt einen Längs schnitt des Serienzellverbinders 14. Er weist einen ersten Stecker 15, einen zweiten Stecker 16 und einen Kragen 17 auf. Der erste Stecker 15 und der zweite Stecker 16 sind komplementär zur ersten Buchse 10 und zweiten Buchse 11 und damit auch gleich. Durch den ersten Stecker 15 und den zwei ten Stecker 16 werden die beiden Zellen 1 zueinander geometrisch angeord net wie in Fig. 3 gezeigt. Weiter ist der erste Stecker 15 zur elektrischen Kon taktierung der ersten Buchse 10 und damit des ersten elektrischen Zellleiters 8 und ist der Kragen 17 zur elektrischen Kontaktierung des Außenmantels 4 und damit des zweiten elektrischen Zellleiters 9 ausgebildet. Dabei sind der erste Stecker 15 und der Kragen 17 elektrisch miteinander verbunden. Somit werden durch den Serienzell verbinder 14 der erste elektrische Zellleiter 8 der einen Zelle 1 und der zweite elektrische Zellleiter 9 der anderen Zelle 1 elektrisch miteinander verbunden. Die beschriebene Konfiguration des Se- rienzellverbinders 14 ermöglicht eine elektrische Serienschaltung von zwei Zellen 1 unabhängig von deren Orientierung zueinander. Unabhängigkeit von der Orientierung bedeutet, dass auch bei Umkehrung der Orientierung von einer oder beider Zellen 1 die elektrische Serienschaltung erhalten bleibt. Wenn die Orientierung einer der beiden Zellen umgekehrt ist, dann sind die erste Buchse 10 und die zweite Buchse 11 vertauscht. Fig. 3 shows a longitudinal section of an electrical series connection of two cells 1 according to the first embodiment through a Ausführungsbei game of a series cell connector 14. The two cells 1 are geometrically arranged serially. Fig. 4a shows the serial cell connector 14 from Fig. 3 separately in a perspective view. 4b shows the components of the serial cell connector 14 pulled apart along its longitudinal axis. 4c shows a longitudinal section of the serial cell connector 14. It has a first connector 15, a second connector 16 and a collar 17. The first plug 15 and the second plug 16 are complementary to the first socket 10 and second socket 11 and are therefore also the same. Through the first connector 15 and the two th connector 16, the two cells 1 are geometrically angeord net to each other as shown in FIG. Next, the first plug 15 is designed to make electrical contact with the first socket 10 and thus the first electrical cell conductor 8, and the collar 17 is designed for electrically contacting the outer jacket 4 and thus the second electrical cell conductor 9. The first plug 15 and the collar 17 are electrically connected to one another. Thus, through the series cell connector 14, the first electrical cell conductor 8 of one cell 1 and the second electrical cell conductor 9 of the other cell 1 are electrically connected to one another. The configuration of the se- rienzellverbinders 14 enables an electrical series connection of two cells 1 regardless of their orientation to each other. Independence from the orientation means that the electrical series connection is retained even if the orientation of one or both cells 1 is reversed. If the orientation of one of the two cells is reversed, then the first socket 10 and the second socket 11 are exchanged.
Fig. 5 zeigt einen Längsschnitt einer elektrische Parallelschaltung von zwei Zellen 1 gemäß dem ersten Ausfuhrungsbeispiel durch ein Ausfuhrungsbei- spiel eines Parallelzellverbinders 18. Die beiden Zellen 1 sind geometrisch seriell angeordnet. 5 shows a longitudinal section of an electrical parallel connection of two cells 1 according to the first exemplary embodiment through an exemplary embodiment of a parallel cell connector 18. The two cells 1 are geometrically arranged in series.
Fig. 6a zeigt den Parallelzellverbinder 18 aus Fig. 5 separat in perspektivi scher Ansicht. Fig. 6b zeigt die Komponenten des Parallelzellverbinders 18 entlang seiner Längsachse auseinandergezogen. Fig. 6c zeigt einen Längs schnitt des Parallelzellverbinders 18. Er weist einen ersten Stecker 15, einen zweiten Stecker 16 und einen Ring 19 auf. Der erste Stecker 15 und der zweite Stecker 16 sind komplementär zur ersten Buchse 10 und zweiten Buchse 11 und damit auch gleich. Durch den ersten Stecker 15 und den zwei ten Stecker 16 werden die beiden Zellen 1 zueinander geometrisch angeord net wie in Fig. 5 gezeigt. Weiter sind sowohl der erste Stecker 15 als auch der zweite Stecker 16 zur elektrischen Kontaktierung der ersten Buchse 10 und der zweiten Buchse 11 ausgebildet. Der Ring 19 ist zur elektrischen Kontaktierung der Außenmäntel 4 von den beiden Zellen 1 ausgebildet. So mit werden durch den Parallelzellverbinder 18 zum einen der erste elektri sche Zellleiter 8 der einen Zelle 1 und der erste elektrische Zellleiter 8 der anderen Zelle 1 und zum anderen der zweite elektrische Zellleiter 9 der einen Zelle 1 und der zweite elektrische Zellleiter 9 der anderen Zelle 1 elektrisch miteinander verbunden. Die beschriebene Konfiguration des Parallelzellver binders 18 ermöglicht eine elektrische Parallelschaltung von zwei Zellen 1 unabhängig von deren geometrischer Orientierung zueinander. Somit ermöglicht die Hohlzylinderform des Gehäuses 3 in Verbindung mit der Zuordnung des Außenmantels 4, des Innenmantels 5, der ersten Kappe 6 und der zweiten Kappe 7 zum ersten elektrischen Zellleiter 8 und zweiten elektrischen Zellleiter 9 und die elektrische Verbindung des ersten elektri schen Zellleiters 8 mit dem ersten Energiespeicherpol 12 und die Verbindung des zweiten elektrischen Zellleiters 9 mit dem zweiten Energiespeicherpol 13 sowohl eine elektrische Serienschaltung als auch eine elektrische Parallel schaltung von zwei geometrisch seriell angeordneten Zellen 1 unabhängig von deren geometrischer Orientierung. Fig. 6a shows the parallel cell connector 18 from FIG. 5 separately in a perspective view. Fig. 6b shows the components of the parallel cell connector 18 pulled apart along its longitudinal axis. 6c shows a longitudinal section of the parallel cell connector 18. It has a first connector 15, a second connector 16 and a ring 19. The first plug 15 and the second plug 16 are complementary to the first socket 10 and second socket 11 and are therefore also the same. By the first connector 15 and the two th connector 16, the two cells 1 are geometrically angeord net to each other as shown in FIG. Furthermore, both the first plug 15 and the second plug 16 are designed for electrical contacting of the first socket 10 and the second socket 11. The ring 19 is designed to make electrical contact with the outer sheaths 4 of the two cells 1. So with the parallel cell connector 18 on the one hand the first electrical-specific cell conductor 8 of one cell 1 and the first electrical cell conductor 8 of the other cell 1 and on the other hand the second electrical cell conductor 9 of one cell 1 and the second electrical cell conductor 9 of the other cell 1 electrically connected to each other. The configuration of the Parallelzellver connector 18 described allows two cells 1 to be electrically connected in parallel, regardless of their geometric orientation to one another. Thus, the hollow cylindrical shape of the housing 3 in conjunction with the assignment of the outer jacket 4, the inner jacket 5, the first cap 6 and the second cap 7 to the first electrical cell conductor 8 and second electrical cell conductor 9 and the electrical connection of the first electrical cell conductor 8 with the first energy storage pole 12 and the connection of the second electrical cell conductor 9 to the second energy storage pole 13 both an electrical series circuit and an electrical parallel circuit of two geometrically serially arranged cells 1 regardless of their geometrical orientation.
Bezugszeichen Reference number
1 Zelle 1 cell
2 elektrischer Energiespeicher 2 electrical energy storage
3 Gehäuse 3 housing
4 Außenmantel 4 outer jacket
5 Innenmantel 5 inner jacket
6 erste Kappe 6 first cap
7 zweite Kappe 7 second cap
8 erster Zellleiter 8 first cell conductor
9 zweiter Zellleiter 9 second cell conductor
10 erste Buchse 10 first socket
11 zweite Buchse 11 second socket
12 erster Energiespeicherpol 12 first energy storage pole
13 zweiter Energiespeicherpol 13 second energy storage pole
14 Serienzellverbinder 14 serial cell connectors
15 erster Stecker 15 first connector
16 zweiter Stecker 16 second connector
17 Kragen 17 collar
18 Parallelzellverbinder 18 parallel cell connectors
19 Ring 19 ring
20 Energiespeicherlage 20 energy storage layer

Claims

Patentansprüche Claims
1. Zelle (1) mit einem elektrischen Energiespeicher (2) und einem hohl zylinderförmigen Gehäuse (3), wobei der elektrische Energiespeicher (2) im Gehäuse (3) angeordnet ist und das Gehäuse (3) den elektrischen Energiespeicher (2) dicht umschließt, wobei der elektrische Energiespeicher (2) einen ersten Energiespeicherpol (12) und einen zweiten Energiespeicherpol (13) aufweist und wobei das Gehäuse (3) einen Außenmantel (4), einen Innenmantel (5), eine erste Kappe (6) und eine zweite Kappe (7) aufweist, 1. Cell (1) with an electrical energy store (2) and a hollow cylindrical housing (3), the electrical energy store (2) being arranged in the housing (3) and the housing (3) tightly enclosing the electrical energy store (2) , wherein the electrical energy store (2) has a first energy storage pole (12) and a second energy storage pole (13) and wherein the housing (3) has an outer jacket (4), an inner jacket (5), a first cap (6) and a second Has cap (7),
dadurch gekennzeichnet, characterized,
dass einerseits der Innenmantel (5) und die erste Kappe (6) einen ersten elektrischen Zellleiter (8) und andererseits der Außenmantel (4) und die zweite Kappe (7) einen zweiten elektrischen Zellleiter (9) bilden, dass einerseits der erste Energiespeicherpol (12) und der Innenmantel (5) und andererseits der zweite Energiespeicherpol (13) und der Außenmantel (4) elektrisch miteinander verbunden sind, dass der Innenmantel (5) einerseits an der ersten Kappe (6) eine erste Buchse (10) und andererseits an der zweiten Kappe (7) eine zweite Buchse (11) für Stecker (115, 16) eines Zellverbinders (14, 18) aufweist und dass das Gehäuse (3) derart ausgebildet ist, sodass ein Medium zur Tempe rierung der Zelle (1) im Innenmantel (5) aufnehmbar ist. that on the one hand the inner jacket (5) and the first cap (6) form a first electrical cell conductor (8) and on the other hand the outer jacket (4) and the second cap (7) form a second electrical cell conductor (9), that on the one hand the first energy storage pole ( 12) and the inner jacket (5) and, on the other hand, the second energy storage pole (13) and the outer jacket (4) are electrically connected to one another, so that the inner jacket (5) has a first socket (10) on the one hand on the first cap (6) and on the other the second cap (7) has a second socket (11) for plugs (115, 16) of a cell connector (14, 18) and that the housing (3) is designed such that a medium for tempering the cell (1) in the Inner jacket (5) can be received.
2. Zelle (1) nach Anspruch 1, dadurch gekennzeichnet, dass das Gehäuse (3) derart ausgebildet ist, sodass ein Medium zur Temperierung der Zelle (1) durch den Innenmantel (5) strömbar ist. 2. Cell (1) according to claim 1, characterized in that the housing (3) is designed such that a medium for temperature control of the cell (1) can flow through the inner jacket (5).
3. Zelle (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass einer seits der erste Energiespeicherpol (12) und die erste Kappe (6) und anderer seits der zweite Energiespeicherpol (13) und die zweite Kappe (7) elektrisch miteinander verbunden sind. 3. Cell (1) according to claim 1 or 2, characterized in that on the one hand the first energy storage pole (12) and the first cap (6) and on the other hand the second energy storage pole (13) and the second cap (7) are electrically connected to one another are.
4. Zelle (1) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die erste Buchse (10) und/oder die zweite Buchse (11) zum Stecken, Verschrauben, Verkleben, Verlöten, Verschweißen, Verquetschen oder Ver- pressen eines Steckers (15, 16) eines Zellverbinders (14, 18) ausgebildet sind bzw. ist. 4. Cell (1) according to one of claims 1 to 3, characterized in that the first socket (10) and / or the second socket (11) for plugging, screwing, gluing, soldering, welding, squeezing or pressing one Connector (15, 16) of a cell connector (14, 18) are or is.
5. Zelle (1) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der elektrische Energiespeicher (2) ein Lithium-Ionen-, Natrium-Ionen-, Mangan-Ionen-, Magnesium-Ionen- oder Lithium-Schwefel-Energiespeicher ist. 5. Cell (1) according to one of claims 1 to 4, characterized in that the electrical energy store (2) is a lithium-ion, sodium-ion, manganese-ion, magnesium-ion or lithium-sulfur energy store is.
6. Zelle (1) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der elektrische Energiespeicher (2) ein Kondensator ist. 6. Cell (1) according to one of claims 1 to 4, characterized in that the electrical energy store (2) is a capacitor.
7. Zelle (1) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Innenmantel (5) eine kreisförmige Querschnittskontur aufweist. 7. Cell (1) according to one of claims 1 to 6, characterized in that the inner jacket (5) has a circular cross-sectional contour.
8. Zelle (1) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Außenmantel (4) eine kreisförmige Querschnittskontur aufweist. 8. Cell (1) according to one of claims 1 to 7, characterized in that the outer jacket (4) has a circular cross-sectional contour.
9. Zelle (1) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Außenmantel (4) eine vieleckige Querschnittskontur aufweist. 9. Cell (1) according to one of claims 1 to 7, characterized in that the outer jacket (4) has a polygonal cross-sectional contour.
10. Zelle nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der erste elektrische Zellleiter (8) einstückig ist und aus einem einzigen Stück hergestellt ist. 10. Cell according to one of claims 1 to 9, characterized in that the first electrical cell conductor (8) is in one piece and is made from a single piece.
11. Zelle (1) nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass der zweite elektrische Zellleiter (9) einstückig ist und aus einem einzi gen Stück hergestellt ist. 11. Cell (1) according to one of claims 1 to 10, characterized in that the second electrical cell conductor (9) is in one piece and is made from a single piece.
12. Zelle (1) nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass das Gehäuse (3), vorzugsweise der Außenmantel (4), eine Sollbruchstel le aufweist, sodass das Gehäuse (3) an der Sollbruchstelle bricht, wenn der Energiespeicher (2) eine vorgegebene Kraft auf die Sollbruchstelle ausübt. 12. Cell (1) according to one of claims 1 to 11, characterized in that the housing (3), preferably the outer jacket (4), has a predetermined breaking point so that the housing (3) breaks at the predetermined breaking point when the energy store (2) exerts a predetermined force on the predetermined breaking point.
EP20737140.2A 2019-07-04 2020-07-03 Cell with electric energy storage device and housing Pending EP3994758A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019118160.7A DE102019118160A1 (en) 2019-07-04 2019-07-04 Cell with electrical energy storage and housing
PCT/EP2020/068861 WO2021001545A1 (en) 2019-07-04 2020-07-03 Cell with electric energy storage device and housing

Publications (1)

Publication Number Publication Date
EP3994758A1 true EP3994758A1 (en) 2022-05-11

Family

ID=71523143

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20737140.2A Pending EP3994758A1 (en) 2019-07-04 2020-07-03 Cell with electric energy storage device and housing

Country Status (3)

Country Link
EP (1) EP3994758A1 (en)
DE (1) DE102019118160A1 (en)
WO (1) WO2021001545A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022106656A1 (en) 2022-03-22 2023-09-28 Bayerische Motoren Werke Aktiengesellschaft Electrochemical energy storage, electrochemical round cell and method for producing an electrochemical round cell

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005041746A1 (en) * 2005-09-02 2007-03-08 Bayerische Motoren Werke Ag Electrochemical energy storage cell
KR101315672B1 (en) * 2012-07-06 2013-10-08 (주)오렌지파워 Electrode assembly, battery having the same and method of fabricating battery
DE102012018040A1 (en) * 2012-09-13 2014-03-13 Daimler Ag Single cell i.e. lithium ion single cell, for high volt battery for e.g. electric car, has electrode stack wrapped on mandrel, and cell components surrounding electrode stack in sections and comprising phase transition material
KR102046056B1 (en) * 2014-08-21 2019-11-18 주식회사 엘지화학 A Battery cell Having Improved Cooling Performance
FR3075477B1 (en) * 2017-12-14 2021-07-30 Commissariat Energie Atomique TRAVERSE FORMING TERMINAL FOR METAL-ION ELECTROCHEMICAL ACCUMULATOR, ASSOCIATED ACCUMULATOR
DE102019001520B3 (en) * 2019-03-04 2020-02-06 Friedrich Grimm ACCUMULATOR CELL AS A TUBE CELL AND AS A HEAT EXCHANGER, ELECTRIC VEHICLE WITH A TUBE CELL

Also Published As

Publication number Publication date
DE102019118160A1 (en) 2021-01-07
WO2021001545A1 (en) 2021-01-07

Similar Documents

Publication Publication Date Title
EP3433904B1 (en) A connector equipped with a thermal element
DE112015002653T5 (en) Battery connection method and associated device
EP3811440B1 (en) Pouch cell and stack
DE102013213550A1 (en) Battery cell with a prismatic or cylindrical housing, battery module and motor vehicle
WO2017207266A1 (en) Charging cable for transmitting electric energy, charging plug and charging station for discharging electric energy to a recipient of electric energy
EP2450921A1 (en) Charger, receiving station and plug device for inductive transmission of electrical energy
EP3818574B1 (en) Pouch cell and stack
EP2953183A2 (en) Connection system for the combination of lithium batteries and their connection to a battery system
WO2012107161A1 (en) Energy storage means
DE102016009910A1 (en) battery device
DE102014202129A1 (en) Battery cell cooling
WO2021001546A1 (en) Cell connector for cells, cell modules, and battery modules comprising cells
WO2021001545A1 (en) Cell with electric energy storage device and housing
DE202009015040U1 (en) Module and system for an electrochemical battery cell
DE102015202338A1 (en) Design for solid cells
EP3259789A1 (en) Monitoring a state variable of at least one battery cell of a battery
EP3756933B1 (en) Charging connector and charging connection system
DE102013220171A1 (en) Battery cell and manufacturing process for this, as well as battery
EP2648287A1 (en) Vehicle-side socket for a charging plug connector, in particular for industrial trucks
DE102005045418B3 (en) Accumulator, accumulator block and production process as for hybrid motor vehicle has rectangular housing with connected negative plates spring connected to housing and positives joined to adjacent housing
AT507439B1 (en) ELECTRIC ENERGY STORAGE
DE102022109502B4 (en) Bimetallic charging cable connector, method for producing a charging cable connector, charging socket with a charging cable connector and system with a charging cable connector
AT523338B1 (en) battery
EP0521190A1 (en) Plug bridge for a protective contact plug of an electric apparatus
DE102016011036A1 (en) Electric charging device, charging plug and electric charging device in combination with the charging plug

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220131

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FISCHER POWER SOLUTIONS GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20231102