EP3985316B1 - Purifier and air purification appliance - Google Patents

Purifier and air purification appliance Download PDF

Info

Publication number
EP3985316B1
EP3985316B1 EP19932895.6A EP19932895A EP3985316B1 EP 3985316 B1 EP3985316 B1 EP 3985316B1 EP 19932895 A EP19932895 A EP 19932895A EP 3985316 B1 EP3985316 B1 EP 3985316B1
Authority
EP
European Patent Office
Prior art keywords
purifier
power supply
support part
assembly
coil assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19932895.6A
Other languages
German (de)
French (fr)
Other versions
EP3985316A1 (en
EP3985316A4 (en
Inventor
Haisheng Liang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Arcair Appliance Co Ltd
Original Assignee
Guangdong Arcair Appliance Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Arcair Appliance Co Ltd filed Critical Guangdong Arcair Appliance Co Ltd
Publication of EP3985316A1 publication Critical patent/EP3985316A1/en
Publication of EP3985316A4 publication Critical patent/EP3985316A4/en
Application granted granted Critical
Publication of EP3985316B1 publication Critical patent/EP3985316B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/28Arrangement or mounting of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C15/00Details
    • F24C15/20Removing cooking fumes
    • F24C15/2035Arrangement or mounting of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/20Casings or covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • F24F8/15Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering by chemical means
    • F24F8/158Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering by chemical means using active carbon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/30Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by ionisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/80Self-contained air purifiers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/18Details or features not otherwise provided for combined with domestic apparatus

Definitions

  • the present invention relates to the technical field of extractor hoods, and in particular to a purifier and an extractor hood.
  • Oil fume purifiers can purify oil fumes, so as to purify harmful substances from the oil fumes.
  • PM2.5, benzene, bacteria and other substances in the oil fumes can be purified by the oil fume purifiers to make the gas discharged from the oil fume purifiers cleaner and safer.
  • the existing oil fume purifiers are complicated in structure and large in size, so it is inconvenient to place and use the oil fume purifiers, degrading the user experience.
  • An EP patent application No. EP2870413 A1 discloses a filter system, extractor hood and kitchen provided therewith, and a method for extracting air.
  • the filter system includes a suction opening, a fan operatively connected to the suction opening for drawing in air through the suction opening, an electric filter, a sensor for measuring an indrawn airflow, and control means operatively connected to the sensor for switching an electric filter.
  • the filter system includes a filter housing having a suction opening for inlet of an indrawn flow and an outlet for outlet of a filtered flow; an electrostatic filter configured for electrostatic filtering of the indrawn flow, with the electrostatic filter including a first gaze acting as a first electrode and a second gaze acting as a second electrode that is placed at a distance of the first gaze, and a filing material provided between the first and second gazes; a plasma filter configured for generating ozone and providing the ozone to the indrawn flow; a sensor for measuring characteristics of the indrawn airflow and capable of generating measurement input; and a controller operatively connected to the sensor, wherein the controller includes an ozone activator configured to activate the plasma filter in response to the measurement input.
  • a CN patent application No. CN108870567A discloses an air purifying device and method.
  • the air purifying device includes an induction part, a purifying part and an air outlet part, the air outlet part is of a hollow cylindrical structure, a strip-shaped slide channel is arranged at the top end of the air outlet part, an adjustable wind stopping plate is arranged at the bottom end of the air outlet part, the adjustable wind stopping plate slides along the slide channel through a connection rod, and the adjustable wind stopping plate can stop the air outlet at the bottom end of the air outlet part;
  • the induction part is provided with a first induction area and a second induction area, the first induction area is located in the air outlet part, the first induction area and the air outlet part cooperate with each other to monitor the purified air pollution index, and the second induction area is located at an air inlet part, and used for monitoring the pollution index of the air before being purified;
  • the purifying part is located between the air inlet part and the air outlet part, the purifying part is provided with a
  • the present invention aims to solve at least one of the technical problems existing in the prior art.
  • the present invention provides a purifier and an extractor hood.
  • the invention is set out in the appended set of claims.
  • An embodiment of the present invention provides a purifier, including:
  • the purifier can purify oil fumes to make the gas discharged from the purifier cleaner and safer.
  • the purification assembly is arranged in the receiving space of the shell, so that the structure of the purifier is simple and the production of the miniaturized purifier is facilitated.
  • the side of the support part facing away from the coil assembly is provided with a receiving cavity in which the power supply assembly is arranged.
  • the coil assembly comprises a plurality of mounting columns arranged at intervals and multi-turn coils wound around the mounting columns, and slots are provided on the side of the support part facing towards the coil assembly, and each of the mounting columns is inserted into a respective slot.
  • the purifier further comprises a wind speed sensor and a controller, where the wind speed sensor is connected to the power supply assembly and configured to obtain an amount of air inside the purifier, and the controller is configured to control an operation voltage of the coil assembly according to the amount of air.
  • the purifier further comprises a cover plate, which is arranged on one side of the support part and closes the receiving cavity.
  • the power supply assembly is arranged on the side of the cover plate facing towards the support part, and comprises:
  • the side of the cover plate facing towards the receiving cavity is provided with connection columns, two sides of the transformer are provided with flanges, the flanges are provided with connection holes, and the transformer is connected to the cover plate by means of screws passing through the connection holes and the connection columns.
  • the power supply assembly further comprises a second plug arranged on the circuit board, the first plug and the second plug are connected in parallel, and the second plug is configured to be connected to an external fan.
  • the cover plate is provided with a first hole and a second hole, where the first plug passes through the first hole and is partially located in the receiving cavity, and the second plug passes through the second hole and is partially located in the receiving cavity.
  • An embodiment of the present invention provides an extractor hood, including:
  • the purifier can purify oil fumes to make the gas discharged from the purifier cleaner and safer.
  • the purification assembly is arranged in the receiving space of the shell, so that the structure of the purifier is simple and the production of the miniaturized purifier is facilitated.
  • extractor hood 1000 housing 1001, inlet 1002, outlet 1003, air duct 10004, fan 1005, cooktop 1006, purifier 100, shell 101, air intake port 1011, air intake hole 10111, purification assembly 102, support part 103, slot 1031, receiving cavity 1032, coil assembly 104, coil 1041, mounting column 1042, grille part 1043, power supply assembly 105, circuit board 1051, transformer 1052, flange 10521, connection hole 10522, first plug 1053, second plug 1054, receiving space 106, cover plate 107, connection column 1071, first hole 1072, second hole 1073, mounting chamber 108, and activated carbon element 109.
  • orientation or positional relationships indicated by “center”, “longitudinal”, “lateral”, “length”, “width”, “thickness”, “up”, “down”, “front”, “back”, “left”, “right”, “vertical”, “horizontal”, “top”, “bottom”, “inside”, “outside”, “clockwise”, “counterclockwise”, etc. are based on the orientation or positional relationships shown in the accompanying drawings, and are to facilitate the description of the present invention and simplify the description only, rather than indicating or implying that the device or element referred to must have a specific orientation or be constructed and operated in a specific orientation, and therefore cannot be construed as limiting the present invention.
  • first and second are for descriptive purposes only and should not be construed as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Thus, features defined with “first” and “second” may include one or more of the features either explicitly or implicitly.
  • the term “a plurality of” means two or more, unless otherwise explicitly and specifically defined.
  • the terms “mount”, “engage”, and “connect” should be interpreted in a broad sense unless explicitly defined and limited otherwise, which, for example, can mean a fixed connection, a detachable connection or an integral connection; can mean a mechanical connection or an electrical connection or being able to communicate with each other; and can mean a direct connection, an indirect connection by means of an intermediary, or internal communication between two elements or an interaction relationship between two elements.
  • the specific meaning of the terms mentioned above in the present invention should be construed according to specific circumstances.
  • a first feature being “on” or “under” a second feature can include situations where the first feature is in direct contact with the second feature, and can also include situations where the first and second features are in indirect contact by means of another feature therebetween, instead of being in direct contact with each other.
  • a first feature being “on”, “above” or “over” a second feature includes situations where the first feature is directly above or obliquely above the second feature, or simply indicates that the first feature is higher in level than the second feature.
  • a first feature being “under”, “below” or “underneath” a second feature includes situations where the first feature is directly below or obliquely below the second feature, or simply indicates that the first feature is lower in level than the second feature.
  • embodiments of the present invention provide a purifier 100 and an extractor hood 1000.
  • Oil fume extracted by the extractor hood 1000 will enter the purifier 100, and the purifier 100 can purify the oil fumes extracted by the extractor hood 1000, so as to make the gas discharged from the extractor hood 1000 cleaner and safer.
  • an embodiment of the present invention provides a purifier 100.
  • the purifier 100 includes a shell 101 and a purification assembly 102.
  • a receiving space 106 is formed in the shell 101, and the purification assembly 102 is arranged in the receiving space 106.
  • the purification assembly 102 includes a support part 103, a coil assembly 104, a grille part 1043 and a power supply assembly 105.
  • the coil assembly 104 is arranged on one side of the support part 103; and the grille part 1043 is connected to the support part 103.
  • the grille part 1043 and the support part 103 form a mounting chamber 108, and an activated carbon element 109 is placed in the mounting chamber 108.
  • the power supply assembly 105 is arranged on one side of the support part 103 facing away from the coil assembly 104, and the power supply assembly 105 is electrically connected to the coil assembly 104.
  • the purifier 100 can purify oil fumes to make the gas discharged from the purifier 100 cleaner and safer.
  • the purification assembly 102 is arranged in the receiving space 106 of the shell 101, so that the structure of the purifier 100 is simple and the production of the miniaturized purifier 100 is facilitated.
  • the shell 101 may be cylindrical. In this way, the extractor hood 1000 has a more pleasing appearance, and the structure of the extractor hood 1000 is more compact, which is beneficial to the miniaturization of the extractor hood 1000.
  • the shape of the shell 101 is not limited to a cylindrical shape and the shell 101 can be shaped according to different situations.
  • the shell 101 may alternatively have a square barrel shape, a variable barrel shape, etc. The specific shape of the shell 101 is not limited here.
  • the shell 101 may be made of plastic.
  • Plastic is easily accessible and has high plasticity, which is conducive to the mass production of the extractor hood 1000.
  • the material of the shell 101 is not limited to plastic.
  • the material of the shell 101 may be set according to different situations.
  • the shell 101 may alternatively be made of stainless steel.
  • the specific material of the shell 101 is not limited here.
  • the provision of the grille part 1043 enables the further isolation of the oil fumes. When there are too many substances such as oil fumes, they can be adhered to the grille part 1043, so that the purification effect of the activated carbon element 109 is better.
  • the provision of the mounting chamber 108 enables the placement of the activated carbon element 109, thereby making the whole structure of the purifier 100 more compact.
  • the coil assembly 104 includes a plurality of mounting columns 1042 arranged at intervals and multi-turn coils 1041 wound around the mounting columns 1042. Slots 1031 are provided on the side of the support part 103 facing towards the coil assembly 104, and each of the mounting columns 1042 is inserted into a respective slot 1031.
  • the coil assembly 104 can be stably connected to the support part 103. In this way, during operation of the purifier 100, it is possible to prevent the loosening of the coil assembly 104 from the support part 103, resulting in reducing the purification effect of the purifier 100 or damaging the purifier 100.
  • the coils 1041 may be arranged in a regular hexagon, and there are six mounting columns 1042. Each mounting column 1042 is arranged at one of six vertices of the coils 1041. Each coil 1041 is arranged at regular intervals in the lengthwise direction of the mounting column 1042.
  • Ozone is a strong oxidant, which can destroy and decompose the cell wall of bacteria, so as to diffuse into the cells and oxidize and decompose glucose oxidase, which is necessary for the bacteria to oxidize glucose. Ozone may also directly interact with bacteria and viruses, thereby destroying the metabolism and reproduction process of the bacteria.
  • ozone can oxidize various odorous inorganic or organic substances. For example, ozone can decompose odorous gases such as ammonia, benzene and hydrogen sulfide, thereby playing the role of deodorization. In short, ozone takes a short time for sterilization, disinfection and deodorization, and has a strong effect.
  • the use of the coil assembly 104 to ionize air to generate ozone to remove peculiar smells can achieve a good effect.
  • Figs. 7 to 9 are schematic circuit diagrams of the coil assembly 104 for the preparation of ozone.
  • the coil assembly 104 uses a corona discharge method to prepare ozone. Specifically, in the coil assembly 104, oxygen molecules are excited by electrons to obtain energy, and elastically collide with each other to polymerize into ozone molecules.
  • the chemical equation of the coil assembly 104 ionizing air to generate ozone is: 3O 2 ⁇ 2O 3
  • the side of the support part 103 facing away from the coil assembly 104 is provided with a receiving cavity 1032, and the power supply assembly 105 is arranged in the receiving cavity 1032.
  • the provision of the receiving cavity 1032 facilitates the placement of the power supply assembly 105, and makes the structure of the purifier 100 more compact, which is beneficial to the production of the miniaturized purifier 100.
  • the receiving cavity 1032 may be circular.
  • the shape of the receiving cavity 1032 is not limited to a circular shape.
  • the specific shape of the receiving cavity 1032 may be set according to different situations.
  • the receiving cavity 1032 may alternatively be square, polygonal, etc.
  • the specific shape of the receiving cavity 1032 is not limited here.
  • the purifier 100 further includes a wind speed sensor (not shown) and a controller (not shown).
  • the wind speed sensor is connected to the power supply assembly 105 and configured to obtain an amount of air inside the purifier 100, and the controller is configured to control an operation voltage of the coil assembly 104 according to the amount of air.
  • the wind speed sensor is connected to the power supply assembly 105.
  • the wind speed sensor can adjust the voltage of the power supply assembly 105 according to the amount of air inside the purifier 100, so as to control the operation voltage of the coil assembly 104.
  • the operation voltage of the coil assembly 104 is directly proportional to the amount of ozone ionized by the coil assembly 104. In this way, the purifier 100 is more intelligent.
  • the amounts of oil fumes caused by cooking different dishes are different.
  • a user can adjust the oil fume extraction power of the extractor hood 1000 according to different dishes. The smaller the power, the less oil fume particles are entrained in the wind, and the greater the power, the more oil fume particles are entrained in the wind.
  • the voltage of the power supply assembly 105 is adjusted to control the operation voltage of the coil assembly 104 to decrease, thereby reducing the amount of ozone generated by the coil assembly 104.
  • the voltage of the power supply assembly 105 is adjusted to control the operation voltage of the coil assembly 104 to increase, thereby increasing the amount of ozone generated by the coil assembly 104. Therefore, the purifier 100 is more intelligent and energy-saving, and the purifier 100 will adjust the amount of ozone generated by the coil assembly 104 with the amount of air entering the purifier 100. In this way, the situation will not occur where the coil assembly 104 still generates a large amount of ozone when the amount of air inside the purifier 100 is small, which will cause waste of resources.
  • the wind speed sensor there may be multiple settings in the wind speed sensor. Different settings correspond to different amounts of air, and different amounts of air correspond to different operation voltages of the coil assembly 104.
  • the specific settings can be adjusted according to different situations. For example, there may be three, four, or five settings, etc. The specific number of settings is not limited here.
  • the shell 101 is provided with an air intake port 1011.
  • the air intake port 1011 is provided with a plurality of air intake holes 10111, and the air intake port 1011 is arranged on the side of the shell 101 facing away from the coil assembly 104.
  • the external oil fumes enter the interior of the purifier 100 through the air intake holes 10111.
  • Fig. 10 is a schematic diagram of the relationship between the (natural bacteria) sterilization efficiency of the purifier 100 and the coil assembly 104 according to the embodiment of the present invention.
  • the horizontal axis represents the power of the coil assembly 1040 in watts (W), and the vertical axis represents the (natural bacteria) sterilization efficiency in percentage (%).
  • Table 1 shows the analysis and detection results of the purifier 100 with respect to the antibacterial (sterilization) function of natural bacteria according to the embodiment of the present invention.
  • the detection test shows that the (natural bacteria) sterilization efficiency of the coil assembly 104 reaches 92.4% after 24 hours, and the sterilization effect is good.
  • Table 1 Analysis item Time of operation Type of test bacteria Detection result Detection method Serial number Bacteria content in air for test group before test (CFU/m 3 ) Bacteria content in air for test group after test (CFU/m 3 ) Antibacterial (sterilization) rate (%) Antibacterial (sterilization) function 24h Natural bacteria 1 6.43 ⁇ 10 2 49 92.4 "Technical Specification for Disinfection" (2002 Edition) 2.1.3
  • Fig. 11 is a schematic diagram of the relationship between the ammonia removal rate of the purifier 100 and the coil assembly 104 according to the embodiment of the present invention.
  • the horizontal axis represents the power of the coil assembly 104 in watts (W), and the vertical axis represents the ammonia removal rate in percentage (%).
  • Fig. 12 is a schematic diagram of the relationship between the benzene removal rate of the purifier 100 and the coil assembly 104 according to the embodiment of the present invention.
  • the horizontal axis represents the power of the coil assembly 104 in watts (w)
  • the vertical axis represents the benzene removal rate in percentage (%).
  • Table 2 shows the analysis and detection results of the purifier 100 with respect to ammonia and benzene according to the embodiment of the present invention.
  • the detection test shows that after 24 hours, the ammonia removal rate of the purifier 100 reaches 88.7% and the benzene removal rate reaches 97.6%, and the effects are good.
  • Table 2 Analysis item Time of operation Detection result Removal rate (%) Detection method Concentration of pollutants in blank test chamber (mg/m 3 ) Concentration of pollutants in a sample test chamber (mg/m 3 ) Ammonia 24h 11.54 1.30 88.7 QB/T 2761-2006 Benzene 9.8 0.23 97.6
  • Table 3 shows the analysis and detection results of the purifier 100 with respect to the antibacterial (sterilization) function of Staphylococcus albus 8799 according to the embodiment of the present invention.
  • the detection test shows that after one hour, the antibacterial (sterilization) rate of the purifier 100 to Staphylococcus albus 8799 is about 95%, and the effect is good.
  • Fig. 13 is a schematic diagram of the relationship between the PM2.5 removal rate of the purifier 100 and the coil assembly 104 according to the embodiment of the present invention, in which the horizontal axis represents the power of the coil assembly 104 in watts (W), and the vertical axis represents the PM2.5 removal rate in percentage (%).
  • Table 4 shows the analysis and detection results of the purifier 100 with respect to PM2.5 according to the embodiment of the present invention. The detection test shows that the PM2.5 removal rate of the purifier 100 reaches 96.3% within 4 hours, and the effect is good.
  • Table 5 shows the analysis and detection results of the purifier 100 with respect to the PM2.5-based clean air delivery rate according to the embodiment of the present invention.
  • the detection test shows that the PM2.5-based clean air delivery rate of the purifier 100 reaches 15.5 m 3 /h, that is to say, the purifier 100 not only has a good removal rate, but also has a large clean air delivery rate.
  • Table 5 Analysis item Detection result Unit of measurement Detection method PM2.5-based clean air delivery rate (CADR PM2.5 ) 15.5 m 3 /h APAIC/LM 01-2013 (Appendix B)
  • the purifier 100 according to the embodiment of the present invention has a removal rate of 92.4% for natural bacteria, 96.3% for PM2.5, 88.7% for ammonia, 97.6% for benzene and about 95% for Staphylococcus albus. That is to say, the detection tests show that the removal rate of the purifier 100 according to the embodiment of the present invention can reach a removal rate of 88% or more for each object to be removed, and the removal rates for most of the objects to be removed can reach about 95%, having a good effect.
  • the purifier 100 further includes a cover plate 107.
  • the cover plate 107 is arranged on one side of the support part 103, and the cover plate 107 closes the receiving cavity 1032.
  • the provision of the cover plate 107 enables the closing of the receiving cavity 1032, so that the power supply assembly 105 in the receiving cavity 1032 is prevented from falling from the receiving cavity 1032, thereby improving the service life and operation efficiency of the purifier 100.
  • cover plate 107 may be made of plastic. It can be understood that the material of the cover plate 107 is not limited to plastic. The specific material of the cover plate 107 may be set according to different situations. For example, the cover plate 107 may alternatively be made of stainless steel, and the specific material of the cover plate 107 is not limited here.
  • the cover plate 107 and the shell 101 may be fixed by means of screws, which are strong in fixing firmness and convenient for removing the cover plate 107 from the shell 101 or installing the cover plate 107 to the shell 101.
  • the fixation means of the cover plate 107 and the shell is not limited to screws.
  • the connection means for the cover plate 107 and the shell 101 may be selected according to different situations.
  • the cover plate 107 and the shell 101 may alternatively be fixed by means of bonding or snap-fitting, and the specific connection between the cover plate 107 and the shell 101 is not limited here.
  • the power supply assembly 105 is arranged on the side of the cover plate 107 facing towards the support part 103.
  • the power supply assembly 105 includes a circuit board 1051, a transformer 1052 and a first plug 1053.
  • the transformer 1052 is arranged on one side of the circuit board 1051, and the first plug 1053 is connected to the transformer 1052.
  • the first plug 1053 is configured to be connected to a mains power supply.
  • the first plug 1053 is configured to be connected to the mains power supply to power the transformer 1052.
  • the transformer 1052 converts the voltage of 220 V of the mains power supply into a high voltage and transmits it to the coil assembly 104 through the circuit board 1051, so that an operation voltage is formed in the coil assembly 104 to generate ozone.
  • the circuit board 1051 may be a printed circuit board, which has the advantages of high operation efficiency and low costs.
  • the printed circuit board as the circuit board 1051 is beneficial to the mass production of the purification assembly 102. It can be understood that the circuit board 1051 is not limited to a printed circuit board.
  • the specific type of circuit board 1051 may be selected according to different situations.
  • the circuit board 1051 may alternatively be a flexible printed circuit board, a rigid-flex board, etc.
  • the specific material of the circuit board 1051 is not limited here.
  • connection columns 1071 the side of the cover plate 107 facing towards the receiving cavity 1032 is provided with connection columns 1071, two sides of the transformer 1052 are provided with flanges 10521, and the flanges 10521 are provided with connection holes 10522.
  • the transformer 1052 is connected to the cover plate 107 by means of screws passing through the connection holes 10522 and the connection columns 1071.
  • connection holes 10522 in the flanges 10521 of the transformer 1052 and the connection columns 1071 on the cover plate 107 the transformer 1052 is fixedly connected to the cover plate 107, so that it is possible to prevent the situation where the purifier 100 cannot be used due to the looseness of the transformer 1052 during the operation of the purifier 100.
  • fixation of the transformer 1052 and the cover plate 107 is not limited to the above manner.
  • the connection between the transformer 1052 and the cover plate 107 may be set according to different situations.
  • the transformer 1052 and the cover plate 107 may alternatively be fixedly connected by means of adhesive bonding or snap-fitting, and the specific connection between the transformer 1052 and the cover plate 107 is not limited here.
  • the transformer 1052 may be a high-voltage transformer 1052.
  • the high-voltage transformer 1052 is configured to convert the effective value of 220 V of the standard voltage most commonly used by residents into a high voltage for use by the coil assembly 104.
  • the high-voltage transformer 1052 can boost voltage by changing the turn ratio of the inductance coils.
  • the power supply assembly 105 further includes a second plug 1054 arranged on the circuit board 1051.
  • the first plug 1053 and the second plug 1054 are connected in parallel, and the second plug 1054 is configured to be connected to an external fan.
  • the second plug 1054 may be connected to the external fan, so that when the purifier 100 is powered on, the external fan is also powered on. In this way, it is not necessary to connect both the purifier 100 and the external fan to the mains power supply, which makes the connection more convenient.
  • the cover plate 107 is provided with a first hole 1072 and a second hole 1073.
  • the first plug 1053 passes through the first hole 1072 and is partially located in the receiving cavity 1032
  • the second plug 1054 passes through the second hole 1073 and is partially located in the receiving cavity 1032.
  • the arrangement of the first hole 1072 and the second hole 1073 facilitates the connection between the purifier 100 and the external power supply device, and the connection between the purifier 100 and the external extractor hood.
  • an embodiment of the present invention provides an extractor hood 1000.
  • the extractor hood 1000 includes the purifier 100 of any one of the above embodiments and a fan 1005 connected to the purifier 100.
  • the fan 1005 is configured for the suction of gas and discharging the gas into the purifier 100, and a second plug 1054 of the purifier 100 is connected to the fan 1005.
  • the purifier 100 of the extractor hood 1000 through the arrangement of the purification assembly 102, the purifier 100 can purify oil fumes to make the gas discharged from the purifier 100 cleaner and safer.
  • the purification assembly 102 is arranged in the receiving space 106 of the shell 101, so that the structure of the purifier 100 is simple and the production of the miniaturized purifier 100 is facilitated.
  • the extractor hood 1000 further includes a housing 1001.
  • the housing 1001 includes an inlet 1002 and an outlet 1003.
  • the outlet 1003 is docked with the air intake port 1011 of the purifier 100.
  • An air duct 1004 is formed in the housing 1001, and the fan 1005 is arranged in the air duct 1004.
  • the fan 1005 is configured to create an air flow from the inlet 1002 to the outlet 1003.
  • the fan 1005 can suck oil fumes into the air duct 1004 through the inlet 1002 and send the oil fumes into the purifier 100 through the outlet 1003 and the air intake port 1011 of the purifier 100.
  • the oil fumes After being purified in the purifier 100, the oil fumes are discharged from the purifier 100. At this time, the oil fumes discharged by the purifier 100 are cleaner and safer.
  • the housing 1001 may be made of plastic. Plastic is easily accessible and has high plasticity, which is conducive to the mass production of the extractor hood 1000.
  • the material of the housing 1001 is not limited to plastic.
  • the housing 1001 may be made of different materials according to different situations.
  • the housing 1001 may alternatively be made of stainless steel. The specific material of the housing 1001 is not limited here.
  • a filter screen may be provided at the outlet 1003.
  • the filter screen can filter the oil fumes with larger particles to prevent the oil fumes with larger particles from directly entering the purifier 100 and affecting the normal operation of the purifier 100.
  • the extractor hood 1000 may be arranged above a cooktop 1006, and the inlet 1002 of the extractor hood 1000 is close to the cooktop 1006, so that when the user uses the cooktop 1006 for cooking, the extractor hood 1000 can suck substances such as oil fumes and prevent the substances such as oil fumes from spreading around the cooktop 1006, thereby improving the user experience.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Description

    TECHNICAL FIELD
  • The present invention relates to the technical field of extractor hoods, and in particular to a purifier and an extractor hood.
  • BACKGROUND
  • Oil fume purifiers can purify oil fumes, so as to purify harmful substances from the oil fumes. For example, PM2.5, benzene, bacteria and other substances in the oil fumes can be purified by the oil fume purifiers to make the gas discharged from the oil fume purifiers cleaner and safer. However, the existing oil fume purifiers are complicated in structure and large in size, so it is inconvenient to place and use the oil fume purifiers, degrading the user experience.
  • An EP patent application No. EP2870413 A1 discloses a filter system, extractor hood and kitchen provided therewith, and a method for extracting air. The filter system includes a suction opening, a fan operatively connected to the suction opening for drawing in air through the suction opening, an electric filter, a sensor for measuring an indrawn airflow, and control means operatively connected to the sensor for switching an electric filter.
  • An international publication No. WO 2018/080302 A1 discloses a filter system, extractor hood provided therewith and method for filtering air. The filter system includes a filter housing having a suction opening for inlet of an indrawn flow and an outlet for outlet of a filtered flow; an electrostatic filter configured for electrostatic filtering of the indrawn flow, with the electrostatic filter including a first gaze acting as a first electrode and a second gaze acting as a second electrode that is placed at a distance of the first gaze, and a filing material provided between the first and second gazes; a plasma filter configured for generating ozone and providing the ozone to the indrawn flow; a sensor for measuring characteristics of the indrawn airflow and capable of generating measurement input; and a controller operatively connected to the sensor, wherein the controller includes an ozone activator configured to activate the plasma filter in response to the measurement input.
  • A CN patent application No. CN108870567A discloses an air purifying device and method. The air purifying device includes an induction part, a purifying part and an air outlet part, the air outlet part is of a hollow cylindrical structure, a strip-shaped slide channel is arranged at the top end of the air outlet part, an adjustable wind stopping plate is arranged at the bottom end of the air outlet part, the adjustable wind stopping plate slides along the slide channel through a connection rod, and the adjustable wind stopping plate can stop the air outlet at the bottom end of the air outlet part; the induction part is provided with a first induction area and a second induction area, the first induction area is located in the air outlet part, the first induction area and the air outlet part cooperate with each other to monitor the purified air pollution index, and the second induction area is located at an air inlet part, and used for monitoring the pollution index of the air before being purified; the purifying part is located between the air inlet part and the air outlet part, the purifying part is provided with a draught fan, a dust separating plate and a purifying layer, the dust separating plate is provided with a grid line and a plurality of small holes and used for cooperating with an electric bulb to kill mosquitoes and pests; and the draught fan, the dust separating plate and the purifying layer cooperate with one another to complete air purification.
  • SUMMARY
  • The present invention aims to solve at least one of the technical problems existing in the prior art. In view of this, the present invention provides a purifier and an extractor hood. The invention is set out in the appended set of claims.
  • An embodiment of the present invention provides a purifier, including:
    • a shell in which a receiving space is formed;
    • a purification assembly arranged in the receiving space, the purification assembly comprising:
      • a support part;
      • a coil assembly arranged on one side of the support part;
      • a grille part connected to the support part, where the grille part and the support part form a mounting chamber in which an activated carbon element is placed; and
      • a power supply assembly arranged on one side of the support part facing away from the coil assembly, the power supply assembly being electrically connected to the coil assembly.
  • In the purifier according to the embodiment of the present invention, through the arrangement of the purification assembly, the purifier can purify oil fumes to make the gas discharged from the purifier cleaner and safer. The purification assembly is arranged in the receiving space of the shell, so that the structure of the purifier is simple and the production of the miniaturized purifier is facilitated.
  • The side of the support part facing away from the coil assembly is provided with a receiving cavity in which the power supply assembly is arranged.
  • The coil assembly comprises a plurality of mounting columns arranged at intervals and multi-turn coils wound around the mounting columns, and slots are provided on the side of the support part facing towards the coil assembly, and each of the mounting columns is inserted into a respective slot.
  • The purifier further comprises a wind speed sensor and a controller, where the wind speed sensor is connected to the power supply assembly and configured to obtain an amount of air inside the purifier, and the controller is configured to control an operation voltage of the coil assembly according to the amount of air.
  • The purifier further comprises a cover plate, which is arranged on one side of the support part and closes the receiving cavity.
  • The power supply assembly is arranged on the side of the cover plate facing towards the support part, and comprises:
    • a circuit board;
    • a transformer arranged on one side of the circuit board; and
    • a first plug connected to the transformer and configured to be connected to a mains power supply.
  • In some embodiments, the side of the cover plate facing towards the receiving cavity is provided with connection columns, two sides of the transformer are provided with flanges, the flanges are provided with connection holes, and the transformer is connected to the cover plate by means of screws passing through the connection holes and the connection columns.
  • The power supply assembly further comprises a second plug arranged on the circuit board, the first plug and the second plug are connected in parallel, and the second plug is configured to be connected to an external fan.
  • The cover plate is provided with a first hole and a second hole, where the first plug passes through the first hole and is partially located in the receiving cavity, and the second plug passes through the second hole and is partially located in the receiving cavity.
  • An embodiment of the present invention provides an extractor hood, including:
    • the purifier according to any one of the above embodiments; and
    • a fan connected to the purifier, where the fan is configured for the suction of gas and discharging the gas into the purifier, and the second plug of the purifier is connected to the fan.
  • In the purifier of the extractor hood according to the embodiment of the present invention, through the arrangement of the purification assembly, the purifier can purify oil fumes to make the gas discharged from the purifier cleaner and safer. The purification assembly is arranged in the receiving space of the shell, so that the structure of the purifier is simple and the production of the miniaturized purifier is facilitated.
  • Additional aspects and advantages of the present invention will be given in part in the following description, and will become apparent in part from the following description or be learned by practice of the present invention.
  • BRIEF DESCRIPTION OF DRAWINGS
  • The above and/or additional aspects and advantages of the present invention will become apparent and readily understood from the description of embodiments in conjunction with the following accompanying drawings, in which:
    • Fig. 1 is a schematic view of a scene where an extractor hood according to an embodiment of the present invention is applied;
    • Fig. 2 is a schematic perspective view of a purifier according to an embodiment of the present invention;
    • Fig. 3 is another schematic perspective view of the purifier according to the embodiment of the present invention;
    • Fig. 4 is a schematic exploded view of the purifier according to the embodiment of the present invention;
    • Fig. 5 is another schematic exploded view of the purifier according to the embodiment of the present invention;
    • Fig. 6 is still another schematic exploded view of the purifier according to the embodiment of the present invention;
    • Figs. 7-9 are schematic circuit diagrams of an ozone generator for the preparation of ozone according to an embodiment of the present invention;
    • Fig. 10 is a schematic diagram of the relationship between the (natural bacteria) sterilization efficiency of an air purification module and the ozone generator according to an embodiment of the present invention;
    • Fig. 11 is a schematic diagram of the relationship between the ammonia removal rate of the air purification module and the ozone generator according to the embodiment of the present invention;
    • Fig. 12 is a schematic diagram of the relationship between the benzene removal rate of the air purification module and the ozone generator according to the embodiment of the present invention; and
    • Fig. 13 is a schematic diagram of the relationship between the PM2.5 removal rate of the air purification module and the ozone generator according to the embodiment of the present invention.
  • In the drawings, the meanings of the reference numerals are as follows:
    extractor hood 1000, housing 1001, inlet 1002, outlet 1003, air duct 10004, fan 1005, cooktop 1006, purifier 100, shell 101, air intake port 1011, air intake hole 10111, purification assembly 102, support part 103, slot 1031, receiving cavity 1032, coil assembly 104, coil 1041, mounting column 1042, grille part 1043, power supply assembly 105, circuit board 1051, transformer 1052, flange 10521, connection hole 10522, first plug 1053, second plug 1054, receiving space 106, cover plate 107, connection column 1071, first hole 1072, second hole 1073, mounting chamber 108, and activated carbon element 109.
  • DETAILED DESCRIPTION
  • Embodiments of the present invention will be described in detail below. Examples of the embodiments are illustrated in the accompanying drawings, where the same or like reference numerals throughout the figures indicates the same or like elements having the same or like functions. The embodiments described below with reference to the accompanying drawings are exemplary and are intended only to explain the present invention instead of being construed as limiting the present invention.
  • In the description of the present invention, it should be understood that, descriptions relating to orientation, for example, orientation or positional relationships indicated by "center", "longitudinal", "lateral", "length", "width", "thickness", "up", "down", "front", "back", "left", "right", "vertical", "horizontal", "top", "bottom", "inside", "outside", "clockwise", "counterclockwise", etc. are based on the orientation or positional relationships shown in the accompanying drawings, and are to facilitate the description of the present invention and simplify the description only, rather than indicating or implying that the device or element referred to must have a specific orientation or be constructed and operated in a specific orientation, and therefore cannot be construed as limiting the present invention. In addition, the terms "first" and "second" are for descriptive purposes only and should not be construed as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Thus, features defined with "first" and "second" may include one or more of the features either explicitly or implicitly. In the description of the present invention, the term "a plurality of" means two or more, unless otherwise explicitly and specifically defined.
  • It should be noted that, in the description of the present invention, the terms "mount", "engage", and "connect" should be interpreted in a broad sense unless explicitly defined and limited otherwise, which, for example, can mean a fixed connection, a detachable connection or an integral connection; can mean a mechanical connection or an electrical connection or being able to communicate with each other; and can mean a direct connection, an indirect connection by means of an intermediary, or internal communication between two elements or an interaction relationship between two elements. For those of ordinary skill in the art, the specific meaning of the terms mentioned above in the present invention should be construed according to specific circumstances.
  • In the present invention, unless otherwise explicitly specified or defined, a first feature being "on" or "under" a second feature can include situations where the first feature is in direct contact with the second feature, and can also include situations where the first and second features are in indirect contact by means of another feature therebetween, instead of being in direct contact with each other. Moreover, a first feature being "on", "above" or "over" a second feature includes situations where the first feature is directly above or obliquely above the second feature, or simply indicates that the first feature is higher in level than the second feature. A first feature being "under", "below" or "underneath" a second feature includes situations where the first feature is directly below or obliquely below the second feature, or simply indicates that the first feature is lower in level than the second feature.
  • The following disclosure provides many different embodiments or examples for implementing different structures of the present invention. In order to simplify the disclosure of the present invention, components and arrangements of specific examples are described below. Of course, they are only examples and are not intended to limit the present invention. Furthermore, reference numbers and/or letters may be repeated in different examples of the present invention. Such repetitions are for simplification and clearness, which per se do not indicate the relations of the discussed embodiments and/or arrangements. In addition, the present invention provides examples of various specific processes and materials, but the applicability of other processes and/or application of other materials may be appreciated by those of ordinary skill in the art.
  • With reference to Figs. 1-6, embodiments of the present invention provide a purifier 100 and an extractor hood 1000. Oil fume extracted by the extractor hood 1000 will enter the purifier 100, and the purifier 100 can purify the oil fumes extracted by the extractor hood 1000, so as to make the gas discharged from the extractor hood 1000 cleaner and safer.
  • The present invention is specifically described hereinafter.
  • Referring to Figs. 2-6, an embodiment of the present invention provides a purifier 100. The purifier 100 includes a shell 101 and a purification assembly 102. A receiving space 106 is formed in the shell 101, and the purification assembly 102 is arranged in the receiving space 106. The purification assembly 102 includes a support part 103, a coil assembly 104, a grille part 1043 and a power supply assembly 105. The coil assembly 104 is arranged on one side of the support part 103; and the grille part 1043 is connected to the support part 103. The grille part 1043 and the support part 103 form a mounting chamber 108, and an activated carbon element 109 is placed in the mounting chamber 108. The power supply assembly 105 is arranged on one side of the support part 103 facing away from the coil assembly 104, and the power supply assembly 105 is electrically connected to the coil assembly 104.
  • In the purifier 100 according to the embodiment of the present invention, through the arrangement of the purification assembly 102, the purifier 100 can purify oil fumes to make the gas discharged from the purifier 100 cleaner and safer. The purification assembly 102 is arranged in the receiving space 106 of the shell 101, so that the structure of the purifier 100 is simple and the production of the miniaturized purifier 100 is facilitated.
  • Further, the shell 101 may be cylindrical. In this way, the extractor hood 1000 has a more pleasing appearance, and the structure of the extractor hood 1000 is more compact, which is beneficial to the miniaturization of the extractor hood 1000. It can be understood that the shape of the shell 101 is not limited to a cylindrical shape and the shell 101 can be shaped according to different situations. For example, in other embodiments, the shell 101 may alternatively have a square barrel shape, a variable barrel shape, etc. The specific shape of the shell 101 is not limited here.
  • Specifically, the shell 101 may be made of plastic. Plastic is easily accessible and has high plasticity, which is conducive to the mass production of the extractor hood 1000. Of course, the material of the shell 101 is not limited to plastic. The material of the shell 101 may be set according to different situations. For example, the shell 101 may alternatively be made of stainless steel. The specific material of the shell 101 is not limited here.
  • Further, the provision of the grille part 1043 enables the further isolation of the oil fumes. When there are too many substances such as oil fumes, they can be adhered to the grille part 1043, so that the purification effect of the activated carbon element 109 is better.
  • The provision of the mounting chamber 108 enables the placement of the activated carbon element 109, thereby making the whole structure of the purifier 100 more compact.
  • Referring to Figs. 5 and 6, the coil assembly 104 includes a plurality of mounting columns 1042 arranged at intervals and multi-turn coils 1041 wound around the mounting columns 1042. Slots 1031 are provided on the side of the support part 103 facing towards the coil assembly 104, and each of the mounting columns 1042 is inserted into a respective slot 1031.
  • With the provision of the mounting columns of the coil assembly 104 and the slots 1031, the coil assembly 104 can be stably connected to the support part 103. In this way, during operation of the purifier 100, it is possible to prevent the loosening of the coil assembly 104 from the support part 103, resulting in reducing the purification effect of the purifier 100 or damaging the purifier 100.
  • Further, the coils 1041 may be arranged in a regular hexagon, and there are six mounting columns 1042. Each mounting column 1042 is arranged at one of six vertices of the coils 1041. Each coil 1041 is arranged at regular intervals in the lengthwise direction of the mounting column 1042.
  • Specifically, applying an operation voltage across the coils 1041 can ionize air to generate ozone. Ozone is a strong oxidant, which can destroy and decompose the cell wall of bacteria, so as to diffuse into the cells and oxidize and decompose glucose oxidase, which is necessary for the bacteria to oxidize glucose. Ozone may also directly interact with bacteria and viruses, thereby destroying the metabolism and reproduction process of the bacteria. In addition, ozone can oxidize various odorous inorganic or organic substances. For example, ozone can decompose odorous gases such as ammonia, benzene and hydrogen sulfide, thereby playing the role of deodorization. In short, ozone takes a short time for sterilization, disinfection and deodorization, and has a strong effect. The use of the coil assembly 104 to ionize air to generate ozone to remove peculiar smells can achieve a good effect.
  • Further, reference is made to Figs. 7 to 9. Figs. 7 to 9 are schematic circuit diagrams of the coil assembly 104 for the preparation of ozone. The coil assembly 104 according to the embodiment of the present invention uses a corona discharge method to prepare ozone. Specifically, in the coil assembly 104, oxygen molecules are excited by electrons to obtain energy, and elastically collide with each other to polymerize into ozone molecules. The chemical equation of the coil assembly 104 ionizing air to generate ozone is:

            3O2→2O3

  • Referring to Figs. 5 and 6, the side of the support part 103 facing away from the coil assembly 104 is provided with a receiving cavity 1032, and the power supply assembly 105 is arranged in the receiving cavity 1032.
  • The provision of the receiving cavity 1032 facilitates the placement of the power supply assembly 105, and makes the structure of the purifier 100 more compact, which is beneficial to the production of the miniaturized purifier 100.
  • Further, the receiving cavity 1032 may be circular. Of course, the shape of the receiving cavity 1032 is not limited to a circular shape. The specific shape of the receiving cavity 1032 may be set according to different situations. For example, the receiving cavity 1032 may alternatively be square, polygonal, etc. The specific shape of the receiving cavity 1032 is not limited here.
  • The purifier 100 further includes a wind speed sensor (not shown) and a controller (not shown). The wind speed sensor is connected to the power supply assembly 105 and configured to obtain an amount of air inside the purifier 100, and the controller is configured to control an operation voltage of the coil assembly 104 according to the amount of air.
  • The wind speed sensor is connected to the power supply assembly 105. The wind speed sensor can adjust the voltage of the power supply assembly 105 according to the amount of air inside the purifier 100, so as to control the operation voltage of the coil assembly 104. The operation voltage of the coil assembly 104 is directly proportional to the amount of ozone ionized by the coil assembly 104. In this way, the purifier 100 is more intelligent.
  • During cooking, the amounts of oil fumes caused by cooking different dishes are different. A user can adjust the oil fume extraction power of the extractor hood 1000 according to different dishes. The smaller the power, the less oil fume particles are entrained in the wind, and the greater the power, the more oil fume particles are entrained in the wind. When the amount of air entering the purifier 100 is small and the wind speed sensor recognizes a small amount of air, the voltage of the power supply assembly 105 is adjusted to control the operation voltage of the coil assembly 104 to decrease, thereby reducing the amount of ozone generated by the coil assembly 104. When the amount of air entering the purifier 100 is large and the wind speed sensor recognizes a large amount of air, the voltage of the power supply assembly 105 is adjusted to control the operation voltage of the coil assembly 104 to increase, thereby increasing the amount of ozone generated by the coil assembly 104. Therefore, the purifier 100 is more intelligent and energy-saving, and the purifier 100 will adjust the amount of ozone generated by the coil assembly 104 with the amount of air entering the purifier 100. In this way, the situation will not occur where the coil assembly 104 still generates a large amount of ozone when the amount of air inside the purifier 100 is small, which will cause waste of resources.
  • Specifically, there may be multiple settings in the wind speed sensor. Different settings correspond to different amounts of air, and different amounts of air correspond to different operation voltages of the coil assembly 104. The specific settings can be adjusted according to different situations. For example, there may be three, four, or five settings, etc. The specific number of settings is not limited here.
  • Referring to Figs. 2 and 5, further, the shell 101 is provided with an air intake port 1011. The air intake port 1011 is provided with a plurality of air intake holes 10111, and the air intake port 1011 is arranged on the side of the shell 101 facing away from the coil assembly 104. The external oil fumes enter the interior of the purifier 100 through the air intake holes 10111.
  • Further, different operation voltages correspond to different powers of the coil assembly 104.
  • Reference is made to Fig. 10 and Table 1 below. Fig. 10 is a schematic diagram of the relationship between the (natural bacteria) sterilization efficiency of the purifier 100 and the coil assembly 104 according to the embodiment of the present invention. The horizontal axis represents the power of the coil assembly 1040 in watts (W), and the vertical axis represents the (natural bacteria) sterilization efficiency in percentage (%). Table 1 shows the analysis and detection results of the purifier 100 with respect to the antibacterial (sterilization) function of natural bacteria according to the embodiment of the present invention. The detection test shows that the (natural bacteria) sterilization efficiency of the coil assembly 104 reaches 92.4% after 24 hours, and the sterilization effect is good. Table 1
    Analysis item Time of operation Type of test bacteria Detection result Detection method
    Serial number Bacteria content in air for test group before test (CFU/m3 ) Bacteria content in air for test group after test (CFU/m3 ) Antibacterial (sterilization) rate (%)
    Antibacterial (sterilization) function 24h Natural bacteria 1 6.43×102 49 92.4 "Technical Specification for Disinfection " (2002 Edition) 2.1.3
  • Reference is made to Figs. 11 and 12 and Table 2. Fig. 11 is a schematic diagram of the relationship between the ammonia removal rate of the purifier 100 and the coil assembly 104 according to the embodiment of the present invention. The horizontal axis represents the power of the coil assembly 104 in watts (W), and the vertical axis represents the ammonia removal rate in percentage (%). Fig. 12 is a schematic diagram of the relationship between the benzene removal rate of the purifier 100 and the coil assembly 104 according to the embodiment of the present invention. The horizontal axis represents the power of the coil assembly 104 in watts (w), and the vertical axis represents the benzene removal rate in percentage (%). Table 2 shows the analysis and detection results of the purifier 100 with respect to ammonia and benzene according to the embodiment of the present invention. The detection test shows that after 24 hours, the ammonia removal rate of the purifier 100 reaches 88.7% and the benzene removal rate reaches 97.6%, and the effects are good. Table 2
    Analysis item Time of operation Detection result Removal rate (%) Detection method
    Concentration of pollutants in blank test chamber (mg/m3) Concentration of pollutants in a sample test chamber (mg/m3)
    Ammonia 24h 11.54 1.30 88.7 QB/T 2761-2006
    Benzene 9.8 0.23 97.6
  • Table 3 shows the analysis and detection results of the purifier 100 with respect to the antibacterial (sterilization) function of Staphylococcus albus 8799 according to the embodiment of the present invention. The detection test shows that after one hour, the antibacterial (sterilization) rate of the purifier 100 to Staphylococcus albus 8799 is about 95%, and the effect is good. Table 3
    Analysis item Time of operation Type of test bacteria Detection result Detection method
    Serial number Bacteria conte nt in air for blank group befor e test (CFU /m3) Bacteri a cont ent in air for blan k gro up afte r test (CF U/ m3) Natural death rate (%) Bacteria content in air for test group before test The (CFU/m3 ) Bacteria content in air for test group after test The (CFU/m3 ) Antibac teri al (ste riliz atio n) rate (%)
    Antibact erial (steriliza tion) function 1h Staphylo coccus albus 8799 1 8.13 x 104 5.94 x 104 26.9 8.24 x 104 2.70 x 103 95.5 2 "Technical Specificati on for Disinfectio n" (2002 Edition) 2.1.3
    2 7.47 x 104 5.31 x 104 28.9 7.48 x 104 2.92 x 103 94.5 1
    3 7.95 x 104 5.66 x 104 28.8 7.87 x 104 3.00 x 103 94.6 5
  • Reference is made to Fig. 13 and Table 4. Fig. 13 is a schematic diagram of the relationship between the PM2.5 removal rate of the purifier 100 and the coil assembly 104 according to the embodiment of the present invention, in which the horizontal axis represents the power of the coil assembly 104 in watts (W), and the vertical axis represents the PM2.5 removal rate in percentage (%). Table 4 shows the analysis and detection results of the purifier 100 with respect to PM2.5 according to the embodiment of the present invention. The detection test shows that the PM2.5 removal rate of the purifier 100 reaches 96.3% within 4 hours, and the effect is good. Table 4
    Analysis item Detection result Removal rate under test conditions (%) Detection method
    Concentration (mg/m3) at the time when a sample is placed therein Concentration (mg/m) after the sample is placed therein for 4h
    PM2.5 6.23 0.228 96.3 Refer to APAIC/LM 01-2013 "Evaluation Standard for Purification Performance of Indoor Air Purifier 100"
  • Table 5 shows the analysis and detection results of the purifier 100 with respect to the PM2.5-based clean air delivery rate according to the embodiment of the present invention. The detection test shows that the PM2.5-based clean air delivery rate of the purifier 100 reaches 15.5 m3/h, that is to say, the purifier 100 not only has a good removal rate, but also has a large clean air delivery rate. Table 5
    Analysis item Detection result Unit of measurement Detection method
    PM2.5-based clean air delivery rate (CADRPM2.5) 15.5 m3/h APAIC/LM 01-2013 (Appendix B)
  • It can be seen from the above diagrams that the purifier 100 according to the embodiment of the present invention has a removal rate of 92.4% for natural bacteria, 96.3% for PM2.5, 88.7% for ammonia, 97.6% for benzene and about 95% for Staphylococcus albus. That is to say, the detection tests show that the removal rate of the purifier 100 according to the embodiment of the present invention can reach a removal rate of 88% or more for each object to be removed, and the removal rates for most of the objects to be removed can reach about 95%, having a good effect.
  • Referring to Figs. 4 to 6, the purifier 100 further includes a cover plate 107. The cover plate 107 is arranged on one side of the support part 103, and the cover plate 107 closes the receiving cavity 1032.
  • The provision of the cover plate 107 enables the closing of the receiving cavity 1032, so that the power supply assembly 105 in the receiving cavity 1032 is prevented from falling from the receiving cavity 1032, thereby improving the service life and operation efficiency of the purifier 100.
  • Further, the cover plate 107 may be made of plastic. It can be understood that the material of the cover plate 107 is not limited to plastic. The specific material of the cover plate 107 may be set according to different situations. For example, the cover plate 107 may alternatively be made of stainless steel, and the specific material of the cover plate 107 is not limited here.
  • Specifically, the cover plate 107 and the shell 101 may be fixed by means of screws, which are strong in fixing firmness and convenient for removing the cover plate 107 from the shell 101 or installing the cover plate 107 to the shell 101. Of course, the fixation means of the cover plate 107 and the shell is not limited to screws. The connection means for the cover plate 107 and the shell 101 may be selected according to different situations. For example, the cover plate 107 and the shell 101 may alternatively be fixed by means of bonding or snap-fitting, and the specific connection between the cover plate 107 and the shell 101 is not limited here.
  • Referring to Figs. 5 and 6, the power supply assembly 105 is arranged on the side of the cover plate 107 facing towards the support part 103. The power supply assembly 105 includes a circuit board 1051, a transformer 1052 and a first plug 1053. The transformer 1052 is arranged on one side of the circuit board 1051, and the first plug 1053 is connected to the transformer 1052. The first plug 1053 is configured to be connected to a mains power supply.
  • The first plug 1053 is configured to be connected to the mains power supply to power the transformer 1052. The transformer 1052 converts the voltage of 220 V of the mains power supply into a high voltage and transmits it to the coil assembly 104 through the circuit board 1051, so that an operation voltage is formed in the coil assembly 104 to generate ozone.
  • Further, the circuit board 1051 may be a printed circuit board, which has the advantages of high operation efficiency and low costs. The printed circuit board as the circuit board 1051 is beneficial to the mass production of the purification assembly 102. It can be understood that the circuit board 1051 is not limited to a printed circuit board. The specific type of circuit board 1051 may be selected according to different situations. For example, the circuit board 1051 may alternatively be a flexible printed circuit board, a rigid-flex board, etc. The specific material of the circuit board 1051 is not limited here.
  • Referring to Fig. 5, the side of the cover plate 107 facing towards the receiving cavity 1032 is provided with connection columns 1071, two sides of the transformer 1052 are provided with flanges 10521, and the flanges 10521 are provided with connection holes 10522. The transformer 1052 is connected to the cover plate 107 by means of screws passing through the connection holes 10522 and the connection columns 1071.
  • Through the arrangement of the connection holes 10522 in the flanges 10521 of the transformer 1052 and the connection columns 1071 on the cover plate 107, the transformer 1052 is fixedly connected to the cover plate 107, so that it is possible to prevent the situation where the purifier 100 cannot be used due to the looseness of the transformer 1052 during the operation of the purifier 100.
  • It can be understood that fixation of the transformer 1052 and the cover plate 107 is not limited to the above manner. The connection between the transformer 1052 and the cover plate 107 may be set according to different situations. For example, the transformer 1052 and the cover plate 107 may alternatively be fixedly connected by means of adhesive bonding or snap-fitting, and the specific connection between the transformer 1052 and the cover plate 107 is not limited here.
  • Further, the transformer 1052 may be a high-voltage transformer 1052. The high-voltage transformer 1052 is configured to convert the effective value of 220 V of the standard voltage most commonly used by residents into a high voltage for use by the coil assembly 104. For example, the high-voltage transformer 1052 can boost voltage by changing the turn ratio of the inductance coils.
  • Referring to Figs. 3 to 6, the power supply assembly 105 further includes a second plug 1054 arranged on the circuit board 1051. The first plug 1053 and the second plug 1054 are connected in parallel, and the second plug 1054 is configured to be connected to an external fan.
  • The second plug 1054 may be connected to the external fan, so that when the purifier 100 is powered on, the external fan is also powered on. In this way, it is not necessary to connect both the purifier 100 and the external fan to the mains power supply, which makes the connection more convenient.
  • Referring to Figs. 3 to 6, the cover plate 107 is provided with a first hole 1072 and a second hole 1073. The first plug 1053 passes through the first hole 1072 and is partially located in the receiving cavity 1032, and the second plug 1054 passes through the second hole 1073 and is partially located in the receiving cavity 1032.
  • The arrangement of the first hole 1072 and the second hole 1073 facilitates the connection between the purifier 100 and the external power supply device, and the connection between the purifier 100 and the external extractor hood.
  • Referring to Fig. 1, an embodiment of the present invention provides an extractor hood 1000. The extractor hood 1000 includes the purifier 100 of any one of the above embodiments and a fan 1005 connected to the purifier 100. The fan 1005 is configured for the suction of gas and discharging the gas into the purifier 100, and a second plug 1054 of the purifier 100 is connected to the fan 1005.
  • In the purifier 100 of the extractor hood 1000 according to the embodiment of the present invention, through the arrangement of the purification assembly 102, the purifier 100 can purify oil fumes to make the gas discharged from the purifier 100 cleaner and safer. The purification assembly 102 is arranged in the receiving space 106 of the shell 101, so that the structure of the purifier 100 is simple and the production of the miniaturized purifier 100 is facilitated.
  • Further, the extractor hood 1000 further includes a housing 1001. The housing 1001 includes an inlet 1002 and an outlet 1003. The outlet 1003 is docked with the air intake port 1011 of the purifier 100. An air duct 1004 is formed in the housing 1001, and the fan 1005 is arranged in the air duct 1004. The fan 1005 is configured to create an air flow from the inlet 1002 to the outlet 1003. During operation, the fan 1005 can suck oil fumes into the air duct 1004 through the inlet 1002 and send the oil fumes into the purifier 100 through the outlet 1003 and the air intake port 1011 of the purifier 100. After being purified in the purifier 100, the oil fumes are discharged from the purifier 100. At this time, the oil fumes discharged by the purifier 100 are cleaner and safer.
  • Specifically, the housing 1001 may be made of plastic. Plastic is easily accessible and has high plasticity, which is conducive to the mass production of the extractor hood 1000. Of course, the material of the housing 1001 is not limited to plastic. The housing 1001 may be made of different materials according to different situations. For example, the housing 1001 may alternatively be made of stainless steel. The specific material of the housing 1001 is not limited here.
  • Further, in order to prolong the service life of the extractor hood 1000, a filter screen may be provided at the outlet 1003. The filter screen can filter the oil fumes with larger particles to prevent the oil fumes with larger particles from directly entering the purifier 100 and affecting the normal operation of the purifier 100.
  • Still further, the extractor hood 1000 may be arranged above a cooktop 1006, and the inlet 1002 of the extractor hood 1000 is close to the cooktop 1006, so that when the user uses the cooktop 1006 for cooking, the extractor hood 1000 can suck substances such as oil fumes and prevent the substances such as oil fumes from spreading around the cooktop 1006, thereby improving the user experience.

Claims (6)

  1. A purifier (100), comprising:
    a shell (101) in which a receiving space (106) is formed;
    a purification assembly (102) arranged in the receiving space (106), the purification assembly (102) comprising:
    a support part (103);
    a coil assembly (104) arranged on one side of the support part (103);
    a grille part (1043) connected to the support part (103), wherein the grille part (1043) and the support part (103) form a mounting chamber (108) in which an activated carbon element (109) is placed; and
    a power supply assembly (105) arranged on one side of the support part (103) facing away from the coil assembly (104), wherein the power supply assembly (105) is electrically connected to the coil assembly (104); the side of the support part (103) facing away from the coil assembly (104) is provided with a receiving cavity (1032) in which the power supply assembly (105) is arranged; the purifier (100) further comprises a cover plate (107), which is arranged on one side of the support part (103) and closes the receiving cavity (1032); and the power supply assembly (105) is arranged on one side of the cover plate (107) facing towards the support part (103), the power supply assembly (105) comprising: a circuit board (1051); a transformer (1052) arranged on one side of the circuit board (1051); and a first plug (1053) connected to the transformer (1052) and configured to be connected to a mains power supply; characterized in that
    the coil assembly (104) comprises a plurality of mounting columns (1042) arranged at intervals and multi-turn coils (1041) wound around the mounting columns (1042), and slots (1031) are provided on one side of the support part (103) facing towards the coil assembly (104), and each of the mounting columns (1042) is inserted into a respective slot (1031).
  2. The purifier (100) according to claim 1, characterized by further comprising a wind speed sensor and a controller, wherein the wind speed sensor is connected to the power supply assembly (105) and configured to obtain an amount of air inside the purifier (100), and the controller is configured to control an operation voltage of the coil assembly (104) according to the amount of air.
  3. The purifier (100) according to claim 1, characterized in that one side of the cover plate (107) facing towards the receiving cavity (1032) is provided with connection columns (1071), two sides of the transformer (1052) are provided with flanges (10521), the flanges (10521) are provided with connection holes (10522), and the transformer (1052) is connected to the cover plate (107) by means of screws passing through the connection holes (10522) and the connection columns (1071).
  4. The purifier (100) according to claim 1, characterized in that the power supply assembly (105) further comprises a second plug (1054), which is arranged on the circuit board (1051) and configured to be connected to an external fan.
  5. The purifier (100) according to claim 4, characterized in that the cover plate (107) is provided with a first hole (1072) and a second hole (1073), wherein the first plug (1053) passes through the first hole (1072) and is partially located in the receiving cavity (1032), and the second plug (1054) passes through the second hole (1073) and is partially located in the receiving cavity (1032).
  6. An extractor hood (1000), comprising; a purifier (100) according to any of claims 1-5 and a fan (1005) connected to the purifier (100);
    wherein the fan (1005) is configured for the suction of gas and discharging the gas into the purifier (100).
EP19932895.6A 2019-06-12 2019-11-21 Purifier and air purification appliance Active EP3985316B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910506447.9A CN112082181B (en) 2019-06-12 2019-06-12 Purifier and smoke ventilator
PCT/CN2019/120026 WO2020248521A1 (en) 2019-06-12 2019-11-21 Purifier and air purification appliance

Publications (3)

Publication Number Publication Date
EP3985316A1 EP3985316A1 (en) 2022-04-20
EP3985316A4 EP3985316A4 (en) 2022-08-17
EP3985316B1 true EP3985316B1 (en) 2024-05-08

Family

ID=73733335

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19932895.6A Active EP3985316B1 (en) 2019-06-12 2019-11-21 Purifier and air purification appliance

Country Status (3)

Country Link
EP (1) EP3985316B1 (en)
CN (1) CN112082181B (en)
WO (1) WO2020248521A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112984589A (en) * 2021-03-29 2021-06-18 珠海格力电器股份有限公司 Range hood operation control method, device and system and range hood
WO2023124595A1 (en) * 2021-12-31 2023-07-06 广东合捷电器股份有限公司 Purification device and range hood

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7767169B2 (en) * 2003-12-11 2010-08-03 Sharper Image Acquisition Llc Electro-kinetic air transporter-conditioner system and method to oxidize volatile organic compounds
FR2887468B1 (en) * 2005-06-28 2008-02-01 Brandt Ind Sas CATALYSIS GAS TREATMENT DEVICE, IN PARTICULAR FOR A FILTRATION HOOD
NL2009138C2 (en) * 2012-07-06 2014-01-07 Martin Johan Sluis EXTRACTION SYSTEM, EXTRACTION HOOD AND KITCHEN EQUIPPED, AND METHOD FOR EXTRACTING AIR.
CA2910481C (en) * 2013-05-09 2018-01-09 The Procter & Gamble Company Air filtering device
CN203737089U (en) * 2014-01-16 2014-07-30 江苏中科睿赛污染控制工程有限公司 Lampblack purification device and side suction type range hood
KR101718616B1 (en) * 2015-07-23 2017-03-24 (주)비케이더블유 Filter apparatus of Humidifier
CN205164385U (en) * 2015-08-03 2016-04-20 艾考林空气净化技术(北京)有限公司 Electrostatic air purifier of ultralow ozone type of constant current voltage limiting
WO2017048085A1 (en) * 2015-09-14 2017-03-23 장대규 Compact air washer
CN106813304A (en) * 2015-12-01 2017-06-09 天津市爱德恒业科技发展有限公司 A kind of efficient air purifier
CN205650003U (en) * 2016-03-29 2016-10-19 陈友昌 Integrative clarifier of compound oil smoke peculiar smell of wet -type static
CN205717818U (en) * 2016-04-07 2016-11-23 西安交通大学 A kind of based on multilamellar mouse-cage type structure electrode purifier used
PL3532776T3 (en) * 2016-10-25 2021-06-28 Plasmamade B.V. Filter system for filtering a flow, extractor hood comprising such filter, and method for filtering air
CN107042040A (en) * 2016-12-13 2017-08-15 广东技术师范学院 Air cleaning unit and cleaning system
CN106885281A (en) * 2017-03-31 2017-06-23 广东美的厨房电器制造有限公司 Lampblack absorber
CN107192471B (en) * 2017-04-13 2019-04-12 南京史利姆电子科技有限公司 It is a kind of for the New temperature compensation circuit of pneumatic sensor and compensation method
CN208635219U (en) * 2018-05-23 2019-03-22 深圳康铂士健康科技有限公司 Air purifier
CN208536081U (en) * 2018-06-27 2019-02-22 佛山市顺德区合捷电器实业有限公司 Air-purifying module and smoke exhaust ventilator
CN208606239U (en) * 2018-06-27 2019-03-15 佛山市顺德区合捷电器实业有限公司 Smoke exhaust ventilator
CN108870567A (en) * 2018-08-30 2018-11-23 王亭元 A kind of air cleaning unit and method
CN109539423B (en) * 2018-10-30 2020-06-19 西安交通大学 Fuzzy control device and control method for electrostatic dust collection variable voltage of central air conditioner
CN109297062A (en) * 2018-11-09 2019-02-01 佛山市明伟达智能科技有限公司 Centrifugal Electrostatic Combined type lampblack purifier

Also Published As

Publication number Publication date
EP3985316A1 (en) 2022-04-20
WO2020248521A1 (en) 2020-12-17
EP3985316A4 (en) 2022-08-17
CN112082181A (en) 2020-12-15
CN112082181B (en) 2021-08-31

Similar Documents

Publication Publication Date Title
US7679879B2 (en) Air conditioning apparatus
US20130071298A1 (en) Apparatus and method for capture and inactivation of microbes and viruses
WO2020001068A1 (en) Air purifier
JP4657168B2 (en) Air treatment equipment
US7166259B2 (en) Air purifier with control sensors
WO2005061096A1 (en) Electro-kinetic air transporter-conditioner system and method to oxidize volatile organic compounds
EP3985316B1 (en) Purifier and air purification appliance
JP2008055404A (en) Air treatment apparatus
CN105485819A (en) Air purifier with multi-purification function and air purifying method
CN110657506A (en) Control method and air purification system
CN212815439U (en) Bed body structure with air purification function
JP3680120B2 (en) Ion generator, air purifier and air conditioner equipped with the same
CN215523642U (en) Purifier
CN113007755A (en) Purifier and smoke ventilator
CN110657469A (en) Range hood and control method thereof
CN209423850U (en) Height piezoelectric field cooking fume control equipment
CN110657467A (en) Range hood and control method thereof
CN211925853U (en) Purifier and smoke ventilator
CN214370792U (en) Suspension type air purification device
CN215412054U (en) Purification device and range hood
CN214199042U (en) Multifunctional air purification and disinfection device
CN213983705U (en) Purifier and smoke ventilator
CN110657466A (en) Air purifier
CN110657507A (en) Control method and air purification system
CN214106458U (en) Purifier and storing equipment

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211229

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

A4 Supplementary search report drawn up and despatched

Effective date: 20220714

RIC1 Information provided on ipc code assigned before grant

Ipc: F24F 8/158 20210101ALI20220708BHEP

Ipc: F24F 8/30 20210101ALI20220708BHEP

Ipc: F24F 13/30 20060101ALI20220708BHEP

Ipc: F24F 13/28 20060101ALI20220708BHEP

Ipc: F24F 3/16 20210101AFI20220708BHEP

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F24C 15/20 20060101ALI20240125BHEP

Ipc: F24F 13/20 20060101ALI20240125BHEP

Ipc: F24F 8/80 20210101ALI20240125BHEP

Ipc: F24F 8/158 20210101ALI20240125BHEP

Ipc: F24F 8/30 20210101ALI20240125BHEP

Ipc: F24F 13/30 20060101ALI20240125BHEP

Ipc: F24F 13/28 20060101ALI20240125BHEP

Ipc: F24F 3/16 20210101AFI20240125BHEP

INTG Intention to grant announced

Effective date: 20240209

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019052122

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20240508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240508

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240909

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1685283

Country of ref document: AT

Kind code of ref document: T

Effective date: 20240508

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240730

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240508