EP3990898A1 - Microfluid analysis method and device for quantifying soluble gaseous polutants in water - Google Patents

Microfluid analysis method and device for quantifying soluble gaseous polutants in water

Info

Publication number
EP3990898A1
EP3990898A1 EP20734184.3A EP20734184A EP3990898A1 EP 3990898 A1 EP3990898 A1 EP 3990898A1 EP 20734184 A EP20734184 A EP 20734184A EP 3990898 A1 EP3990898 A1 EP 3990898A1
Authority
EP
European Patent Office
Prior art keywords
gaseous pollutant
liquid
analyzing
derivative
pollutant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20734184.3A
Other languages
German (de)
French (fr)
Inventor
Stéphane LE CALVE
Christina ANDRIKOPOULOU
Anais BECKER
Pierre Bernhardt
Claire TROCQUET
Hervé PLAISANCE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
In Air Solutions
In' Air Solutions
Association pour la Recherche et le Developpement des Methodes et Processus Industriels
Centre National de la Recherche Scientifique CNRS
Universite de Strasbourg
Original Assignee
In Air Solutions
In' Air Solutions
Association pour la Recherche et le Developpement des Methodes et Processus Industriels
Centre National de la Recherche Scientifique CNRS
Universite de Strasbourg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by In Air Solutions, In' Air Solutions, Association pour la Recherche et le Developpement des Methodes et Processus Industriels, Centre National de la Recherche Scientifique CNRS, Universite de Strasbourg filed Critical In Air Solutions
Publication of EP3990898A1 publication Critical patent/EP3990898A1/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0011Sample conditioning
    • G01N33/0013Sample conditioning by a chemical reaction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2202Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
    • G01N1/2214Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling by sorption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/0332Cuvette constructions with temperature control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • G01N21/783Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour for analysing gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036Specially adapted to detect a particular component
    • G01N33/0047Specially adapted to detect a particular component for organic compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2202Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
    • G01N1/2214Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling by sorption
    • G01N2001/2217Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling by sorption using a liquid

Definitions

  • the present invention relates to a method for analyzing a gaseous pollutant, such as formaldehyde, as well as a device for implementing this method.
  • Gaseous pollutants such as formaldehyde
  • formaldehyde are present in our environment. In the external environment, they can come directly from industrial or automobile discharges or from forest fires, or indirectly by oxidation of volatile organic compounds. Since formaldehyde is soluble in water, it is also found in oceans, seas, surface water or rainwater.
  • these devices include a gas pump, to trap the air comprising the gaseous pollutant to be analyzed in the device, and a mass flow regulator, to regulate the flow of the liquid solution comprising the selective derivative agent, which are particularly expensive, bulky, noisy and energy intensive. This limits the development of portable analysis devices.
  • the invention aims to remedy the aforementioned drawbacks of the prior art, more particularly it aims to provide a method for analyzing a gaseous pollutant and a device for analyzing a gaseous pollutant which can implement the method, the device not comprising any gas pump, nor any mass flow regulator.
  • An object of the invention is therefore a method for analyzing a gaseous pollutant by means of a microfluidic circuit comprising a means for pumping a liquid and a means for trapping a gas, characterized in that that it comprises the following steps: a) Generation of a flow of a liquid, the liquid comprising a selective derivative agent; b) Entrapment and dissolution of the gaseous pollutant in the flow; c) Reaction of the pollutant with the selective derivative so as to form a liquid derivative compound; d) Measurement of the concentration of liquid derivative compound and determination of the concentration of gaseous pollutant.
  • step c) comprises the temperature regulation of the liquid flow
  • step d) is carried out by fluorescence spectroscopy or by colorimetry;
  • the gaseous pollutant is chosen from a compound of the family of aldehydes or a compound of the family of chloramines;
  • the gaseous pollutant is formaldehyde
  • the flow generated in step a) has a flow rate of between 0.1 pL / min and 100 pL / min.
  • Another object of the invention is a device for analyzing a gaseous pollutant for the implementation of the method according to the invention comprising a peristaltic pump, a container comprising a liquid solution comprising a selective derivative agent and having at least one inlet and one outlet, the outlet being connected to the peristaltic pump, a means for trapping and dissolving the gaseous pollutant in a liquid flow comprising the liquid solution, a means for reacting the gaseous pollutant with the selective derivative agent to form a derivative compound, connected to the inlet of the container and to the trapping means, and a sensor adapted to determine a concentration of derivative compound, connected with the peristaltic pump and by means of trapping.
  • the trapping means is placed in an emission cell placed on a surface of a material emitting the gaseous pollutant, and / or
  • the device is adapted so as to be a closed microfluidic circuit.
  • Another object of the invention is a device for analyzing a gaseous pollutant for the implementation of the method according to the invention comprising at least one inlet suitable for a solution comprising at least one selective liquid derivative agent, a peristaltic pump connected to the inlet, a means for trapping and dissolving the gaseous pollutant in a liquid flow comprising the drifting agent and placed at the outlet of the peristaltic pump, a means for reacting the gaseous pollutant with the drifting agent for form a derivative compound and placed at the outlet of the trapping means, a sensor suitable for determining a concentration of derivative compound, placed at the outlet of the reaction means and at least one outlet suitable for discharging the gaseous pollutant, the selective derivative agent and compounds derived from the reaction between the gaseous pollutant and the selective derivative.
  • the device also comprises an inlet for a liquid and a system of solenoid valves placed between the inlets for the liquid and the selective derivative agent and the peristaltic pump so that the outlet of the pump is a liquid flow comprising the derivative agent; and - the device also comprises an inlet and an outlet suitable for a gas comprising the gaseous pollutant.
  • the senor comprises a fluorescence detector or a spectrometer or a colorimeter; - the trapping means comprises a microporous tube;
  • the trapping means is a microfluidic chip comprising a porous membrane, at least one inlet and one outlet suitable for a liquid;
  • reaction means is a microfluidic chip; and - the sensor comprises a microfluidic chip.
  • FIG.l a diagram of the steps of the method according to the invention.
  • FIG.2 an analysis device according to a first embodiment of the invention;
  • FIG. 3 an example of a means for determining the gaseous pollutant concentration of the device according to the invention
  • FIG. 4 an analysis device according to a second embodiment of the invention
  • FIG. 6 an analysis device according to a third embodiment of the invention.
  • FIG. 7 an analysis device according to a fourth embodiment of the invention
  • FIG. 8a an analysis device according to a fourth embodiment of the invention
  • FIG. 8b an example of measurement carried out with the analysis device according to the third and fourth embodiments of the invention.
  • a selective derivative agent is a reagent which reacts with the gaseous pollutant to be analyzed to form a compound, called a derivative, which is easily detectable and quantifiable.
  • FIG. 1 represents a diagram of the steps of the method according to the invention. The process comprises four steps, from a) to d). It is implemented by means of a microfluidic circuit comprising a means for pumping a liquid and a means of entrapment of a gas. Examples of this type of microfluidic circuit are given with reference to Figures 2 to 6.
  • the first step a) consists in generating a flow of a liquid, the flow comprising a selective derivative agent.
  • the selective derivative can be included in the liquid or added to the liquid during generation of the flow.
  • the flow is generated by pumping the liquid through the liquid pumping means present in the microfluidic circuit.
  • the second step b) consists in trapping the gaseous pollutant to be analyzed in the flow generated in step a) and in dissolving it in the flow.
  • the trapping of the pollutant is for example carried out by the trapping means of the microfluidic circuit. It can in particular be carried out by passing the gaseous pollutant through a porous surface.
  • the porous surface can be a porous membrane placed on a microfluidic cell in which the liquid flow flows.
  • the porous surface can also be a microporous tube through which the liquid flow flows.
  • the third step c) consists in reacting the gaseous pollutant dissolved in the flow with the selective derivative agent in excess, so that a derivative compound is formed.
  • the concentration of selective derivative is in large excess, so it is not critical. Thus, the pollutant is quantitatively transformed into a derivative compound during this reaction step.
  • step d) consists in measuring the concentration of derivative compound to determine the concentration of gaseous pollutant.
  • this step d) is carried out by fluorescence spectroscopy or by colorimetry.
  • the derivative compound is a fluorescent compound
  • fluorescence measurements can be made, for example by fluorescence spectroscopy, to determine the concentration of derivative compound and thus determine the concentration of gaseous pollutant. It is also possible to determine the concentration of derivative compound by colorimetry measurements, in order then to determine that of gaseous pollutant because the concentration of selective derivative is in large excess and therefore not critical. Thus, the pollutant is quantitatively transformed into a derivative compound.
  • the gaseous pollutant to be analyzed is a compound of the family of aldehydes, in particular formaldehyde, or a compound of the family of chloramines. More generally, the gaseous pollutant to be analyzed is a gas which can easily dissolve in a liquid phase, that is to say exhibiting a high Henry's constant greater than 20 mol.L 1 , or 20 M / atm, or having a rapid reaction in solution, despite a Henry's constant of less than 20 M / atm,.
  • the selective derivative compound is chosen so as to react with the gaseous pollutant to be analyzed.
  • the derivative compound may, for example, be fluoral-P; or if the gaseous pollutant is a chloramine, the derivative compound could, for example, be a mixture of iodine and starch.
  • the flow generated in step a) is preferably a slow flow, because the slower the flow, the greater the quantity of gaseous pollutant dissolved per unit volume of drifting agent. If the flow is too fast, the gaseous pollutant will be too diluted in the flow.
  • the flow is considered to be slow if the flow rate is between 0.1 pL / min and 100 pL / min, and more preferably if it is between 1 pL / min and 50 pL / min.
  • step c) comprises a regulation of the temperature of the liquid flow so as to control the reaction kinetics between the pollutant and the derivative agent and thus promote and / or accelerate the reaction of the pollutant dissolved with the drifting agent.
  • step a) of the method also comprises a step of calibrating the microfluidic circuit, in order to determine a concentration of gaseous pollutant internal to the microfluidic circuit.
  • This calibration step also makes it possible to calibrate the means for determining the concentration of gaseous pollutant, for example, the means for measuring fluorescence or colorimetry of the derivative compound.
  • FIG. 2 represents a device for analyzing a gaseous pollutant DAP, according to a first embodiment of the invention, making it possible to implement the method of the invention.
  • the DAP device is a closed circuit which comprises a peristaltic pump P, a VL container adapted to include a liquid solution, a means of PG trapping of the gaseous pollutant, a means of R reaction of the gaseous pollutant with a selective derivative agent and a sensor D capable of determining the concentration of derivative compound, in order then to be able to determine the concentration of gaseous pollutant.
  • the VL container has at least one inlet E and one outlet S, and the liquid solution contained in the VL container comprises at least one selective derivative agent.
  • the liquid solution can be a mixture of the derivative with another liquid or just the derivative.
  • the outlet S of the LV container is connected to the peristaltic pump P.
  • the PG trapping means is suitable for trapping the gaseous pollutant in a liquid flow comprising the liquid solution, the flow being generated by the peristaltic pump P. More particularly, it generally comprises a microporous tube or a microporous membrane.
  • the reaction means R is connected to the input E of the VL container.
  • the sensor D is connected to the peristaltic pump P and to the trapping means PG.
  • the PG trapping means is a microfluidic chip comprising at least one inlet and one outlet for the liquid flow and a porous membrane.
  • the porous membrane is placed so that on one side of the membrane is the liquid flow, and on the other side is the gaseous pollutant.
  • the porous membrane and the liquid flow make it possible to trap the gaseous pollutant in the liquid flow circulating in the chip, and to dissolve it in this same flow.
  • the input of the chip is in this case connected to the output of the VL container, while its output is connected to the reaction means R.
  • the reaction means R is a microfluidic chip comprising an input, connected to the output of the trapping means PG, and an output, connected to the input E of the container VL.
  • This chip may include a serpentine channel in order to that the dissolved gaseous pollutant and the derivatizing agent have time to react and form a derivative compound.
  • the reaction means R is thermostatically controlled in order to control the reaction kinetics between the gaseous pollutant and the selective derivative agent.
  • the DAP device can comprise an oven or a Pelletier module, placed between the trapping means PG and the VL container, in which the reaction means R is placed, the oven making it possible to heat the flow and the Pelletier module making it possible to maintain a constant temperature of the flow.
  • the senor D comprises a microfluidic chip comprising an input connected to the peristaltic pump P and an output connected to the trapping means PG.
  • FIG. S illustrates an example of a sensor D comprising a microfluidic chip.
  • the microfluidic chip PUCE is connected, by its input, to the peristaltic pump P, and by its output by means of trapping PG.
  • An LED light source is placed on top of the CHIP chip and an MD dichroic mirror is placed between the CHIP chip and the LED light source.
  • the MD mirror is placed so as to send the light rays from the LED source to the CHIP chip and to reflect the light rays coming from the CHIP chip.
  • the LED light source is for example a light emitting diode.
  • the sensor D also comprises a photomultiplier PM placed so as to receive the light rays reflected by the mirror DM and coming from the chip CHIP.
  • the LED source is placed in place of the photomultiplier PM of Figure B and the PM photomultiplier is placed in place of the LED source of Figure 3.
  • optical filters can be placed in front of the photomultiplier PM and in front of the LED source in order to further differentiate the light reflected from the LED source and the fluorescence signal originating from the CHIP chip.
  • This implementation is particularly suitable for fluorescence measurements and can be used when the derivative compound emits fluorescence.
  • the PM photomultiplier makes it possible to determine the concentration of derivative compound and thus determine the concentration of gaseous pollutant.
  • the photomultiplier PM can be replaced by a photodiode or by another photodetector. More generally, the detection can be carried out by fluorescence or absorption spectroscopy by a D sensor, which makes it possible to determine the concentration of derivative compound and thus determine the concentration of gaseous pollutant.
  • the PG trapping and R reaction means are each produced on a separate microfluidic chip and the sensor D comprises another microfluidic chip separate from the PG trapping and R reaction means. This makes it possible to 'get a miniature device, because a chip can, for example, measure 75 x 25 x 1.5 mm.
  • the PG trapping means is a microporous tube in which the liquid comprising the selective derivative agent flows.
  • the gaseous pollutant passes through the porous surface of the tube and then becomes trapped in the flow passing through the tube. The pollutant thus dissolves in the liquid flow.
  • FIG. 4 presents a DAP2 analysis device according to a second embodiment of the invention.
  • the device DAP2 is also a closed circuit and comprises the same elements as those shown in FIG. 2 as well as an emission cell CE in which the trapping means PG is located.
  • the CE emission cell is placed on a surface of a mat material emitting the gaseous pollutant to be analyzed.
  • the CE emission cell has a generally cylindrical shape, its base affixed to the Mat material being circular.
  • This DAP2 device makes it possible to directly determine the concentration of gaseous pollutant emitted by the Mat material, and therefore to determine the emissions of this Mat material.
  • An external calibration step of the process makes it possible to link the concentration determined at equilibrium in the emission cell CE and the emission rate of the Mat material in gaseous pollutant, this emission rate being normally used to classify the materials according to their emission into this gaseous pollutant. For example, for a material emitting formaldehyde, there are four classes according to the labeling in France: A +, A, B and C, A + corresponding to the class in which the emissions are lowest.
  • the means for trapping, reacting and determining the pollutant concentration can be produced or include microfluidic chips.
  • the described DAP and DAP2 devices operate in a closed circuit.
  • the liquid solution contained in the VL container is continuously enriched in gaseous pollutant and therefore in derivative compound resulting from the reaction between the derivative agent and the gaseous pollutant.
  • the derivative compound emits fluorescence
  • its concentration can be measured from the slope of the curve representing the increase in the fluorescence signal as a function of time.
  • the concentration of derivative compound will be determined from the slope of the curve representing the increase in absorbance as a function of time.
  • FIG. 5a represents the fluorescence signal of the derivative compound as a function of time
  • FIG. 5b represents the product of the slope of the fluorescence signal by the volume of the VL container as a function of the gaseous pollutant concentration.
  • the slope of the signal is zero, so no additional derivative compound is formed in these time intervals. This means that the air around the trapping device does not contain the gaseous pollutant and that the air is pure (analytical blank) in these same time intervals. Between t2 and t3 and between t4 and t5, the slope of the fluorescence signal is increasing. This means that the solution placed in a closed circuit is enriched in gaseous pollutant which reacts with the selective derivative agent to form the fluorescent derivative compound. There is therefore gaseous pollutant present around the trapping device. The higher the slope of the signal, the higher the concentration of gaseous pollutant in the air.
  • the volume of the VL container comprising the selective derivative agent can be adapted to the measurement time desired by a user.
  • a small volume is used for the LV container, however, this also involves a risk of rapid saturation of the device.
  • saturation is reached when the detector is saturated by too high a concentration of the solution. If the detector allows it, as well as the photomultiplier PM, it is possible to reduce the gain in order to find an unsaturated signal, which implies having a calibration already carried out for these new conditions.
  • VL container when saturation is close or has been reached, it is necessary to change the VL container in order to place a new one still comprising a liquid solution free of pollutants and comprising a selective derivative capable of reacting with the gaseous pollutant to be analyzed. It is better to change the LV container, rather than just empty it and then refill it with the liquid solution to avoid a cleaning step of the LV container.
  • the volume of the microfluidic circuit of the device may first be purged with the same solution in order to remove the compound derived from the device.
  • the two devices DAP and DAP2 each combined with the method described with reference to FIG. 1, make it possible to use very little selective derivative agent and not to resort to an external trash can to store the derivative compound, and the excess of derivative and possibly traces of unreacted gaseous pollutant.
  • the DAP analysis device is particularly suitable for performing measurements in a professional environment.
  • a volume of 6 mL of selective derivative could be used to perform analyzes for 6 days for an indoor environment. slightly polluted (formaldehyde concentration less than 15 pg / m 3 ) or use a volume of 6 mL of derivative to carry out analyzes for about thirty hours for a more polluted environment (formaldehyde concentration of about 120 pg / m 3 ). It is also possible to use a volume of 24 mL of selective derivative for 24 hours of exposure in a polluted environment (formaldehyde concentration greater than 500 pg / m 3 ).
  • the DAP2 analysis device is particularly suitable for manufacturers of materials, furniture or decorative coatings (paints and coatings for example).
  • FIG. 6 presents a DAP3 analysis device according to a third embodiment of the invention.
  • the DAP3 device comprises at least one EAD inlet suitable for a liquid solution comprising at least one selective liquid derivative, a peristaltic pump P connected to the EAD inlet and means PG for trapping the gaseous pollutant in the derivative agent selective placed at the outlet of the pump P.
  • a reaction means R of the gaseous pollutant with the selective derivative agent makes it possible to react the two compounds to form at least one derivative compound.
  • a sensor D suitable for determining the concentration of derivative compound is connected after the reaction means R.
  • the sensor D is connected to an output SP of the device DAP3 which makes it possible to evacuate the derivative compound, the dissolved gaseous pollutant and the drift agent remaining.
  • the DAP3 device operates in an open circuit, unlike the devices presented above.
  • the EAD input is adapted to receive a liquid mixture of the selective derivative agent and other liquids or to receive only the liquid selective derivative agent.
  • the peristaltic pump P makes it possible to pump the drifting agent and generate a liquid flow comprising this agent so that the gaseous pollutant is then trapped and then dissolved in this flow by means of the trapping means PG.
  • FIG. 7 presents a DAP4 device according to a fourth embodiment of the invention.
  • This DAP4 device is of the same type as the DAP3 device, since it also operates in open circuit.
  • the DAP4 device comprises a system of solenoid valves VI, V2, V3 and V4, two other inputs WATER and CALIB, two ovens Fl and F2, two tubes TUBE1 and TUBE2, a dustbin at the SP outlet and a fan.
  • the Fl oven is optional.
  • One of the tubes TUBE1 forms the trapping means PG while the second tube TUBE2 is placed in parallel with the trapping means and can be used to calibrate the device DAP3.
  • the WATER, EAD and CALIB inlets are placed at the inlet of the peristaltic pump.
  • a first solenoid valve VI is placed between the WATER inlet and the pump and a second solenoid valve V2 connects the inputs EAD and CALIB to the first solenoid valve VI.
  • the EAD and CALIB inputs are each connected to one of the ports of the V2 solenoid valve.
  • the WATER inlet makes it possible to send a liquid, generally water, to the inlet of the peristaltic pump P.
  • the EAD inlet also being connected to the pump P, it is then possible to generate at the outlet of the pumps P a liquid flow comprising the selective derivative agent or the liquid from the WATER inlet.
  • the CALIB input is generally used to calibrate the device. It is therefore suitable for receiving a mixture of the selective derivative agent and the gaseous pollutant to be analyzed.
  • an oven F1 can optionally be present in order to heat the liquid flow, which will subsequently promote the reaction between the drifting agent and the pollutant.
  • a temperature regulation system such as a Pelletier system, to regulate the temperature of the liquid flow. This is particularly useful in the case where the gaseous pollutant is a chloramine, because the derivative compound resulting from the chloramines decomposes above 30 ° C. The system will then be configured to maintain a flow temperature of 20 ° C.
  • the trapping means PG formed by the two solenoid valves V3 and V4 and the tube TUBE1.
  • the second tube TUBE2 is placed in parallel with the trapping means.
  • the first tube TUBE1 is connected to one of the ports of the solenoid valve V3 and to one of the ports of the solenoid valve V4.
  • the second tube TUBE2 is connected to another port of the solenoid valve V3 and to another port of the solenoid valve V4.
  • Furnace Fl is connected to PG trapping means via another access to the solenoid valve V3. While another access to the solenoid valve V4 makes it possible to connect the trapping means PG to the reaction means R.
  • the first tube TUBE1 is a tube capable of trapping the gaseous pollutant. It can therefore be a microporous tube to trap the gaseous pollutant in a liquid flow circulating in this tube TUBE1.
  • the second tube TUBE2 is a tube which cannot trap the gaseous pollutant. It is generally a non-porous tube in which flows only the liquid coming from the WATER inlet, or only the selective derivative agent coming from the EAD inlet or the liquid mixture coming from the CALIB inlet. It is, for example, made of teflon or of polyetheretherketone (PEEK).
  • This second tube TUBE2 will more generally be chosen to calibrate the DAP4 device by a liquid solution placed at the CALIB inlet.
  • This tube TUBE2 will also be chosen to make a blank by choosing either the liquid coming from the WATER inlet or the selective derivative agent coming from the EAD inlet.
  • the reaction means R is placed at the output of the trapping means PG.
  • an oven F2 which makes it possible to heat the flow circulating in the reaction means R and comprising the gaseous pollutant dissolved in a liquid solution comprising at least the selective derivative agent.
  • the oven F2 makes it possible to control the reaction between the agent and the pollutant, and more particularly to accelerate the reaction.
  • a system for regulating the temperature of the flow such as a system
  • Pelletier can also be present in place of the second oven F2.
  • the output of the reaction means R is connected to the sensor D capable of determining the concentration of derivative compound, itself connected to the output SP of the device DAP4.
  • this D sensor can be adapted to perform fluorescence or colorimetry measurements of the derivative compound formed by the reaction between the pollutant and the derivative agent.
  • the outlet SP of the DAP4 device generally forms a bin for removing the liquid solution comprising the derivative compound, the excess of derivative agent and optionally the dissolved gaseous pollutant which has not reacted.
  • a fan V can advantageously be present and placed so as to ventilate the ambient air within the device DAP4 to promote the trapping of a possible gaseous pollutant by the trapping means PG.
  • the DAP4 device comprises two ovens Fl and F2, but it is also possible that only the oven Fl is present or that only the oven F2 is present or else that no oven is present if the reaction does not require it.
  • the DAP4 device comprises an inlet suitable for a gas, in particular for the gaseous pollutant, and an outlet suitable for a gas.
  • This inlet and this outlet are used to calibrate the DAP4 device and more particularly to inject at very low flow rates a mixture of known concentration around the tubes TUBE1 and TUBE2.
  • This type of calibration makes it possible to determine the trapping efficiency and therefore to carry out more precise measurements in order to determine as precisely as possible the concentration of gaseous pollutant in the ambient air at the DAP4 device.
  • the two devices DAP3 and DAP4 are particularly suitable for specialists in the metrology of air pollutants because of their measurement precision.
  • FIG. 8a] and FIG. 8b] present an example of measurement carried out with the device DAP3 and DAP4 of the third and fourth embodiments.
  • a fluorescence signal emitted by the derivative compound formed by the reaction between the gaseous pollutant and the selective derivative agent and detected by the determination means D is represented as a function of time.
  • FIG. 8a represents this fluorescence signal as a function of time
  • FIG. 8b represents the same fluorescence signal as a function of the pollutant concentration in the ambient air.
  • a blank is carried out with pure air by the gas mode (use of the inputs and outputs dedicated to a gas).
  • the solenoid valves V3 and V4 are therefore configured so that the liquid flow only circulates in the first TUBE1 which is capable of trapping the gaseous pollutant.
  • the DAP4 device With pure air being injected, the DAP4 device cannot therefore be enriched with gaseous pollutants.
  • the fluorescence signal of the derivative compound is therefore constant.
  • the DAP4 device switches to measurement mode.
  • the solenoid valves V3 and V4 are always configured so that the liquid flow circulates in the first tube TUBE1 capable of trapping the gaseous pollutant.
  • the fluorescence signal increases until a plateau is obtained (this is the case shown in this figure). Thanks to the height of this signal relative to the blank carried out previously, it is possible to determine the gaseous pollutant concentration from a calibration carried out previously.

Abstract

Method for analyzing a gaseous pollutant by means of a microfluid circuit comprising a means for pumping a liquid and a means for trapping a gas, characterized in that it comprises the following steps: a) generating a flow of a liquid, the liquid comprising a selective derivative agent; b) trapping and dissolving gaseous pollutant in the flow; c) reaction of the pollutant with the selective derivative agent so as to form a liquid derivative compound; d) measuring the concentration of liquid derivative compound and determining the concentration of gaseous pollutant.

Description

Description Description
Titre de l'invention : Procédé et dispositifs d'analyses microfluidiques pour la quantification de polluants gazeux solubles dans l'eau [0001] La présente invention concerne un procédé d'analyse d'un polluant gazeux, tel que le formaldéhyde, ainsi qu'un dispositif pour la mise en oeuvre de ce procédé. Title of the invention: Method and devices for microfluidic analyzes for the quantification of gaseous pollutants soluble in water [0001] The present invention relates to a method for analyzing a gaseous pollutant, such as formaldehyde, as well as a device for implementing this method.
[0002] Les polluants gazeux, tels que le formaldéhyde, sont présents dans notre environnement. Dans l'environnement extérieur, ils peuvent provenir directement des rejets industriels ou automobiles ou de feux de forêt, ou indirectement par oxydation de composés volatils organiques. Le formaldéhyde étant soluble dans l'eau, il se retrouve également dans les océans, mers, eaux de surface ou eaux de pluie. [0002] Gaseous pollutants, such as formaldehyde, are present in our environment. In the external environment, they can come directly from industrial or automobile discharges or from forest fires, or indirectly by oxidation of volatile organic compounds. Since formaldehyde is soluble in water, it is also found in oceans, seas, surface water or rainwater.
[0003] Il se retrouve également dans l'environnement intérieur, car il est dégagé par certaines peintures, par des bois ou papiers traités, par des résines ou même par des textiles. Généralement, en environnement intérieur, le formaldéhyde est présent à des concentrations variant entre 10 et 100 pg/m3, et pouvant même atteindre plusieurs centaines de pg/m3 en milieu professionnel. Des normes ont fixé des seuils limite de concentration en formaldéhyde pour les milieux professionnels et non-professionnels, il devient donc nécessaire et essentiel de pouvoir mesurer précisément les taux d'émission en polluants gazeux, notamment en formaldéhyde, dans l'air. [0004] Plusieurs dispositifs d'analyse ont déjà été développés. Pour certains, comme les analyseurs commercialisés par Aerolaser (Hak et al., Atmos. Chem. Phys., 5 : 2881-2900, 2005) ou In'Air Solutions (Guglielmini et al., Talanta, 72 : 102-108, 2017), ils consistent à piéger le polluant gazeux à analyser dans une solution liquide comprenant un agent dérivant sélectif avec lequel le polluant gazeux réagit quantitativement. C'est via la mesure de la concentration du produit résultant de la réaction entre l'agent dérivant et le polluant gazeux que l'on peut mesurer la concentration en polluant gazeux. Néanmoins, ces dispositifs comprennent une pompe à gaz, pour piéger l'air comprenant le polluant gazeux à analyser dans le dispositif, et un régulateur de débit massique, pour réguler le débit de la solution liquide comprenant l'agent dérivant sélectif, qui sont particulièrement onéreux, encombrants, bruyants et énergivores. Cela limite le développement de dispositifs d'analyse portables. [0003] It is also found in the indoor environment, because it is released by certain paints, by treated wood or paper, by resins or even by textiles. Generally, in an indoor environment, formaldehyde is present at concentrations varying between 10 and 100 pg / m 3 , and even reaching several hundred pg / m 3 in an occupational environment. Standards have set formaldehyde concentration limit thresholds for professional and non-professional environments. It therefore becomes necessary and essential to be able to accurately measure the emission rates of gaseous pollutants, in particular formaldehyde, into the air. [0004] Several analysis devices have already been developed. For some, such as the analyzers marketed by Aerolaser (Hak et al., Atmos. Chem. Phys., 5: 2881-2900, 2005) or In'Air Solutions (Guglielmini et al., Talanta, 72: 102-108, 2017 ), they consist in trapping the gaseous pollutant to be analyzed in a liquid solution comprising a selective derivative with which the gaseous pollutant reacts quantitatively. It is by measuring the concentration of the product resulting from the reaction between the drifting agent and the gaseous pollutant that the concentration of gaseous pollutant can be measured. However, these devices include a gas pump, to trap the air comprising the gaseous pollutant to be analyzed in the device, and a mass flow regulator, to regulate the flow of the liquid solution comprising the selective derivative agent, which are particularly expensive, bulky, noisy and energy intensive. This limits the development of portable analysis devices.
[0005] L'invention vise à remédier aux inconvénients précités de l'art antérieur, plus particulièrement elle vise à proposer un procédé d'analyse d'un polluant gazeux et un dispositif d'analyse d'un polluant gazeux pouvant mettre en oeuvre le procédé, le dispositif ne comprenant aucune pompe à gaz, ni aucun régulateur de débit massique. [0005] The invention aims to remedy the aforementioned drawbacks of the prior art, more particularly it aims to provide a method for analyzing a gaseous pollutant and a device for analyzing a gaseous pollutant which can implement the method, the device not comprising any gas pump, nor any mass flow regulator.
[0006] Un objet de l'invention est donc un procédé d'analyse d'un polluant gazeux au moyen d'un circuit microfluidique comprenant un moyen de pompage d'un liquide et un moyen de piégeage d'un gaz, caractérisé en ce qu'il comprend les étapes suivantes : a) Génération d'un écoulement d'un liquide, le liquide comprenant un agent dérivant sélectif ; b) Piégeage et dissolution du polluant gazeux dans l'écoulement ; c) Réaction du polluant avec l'agent dérivant sélectif de manière à former un composé dérivé liquide ; d) Mesure de la concentration en composé dérivé liquide et détermination de la concentration en polluant gazeux. [0006] An object of the invention is therefore a method for analyzing a gaseous pollutant by means of a microfluidic circuit comprising a means for pumping a liquid and a means for trapping a gas, characterized in that that it comprises the following steps: a) Generation of a flow of a liquid, the liquid comprising a selective derivative agent; b) Entrapment and dissolution of the gaseous pollutant in the flow; c) Reaction of the pollutant with the selective derivative so as to form a liquid derivative compound; d) Measurement of the concentration of liquid derivative compound and determination of the concentration of gaseous pollutant.
[0007] Selon des modes de réalisation de l'invention : [0007] According to embodiments of the invention:
- l'étape c) comprend la régulation en température de l'écoulement liquide ; - step c) comprises the temperature regulation of the liquid flow;
- l'étape d) est réalisée par spectroscopie de fluorescence ou par colorimétrie ; - le polluant gazeux est choisi parmi un composé de la famille des aldéhydes ou un composé de la famille des chloramines ; - step d) is carried out by fluorescence spectroscopy or by colorimetry; the gaseous pollutant is chosen from a compound of the family of aldehydes or a compound of the family of chloramines;
- le polluant gazeux est le formaldéhyde ; et - the gaseous pollutant is formaldehyde; and
- l'écoulement généré à l'étape a) a un débit compris entre 0,1 pL/min et 100 pL/min. - the flow generated in step a) has a flow rate of between 0.1 pL / min and 100 pL / min.
[0008] Un autre objet de l'invention est un dispositif d'analyse d'un polluant gazeux pour la mise en oeuvre du procédé selon l'invention comprenant une pompe péristaltique, un conteneur comprenant une solution liquide comprenant un agent dérivant sélectif et ayant au moins une entrée et une sortie, la sortie étant reliée à la pompe péristaltique, un moyen de piégeage et de dissolution du polluant gazeux dans un écoulement liquide comprenant la solution liquide, un moyen de réaction du polluant gazeux avec l'agent dérivant sélectif pour former un composé dérivé, relié à l'entrée du conteneur et au moyen de piégeage, et un capteur adapté pour déterminer une concentration en composé dérivé, relié à la pompe péristaltique et au moyen de piégeage. [0009] Selon des modes de réalisation : Another object of the invention is a device for analyzing a gaseous pollutant for the implementation of the method according to the invention comprising a peristaltic pump, a container comprising a liquid solution comprising a selective derivative agent and having at least one inlet and one outlet, the outlet being connected to the peristaltic pump, a means for trapping and dissolving the gaseous pollutant in a liquid flow comprising the liquid solution, a means for reacting the gaseous pollutant with the selective derivative agent to form a derivative compound, connected to the inlet of the container and to the trapping means, and a sensor adapted to determine a concentration of derivative compound, connected with the peristaltic pump and by means of trapping. [0009] According to embodiments:
- le moyen de piégeage est placé dans une cellule d'émission placée sur une surface d'un matériau émettant le polluant gazeux, et/ou - the trapping means is placed in an emission cell placed on a surface of a material emitting the gaseous pollutant, and / or
- le dispositif est adapté de manière à être un circuit microfluidique fermé. - the device is adapted so as to be a closed microfluidic circuit.
[0010] Un autre objet de l'invention est un dispositif d'analyse d'un polluant gazeux pour la mise en oeuvre du procédé selon l'invention comprenant au moins une entrée adaptée pour une solution comprenant au moins un agent dérivant sélectif liquide, une pompe péristaltique reliée à l'entrée, un moyen de piégeage et de dissolution du polluant gazeux dans un écoulement liquide comprenant l'agent dérivant et placé en sortie de la pompe péristaltique, un moyen de réaction du polluant gazeux avec l'agent dérivant pour former un composé dérivé et placé en sortie du moyen de piégeage, un capteur adapté pour déterminer une concentration en composé dérivé, placé en sortie du moyen de réaction et au moins une sortie adaptée pour évacuer le polluant gazeux, l'agent dérivant sélectif et des composés dérivés de la réaction entre le polluant gazeux et l'agent dérivant sélectif. [0011] Selon des modes de réalisation : Another object of the invention is a device for analyzing a gaseous pollutant for the implementation of the method according to the invention comprising at least one inlet suitable for a solution comprising at least one selective liquid derivative agent, a peristaltic pump connected to the inlet, a means for trapping and dissolving the gaseous pollutant in a liquid flow comprising the drifting agent and placed at the outlet of the peristaltic pump, a means for reacting the gaseous pollutant with the drifting agent for form a derivative compound and placed at the outlet of the trapping means, a sensor suitable for determining a concentration of derivative compound, placed at the outlet of the reaction means and at least one outlet suitable for discharging the gaseous pollutant, the selective derivative agent and compounds derived from the reaction between the gaseous pollutant and the selective derivative. [0011] According to embodiments:
- le dispositif comprend également une entrée pour un liquide et un système d'électrovannes placé entre les entrées pour le liquide et l'agent dérivant sélectif et la pompe péristaltique de manière à ce que la sortie de la pompe soit un écoulement liquide comprenant l'agent dérivatif ; et - le dispositif comprend également une entrée et une sortie adaptées pour un gaz comprenant le polluant gazeux. - the device also comprises an inlet for a liquid and a system of solenoid valves placed between the inlets for the liquid and the selective derivative agent and the peristaltic pump so that the outlet of the pump is a liquid flow comprising the derivative agent; and - the device also comprises an inlet and an outlet suitable for a gas comprising the gaseous pollutant.
[0012] Selon des modes de réalisation concernant les dispositifs de l'invention : [0012] According to embodiments relating to the devices of the invention:
- le capteur comprend un détecteur de fluorescence ou un spectromètre ou un colorimètre ; - le moyen de piégeage comprend un tube microporeux ; the sensor comprises a fluorescence detector or a spectrometer or a colorimeter; - the trapping means comprises a microporous tube;
- le moyen de piégeage est une puce microfluidique comprenant une membrane poreuse, au moins une entrée et une sortie adaptées pour un liquide ; the trapping means is a microfluidic chip comprising a porous membrane, at least one inlet and one outlet suitable for a liquid;
- le moyen de réaction est une puce microfluidique ; et - le capteur comprend une puce microfluidique. - the reaction means is a microfluidic chip; and - the sensor comprises a microfluidic chip.
[0013] D'autres caractéristiques, détails et avantages de l'invention ressortiront à la lecture de la description faite en référence aux figures annexées données à titre d'exemple et qui représentent, respectivement : Other characteristics, details and advantages of the invention will emerge on reading the description given with reference to the appended figures given by way of example and which represent, respectively:
[0014] [Fig.l], un schéma des étapes du procédé selon l'invention ; [0015] [Fig.2], un dispositif d'analyse selon un premier mode de réalisation de l'invention ; [0014] [Fig.l], a diagram of the steps of the method according to the invention; [0015] [Fig.2], an analysis device according to a first embodiment of the invention;
[0016] [Fig. 3], un exemple d'un moyen de détermination de la concentration en polluant gazeux du dispositif selon l'invention ; [0016] [Fig. 3], an example of a means for determining the gaseous pollutant concentration of the device according to the invention;
[0017] [Fig. 4], un dispositif d'analyse selon un second mode de réalisation de l'invention ; [0017] [Fig. 4], an analysis device according to a second embodiment of the invention;
[0018] [Fig. 5a] et [Fig. 5b], un exemple de mesure réalisé avec le dispositif d'analyse selon le premier et mode de réalisation de l'invention ; [0018] [Fig. 5a] and [Fig. 5b], an example of measurement carried out with the analysis device according to the first and embodiment of the invention;
[0019] [Fig. 6], un dispositif d'analyse selon un troisième mode de réalisation de l'invention ; [0019] [Fig. 6], an analysis device according to a third embodiment of the invention;
[0020] [Fig. 7], un dispositif d'analyse selon un quatrième mode de réalisation de l'invention ; [0021] [Fig. 8a] et [Fig. 8b], un exemple de mesure réalisé avec le dispositif d'analyse selon les troisième et quatrième modes de réalisation de l'invention. [0020] [Fig. 7], an analysis device according to a fourth embodiment of the invention; [0021] [Fig. 8a] and [Fig. 8b], an example of measurement carried out with the analysis device according to the third and fourth embodiments of the invention.
[0022] Dans la présente invention, un agent dérivant sélectif est un réactif réagissant avec le polluant gazeux à analyser pour former un composé, dit dérivé, facilement détectable et quantifiable. [0023] [Fig. 1] représente un schéma des étapes du procédé selon l'invention. Le procédé comprend quatre étapes, de a) à d). Il est mis en oeuvre au moyen d'un circuit microfluidique comprenant un moyen de pompage d'un liquide et un moyen de piégeage d'un gaz. Des exemples de ce type de circuit microfluidique sont donnés en référence aux figures 2 à 6. In the present invention, a selective derivative agent is a reagent which reacts with the gaseous pollutant to be analyzed to form a compound, called a derivative, which is easily detectable and quantifiable. [0023] [Fig. 1] represents a diagram of the steps of the method according to the invention. The process comprises four steps, from a) to d). It is implemented by means of a microfluidic circuit comprising a means for pumping a liquid and a means of entrapment of a gas. Examples of this type of microfluidic circuit are given with reference to Figures 2 to 6.
[0024] La première étape a) consiste à générer un écoulement d'un liquide, l'écoulement comprenant un agent dérivant sélectif. L'agent dérivant sélectif peut être inclus dans le liquide ou ajouté au liquide durant la génération de l'écoulement. La génération de l'écoulement est faite en pompant le liquide grâce au moyen de pompage de liquide présent dans le circuit microfluidique. The first step a) consists in generating a flow of a liquid, the flow comprising a selective derivative agent. The selective derivative can be included in the liquid or added to the liquid during generation of the flow. The flow is generated by pumping the liquid through the liquid pumping means present in the microfluidic circuit.
[0025] La seconde étape b) consiste à piéger le polluant gazeux à analyser dans l'écoulement généré à l'étape a) et à le dissoudre dans l'écoulement. [0026] Le piégeage du polluant est par exemple réalisé par le moyen de piégeage du circuit microfluidique. Il peut notamment être réalisé par le passage du polluant gazeux à travers une surface poreuse. La surface poreuse peut être une membrane poreuse placée sur une cellule microfluidique dans laquelle s'écoule l'écoulement liquide. La surface poreuse peut également être un tube microporeux dans lequel s'écoule l'écoulement liquide. The second step b) consists in trapping the gaseous pollutant to be analyzed in the flow generated in step a) and in dissolving it in the flow. The trapping of the pollutant is for example carried out by the trapping means of the microfluidic circuit. It can in particular be carried out by passing the gaseous pollutant through a porous surface. The porous surface can be a porous membrane placed on a microfluidic cell in which the liquid flow flows. The porous surface can also be a microporous tube through which the liquid flow flows.
[0027] La troisième étape c) consiste à faire réagir le polluant gazeux dissous dans l'écoulement avec l'agent dérivant sélectif en excès, de manière à ce qu'un composé dérivé se forme. La concentration en agent dérivant sélectif est en large excès, donc elle est non déterminante. Ainsi, le polluant est transformé quantitativement en composé dérivé lors de cette étape de réaction. The third step c) consists in reacting the gaseous pollutant dissolved in the flow with the selective derivative agent in excess, so that a derivative compound is formed. The concentration of selective derivative is in large excess, so it is not critical. Thus, the pollutant is quantitatively transformed into a derivative compound during this reaction step.
[0028] L'étape suivante (étape d)) consiste à mesurer la concentration en composé dérivé pour déterminer la concentration en polluant gazeux. The next step (step d)) consists in measuring the concentration of derivative compound to determine the concentration of gaseous pollutant.
[0029] Selon un mode de réalisation, cette étape d) est réalisée par spectroscopie de fluorescence ou par colorimétrie. [0030] Si le composé dérivé est un composé fluorescent, on peut faire des mesures de fluorescence, par exemple par spectroscopie de fluorescence, pour déterminer la concentration en composé dérivé et ainsi déterminer la concentration en polluant gazeux. [0031] Il est également possible de déterminer la concentration en composé dérivé par des mesures de colorimétrie, pour ensuite déterminer celle en polluant gazeux car la concentration en agent dérivant sélectif est en large excès et donc non déterminante. Ainsi, le polluant est transformé quantitativement en composé dérivé. [0029] According to one embodiment, this step d) is carried out by fluorescence spectroscopy or by colorimetry. If the derivative compound is a fluorescent compound, fluorescence measurements can be made, for example by fluorescence spectroscopy, to determine the concentration of derivative compound and thus determine the concentration of gaseous pollutant. It is also possible to determine the concentration of derivative compound by colorimetry measurements, in order then to determine that of gaseous pollutant because the concentration of selective derivative is in large excess and therefore not critical. Thus, the pollutant is quantitatively transformed into a derivative compound.
[0032] Selon des modes de réalisation, le polluant gazeux à analyser est un composé de la famille des aldéhydes, notamment le formaldéhyde, ou un composé de la famille des chloramines. Plus généralement, le polluant gazeux à analyser est un gaz pouvant se dissoudre facilement dans une phase liquide, c'est-à-dire présentant une constante d'Henry élevée supérieure à 20 mol.L 1, soit 20 M/atm, ou ayant une réaction rapide en solution, malgré une constante d'Henry inférieure à 20 M/atm, . [0032] According to embodiments, the gaseous pollutant to be analyzed is a compound of the family of aldehydes, in particular formaldehyde, or a compound of the family of chloramines. More generally, the gaseous pollutant to be analyzed is a gas which can easily dissolve in a liquid phase, that is to say exhibiting a high Henry's constant greater than 20 mol.L 1 , or 20 M / atm, or having a rapid reaction in solution, despite a Henry's constant of less than 20 M / atm,.
[0033] Le composé dérivant sélectif est choisi de manière à réagir avec le polluant gazeux à analyser. Ainsi, si le polluant gazeux est du formaldéhyde, le composé dérivant pourra, par exemple, être du fluoral-P ; ou si le polluant gazeux est une chloramine, le composé dérivant pourra, par exemple, être un mélange d'iode et d'amidon. [0033] The selective derivative compound is chosen so as to react with the gaseous pollutant to be analyzed. Thus, if the gaseous pollutant is formaldehyde, the derivative compound may, for example, be fluoral-P; or if the gaseous pollutant is a chloramine, the derivative compound could, for example, be a mixture of iodine and starch.
[0034] L'écoulement généré à l'étape a) est, préférentiellement, un écoulement lent, car plus l'écoulement est lent, plus la quantité de polluant gazeux dissous par unité de volume d'agent dérivant est élevée. Si l'écoulement est trop rapide, le polluant gazeux sera trop dilué dans l'écoulement. On considère que l'écoulement est lent si le débit est compris entre 0,1 pL/min et 100 pL/min, et plus préférentiellement s'il est compris entre 1 pL/min et 50 pL/min. The flow generated in step a) is preferably a slow flow, because the slower the flow, the greater the quantity of gaseous pollutant dissolved per unit volume of drifting agent. If the flow is too fast, the gaseous pollutant will be too diluted in the flow. The flow is considered to be slow if the flow rate is between 0.1 pL / min and 100 pL / min, and more preferably if it is between 1 pL / min and 50 pL / min.
[0035] Selon un mode de réalisation, l'étape c) comprend une régulation de la température de l'écoulement liquide de manière à contrôler la cinétique de réaction entre le polluant et l'agent dérivant et ainsi favoriser et/ou accélérer la réaction du polluant dissous avec l'agent dérivant. [0035] According to one embodiment, step c) comprises a regulation of the temperature of the liquid flow so as to control the reaction kinetics between the pollutant and the derivative agent and thus promote and / or accelerate the reaction of the pollutant dissolved with the drifting agent.
[0036] Selon un autre mode de réalisation, l'étape a) du procédé comprend également une étape de calibration du circuit microfluidique, afin de déterminer une concentration en polluant gazeux interne au circuit microfluidique. Cette étape de calibration permet également de calibrer le moyen de détermination de la concentration en polluant gazeux, par exemple, les moyens de mesure de fluorescence ou de colorimétrie du composé dérivé. [00B7] [Fig. 2] représente un dispositif d'analyse d'un polluant gazeux DAP, selon un premier mode de réalisation de l'invention, permettant de mettre en oeuvre le procédé de l'invention. According to another embodiment, step a) of the method also comprises a step of calibrating the microfluidic circuit, in order to determine a concentration of gaseous pollutant internal to the microfluidic circuit. This calibration step also makes it possible to calibrate the means for determining the concentration of gaseous pollutant, for example, the means for measuring fluorescence or colorimetry of the derivative compound. [00B7] [Fig. 2] represents a device for analyzing a gaseous pollutant DAP, according to a first embodiment of the invention, making it possible to implement the method of the invention.
[0038] Le dispositif DAP est un circuit fermé qui comprend une pompe péristaltique P, un conteneur VL adapté pour comprendre une solution liquide, un moyen de piégeage PG du polluant gazeux, un moyen de réaction R du polluant gazeux avec un agent dérivant sélectif et un capteur D apte à déterminer la concentration en composé dérivé, pour ensuite pouvoir déterminer la concentration en polluant gazeux. The DAP device is a closed circuit which comprises a peristaltic pump P, a VL container adapted to include a liquid solution, a means of PG trapping of the gaseous pollutant, a means of R reaction of the gaseous pollutant with a selective derivative agent and a sensor D capable of determining the concentration of derivative compound, in order then to be able to determine the concentration of gaseous pollutant.
[0039] Le conteneur VL a au moins une entrée E et une sortie S, et la solution liquide contenue dans le conteneur VL comprend au moins un agent dérivant sélectif. La solution liquide peut être un mélange de l'agent dérivant avec un autre liquide ou juste l'agent dérivant. La sortie S du conteneur VL est reliée à la pompe péristaltique P. The VL container has at least one inlet E and one outlet S, and the liquid solution contained in the VL container comprises at least one selective derivative agent. The liquid solution can be a mixture of the derivative with another liquid or just the derivative. The outlet S of the LV container is connected to the peristaltic pump P.
[0040] Le moyen de piégeage PG est adapté pour piéger le polluant gazeux dans un écoulement liquide comprenant la solution liquide, l'écoulement étant généré par la pompe péristaltique P. Plus particulièrement, il comprend généralement un tube microporeux ou une membrane microporeuse. The PG trapping means is suitable for trapping the gaseous pollutant in a liquid flow comprising the liquid solution, the flow being generated by the peristaltic pump P. More particularly, it generally comprises a microporous tube or a microporous membrane.
[0041] Le moyen de réaction R est relié à l'entrée E du conteneur VL. Le capteur D est relié à la pompe péristaltique P et au moyen de piégeage PG. The reaction means R is connected to the input E of the VL container. The sensor D is connected to the peristaltic pump P and to the trapping means PG.
[0042] Selon un mode de réalisation, le moyen de piégeage PG est une puce microfluidique comprenant au moins une entrée et une sortie pour l'écoulement liquide et une membrane poreuse. La membrane poreuse est placée de manière à ce que d'un côté de la membrane se trouve l'écoulement liquide et que de l'autre côté, se trouve le polluant gazeux. La membrane poreuse et le débit liquide permettent de piéger le polluant gazeux dans l'écoulement liquide circulant dans la puce, et de le dissoudre dans ce même écoulement. L'entrée de la puce est dans ce cas reliée à la sortie du conteneur VL, tandis que sa sortie est reliée au moyen de réaction R. [0042] According to one embodiment, the PG trapping means is a microfluidic chip comprising at least one inlet and one outlet for the liquid flow and a porous membrane. The porous membrane is placed so that on one side of the membrane is the liquid flow, and on the other side is the gaseous pollutant. The porous membrane and the liquid flow make it possible to trap the gaseous pollutant in the liquid flow circulating in the chip, and to dissolve it in this same flow. The input of the chip is in this case connected to the output of the VL container, while its output is connected to the reaction means R.
[0043] Selon un mode de réalisation, le moyen de réaction R est une puce microfluidique comprenant une entrée, reliée à la sortie du moyen de piégeage PG, et une sortie, reliée à l'entrée E du conteneur VL. Cette puce peut comprendre un canal en serpentins afin que le polluant gazeux dissous et l'agent dérivant aient le temps de réagir et de former un composé dérivé. According to one embodiment, the reaction means R is a microfluidic chip comprising an input, connected to the output of the trapping means PG, and an output, connected to the input E of the container VL. This chip may include a serpentine channel in order to that the dissolved gaseous pollutant and the derivatizing agent have time to react and form a derivative compound.
[0044] Selon un mode de réalisation, le moyen de réaction R est thermostaté afin de contrôler la cinétique de réaction entre le polluant gazeux et l'agent dérivant sélectif. Ainsi, le dispositif DAP peut comprendre un four ou un module Pelletier, placé entre le moyen de piégeage PG et le conteneur VL, dans lequel est placé le moyen de réaction R, le four permettant de chauffer l'écoulement et le module Pelletier permettant de maintenir une température constante de l'écoulement. [0044] According to one embodiment, the reaction means R is thermostatically controlled in order to control the reaction kinetics between the gaseous pollutant and the selective derivative agent. Thus, the DAP device can comprise an oven or a Pelletier module, placed between the trapping means PG and the VL container, in which the reaction means R is placed, the oven making it possible to heat the flow and the Pelletier module making it possible to maintain a constant temperature of the flow.
[0045] Selon un mode de réalisation, le capteur D comprend une puce microfluidique comprenant une entrée reliée à la pompe péristaltique P et une sortie reliée au moyen de piégeage PG. [0045] According to one embodiment, the sensor D comprises a microfluidic chip comprising an input connected to the peristaltic pump P and an output connected to the trapping means PG.
[0046] [Fig. S] illustre un exemple d'un capteur D comprenant une puce microfluidique. La puce microfluidique PUCE est reliée, par son entrée, à la pompe péristaltique P, et par sa sortie au moyen de piégeage PG. Une source de lumière LED est placée au-dessus de la puce PUCE et un miroir dichroïque MD est placé entre la puce PUCE et la source de lumière LED. Le miroir MD est placé de manière à envoyer les rayons lumineux de la source LED vers la puce PUCE et à réfléchir les rayons lumineux venant de la puce PUCE. La source de lumière LED est par exemple une diode électroluminescente. Le capteur D comprend également un photomultiplicateur PM placé de manière à recevoir les rayons lumineux réfléchis par le miroir DM et venant de la puce PUCE. [0046] [Fig. S] illustrates an example of a sensor D comprising a microfluidic chip. The microfluidic chip PUCE is connected, by its input, to the peristaltic pump P, and by its output by means of trapping PG. An LED light source is placed on top of the CHIP chip and an MD dichroic mirror is placed between the CHIP chip and the LED light source. The MD mirror is placed so as to send the light rays from the LED source to the CHIP chip and to reflect the light rays coming from the CHIP chip. The LED light source is for example a light emitting diode. The sensor D also comprises a photomultiplier PM placed so as to receive the light rays reflected by the mirror DM and coming from the chip CHIP.
[0047] Selon un autre mode de réalisation, la source LED est placée à la place du photomultiplicateur PM de la figure B et le photomultiplicateur PM est placé à la place de la source LED de la figure 3. According to another embodiment, the LED source is placed in place of the photomultiplier PM of Figure B and the PM photomultiplier is placed in place of the LED source of Figure 3.
[0048] Selon un mode de réalisation, des filtres optiques peuvent être placés devant le photomultiplicateur PM et devant la source LED afin de différencier davantage la lumière réfléchie de la source LED et le signal de fluorescence provenanant de la puce PUCE. According to one embodiment, optical filters can be placed in front of the photomultiplier PM and in front of the LED source in order to further differentiate the light reflected from the LED source and the fluorescence signal originating from the CHIP chip.
[0049] Cette mise en œuvre est particulièrement adaptée à des mesures de fluorescence et peut être utilisée quand le composé dérivé émet de la fluorescence. [0050] Une fois calibré, le photomultiplicateur PM permet de déterminer la concentration en composé dérivé et ainsi déterminer la concentration en polluant gazeux. This implementation is particularly suitable for fluorescence measurements and can be used when the derivative compound emits fluorescence. Once calibrated, the PM photomultiplier makes it possible to determine the concentration of derivative compound and thus determine the concentration of gaseous pollutant.
[0051] Plus généralement, le photomultiplicateur PM peut être remplacé par une photodiode ou par un autre photodétecteur [0052] Plus généralement, la détection peut s'effectuer par spectroscopie de fluorescence ou d'absorption par un capteur D, ce qui permet de déterminer la concentration en composé dérivé et ainsi déterminer la concentration en polluant gazeux. More generally, the photomultiplier PM can be replaced by a photodiode or by another photodetector. More generally, the detection can be carried out by fluorescence or absorption spectroscopy by a D sensor, which makes it possible to determine the concentration of derivative compound and thus determine the concentration of gaseous pollutant.
[0053] Selon un autre mode de réalisation, les moyens de piégeage PG et de réaction R sont réalisés chacun sur une puce microfluidique distincte et le capteur D comprend une autre puce microfluidique distincte des moyens de piégeage PG et de réaction R. Cela permet d'obtenir un dispositif miniature, car une puce peut, par exemple, mesurer 75 x 25 x 1,5 mm. According to another embodiment, the PG trapping and R reaction means are each produced on a separate microfluidic chip and the sensor D comprises another microfluidic chip separate from the PG trapping and R reaction means. This makes it possible to 'get a miniature device, because a chip can, for example, measure 75 x 25 x 1.5 mm.
[0054] Selon un autre mode de réalisation, le moyen de piégeage PG est un tube microporeux dans lequel s'écoule le liquide comprenant l'agent dérivant sélectif. Le polluant gazeux traverse la surface poreuse du tube et se trouve ensuite piégé dans l'écoulement traversant le tube. Le polluant se dissous ainsi dans l'écoulement liquide. According to another embodiment, the PG trapping means is a microporous tube in which the liquid comprising the selective derivative agent flows. The gaseous pollutant passes through the porous surface of the tube and then becomes trapped in the flow passing through the tube. The pollutant thus dissolves in the liquid flow.
[0055] [Fig. 4] présente un dispositif d'analyse DAP2 selon un second mode de réalisation de l'invention. Le dispositif DAP2 est également un circuit fermé et comprend les mêmes éléments que ceux présentés dans la figure 2 ainsi qu'une cellule d'émission CE dans laquelle se trouve le moyen de piégeage PG. La cellule d'émission CE est placée sur une surface d'un matériau Mat émettant le polluant gazeux à analyser. [0055] [Fig. 4] presents a DAP2 analysis device according to a second embodiment of the invention. The device DAP2 is also a closed circuit and comprises the same elements as those shown in FIG. 2 as well as an emission cell CE in which the trapping means PG is located. The CE emission cell is placed on a surface of a mat material emitting the gaseous pollutant to be analyzed.
[0056] La cellule d'émission CE a une forme généralement cylindrique, sa base apposée sur le matériau Mat étant circulaire. Ce dispositif DAP2 permet de déterminer directement la concentration en polluant gazeux émise par le matériau Mat, donc de déterminer les émissions de ce matériau Mat. Une étape de calibration externe du procédé permet de relier la concentration déterminée à l'équilibre dans la cellule d'émission CE et le taux d'émission du matériau Mat en polluant gazeux, ce taux d'émission étant normalement utilisé pour classer les matériaux selon leur émission en ce polluant gazeux. Par exemple, pour un matériau émettant du formaldéhyde, il existe quatre classes selon l'étiquetage en France : A+, A, B et C, A+ correspondant à la classe dans lequel les émissions sont les plus faibles. The CE emission cell has a generally cylindrical shape, its base affixed to the Mat material being circular. This DAP2 device makes it possible to directly determine the concentration of gaseous pollutant emitted by the Mat material, and therefore to determine the emissions of this Mat material. An external calibration step of the process makes it possible to link the concentration determined at equilibrium in the emission cell CE and the emission rate of the Mat material in gaseous pollutant, this emission rate being normally used to classify the materials according to their emission into this gaseous pollutant. For example, for a material emitting formaldehyde, there are four classes according to the labeling in France: A +, A, B and C, A + corresponding to the class in which the emissions are lowest.
[0057] De plus, plus la hauteur de la cellule d'émission CE sera petite, plus la diffusion du polluant gazeux vers le moyen de piégeage PG sera rapide. Comme précédemment, les moyens de piégeage, de réaction et de détermination de la concentration en polluant peuvent être réalisés ou comprendre des puces microfluidiques. In addition, the smaller the height of the emission cell CE, the faster the diffusion of the gaseous pollutant towards the trapping means PG. As previously, the means for trapping, reacting and determining the pollutant concentration can be produced or include microfluidic chips.
[0058] Les dispositifs DAP et DAP2 décrits fonctionnent en circuit fermé. La solution liquide contenue dans le conteneur VL s'enrichit continuellement en polluant gazeux et donc en composé dérivé issu de la réaction entre l'agent dérivant et le polluant gazeux. [0059] Dans le cas où le composé dérivé émet de la fluorescence, sa concentration peut être mesurée à partir de la pente de la courbe représentant l'augmentation du signal de fluorescence en fonction du temps. The described DAP and DAP2 devices operate in a closed circuit. The liquid solution contained in the VL container is continuously enriched in gaseous pollutant and therefore in derivative compound resulting from the reaction between the derivative agent and the gaseous pollutant. In the case where the derivative compound emits fluorescence, its concentration can be measured from the slope of the curve representing the increase in the fluorescence signal as a function of time.
[0060] Dans le cas où on effectue des mesures d'absorbance du composé dérivé, la concentration en composé dérivé sera déterminée à partir de la pente de la courbe représentant l'augmentation de l'absorbance en fonction du temps. In the case where absorbance measurements of the derivative compound are carried out, the concentration of derivative compound will be determined from the slope of the curve representing the increase in absorbance as a function of time.
[0061] [Fig. 5a] et [Fig. 5b] présentent un exemple d'une mesure de fluorescence émise par le composé dérivé. La figure 5a représente le signal de fluorescence du composé dérivé en fonction du temps et la figure 5b représente le produit de la pente du signal de fluorescence par le volume du conteneur VL en fonction de la concentration en polluant gazeux. [0061] [Fig. 5a] and [Fig. 5b] show an example of a measurement of fluorescence emitted by the derivative compound. FIG. 5a represents the fluorescence signal of the derivative compound as a function of time and FIG. 5b represents the product of the slope of the fluorescence signal by the volume of the VL container as a function of the gaseous pollutant concentration.
[0062] Entre tl et t2, entre tB et t4 et entre t5 et t6, la pente du signal est nulle, donc aucun composé dérivé supplémentaire n'est formé dans ces intervalles de temps. Cela signifie que l'air autour du dispositif de piégeage ne contient pas le polluant gazeux et que l'air est pur (blanc analytique) dans ces mêmes intervalles de temps. [0063] Entre t2 et t3 et entre t4 et t5, la pente du signal de fluorescence est croissante. Cela signifie que la solution placée en circuit fermé s'enrichit en polluant gazeux qui réagit avec l'agent dérivant sélectif pour former le composé dérivé fluorescent. Il y a donc du polluant gazeux présent autour du dispositif de piégeage. Plus la pente du signal est élevée, plus la concentration en polluant gazeux dans l'air est élevée. [0064] Après avoir déterminé la concentration en composé dérivé, puis celle en polluant gazeux à partir de la pente du signal de fluorescence, on peut également représenter, en figure 5b, le produit de la pente du signal de fluorescence par le volume du conteneur VL en fonction de la concentration en polluant gazeux. La pente est multipliée par le volume du conteneur afin de prendre en compte l'effet de dilution lié au volume d'agent dérivant en recirculation. Cela permet également d'obtenir une relation linéaire entre le signal de fluorescence et la concentration en polluant, ce qui permet de faire une analyse quantitative de la concentration en polluant. Between t1 and t2, between tB and t4 and between t5 and t6, the slope of the signal is zero, so no additional derivative compound is formed in these time intervals. This means that the air around the trapping device does not contain the gaseous pollutant and that the air is pure (analytical blank) in these same time intervals. Between t2 and t3 and between t4 and t5, the slope of the fluorescence signal is increasing. This means that the solution placed in a closed circuit is enriched in gaseous pollutant which reacts with the selective derivative agent to form the fluorescent derivative compound. There is therefore gaseous pollutant present around the trapping device. The higher the slope of the signal, the higher the concentration of gaseous pollutant in the air. After having determined the concentration of derivative compound, then that of gaseous pollutant from the slope of the fluorescence signal, one can also represent, in FIG. 5b, the product of the slope of the fluorescence signal by the volume of the container LV as a function of the gaseous pollutant concentration. The slope is multiplied by the volume of the container in order to take into account the dilution effect linked to the volume of bypass agent in recirculation. This also makes it possible to obtain a linear relationship between the fluorescence signal and the pollutant concentration, which makes it possible to make a quantitative analysis of the pollutant concentration.
[0065] Le volume du conteneur VL comprenant l'agent dérivant sélectif peut être adapté au temps de mesure souhaité par un utilisateur. Ainsi, si l'on souhaite réaliser une mesure rapide et précise de la concentration en polluant, on utilise un petit volume pour le conteneur VL, néanmoins, cela implique également un risque de saturation rapide du dispositif. En effet, la saturation est atteinte dès lors que le détecteur est saturé par une concentration trop élevée de la solution. Si le détecteur le permet, ainsi que le photomultiplicateur PM, il est envisageable de diminuer le gain afin de retrouver un signal non saturé, ce qui sous-entend d'avoir une calibration déjà réalisée pour ces nouvelles conditions. Plus simplement, quand la saturation est proche ou est atteinte, il est nécessaire de changer le conteneur VL pour en placer un nouveau comprenant toujours une solution liquide exempte de polluant et comprenant un agent dérivant sélectif apte à réagir avec le polluant gazeux à analyser. Il est préférable de changer le conteneur VL, plutôt que juste le vider puis le remplir à nouveau avec la solution liquide pour éviter une étape de nettoyage du conteneur VL. Le volume du circuit microfluidique du dispositif pourra être au préalable purgé avec la même solution afin d'éliminer le composé dérivé du dispositif. The volume of the VL container comprising the selective derivative agent can be adapted to the measurement time desired by a user. Thus, if one wishes to carry out a rapid and precise measurement of the pollutant concentration, a small volume is used for the LV container, however, this also involves a risk of rapid saturation of the device. In fact, saturation is reached when the detector is saturated by too high a concentration of the solution. If the detector allows it, as well as the photomultiplier PM, it is possible to reduce the gain in order to find an unsaturated signal, which implies having a calibration already carried out for these new conditions. More simply, when saturation is close or has been reached, it is necessary to change the VL container in order to place a new one still comprising a liquid solution free of pollutants and comprising a selective derivative capable of reacting with the gaseous pollutant to be analyzed. It is better to change the LV container, rather than just empty it and then refill it with the liquid solution to avoid a cleaning step of the LV container. The volume of the microfluidic circuit of the device may first be purged with the same solution in order to remove the compound derived from the device.
[0066] Les deux dispositifs DAP et DAP2, chacun combiné au procédé décrit en référence à la figure 1, permettent d'utiliser très peu d'agent dérivant sélectif et de ne pas recourir à une poubelle externe pour stocker le composé dérivé, et l'excès d'agent dérivant et éventuellement les traces de polluant gazeux n'ayant pas réagi. The two devices DAP and DAP2, each combined with the method described with reference to FIG. 1, make it possible to use very little selective derivative agent and not to resort to an external trash can to store the derivative compound, and the excess of derivative and possibly traces of unreacted gaseous pollutant.
[0067] Le dispositif d'analyse DAP est particulièrement adapté pour réaliser des mesures en milieu professionnel. On pourra par exemple utiliser un volume de 6 mL d'agent dérivant sélectif pour effectuer des analyses pendant 6 jours pour un environnement intérieur peu pollué (concentration en formaldéhyde inférieure à 15 pg/m3) ou utiliser un volume de 6 mL d'agent dérivant pour effectuer des analyses pendant une trentaine d'heure pour un environnement plus pollué (concentration en formaldéhyde d'environ 120 pg/m3). Il est également possible d'utiliser un volume de 24 mL d'agent dérivant sélectif pour 24h d'exposition dans un environnement pollué (concentration en formaldéhyde supérieure à 500 pg/m3). The DAP analysis device is particularly suitable for performing measurements in a professional environment. For example, a volume of 6 mL of selective derivative could be used to perform analyzes for 6 days for an indoor environment. slightly polluted (formaldehyde concentration less than 15 pg / m 3 ) or use a volume of 6 mL of derivative to carry out analyzes for about thirty hours for a more polluted environment (formaldehyde concentration of about 120 pg / m 3 ). It is also possible to use a volume of 24 mL of selective derivative for 24 hours of exposure in a polluted environment (formaldehyde concentration greater than 500 pg / m 3 ).
[0068] Le dispositif d'analyse DAP2 est particulièrement adapté pour des fabricants de matériaux, de meubles ou de revêtements décoratifs (peintures et enduits par exemple). The DAP2 analysis device is particularly suitable for manufacturers of materials, furniture or decorative coatings (paints and coatings for example).
[0069] [Fig. 6] présente un dispositif d'analyse DAP3 selon un troisième mode de réalisation de l'invention. [0069] [Fig. 6] presents a DAP3 analysis device according to a third embodiment of the invention.
[0070] Le dispositif DAP3 comprend au moins une entrée EAD adaptée pour une solution liquide comprenant au moins un agent dérivant sélectif liquide, une pompe péristaltique P reliée à l'entrée EAD et un moyen de piégeage PG du polluant gazeux dans l'agent dérivant sélectif placé en sortie de la pompe P. A la suite du moyen de piégeage PG, un moyen de réaction R du polluant gazeux avec l'agent dérivant sélectif permet de faire réagir les deux composés pour former au moins un composé dérivé. Un capteur D adapté pour déterminer la concentration en composé dérivé est relié à la suite du moyen de réaction R. Le capteur D est relié à une sortie SP du dispositif DAP3 qui permet d'évacuer le composé dérivé, le polluant gazeux dissous et l'agent dérivant restants. Le dispositif DAP3 fonctionne en circuit ouvert, contrairement aux dispositifs présentés précédemment. The DAP3 device comprises at least one EAD inlet suitable for a liquid solution comprising at least one selective liquid derivative, a peristaltic pump P connected to the EAD inlet and means PG for trapping the gaseous pollutant in the derivative agent selective placed at the outlet of the pump P. Following the PG trapping means, a reaction means R of the gaseous pollutant with the selective derivative agent makes it possible to react the two compounds to form at least one derivative compound. A sensor D suitable for determining the concentration of derivative compound is connected after the reaction means R. The sensor D is connected to an output SP of the device DAP3 which makes it possible to evacuate the derivative compound, the dissolved gaseous pollutant and the drift agent remaining. The DAP3 device operates in an open circuit, unlike the devices presented above.
[0071] L'entrée EAD est adaptée pour recevoir un mélange liquide de l'agent dérivant sélectif et d'autres liquides ou pour recevoir uniquement l'agent dérivant sélectif liquide. The EAD input is adapted to receive a liquid mixture of the selective derivative agent and other liquids or to receive only the liquid selective derivative agent.
[0072] La pompe péristaltique P permet de pomper l'agent dérivant et de générer un écoulement liquide comprenant cet agent afin que le polluant gazeux soit ensuite piégé puis dissous dans cet écoulement grâce au moyen de piégeage PG. The peristaltic pump P makes it possible to pump the drifting agent and generate a liquid flow comprising this agent so that the gaseous pollutant is then trapped and then dissolved in this flow by means of the trapping means PG.
[0073] [Fig. 7] présente un dispositif DAP4 selon un quatrième mode de réalisation de l'invention. Ce dispositif DAP4 est du même type que le dispositif DAP3, car il fonctionne également en circuit ouvert. [0074] En plus des éléments déjà présents dans le dispositif DAP3, le dispositif DAP4 comprend un système d'électrovannes VI, V2, V3 et V4, deux autres entrées EAU et CALIB, deux fours Fl et F2, deux tubes TUBE1 et TUBE2, une poubelle à la sortie SP et un ventilateur. Le four Fl est optionnel. Un des tubes TUBE1 forme le moyen de piégeage PG tandis que le second tube TUBE2 est placé en parallèle du moyen de piégeage et peut être utilisé pour calibrer le dispositif DAP3. [0073] [Fig. 7] presents a DAP4 device according to a fourth embodiment of the invention. This DAP4 device is of the same type as the DAP3 device, since it also operates in open circuit. In addition to the elements already present in the DAP3 device, the DAP4 device comprises a system of solenoid valves VI, V2, V3 and V4, two other inputs WATER and CALIB, two ovens Fl and F2, two tubes TUBE1 and TUBE2, a dustbin at the SP outlet and a fan. The Fl oven is optional. One of the tubes TUBE1 forms the trapping means PG while the second tube TUBE2 is placed in parallel with the trapping means and can be used to calibrate the device DAP3.
[0075] Les entrées EAU, EAD et CALIB sont placées en entrée de la pompe péristaltique. Une première électrovanne VI est placée entre l'entrée EAU et la pompe et une seconde électrovanne V2 relie les entrées EAD et CALIB à la première électrovanne VI. Les entrées EAD et CALIB étant chacune reliée à un des accès de l'électrovanne V2. The WATER, EAD and CALIB inlets are placed at the inlet of the peristaltic pump. A first solenoid valve VI is placed between the WATER inlet and the pump and a second solenoid valve V2 connects the inputs EAD and CALIB to the first solenoid valve VI. The EAD and CALIB inputs are each connected to one of the ports of the V2 solenoid valve.
[0076] L'entrée EAU permet d'envoyer un liquide, généralement de l'eau, en entrée de la pompe péristaltique P. L'entrée EAD étant également reliée à la pompe P, il est alors possible de générer en sortie de la pompe P un écoulement liquide comprenant l'agent dérivant sélectif ou le liquide de l'entrée EAU. The WATER inlet makes it possible to send a liquid, generally water, to the inlet of the peristaltic pump P. The EAD inlet also being connected to the pump P, it is then possible to generate at the outlet of the pumps P a liquid flow comprising the selective derivative agent or the liquid from the WATER inlet.
[0077] L'entrée CALIB est généralement utilisée pour calibrer le dispositif. Elle est donc adaptée pour recevoir un mélange de l'agent dérivant sélectif et du polluant gazeux à analyser. The CALIB input is generally used to calibrate the device. It is therefore suitable for receiving a mixture of the selective derivative agent and the gaseous pollutant to be analyzed.
[0078] En sortie de la pompe P, un four Fl peut optionnellement être présent afin de chauffer l'écoulement liquide, ce qui aura pour effet de favoriser par la suite la réaction entre l'agent dérivant et le polluant. A la place du four Fl, il est possible d'avoir un système de régulation en température, comme un système Pelletier, pour réguler la température de l'écoulement liquide. Cela est notamment utile dans le cas où le polluant gazeux est une chloramine, car le composé dérivé issu des chloramines se décompose au-delà de 30 °C. Le système sera alors configuré pour maintenir une température de l'écoulement à 20 °C. At the output of the pump P, an oven F1 can optionally be present in order to heat the liquid flow, which will subsequently promote the reaction between the drifting agent and the pollutant. Instead of the oven F1, it is possible to have a temperature regulation system, such as a Pelletier system, to regulate the temperature of the liquid flow. This is particularly useful in the case where the gaseous pollutant is a chloramine, because the derivative compound resulting from the chloramines decomposes above 30 ° C. The system will then be configured to maintain a flow temperature of 20 ° C.
[0079] A la suite du four Fl, se trouve le moyen de piégeage PG formé par les deux électrovannes V3 et V4 et le tube TUBE1. Le second tube TUBE2 est placé en parallèle du moyen de piégeage. Le premier tube TUBE1 est relié à un des accès de l'électrovanne V3 et à un des accès de l'électrovanne V4. Le second tube TUBE2 est relié à un autre accès de l'électrovanne V3 et à un autre accès de l'électrovanne V4. Le four Fl est relié au moyen de piégeage PG par un autre accès de l'électrovanne V3. Tandis qu'un autre accès de l'électrovanne V4 permet de relier le moyen de piégeage PG au moyen de réaction R. Following the furnace Fl, is the trapping means PG formed by the two solenoid valves V3 and V4 and the tube TUBE1. The second tube TUBE2 is placed in parallel with the trapping means. The first tube TUBE1 is connected to one of the ports of the solenoid valve V3 and to one of the ports of the solenoid valve V4. The second tube TUBE2 is connected to another port of the solenoid valve V3 and to another port of the solenoid valve V4. Furnace Fl is connected to PG trapping means via another access to the solenoid valve V3. While another access to the solenoid valve V4 makes it possible to connect the trapping means PG to the reaction means R.
[0080] Le premier tube TUBE1 est un tube apte à piéger le polluant gazeux. Il peut donc être un tube microporeux pour piéger le polluant gazeux dans un écoulement liquide circulant dans ce tube TUBE1. The first tube TUBE1 is a tube capable of trapping the gaseous pollutant. It can therefore be a microporous tube to trap the gaseous pollutant in a liquid flow circulating in this tube TUBE1.
[0081] Le second tube TUBE2 est un tube ne pouvant pas piéger le polluant gazeux. C'est généralement un tube non poreux dans lequel s'écoule uniquement le liquide venant de l'entrée EAU, ou uniquement l'agent dérivant sélectif venant de l'entrée EAD ou encore le mélange liquide venant de l'entrée CALIB. Il est par exemple en téflon ou en polyétheréthercétone (PEEK). Ce second tube TUBE2 sera plus généralement choisi pour calibrer le dispositif DAP4 par une solution liquide placée à l'entrée CALIB. Ce tube TUBE2 sera également choisi pour faire un blanc en choisissant soit le liquide venant de l'entrée EAU soit l'agent dérivant sélectif venant de l'entrée EAD. [0082] Le moyen de réaction R est placé en sortie du moyen de piégeage PG. Il comprend, dans cet exemple, un four F2 qui permet de chauffer l'écoulement circulant dans le moyen de réaction R et comprenant le polluant gazeux dissous dans une solution liquide comprenant au moins l'agent dérivant sélectif. Le four F2 permet de contrôler la réaction entre l'agent et le polluant, et plus particulièrement d'accélérer la réaction. [0083] Un système de régulation de la température de l'écoulement, comme un systèmeThe second tube TUBE2 is a tube which cannot trap the gaseous pollutant. It is generally a non-porous tube in which flows only the liquid coming from the WATER inlet, or only the selective derivative agent coming from the EAD inlet or the liquid mixture coming from the CALIB inlet. It is, for example, made of teflon or of polyetheretherketone (PEEK). This second tube TUBE2 will more generally be chosen to calibrate the DAP4 device by a liquid solution placed at the CALIB inlet. This tube TUBE2 will also be chosen to make a blank by choosing either the liquid coming from the WATER inlet or the selective derivative agent coming from the EAD inlet. The reaction means R is placed at the output of the trapping means PG. It comprises, in this example, an oven F2 which makes it possible to heat the flow circulating in the reaction means R and comprising the gaseous pollutant dissolved in a liquid solution comprising at least the selective derivative agent. The oven F2 makes it possible to control the reaction between the agent and the pollutant, and more particularly to accelerate the reaction. A system for regulating the temperature of the flow, such as a system
Pelletier, peut également être présent à la place du second four F2. Pelletier, can also be present in place of the second oven F2.
[0084] La sortie du moyen de réaction R est reliée au capteur D apte à déterminer la concentration en composé dérivé, lui-même relié à la sortie SP du dispositif DAP4. Comme pour les dispositifs précédents, ce capteur D peut être adapté pour réaliser des mesures de fluorescence ou de colorimétrie du composé dérivé formé par la réaction entre le polluant et l'agent dérivant. The output of the reaction means R is connected to the sensor D capable of determining the concentration of derivative compound, itself connected to the output SP of the device DAP4. As for the previous devices, this D sensor can be adapted to perform fluorescence or colorimetry measurements of the derivative compound formed by the reaction between the pollutant and the derivative agent.
[0085] La sortie SP du dispositif DAP4 forme généralement une poubelle pour évacuer la solution liquide comprenant le composé dérivé, l'excès d'agent dérivant et éventuellement le polluant gazeux dissous n'ayant pas réagi. [0086] Un ventilateur V peut avantageusement être présent et placé de manière à ventiler l'air ambiant au sein du dispositif DAP4 pour favoriser le piégeage d'un éventuel polluant gazeux par le moyen de piégeage PG. The outlet SP of the DAP4 device generally forms a bin for removing the liquid solution comprising the derivative compound, the excess of derivative agent and optionally the dissolved gaseous pollutant which has not reacted. A fan V can advantageously be present and placed so as to ventilate the ambient air within the device DAP4 to promote the trapping of a possible gaseous pollutant by the trapping means PG.
[0087] Le dispositif DAP4 comprend deux fours Fl et F2, mais il est également possible que seul le four Fl soit présent ou que seul le four F2 soit présent ou encore qu'aucun four ne soit présent si la réaction ne le nécessite pas. The DAP4 device comprises two ovens Fl and F2, but it is also possible that only the oven Fl is present or that only the oven F2 is present or else that no oven is present if the reaction does not require it.
[0088] De même, il est également possible que deux systèmes de régulation de la température de l'écoulement soient présents à la place de Fl et F2 ou que seul un système de régulation de la température de l'écoulement soit présent à la place de Fl ou de F2. Likewise, it is also possible that two systems for regulating the temperature of the flow are present in place of Fl and F2 or that only one system for regulating the temperature of the flow is present instead. of Fl or of F2.
[0089] Selon un autre mode de réalisation, le dispositif DAP4 comprend une entrée adaptée pour un gaz, notamment pour le polluant gazeux et une sortie adaptée pour un gaz. Cette entrée et cette sortie sont utilisées pour calibrer le dispositif DAP4 et plus particulièrement pour injecter à très faibles débits un mélange de concentration connue autour des tubes TUBE1 et TUBE2. C type de calibration permet de déterminer le rendement de piégeage et donc de réaliser des mesures plus précises afin de déterminer le plus précisément possible la concentration en polluant gazeux dans l'air ambiant au dispositif DAP4. According to another embodiment, the DAP4 device comprises an inlet suitable for a gas, in particular for the gaseous pollutant, and an outlet suitable for a gas. This inlet and this outlet are used to calibrate the DAP4 device and more particularly to inject at very low flow rates a mixture of known concentration around the tubes TUBE1 and TUBE2. This type of calibration makes it possible to determine the trapping efficiency and therefore to carry out more precise measurements in order to determine as precisely as possible the concentration of gaseous pollutant in the ambient air at the DAP4 device.
[0090] Les deux dispositifs DAP3 et DAP4 sont particulièrement adaptés pour des spécialistes de la métrologie des polluants de l'air du fait de leur précision de mesure. The two devices DAP3 and DAP4 are particularly suitable for specialists in the metrology of air pollutants because of their measurement precision.
[0091] [Fig. 8a] et [Fig. 8b] présentent un exemple de mesure réalisé avec le dispositif DAP3 et DAP4 des troisième et quatrième modes de réalisation. [0091] [Fig. 8a] and [Fig. 8b] present an example of measurement carried out with the device DAP3 and DAP4 of the third and fourth embodiments.
[0092] Un signal de fluorescence émis par le composé dérivé formé par la réaction entre le polluant gazeux et l'agent dérivant sélectif et détecté par le moyen de détermination D est représenté en fonction du temps. La figure 8a représente ce signal de fluorescence en fonction du temps, tandis que la figure 8b représente le même signal de fluorescence en fonction de la concentration en polluant dans l'air ambiant. A fluorescence signal emitted by the derivative compound formed by the reaction between the gaseous pollutant and the selective derivative agent and detected by the determination means D is represented as a function of time. FIG. 8a represents this fluorescence signal as a function of time, while FIG. 8b represents the same fluorescence signal as a function of the pollutant concentration in the ambient air.
[0093] Entre tl et t2, on effectue un blanc avec de l'air pur par le mode gazeux (utilisation des entrées et sorties dédiées à un gaz). Les électrovannes V3 et V4 sont donc configurées pour que l'écoulement liquide ne circule que dans le premier TUBE1 qui est apte à piéger le polluant gazeux. De l'air pur étant injecté, le dispositif DAP4 ne peut donc pas s'enrichir en polluant gazeux. Le signal de fluorescence du composé dérivé est donc constant. Between t1 and t2, a blank is carried out with pure air by the gas mode (use of the inputs and outputs dedicated to a gas). The solenoid valves V3 and V4 are therefore configured so that the liquid flow only circulates in the first TUBE1 which is capable of trapping the gaseous pollutant. With pure air being injected, the DAP4 device cannot therefore be enriched with gaseous pollutants. The fluorescence signal of the derivative compound is therefore constant.
[0094] Puis entre t2 et tB, le dispositif DAP4 passe en mode mesure. Les électrovannes V3 et V4 sont toujours configurées de manière à ce que l'écoulement liquide circule dans le premier tube TUBE1 apte à piéger le polluant gazeux. Durant cet intervalle de temps, si du polluant gazeux est bien présent, le signal de fluorescence augmente jusqu'à l'obtention d'un plateau (c'est le cas présenté sur cette figure). Grâce à la hauteur de ce signal relativement au blanc effectué précédemment, on peut déterminer la concentration en polluant gazeux à partir d'une calibration effectuée antérieurement. Then between t2 and tB, the DAP4 device switches to measurement mode. The solenoid valves V3 and V4 are always configured so that the liquid flow circulates in the first tube TUBE1 capable of trapping the gaseous pollutant. During this time interval, if gaseous pollutant is indeed present, the fluorescence signal increases until a plateau is obtained (this is the case shown in this figure). Thanks to the height of this signal relative to the blank carried out previously, it is possible to determine the gaseous pollutant concentration from a calibration carried out previously.
[0095] Entre t3 et t4, on bascule à nouveau en mode blanc avec de l'air pur. Donc aucun polluant gazeux environnant le dispositif ne peut alimenter le dispositif, le signal de fluorescence diminue, puisque le composé dérivé obtenu précédemment est éliminé par la sortie SP, jusqu'à devenir constant. [0096] Il est également possible de faire une autre séquence quasiment identique, mais en utilisant le second tube TUBE2 pour faire le blanc entre tl et t2 et entre t3 et t4 et faire les mesures entre t2 et t3 comme expliqué dans le paragraphe précédent. Between t3 and t4, we switch again to white mode with clean air. Therefore no gaseous pollutant surrounding the device can supply the device, the fluorescence signal decreases, since the derivative compound obtained previously is eliminated by the output SP, until it becomes constant. It is also possible to make another almost identical sequence, but using the second tube TUBE2 to take the blank between t1 and t2 and between t3 and t4 and take the measurements between t2 and t3 as explained in the previous paragraph.
[0097] Après avoir déterminé la concentration en polluant gazeux à partir du signal de fluorescence, on peut représenter, en figure 8b, le signal de fluorescence en fonction de la concentration en polluant gazeux dans l'air ambiant au moyen de piégeage PG. On constate que ces deux grandeurs sont liées entre elles par une relation linéaire, ce qui permet de faire des analyses quantifiées. After having determined the concentration of gaseous pollutant from the fluorescence signal, one can represent, in Figure 8b, the fluorescence signal as a function of the concentration of gaseous pollutant in the ambient air by means of PG trapping. It can be seen that these two quantities are linked to each other by a linear relationship, which makes it possible to perform quantified analyzes.

Claims

Revendications Claims
[Revendication 1] Procédé d'analyse d'un polluant gazeux au moyen d'un circuit microfluidique comprenant un moyen de pompage d'un liquide et un moyen de piégeage d'un gaz, caractérisé en ce qu'il comprend les étapes suivantes : [Claim 1] A method for analyzing a gaseous pollutant by means of a microfluidic circuit comprising a means for pumping a liquid and a means for trapping a gas, characterized in that it comprises the following steps:
a) Génération d'un écoulement d'un liquide, le liquide comprenant un agent dérivant sélectif ; a) Generation of a flow of a liquid, the liquid comprising a selective derivative agent;
b) Piégeage et dissolution du polluant gazeux dans l'écoulement ; b) Entrapment and dissolution of the gaseous pollutant in the flow;
c) Réaction du polluant avec l'agent dérivant sélectif de manière à former un composé dérivé liquide ; c) Reaction of the pollutant with the selective derivative so as to form a liquid derivative compound;
d) Mesure de la concentration en composé dérivé liquide et détermination de la concentration en polluant gazeux. d) Measurement of the concentration of liquid derivative compound and determination of the concentration of gaseous pollutant.
[Revendication 2] Procédé d'analyse d'un polluant gazeux selon la revendication 1 dans lequel l'étape c) comprend la régulation en température de l'écoulement liquide. [Revendication B] Procédé d'analyse d'un polluant gazeux selon l'une des revendications précédentes dans lequel l'étape d) est réalisée par spectroscopie de fluorescence ou par colorimétrie. [Claim 2] A method of analyzing a gaseous pollutant according to claim 1 wherein step c) comprises temperature regulation of the liquid flow. [Claim B] Method for analyzing a gaseous pollutant according to one of the preceding claims, in which step d) is carried out by fluorescence spectroscopy or by colorimetry.
[Revendication 4] Procédé d'analyse d'un polluant gazeux selon l'une des revendications précédentes dans lequel le polluant gazeux est choisi parmi un composé de la famille des aldéhydes ou un composé de la famille des chloramines. [Claim 4] A method of analyzing a gaseous pollutant according to one of the preceding claims, in which the gaseous pollutant is chosen from a compound of the family of aldehydes or a compound of the family of chloramines.
[Revendication 5] Procédé d'analyse d'un polluant gazeux selon l'une des revendications précédentes, dans lequel le polluant gazeux est le formaldéhyde. [Claim 5] A method of analyzing a gaseous pollutant according to one of the preceding claims, in which the gaseous pollutant is formaldehyde.
[Revendication 6] Procédé d'analyse d'un polluant gazeux selon l'une des revendications précédentes, dans lequel l'écoulement généré à l'étape a) a un débit compris entre 0,1 pL/min et 100 pL/min. [Claim 6] A method of analyzing a gaseous pollutant according to one of the preceding claims, in which the flow generated in step a) has a flow rate of between 0.1 pL / min and 100 pL / min.
[Revendication 7] Dispositif d'analyse d'un polluant gazeux (DAP) pour la mise en oeuvre du procédé selon l'une des revendications précédentes comprenant : [Claim 7] Device for analyzing a gaseous pollutant (DAP) for implementing the method according to one of the preceding claims, comprising:
- une pompe péristaltique (P) ; - a peristaltic pump (P);
- un conteneur (VL) comprenant une solution liquide comprenant un agent dérivant sélectif et ayant au moins une entrée (E) et une sortie (S), la sortie étant reliée à la pompe péristaltique ; - un moyen de piégeage (PG) et de dissolution du polluant gazeux dans un écoulement liquide comprenant la solution liquide ; - a container (VL) comprising a liquid solution comprising a selective derivative agent and having at least one inlet (E) and one outlet (S), the outlet being connected to the peristaltic pump; a means for trapping (PG) and for dissolving the gaseous pollutant in a liquid flow comprising the liquid solution;
- un moyen de réaction (R) du polluant gazeux avec l'agent dérivant sélectif pour former un composé dérivé, relié à l'entrée (E) du conteneur (VL) et au moyen de piégeage (PG) ; et - a reaction means (R) of the gaseous pollutant with the selective derivative agent to form a derivative compound, connected to the inlet (E) of the container (VL) and to the trapping means (PG); and
- un capteur (D) adapté pour déterminer une concentration en composé dérivé, relié à la pompe péristaltique (P) et au moyen de piégeage (PG). - a sensor (D) suitable for determining a concentration of derivative compound, connected to the peristaltic pump (P) and to the trapping means (PG).
[Revendication 8] Dispositif d'analyse d'un polluant gazeux (DAP2) selon la revendication 7 dans lequel le moyen de piégeage (PG) est placé dans une cellule d'émission (CE) placée sur une surface d'un matériau (Mat) émettant le polluant gazeux. [Claim 8] A device for analyzing a gaseous pollutant (DAP2) according to claim 7 wherein the trapping means (PG) is placed in an emission cell (CE) placed on a surface of a material (Mat ) emitting the gaseous pollutant.
[Revendication 9] Dispositif d'analyse d'un polluant gazeux (DAP, DAP2) selon l'une des revendications 7 ou 8 adapté de manière à être un circuit microfluidique fermé. [Revendication 10] Dispositif d'analyse d'un polluant gazeux (DAP3) pour la mise en oeuvre du procédé selon l'une des revendications 1 à 6 comprenant : [Claim 9] Device for analyzing a gaseous pollutant (DAP, DAP2) according to one of claims 7 or 8, adapted so as to be a closed microfluidic circuit. [Claim 10] Device for analyzing a gaseous pollutant (DAP3) for implementing the method according to one of claims 1 to 6 comprising:
- au moins une entrée (EAD) adaptée pour une solution comprenant au moins un agent dérivant sélectif liquide ; - at least one inlet (EAD) suitable for a solution comprising at least one liquid selective derivative agent;
- une pompe péristaltique (P) reliée à l'entrée ; - a peristaltic pump (P) connected to the inlet;
- un moyen de piégeage (PG) et de dissolution du polluant gazeux dans un écoulement liquide comprenant l'agent dérivant, placé en sortie de la pompe péristaltique ; a means for trapping (PG) and for dissolving the gaseous pollutant in a liquid flow comprising the drifting agent, placed at the outlet of the peristaltic pump;
- un moyen de réaction (R) du polluant gazeux avec l'agent dérivant pour former un composé dérivé, placé en sortie du moyen de piégeage ; - a reaction means (R) of the gaseous pollutant with the derivative agent to form a derivative compound, placed at the outlet of the trapping means;
- un capteur (D) adapté pour déterminer une concentration en composé dérivé, placé en sortie du moyen de réaction ; et - a sensor (D) suitable for determining a concentration of derivative compound, placed at the outlet of the reaction means; and
- au moins une sortie (SP) adaptée pour évacuer le polluant gazeux, l'agent dérivant sélectif et des composés dérivés de la réaction entre le polluant gazeux et l'agent dérivant sélectif. - at least one outlet (SP) suitable for discharging the gaseous pollutant, the selective derivative agent and compounds derived from the reaction between the gaseous pollutant and the selective derivative agent.
[Revendication 11] Dispositif d'analyse (DAP4) d'un polluant gazeux selon la revendication 10 comprenant également une entrée pour un liquide (EAU) et un système d'électrovannes (VI, V2) placé entre les entrées pour le liquide et l'agent dérivant sélectif et la pompe péristaltique de manière à ce que la sortie de la pompe soit un écoulement liquide comprenant l'agent dérivatif. [Claim 11] A device for analyzing (DAP4) a gaseous pollutant according to claim 10 also comprising an inlet for a liquid (WATER) and a system of solenoid valves (VI, V2) placed between the inlets for the liquid and the 'agent selective derivative and the peristaltic pump so that the output of the pump is a liquid flow including the derivative agent.
[Revendication 12] Dispositif d'analyse d'un polluant gazeux selon l'une des revendications 10 à 11 comprenant également une entrée et une sortie adaptées pour un gaz comprenant le polluant gazeux. [Claim 12] Device for analyzing a gaseous pollutant according to one of claims 10 to 11 also comprising an inlet and an outlet adapted for a gas comprising the gaseous pollutant.
[Revendication 13] Dispositif d'analyse d'un polluant gazeux (DAP, DAP2, DAP3, DAP4) selon l'une des revendications 7 à 12 dans lequel le capteur (D) comprend un détecteur de fluorescence ou un spectromètre ou un colorimètre. [Claim 13] Device for analyzing a gaseous pollutant (DAP, DAP2, DAP3, DAP4) according to one of claims 7 to 12 wherein the sensor (D) comprises a fluorescence detector or a spectrometer or a colorimeter.
[Revendication 14] Dispositif d'analyse d'un polluant gazeux (DAP, DAP2, DAP3, DAP4) selon l'une des revendications 7 à 13 dans lequel le moyen de piégeage (PG) comprend un tube microporeux (TUBE1). [Claim 14] Device for analyzing a gaseous pollutant (DAP, DAP2, DAP3, DAP4) according to one of claims 7 to 13 in which the trapping means (PG) comprises a microporous tube (TUBE1).
[Revendication 15] Dispositif d'analyse d'un polluant gazeux (DAP, DAP2, DAP3) selon l'une des revendications 7 à 13 dans lequel le moyen de piégeage est une puce microfluidique comprenant une membrane poreuse, au moins une entrée et une sortie adaptées pour un liquide. [Claim 15] Device for analyzing a gaseous pollutant (DAP, DAP2, DAP3) according to one of claims 7 to 13, in which the trapping means is a microfluidic chip comprising a porous membrane, at least one inlet and one outlet suitable for a liquid.
[Revendication 16] Dispositif d'analyse d'un polluant gazeux (DAP, DAP2, DAP3) selon l'une des revendications 7 à 15 dans lequel le moyen de réaction (R) est une puce microfluidique. [Claim 16] Device for analyzing a gaseous pollutant (DAP, DAP2, DAP3) according to one of claims 7 to 15, in which the reaction means (R) is a microfluidic chip.
[Revendication 17] Dispositif d'analyse d'un polluant gazeux (DAP, DAP2, DAP3) selon l'une des revendications 7 à 16 dans lequel le capteur (D) comprend une puce microfluidique (PUCE). [Claim 17] Device for analyzing a gaseous pollutant (DAP, DAP2, DAP3) according to one of claims 7 to 16, in which the sensor (D) comprises a microfluidic chip (PUCE).
EP20734184.3A 2019-06-25 2020-06-22 Microfluid analysis method and device for quantifying soluble gaseous polutants in water Pending EP3990898A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1906855A FR3097967B1 (en) 2019-06-25 2019-06-25 Microfluidic analysis method and devices for the quantification of gaseous pollutants soluble in water
PCT/EP2020/067360 WO2020260203A1 (en) 2019-06-25 2020-06-22 Microfluid analysis method and device for quantifying soluble gaseous polutants in water

Publications (1)

Publication Number Publication Date
EP3990898A1 true EP3990898A1 (en) 2022-05-04

Family

ID=68654604

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20734184.3A Pending EP3990898A1 (en) 2019-06-25 2020-06-22 Microfluid analysis method and device for quantifying soluble gaseous polutants in water

Country Status (5)

Country Link
US (1) US20220381754A1 (en)
EP (1) EP3990898A1 (en)
CN (1) CN114207413A (en)
FR (1) FR3097967B1 (en)
WO (1) WO2020260203A1 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6532835B1 (en) * 1997-12-12 2003-03-18 Research International, Inc. High efficiency wetted surface cyclonic air sampler
WO2006071470A2 (en) * 2004-12-03 2006-07-06 California Institute Of Technology Microfluidic devices with chemical reaction circuits
WO2009062095A1 (en) * 2007-11-07 2009-05-14 Bellbrook Labs, Llc Microfluidic device having stable static gradient for analyzing chemotaxis
US20110151479A1 (en) * 2008-08-25 2011-06-23 University Of Washington Microfluidic systems incorporating flow-through membranes
FR2946751B1 (en) * 2009-06-11 2012-02-03 Centre Nat Rech Scient DEVICE AND METHOD FOR DETERMINING THE CONCENTRATION OF A COMPOUND IN AQUEOUS OR GASEOUS PHASE
EP2645078A1 (en) * 2012-03-29 2013-10-02 Roche Diagniostics GmbH Micro flow filtration system and integrated microfluidic device
US20160349188A1 (en) * 2014-01-14 2016-12-01 Center National De La Recherche Scientifique (Cnrs) Microfluidic device for analysis of flowing pollutants
US20180313765A1 (en) * 2015-10-23 2018-11-01 University Of Virginia Patent Foundation Systems, devices and methods for analyzing and identifying substances
WO2018075577A1 (en) * 2016-10-18 2018-04-26 President And Fellows Of Harvard College Methods of integrated microfluidic processing for preventing sample loss

Also Published As

Publication number Publication date
FR3097967B1 (en) 2021-11-05
WO2020260203A1 (en) 2020-12-30
CN114207413A (en) 2022-03-18
FR3097967A1 (en) 2021-01-01
US20220381754A1 (en) 2022-12-01

Similar Documents

Publication Publication Date Title
US7713741B2 (en) Method and kit for calibrating a photoluminescence measurement
Chinowsky et al. Compact, high performance surface plasmon resonance imaging system
JP2008309785A (en) Attenuated total reflection sensor
CN104981687A (en) Spectrum measuring device and spectrum measuring method
FR2704650A1 (en) Method and device for instantaneous detection and identification of an entity
Barbero et al. A compact incoherent broadband cavity-enhanced absorption spectrometer for trace detection of nitrogen oxides, iodine oxide and glyoxal at levels below parts per billion for field applications
WO2005088279A1 (en) Highly-selective tandem chemical sensor and detection method using same
EP3990898A1 (en) Microfluid analysis method and device for quantifying soluble gaseous polutants in water
Bernardoni et al. Set-up of a multi wavelength polar photometer for off-line absorption coefficient measurements on 1-h resolved aerosol samples
US6509194B1 (en) Method and apparatus for determining concentration of NH-containing species
KR102074696B1 (en) Potable NOX Measurement System
FR2568376A1 (en) CHEMOLUMINESCENCE ANALYSIS METHOD AND DEVICE
CA2765198A1 (en) Device and method for determining the concentration of a compound in an aqueous or gaseous phase
EP2356443B1 (en) Lead assay
US20080225285A1 (en) Device for and Method of Measurement of Chemical Agents Quantity in Gas Medium
EP3094405B1 (en) Microfluidic device for analysis of pollutants in circulation
JP2019113568A (en) Spectrometric measurement device and spectrometric measurement method
da Silveira Petruci et al. Real-Time and Simultaneous Monitoring of NO, NO 2, and N 2 O Using Substrate–Integrated Hollow Waveguides Coupled to a Compact Fourier Transform Infrared (FT-IR) Spectrometer
Yu et al. Gas detection based on quantum dot LEDs utilizing differential optical absorption spectroscopy
JP2007309849A (en) Detection of oxygen molecule, and quantitation device and method thereof
Zhou et al. Mid-ir metamaterial absorber with polyvinylamine as a sensitive layer for on-chip sensing of carbon dioxide
JP2004361244A (en) Gas concentration analyzer, and gas concentration analyzing method using the same
Cocola et al. A non-dispersive approach for a Raman gas sensor
EP3935468B1 (en) Microfluidic generator for generating a gas mixture
RU123527U1 (en) LIDAR SYSTEM FOR REMOTE DETECTION OF EXPLOSIVE VAPORS IN THE ATMOSPHERE

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220112

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20240321