EP3981055A1 - Module solaire, agencement pouvant être intégré au module solaire et installation de génération d'énergie - Google Patents

Module solaire, agencement pouvant être intégré au module solaire et installation de génération d'énergie

Info

Publication number
EP3981055A1
EP3981055A1 EP20725706.4A EP20725706A EP3981055A1 EP 3981055 A1 EP3981055 A1 EP 3981055A1 EP 20725706 A EP20725706 A EP 20725706A EP 3981055 A1 EP3981055 A1 EP 3981055A1
Authority
EP
European Patent Office
Prior art keywords
solar module
inverter
time signal
precision time
communication unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20725706.4A
Other languages
German (de)
English (en)
Inventor
Peter Lahnor
Simon BUTTERWECK
Raimund Thiel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMA Solar Technology AG
Original Assignee
SMA Solar Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMA Solar Technology AG filed Critical SMA Solar Technology AG
Publication of EP3981055A1 publication Critical patent/EP3981055A1/fr
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/20Supporting structures directly fixed to an immovable object
    • H02S20/22Supporting structures directly fixed to an immovable object specially adapted for buildings
    • H02S20/23Supporting structures directly fixed to an immovable object specially adapted for buildings specially adapted for roof structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • F24S2050/25Calibration means; Methods for initial positioning of solar concentrators or solar receivers
    • GPHYSICS
    • G04HOROLOGY
    • G04RRADIO-CONTROLLED TIME-PIECES
    • G04R20/00Setting the time according to the time information carried or implied by the radio signal
    • G04R20/02Setting the time according to the time information carried or implied by the radio signal the radio signal being sent by a satellite, e.g. GPS
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0035Synchronisation arrangements detecting errors in frequency or phase
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the invention relates to a solar module with a receiving unit and a communication unit for transmitting the received precision time signal to an inverter, as well as an energy generation system with such a solar module.
  • the network subscriber has a
  • Receiving unit for receiving a time signal defining a reference time.
  • Solar systems in particular as decentralized energy producers with the measurement technology integrated in the inverter of the solar system are particularly suitable for monitoring a phase shift caused by the load flow and reacting quickly and appropriately to changes in the phase shift.
  • the receiver unit for the reference time signal into the inverter.
  • a solar module according to the invention comprises a plurality of solar cells which are used for
  • a receiving unit for receiving a precision time signal and a communication unit for synchronous transmission of the received
  • Module connections or via the direct current lines, or also from the voltage that only drops over a part of the solar cells, can be easily generated so that these components can be supplied from the direct voltage power.
  • the communication unit does not transmit position information from the receiving unit extracted from a plurality of time signals from various transmitters of the time signals, for example satellites, as is customary with GPS signals. Rather, the high-precision time information itself is transmitted synchronously, that is to say transmitted in such a way that the transmission time of the communication unit has a fixed temporal relationship with the reception time of the receiving unit. In this way, the transmitted time signal provides a highly precise time reference to the events, in particular operating or measurement events, of one connected to the direct current lines
  • Inverter can be obtained.
  • the communication unit is set up as a radio unit for wireless transmission of the precision time signal to the inverter. To this end, the additional effort of wired communication is avoided.
  • a use of common radio protocols such as Bluetooth is without
  • the precision time signal can be, for example, capacitive or inductive
  • High-frequency signal can be modulated onto the DC power and is thus transmitted in particular to an inverter provided for converting the DC power and evaluated there.
  • inverter provided for converting the DC power and evaluated there.
  • other types of superimposition of the direct current power with a transmission signal should not be excluded.
  • the transmission of the precision time signal from the solar module to a connected inverter leads to a time shift, but this is insignificant in the context of monitoring a phase shift in the network as long as the
  • Time shift has a constant value over time.
  • the arrangement can be accommodated in a junction box of a solar module, or have an independent housing in order to be arranged in the vicinity of the module, in particular between the DC voltage lines with which the solar module can be electrically connected to other solar modules.
  • the solar module-integrable arrangement can in particular via a
  • Insulation displacement technology can be electrically connected to the DC voltage lines in order to have access to a supply voltage and, if necessary, to be able to transmit the precision time signal.
  • cutting and clamping technology it is easily possible, for example, to supplement an existing solar module or an existing energy generation system with a solar module with an arrangement according to the invention.
  • an energy generation system comprises a solar module according to the invention, as well as one connected to the solar module
  • the inverter having a device for detecting a point in time related to the precision time signal with a fixed phase reference within a voltage curve of a connected network, in particular one
  • the inverter can assign a specific point in time obtained from the precision time signal to each voltage zero crossing.
  • These individual times can be aggregated, for example by averaging, in order to reduce the amount of data and to compensate for fluctuations in the individual times due to network distortions.
  • the individual or aggregated points in time can then be compared with points in time of voltage zero crossings recorded at other points in the network in order to be able to detect a phase offset between these points and monitor it over a longer period of time.
  • the inverter is for this purpose
  • the transfer can take place, for example, via a data link to a portal using internet protocols.
  • the invention is illustrated below with the aid of figures, of which
  • Fig. 1 shows an embodiment according to the invention of a solar module and a
  • Fig. 2 shows a power generation plant according to the invention.
  • a solar module 1 is shown in which a plurality of solar cells 8 are connected in series to generate a DC power.
  • DC power is led out via DC voltage lines 6 from the solar module 1 to this with other solar modules or with a
  • the DC voltage lines 6 are routed through an arrangement 2, in particular an arrangement integrated into a junction box of the solar module.
  • a communication unit 4 and a receiving unit 3 are connected to the DC voltage lines 6 for the electrical supply.
  • an antenna 5 is connected to the receiving unit 3, via which the receiving unit 3 can receive a precision time signal, for example a satellite-based GPS signal, via which a highly precise reference point in time can be obtained.
  • the information about the reference time is transmitted to the communication unit 4 connected to the receiving unit 3.
  • the communication unit 4 is set up to convert the reference point in time into a data signal of a suitable format and to transmit it to an inverter.
  • the data signal contains the reference time and the format and the signal frequency are selected so that the receiver can determine a reception time with sufficient accuracy, in particular an accuracy of less than 10 me, preferably less than 1 me.
  • Corresponding formats or usable frequency ranges are known to the person skilled in the art.
  • the transmission by the communication unit 4 can take place via radio or via the DC voltage lines 6, in that the data signal is modulated onto them inductively or capacitively as a high-frequency signal, for example.
  • the data signal can then be obtained by the inverter from the DC voltage lines by demodulation and evaluated.
  • inverters that do not have the information about the reference time can also be supplied with the information
  • DC voltage lines 6 are connected to the solar module 1.
  • FIG. 2 shows an energy generation system in the form of a building with a PV system installed on a building roof, which includes solar modules 10.
  • the solar modules 10 are connected to one another, to an arrangement 2 and to an inverter 11 via direct current lines 6.
  • the arrangement 2 is shown here as an independent arrangement, but can be integrated into one of the solar modules 10, as shown in connection with the description relating to FIG. 1.
  • the inverter 11 converts one over the
  • Direct current lines 6 supplied direct current power of the solar modules 10 in a
  • the arrangement 2 is set up to receive a precision time signal from a time signal generator 14, here a satellite, and is located with the roof at a location at which the precision time signal of the time signal generator 14 can be received.
  • the arrangement 2 transmits the received time signal alternatively as a radio signal or as a PLC signal modulated onto the direct current power to the inverter 11, which is set up to receive it. Because of its installation location, for example in a basement of the building, the inverter 11 is not able to receive the precision time signal of the time signal generator 14 directly.
  • the inverter is set up to record a point in time with a fixed phase reference within a voltage curve of the connected network 12, in particular a voltage zero crossing, to relate this point in time to the received time signal and to store it.
  • the inverter can have a PLL (phase locked loop) circuit.
  • PLL phase locked loop
  • a network frequency or a network frequency profile with a start or end time related to the received time signal can also be determined and stored, so that a message is made about a large number of recorded times, which increases the accuracy of the detection.
  • the data stored in this way about times and / or network frequencies or network frequency curves can be transmitted to a central evaluation unit for such data at a later point in time.
  • a power generation plant according to the invention can have components for receiving the time signal for other communication purposes without
  • the arrangement 2 can also be installed subsequently in an existing energy generation system. To do this, it can be installed in a junction box of an existing solar module and connected to the direct current lines. However, it is also conceivable to provide an additional connection unit, in particular a connection unit which is simply clipped over the direct current lines by means of insulation displacement technology, as described in the document DE 20 2012 103 480 U1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

La présente invention concerne un module solaire (1), qui comporte une pluralité de cellules solaires (8), qui sont interconnectées pour générer une puissance en tension continue appliquée à des bornes de module, une unité réceptrice (3) pour recevoir un signal temporel de précision et une unité de communication (4) pour transmettre de manière synchrone le signal temporel de précision reçu à un onduleur (11), ledit onduleur (11) étant connecté au module solaire (1) par l'intermédiaire de conduites de tension continue (6). L'invention concerne en outre un agencement (2), qui peut être intégré dans un module solaire, ainsi qu'une installation de génération d'énergie dotée d'un tel module solaire (1).
EP20725706.4A 2019-06-05 2020-05-13 Module solaire, agencement pouvant être intégré au module solaire et installation de génération d'énergie Pending EP3981055A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019115145.7A DE102019115145A1 (de) 2019-06-05 2019-06-05 Solarmodul, solarmodulintegrierbare Anordnung und Energieerzeugungsanlage
PCT/EP2020/063275 WO2020244896A1 (fr) 2019-06-05 2020-05-13 Module solaire, agencement pouvant être intégré au module solaire et installation de génération d'énergie

Publications (1)

Publication Number Publication Date
EP3981055A1 true EP3981055A1 (fr) 2022-04-13

Family

ID=70682852

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20725706.4A Pending EP3981055A1 (fr) 2019-06-05 2020-05-13 Module solaire, agencement pouvant être intégré au module solaire et installation de génération d'énergie

Country Status (4)

Country Link
US (1) US20220090826A1 (fr)
EP (1) EP3981055A1 (fr)
DE (1) DE102019115145A1 (fr)
WO (1) WO2020244896A1 (fr)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116835A (ja) * 2003-10-08 2005-04-28 Kyocera Corp 太陽電池モジュール及びこれを用いた太陽光発電システム
US7339806B2 (en) * 2005-12-06 2008-03-04 Yuan-Tai Hsieh Adjustment device for adjusting wave shape of output of a DC-AC inverter
US8473250B2 (en) * 2006-12-06 2013-06-25 Solaredge, Ltd. Monitoring of distributed power harvesting systems using DC power sources
US20120033473A1 (en) * 2010-07-12 2012-02-09 Scharf Mesa P Systems and methods for electrical power grid monitoring using loosely synchronized phasors
US20120118348A1 (en) * 2010-11-16 2012-05-17 First Solar, Inc. Method and apparatus to enable safe servicing of pv modules
US8659186B2 (en) * 2010-12-29 2014-02-25 General Electric Company Methods and systems for controlling a power conversion system
CN202384835U (zh) * 2011-11-24 2012-08-15 苏州华领太阳能电力技术有限公司 分布式光伏并网发电逆变器的监控系统
DE102012103789A1 (de) * 2012-04-30 2013-10-31 Sma Solar Technology Ag Kabelclip für Modulelektronik
CN204290502U (zh) * 2015-01-12 2015-04-22 南京大全自动化科技有限公司 一种支持光伏逆变器igbt击穿失效检测的箱变测控保护装置
CN106160163A (zh) * 2016-08-11 2016-11-23 陈铭 太阳能光伏电源系统
DE102017112438B4 (de) * 2017-06-06 2020-03-26 Sma Solar Technology Ag Netzteilnehmergerät
CN108695889B (zh) * 2018-06-04 2021-08-17 中山市厚源电子科技有限公司 一种可共享运维的高效光伏逆变器

Also Published As

Publication number Publication date
WO2020244896A1 (fr) 2020-12-10
DE102019115145A1 (de) 2020-12-10
US20220090826A1 (en) 2022-03-24

Similar Documents

Publication Publication Date Title
DE102009061044B4 (de) Photovoltaik-Anlage mit Modulüberwachung
EP2591534B1 (fr) Procédé de commande d'installations photovoltaïques dans un réseau d'alimentation en courant
EP2403746B1 (fr) Télésurveillance de paramètres de fonctionnement d'une installation à ligne de contact
WO2003071655A1 (fr) Procede pour controler des installations de production d'energie decentralisees
DE112012001446B4 (de) Energiemanagementsystem und Energiemanagementverfahren
CN101603982A (zh) 考虑负荷变化的分布式零序电流采集方法
EP2805185B1 (fr) Procédé pour faire fonctionner un appareil de terrain, appareil de terrain, et serveur pour un réseau d'automatisation de grande surface
EP3729597A1 (fr) Procédé d'assistance à un réseau de distribution électrique au moyen d'une ou de plusieurs installations d'énergie éolienne
WO2020244896A1 (fr) Module solaire, agencement pouvant être intégré au module solaire et installation de génération d'énergie
EP2863551B1 (fr) Méthode et système pour la détermination de l'état opérationnel d'un composant réseau dans un réseau de distribution d'énergie
WO2021099085A1 (fr) Procédé de détermination d'un paramètre de fonctionnement d'une installation pv, installation pv dotée d'un onduleur et onduleur pour une telle installation pv
EP3275067A1 (fr) Procédé de liaison d'une installation de production d'énergie à un réseau de moyenne tension et installation de production d'énergie
EP2960664A1 (fr) Module, unité de fonctionnement et système d'enregistrement de puissances et de quantités d'énergie dans des conducteurs
DE102012112921B3 (de) Schaltungsanordnung und Verfahren zur Datenübertragung auf Gleichstromleitungen und Wechselrichter und Photovoltaik-Anlage mit einer derartigen Schaltungsanordnung
EP3451684A1 (fr) Concentrateur de données
DE10063538C1 (de) Verfahren zur Datenübertragung in Wechselstromnetzen
EP2733890A2 (fr) Procédé de reconnaissance de la topologie dans un réseau basse tension
WO2012139655A2 (fr) Procédé et dispositif de mesure de courant pour identifier des prélèvements de courant ou des arrivées de courant dans un réseau de distribution basse tension électrique
DE102008011824A1 (de) Verwendung von Phasor Measurement Units für differentielle Globale Satellitennavigationssysteme (GNSS)
DE102010034961B4 (de) Verfahren zum Betrieb einer Vorrichtung zum Erfassen von Verbrauchswerten in einem Gebäude anfallender Verbrauchsmengen
DE102014200412A1 (de) Verfahren und Wechselrichter zum Einspeisen elektrischer Energie in ein Wechselspannungsnetz
DE102018213984A1 (de) Powerline-Knoten und Messsystem zum Überwachen eines Zustands eines Energieversorgungsnetzwerks
EP2281355B1 (fr) Installation d'antenne, notamment installation d'antenne de radiocommunication mobile et dispositif de transmission et de commande associé
EP1729138B1 (fr) Procédé et dispositif destinés à déterminer l'endroit d'un court circuit dans un circuit de réseau d'alimentation d'énergie
DE102021005189A1 (de) Verfahren zur drahtlosen Übertragung von Zustandsgrößen von Nieder - und Mittelspannungs-Netzen

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220104

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)